WO2022215289A1 - Antistatic warp knitted fabric - Google Patents

Antistatic warp knitted fabric Download PDF

Info

Publication number
WO2022215289A1
WO2022215289A1 PCT/JP2021/038296 JP2021038296W WO2022215289A1 WO 2022215289 A1 WO2022215289 A1 WO 2022215289A1 JP 2021038296 W JP2021038296 W JP 2021038296W WO 2022215289 A1 WO2022215289 A1 WO 2022215289A1
Authority
WO
WIPO (PCT)
Prior art keywords
knitted fabric
yarn
warp knitted
antistatic
conductive
Prior art date
Application number
PCT/JP2021/038296
Other languages
French (fr)
Japanese (ja)
Inventor
和広 名本
武史 西山
Original Assignee
ユニチカトレーディング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカトレーディング株式会社 filed Critical ユニチカトレーディング株式会社
Priority to CN202180096474.9A priority Critical patent/CN117098885A/en
Publication of WO2022215289A1 publication Critical patent/WO2022215289A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/008Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting against electric shocks or static electricity
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/26Electrically protective, e.g. preventing static electricity or electric shock
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes

Definitions

  • the present invention provides an antistatic warp knitted fabric suitable for wearing at sites where high antistatic properties are required, such as factories that produce food, electrical appliances, precision equipment, etc., and work using it for clothing.
  • Fabrics made of synthetic fibers are generally excellent in strength, durability, and low dust generation, and are widely used as work clothes.
  • high antistatic properties are required in operations involving electronic devices, electronic components, or electronic materials.
  • synthetic fibers are very prone to generate static electricity under low humidity, and there is a problem that the static electricity destroys the workpiece during work. For this reason, various antistatic fibers, woven and knitted fabrics, etc. have been proposed as countermeasures against static electricity.
  • the surface resistance value conforming to IEC61340-5-1, 5-2 is 1 ⁇ 10 11 ⁇ or less.
  • the antistatic property means excellent performance in preventing electrification due to static electricity or the like.
  • Patent Literature 1 proposes antistatic work clothes suitable as work clothes for workers who handle electronic devices, electronic parts, or electronic materials as work clothes having antistatic properties that satisfy this standard.
  • the antistatic work wear described in Patent Document 1 is sewn using a cloth obtained by weaving and knitting conductive composite yarns including conductive fibers in a grid pattern.
  • Patent Document 1 Although the antistatic workwear described in Patent Document 1 has excellent antistatic properties, it lacks stretchability because it is made of woven fabric, and lacks comfort as workwear. In addition, since the conductive composite yarns containing conductive fibers are woven in a grid pattern, the antistatic property in the bias direction is insufficient.
  • Patent Document 2 proposes a knitted fabric having antistatic properties in all of the warp, weft, and bias directions of the knitted fabric.
  • Patent Document 2 since the conductive fiber is used as it is (single substance), the conductive fiber tends to break frequently during warping or knitting, and it is difficult to obtain a knitted fabric with excellent quality with good productivity. is difficult. For this reason, the production of work clothes is costly. Furthermore, this knitted fabric is prone to breakage of the conductive fibers during washing or wearing, resulting in poor sustainability of the antistatic property.
  • the main object of the present invention is to solve the above problems, and to have antistatic properties in all of the warp, weft and bias directions of the knitted fabric, and to Antistatic warp knitting that can obtain work clothes that maintain high antistatic properties in the direction of and even after repeated wearing or washing, and also have stretchability and good comfort. It is to provide the land.
  • the inventor of the present invention has conducted intensive research to solve the above problems, and has found that the above objects can be achieved by adopting a warp knitted fabric having a specific structure, and has completed the present invention.
  • a warp knitted fabric knitted with (a) a composite yarn containing a conductive yarn and a first non-conductive yarn and (b) a second non-conductive yarn, the requirements of (1) to (4) below: (1) The composite yarn is included in the yarn that knits at least one of the surface and the back surface of the warp knitted fabric, (2) the composite yarn has one or more stitches formed by overlapping loops of mutually adjacent composite yarns; (3) The surface friction variation value (MMD) in the horizontal direction of the warp knitted fabric is 0.01 to 0.10, and (4) The vertical direction and horizontal direction measured by IEC61340-5-1 after 10 washes both the surface resistance values in the direction and the bias direction are 1.0 ⁇ 10 10 ⁇ or less; An antistatic warp knitted fabric characterized by satisfying 2.
  • the antistatic warp knitted fabric according to item 1 wherein the composite yarn is at least one selected from the group consisting of (i) plied yarn, (ii) covering yarn and (iii) interlaced yarn. 3.
  • the antistatic warp knitted fabric according to item 1 or 2 wherein the content of the conductive yarn in the total mass of the warp knitted fabric is 0.5 to 10.0% by mass. 4.
  • Item 2. The antistatic warp knitted fabric according to Item 1, wherein the difference (AB) from the minimum total fineness (B) is 200 dtex or less. 6.
  • the antistatic warp knitted fabric according to any one of Items 1 to 5 wherein the stitches formed by overlapping the loops of the composite yarns are included at a rate of 1 or more per 2 cm in the horizontal direction of the warp knitted fabric. . 7.
  • Work clothes comprising the antistatic warp knitted fabric according to any one of the above items 1 to 7.
  • "after 10 washes” particularly means the state after repeating the washing operation 10 times according to the conditions of the Japanese Industrial Standard "JIS L 0217 103" method (household electric washing machine method). do. That is, it means the state after 10 consecutive cycles of a series of operations consisting of "washing”, “rinsing”, and “drying” under the above conditions.
  • "after 100 washes” means the state after repeating the washing operation 100 times in accordance with the Japanese Industrial Standards "JIS L 0217 103" method (household electric washing machine method). That is, it means the state after 100 consecutive cycles of a series of operations consisting of "washing", “rinsing", and “drying” under the above conditions.
  • the knitted fabric has antistatic properties in all of the warp, weft, and bias directions, and the antistatic properties in any of these directions are effective even after repeated wearing or washing. It is possible to provide an antistatic warp knitted fabric which can be maintained and which can provide work clothes having stretchability and good comfort.
  • the antistatic warp knitted fabric of the present invention has excellent initial antistatic properties, and in addition, the antistatic properties do not easily decrease even after repeated wearing or washing, and it is possible to maintain good antistatic properties. can.
  • the antistatic properties of the antistatic warp knitted fabric of the present invention can also hold values specified by quasi-international standards.
  • the antistatic warp knitted fabric of the present invention is a knitted fabric, it has excellent stretchability compared to woven fabrics. That is, according to the present invention, it is possible to exhibit the above-mentioned high antistatic property and the like, and also to obtain the original characteristics of the knitted fabric.
  • the unevenness of the composite yarn is small and the knitted fabric surface is smooth, so that it is possible to provide clothes that are comfortable to wear.
  • the antistatic warp knitted fabric of the present invention having such characteristics can be used in various works such as the electronics industry that require countermeasures against static electricity, and is comfortable to wear when worn. Clothing can be conveniently provided.
  • FIG. 1 is a knitting structure diagram showing one embodiment of a knitting structure of "a composite yarn containing a conductive yarn and a first non-conductive yarn” in the antistatic warp knitted fabric of the present invention.
  • FIG. Fig. 2 is a knitting structure diagram showing another embodiment of a knitting structure of "a composite yarn containing a conductive yarn and a first non-conductive yarn” in the antistatic warp knitted fabric of the present invention.
  • 10 is a knitting structure diagram showing a knitting structure of "a composite yarn containing a conductive yarn and a first non-conductive yarn” in the warp knitted fabric of Comparative Example 3.
  • FIG. 1 is a diagram showing an example of a cross section of a conductive synthetic fiber used in the antistatic warp knitted fabric of the present invention;
  • FIG. FIG. 4A shows an embodiment having an exposed portion of the conductive polymer portion on a portion of the circumference of the conductive synthetic fiber.
  • FIG. 4B shows an embodiment having an exposed portion of the conductive polymer portion around the
  • the antistatic warp knitted fabric of the present invention is a warp knitted fabric knitted with (a) a composite yarn containing a conductive yarn and a first non-conductive yarn and (b) a second non-conductive yarn, and has the following (1) Requirements for ⁇ (4): (1) The composite yarn is included in the yarn that knits at least one of the surface and the back surface of the warp knitted fabric, (2) the composite yarn has one or more stitches formed by overlapping loops of mutually adjacent composite yarns; (3) The surface friction variation value (MMD) in the horizontal direction of the warp knitted fabric is 0.01 to 0.10, and (4) The vertical direction and horizontal direction measured by IEC61340-5-1 after 10 washes It is characterized by satisfying the surface resistance value of 1.0 ⁇ 10 10 ⁇ or less both in the direction and the bias direction.
  • the antistatic warp knitted fabric of the present invention is knitted from (a) a composite yarn containing a conductive yarn and a first non-conductive yarn and (b) a second non-conductive yarn.
  • the conductive yarn mainly functions to develop antistatic properties in the antistatic warp knitted fabric of the present invention.
  • a synthetic fiber (conductive synthetic fiber) configured using a conductive polymer is preferable.
  • a conductive polymer is a material obtained by blending conductive fine particles into a thermoplastic resin that is usually used to form fibers. That is, a resin composition containing a thermoplastic resin and conductive fine particles can be used as the conductive polymer.
  • Examples of conductive fine particles include, but are not limited to, powders of carbon materials such as conductive carbon black, various powders, powders of metals such as copper sulfide, zinc sulfide, and copper iodide, and powders of compounds thereof. Among these, conductive carbon black is preferred.
  • the size and the like of the conductive fine particles can also be appropriately set according to the size and the like of the fibers, and are not particularly limited. Also, the content of the conductive fine particles is not particularly limited because it can be appropriately set according to the desired conductivity and the like.
  • thermoplastic resins include polyolefin polymers such as polyethylene and polypropylene; polyamide polymers such as nylon 6, nylon 66, nylon 4 and nylon 12; and polyester polymers such as polyethylene terephthalate, polybutylene terephthalate and polytetramethylene terephthalate. can be used. Among them, at least one polymer such as a polyester-based polymer or a polyamide-based polymer is preferable from the viewpoint of heat resistance.
  • the conductive synthetic fiber may be a fiber made of a single conductive polymer. It is preferably a fiber having a composite cross-sectional shape, which is composed of a flexible polymer portion.
  • the above thermoplastic resin can be used for the conductive polymer portion or the non-conductive polymer portion.
  • the content of the conductive fine particles is increased in order to improve conductivity, the strength or texture of the resulting fiber tends to be impaired. Alternatively, the texture can be kept good.
  • the cross-sectional shape of the composite type it is preferable that the conductive polymer is exposed on the fiber surface in the cross-sectional shape of the single fiber in order to improve the conductivity.
  • Fig. 4 shows a cross-sectional example of a conductive synthetic fiber.
  • the conductive synthetic fiber 10 shown in FIG. 4A includes a conductive polymer portion 10a and a non-conductive polymer portion 10b. As described above, it is preferable that the conductive polymer portion 10a is exposed on the surface of the conductive synthetic fiber. It is indicated by the ratio [(C1+C2+C3+C4)/C] ⁇ 100(%) of the portion (total of arcs C1, C2, C3, and C4).
  • the conductive synthetic fiber 10' shown in FIG. 4B includes a conductive polymer portion 10'a and a non-conductive polymer portion 10'b, and the conductive polymer portion is exposed around the entire circumference of the conductive synthetic fiber 10'. So the percentage is 100%.
  • the exposed portion of the conductive polymer portion preferably occupies 30% or more of the outer peripheral length, and more preferably occupies 50% or more of the outer peripheral length. 100% is most preferred.
  • a commercial product can also be used as the conductive yarn (especially the conductive yarn with a composite cross-sectional shape).
  • a commercial product can also be used as the conductive yarn (especially the conductive yarn with a composite cross-sectional shape).
  • “Curacarbo” (trade name) manufactured by Kuraray Co., Ltd., "Beltron” (trade name) manufactured by KB Seiren, "Luana” (trade name) manufactured by Toray Industries, Inc., and “Megana” (trade name) manufactured by Unitika Trading. be done.
  • the surface resistance value conforming to IEC61340-5-1 and 5-2 can be obtained with good results.
  • the conductive yarn has a small fineness and a low strength, so that if it is used alone, the problem of yarn breakage is likely to occur in the warping and knitting processes, making stable implementation difficult.
  • the conductive yarn is used together with the first non-conductive yarn to form a composite yarn such as a plied yarn, a mixed yarn, a covered yarn, etc., so that the above problems do not occur.
  • the non-conductive yarn is preferably obtained from a thermoplastic resin.
  • a thermoplastic resin can be formed from a resin composition containing no conductive fine particles and containing a thermoplastic resin.
  • the thermoplastic resin is not particularly limited, and examples thereof include polyolefin polymers such as polyethylene and polypropylene, polyamide polymers such as nylon 6, nylon 66, nylon 4 and nylon 12, polyethylene terephthalate, polybutylene terephthalate, and polytetramethylene terephthalate.
  • a polyester-based polymer such as can be used. Among these, polyester-based polymers are preferable from the viewpoint of heat resistance and the like.
  • a fiber obtained by melt-spinning a resin composition containing a thermoplastic resin as described above, and a spun yarn obtained from multifilament or monofilament long fibers or short fibers is preferably used.
  • long fibers as the fibers constituting the antistatic warp knitted fabric of the present invention, dust generation from the fibers can be reduced.
  • polyester long fibers are preferred.
  • the polyester long fibers for example, those obtained by melt-spinning a resin composition containing a polyester-based polymer can be suitably used.
  • the non-conductive yarn is not limited as long as it uses the thermoplastic resin described above.
  • the non-conductive yarn may be a composite fiber such as a core-sheath type or a side-by-side type.
  • conjugated fibers in addition to conjugated fibers using two or more kinds of different resins, conjugated fibers using two or more kinds of the same resins having different compositions, characteristic values, etc. can be used.
  • the combination of the polymer forming the conductive polymer portion and the polymer forming the non-conductive polymer portion may be a combination of the same types of polymers or a combination of different types of polymers. A combination may be used. In the present invention, a combination of polymers of the same type is preferred from the viewpoint of compatibility.
  • the thermoplastic resin it is preferable to use at least one of polyester-based polymer, polyamide-based polymer, and the like.
  • the form of the composite yarn is preferably any one of plied yarn, covered yarn, interlaced yarn, and the like.
  • the plied yarn is not limited, for example, a conductive yarn and a first non-conductive yarn are twisted using a known yarn twisting machine such as a ring twisting machine, and the number of twists is 200 to 700 t / M. is preferred.
  • the covering yarn is not limited, but for example, a single covering yarn or double covering yarn using a conductive yarn as a core yarn and a first non-conductive yarn as a sheath yarn, and the number of twists is 200 to 700 t. /M is preferred.
  • the interlaced yarn is not limited, but for example, it is an interlaced yarn in which a conductive yarn is used as a core yarn, a first non-conductive yarn is used as a floating yarn, and both yarns are bound by an interlace nozzle with the force of air. It is preferable that the entanglement number is 30 to 100/m.
  • the conductive yarn as a composite yarn as described above together with the non-conductive yarn, instead of using the conductive yarn alone, it is possible to reduce the breakage of the conductive yarn. As a result, it is possible to improve the operability when obtaining a knitted fabric, and to effectively maintain the quality of the obtained knitted fabric and the antistatic property.
  • the single fiber fineness of the conductive yarn used for the composite yarn is not limited, it is preferably 4 to 20 dtex. Although the total fineness is not particularly limited, it is preferably 20 to 35 dtex.
  • the single fiber fineness of the first non-conductive yarn used for the composite yarn is not limited, it is preferably 1 to 5 dtex. Although the total fineness is not limited, it is preferably 30 to 120 dtex. Although the total fineness of the composite yarn is not limited, it is preferably 50 to 150 dtex.
  • the antistatic warp knitted fabric of the present invention is knitted from the above-described composite yarn and the second non-conductive yarn. Included in the yarn that knits at least one side of the back side. That is, in the antistatic warp knitted fabric of the present invention, the composite yarn is arranged so as to be exposed on the front surface and/or the back surface of the antistatic warp knitted fabric. As will be described later, the degree of exposure should be such that the surface resistance in the vertical, horizontal and bias directions measured according to IEC61340-5-1 is 1.0 ⁇ 10 10 ⁇ or less after 10 washes. Good luck. However, the more the composite yarn is exposed, the more likely it is to be worn, resulting in a decrease in electrical conductivity. It is desirable to have the above surface resistance value provided that it satisfies the range of 10.
  • the single fiber fineness of the second non-conductive yarn is not limited as long as it satisfies (AB) below, but it is usually preferably 1 to 10 dtex. Also, the total fineness is preferably from 20 to 150 dtex.
  • the composite yarn has one or more stitches (hereinafter also referred to as “stitch X”) formed by overlapping loops of mutually adjacent composite yarns.
  • stitch X is a knitting structure diagram showing one embodiment of the antistatic warp knitted fabric of the present invention.
  • the adjacent composite yarns (a) and (b) are two stitches (circled parts) that are continuous in the warp direction due to the overlapping of the loops of both composite yarns.
  • the method of arranging the stitches X is not particularly limited, and as shown in FIG.
  • the stitch X for example, the circle mark portion in FIG. 2 is a stitch (hereinafter also referred to as “stitch Y”) other than that (for example, the square mark portion in FIG. 2). It may be formed by
  • each composite yarn has one or more stitches X, so that the conductive yarns in the composite yarns can contact each other, and the conductive yarns are electrically connected (energized). Therefore, it has conductivity not only in the vertical direction, but also in the horizontal direction and the bias direction, and the surface resistance value becomes low.
  • the stitches X are preferably included at a rate of 5 per 10 cm (5/10 cm) or more in the warp knitted fabric in the warp knitted fabric, and among them, 10 per 10 cm (10 It is more preferable to be contained at a ratio of 1/10 cm) or more. This makes it possible to ensure higher electrical conductivity.
  • the antistatic warp knitted fabric of the present invention has a structure as shown in FIG. 1A, FIG. 1B or FIG. It is preferably contained at a ratio of 1 piece/2 cm) or more. Among them, it is more preferable to contain 2 to 5 pieces per 2 cm in the horizontal direction of the warp knitted fabric (2 to 5 pieces/2 cm).
  • the antistatic warp knitted fabric of the present invention preferably has a surface friction variation value (MMD) in the horizontal direction within the range of 0.01 to 0.10, especially 0.015 to 0.06. It is more preferable to have Moreover, it is preferable that the variation value (MMD) of the surface friction in the longitudinal direction also satisfies the above range.
  • MMD surface friction variation value
  • This value is a value that indicates the degree of unevenness of the warp knitted fabric, and when the surface friction variation value (MMD) in the horizontal direction is 0.01 to 0.10, the unevenness on the surface of the warp knitted fabric is small. , the warp knitted fabric has a smooth surface and at the same time, the surface resistance value measured by IEC61340-5-1 can be made low.
  • the conductive thread is less likely to break even if it gets scratched when worn, making it possible to maintain antistatic properties more reliably.
  • the resistance of the conductive thread to breakage due to scratches or the like during wearing can be evaluated by a snag test, and the snag test evaluation is preferably grade 3 or higher, and more preferably grade 4 or higher.
  • the warp knitted fabric is excellent in comfort when worn because the surface is smooth with little unevenness.
  • the surface resistance value measured by IEC61340-5-1 is that the conductive yarn is exposed on the surface of the knitted fabric to be measured, and the larger the convex portion is formed, the larger the current flowing between the electrodes, and the higher the surface resistance value. tends to be lower. That is, the smoother the surface of the knitted fabric, the smaller the current flowing between the electrodes and the higher the surface resistance. Therefore, if the surface friction variation value (MMD) is less than 0.01, the surface resistance values in the vertical, horizontal and bias directions tend to be high.
  • the antistatic warp knitted fabric of the present invention has a surface friction variation value (MMD) in the horizontal direction that satisfies 0.01 to 0.10, so that the surface resistance value is low and the durability against scratches during wearing is improved. It has excellent comfort when worn.
  • MMD surface friction variation value
  • the surface friction variation value (MMD) of the warp knitted fabric is measured as follows. That is, using a KES surface property tester (manufactured by Kato Tech Co., Ltd., "KESFB2-A"), a warp knitted fabric as a sample was loaded with a load MIU of 50 gf, a contact pressure of 10 gf, a sample tension of 20 gf/cm, and a speed of 1 mm/ It can be measured under the condition of sec.
  • KES surface property tester manufactured by Kato Tech Co., Ltd., "KESFB2-A”
  • the antistatic warp knitted fabric of the present invention is knitted with a composite yarn composed of a conductive yarn and a first non-conductive yarn, and a second non-conductive yarn.
  • the difference (AB) from the minimum total total fineness: B) is usually preferably 200 dtex or less, more preferably 150 dtex or less, and further preferably 100 dtex or less. is most preferred.
  • the lower limit of (AB) above can be set to 5 dtex, for example, but is not limited to this.
  • the maximum total total fineness is often the total total fineness of the yarns knitted into the stitches X. Therefore, the total total fineness of the yarns knitted into the stitches X.
  • the difference (AB) between the maximum total fineness (A) of the total fineness and the minimum total fineness (B) of the total fineness of the yarns knitted in the other stitches (stitch Y) is preferably 200 dtex or less.
  • the lower limit of (AB) can be, for example, 5 dtex, but is not limited to this.
  • the total fineness of the stitch Xmax where the total fineness is the maximum is referred to as A above.
  • B is the total fineness of the stitch Ymin with the smallest total fineness.
  • the stitch (stitch X) composed of L1, L2 (A), and L3 (A) is the thickest, and the maximum total fineness is 188 dtex.
  • the antistatic warp knitted fabric of the present invention has excellent initial antistatic properties and excellent antistatic properties after 10 washes, especially after 100 washes. It is preferable that the antistatic property is also excellent.
  • the surface resistance values in the vertical, horizontal and bias directions measured by IEC61340-5-1 are 1.0 ⁇ 10 10 ⁇ or less, especially 1.0 ⁇ 10 9 ⁇ . It is preferably ⁇ or less, and more preferably 1.0 ⁇ 10 8 ⁇ or less.
  • the initial surface resistance values in the vertical, horizontal and bias directions measured by IEC61340-5-1 are preferably 1.0 ⁇ 10 10 ⁇ or less, especially 1.0 ⁇ 10 9 ⁇ or less. more preferably, and most preferably 1.0 ⁇ 10 8 ⁇ or less.
  • the surface resistance values in the vertical, horizontal and bias directions measured by IEC61340-5-1 after 100 washes are preferably 1.0 ⁇ 10 11 ⁇ or less, especially 1.0 ⁇ 10 It is more preferably 10 ⁇ or less, and most preferably 1.0 ⁇ 10 9 ⁇ or less.
  • the lower limit of is not particularly limited, it is preferably about 1.0 ⁇ 10 4 ⁇ .
  • the surface resistance value between the stitches when the warp knitted fabric is sewn satisfies the above range at the initial stage, after 10 washes, and after 100 washes. preferable.
  • the surface resistance value is measured according to IEC61340-5-1. More specifically, as a measuring device, "PORSTAT Resistance System PRS-801" is used, and the measurement environment is 23 ° C. x 12% RH. , the surface resistance value is measured under the condition that the distance between measurements is 250 mm. Also, the washing conditions comply with the Japanese Industrial Standard JIS L 0217 103 method.
  • the antistatic warp knitted fabric of the present invention has antistatic properties as described above, and the content of the conductive yarn in the warp knitted fabric is generally preferably 0.5 to 10% by mass. In particular, it is more preferably 1 to 8% by mass. If the content of the conductive yarn is less than 0.5% by mass, it is difficult to obtain the desired antistatic property of the present invention. On the other hand, if it exceeds 10% by mass, the strength or texture of the warp knitted fabric tends to be impaired, and the cost may be relatively high.
  • the conductive warp knitted fabric of the present invention may be subjected to various treatments such as dyeing, water absorption, and electrification.
  • the antistatic warp knitted fabric of the present invention can be suitably used for clothing, but the type of clothing is not particularly limited. Including mufflers, hats, etc.
  • the antistatic warp knitted fabric of the present invention can be used as work clothes used in various businesses including the electronics industry. It can be used for work clothes used for handling applications and general electric work applications. Work clothes such as those described above can be obtained by using the antistatic warp knitted fabric of the present invention at least in part, and using ordinary knitting techniques, sewing techniques, and the like.
  • the surface resistance value in the vertical direction was measured using the sample (a) with a distance between measurements of 25 cm in the long side direction.
  • the surface resistance value in the horizontal direction was measured using the sample (b) with a distance between measurements of 25 cm in the long side direction.
  • the surface resistance value in the bias direction was measured using the sample (c) with a distance between measurements of 25 cm in the long side direction.
  • the surface resistance value between seams is measured using the sample of (d), including two seams sewn with one-sided double stitches, and a distance between measurements of 60 cm in length in the short side direction. gone.
  • Example 1 (Thread use) L1 reed: Polyester multifilament (56dtex/36f) made of polyethylene terephthalate (second non-conductive yarn)
  • L2 reed (A): Composite yarn composed of first non-conductive yarn and conductive yarn shown below (twisted yarn with a twist number (Z twist) of 400 T / m)
  • First non-conductive thread Polyester multifilament made of polyethylene terephthalate (33dtex/12f)
  • Conductive thread "Beltron" manufactured by KB Seiren (33dtex/6f, the conductive polymer of the sheath accounts for 100% of the outer circumference)
  • B) Polyester multifilament made of polyethylene terephthalate (56dtex/36f) (second non-conductive yarn)
  • A) was arranged in 6 courses, and (B) was arranged for the rest to form a full set.
  • L3 reed (A) uses the same composite yarn as L2 reed (A), (B) uses the same polyester multifilament (second non-conductive yarn) as L2 reed (B), and has the same arrangement as L2 reed. did. (knitted structure) A back yarn is arranged on the L1 reed, a middle yarn is arranged on the L2 reed, and a front yarn is arranged on the L3 reed. Using these yarns, a structure (L2 The warp knitted fabric was knitted with a reed (only L3 reed is shown). The resulting warp knitted fabric was subjected to relaxation scouring at 90° C.
  • Example 2 The arrangement of the L2 and L3 reeds was such that (A) was arranged one in 14 courses, and the other (B) yarns were arranged and set as a full set, and the organization shown in FIG. 1B (only L2 reeds and L3 reeds are shown).
  • a warp knitted fabric was knitted in the same manner as in Example 1, except for the above. The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
  • Example 3 A warp knitted fabric was knitted in the same manner as in Example 2, except that the L2 and L3 reeds were arranged in 14 courses in (A) and (B) the yarn was not arranged. The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
  • Example 4 (Thread use) L2 reed, L3 reed: (A): The same composite yarn (plied twisted yarn) as in Example 1 (B): Same polyester multifilament (56dtex/36f) as in Example 1 (second non-conductive yarn) (A) was arranged in 6 courses, and (B) was arranged in the rest to form a full set. (knitted structure) A middle yarn is arranged on the L2 reed and a front yarn is arranged on the L3 reed, and using these yarns, a warp knitted fabric is knitted with the structure shown in FIG. .
  • the obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
  • the obtained warp knitted fabric contained 50 stitches X per 10 cm in the vertical direction (50 stitches/10 cm).
  • L1 reed Polyester multifilament (84dtex/36f) made of polyethylene terephthalate (second non-conductive yarn)
  • L2 reed (A): Composite yarn (twisting number (Z twist) of 400 T / m) composed of the first non-conductive yarn and conductive yarn shown below
  • First non-conductive thread Polyester multifilament made of polyethylene terephthalate (84dtex/36f)
  • Conductive thread "Beltron" manufactured by KB Seiren (33dtex/6f, the conductive polymer of the sheath accounts for 100% of the outer circumference)
  • L3 reed (A) uses the same yarn as the L2 reed (A), and (B) does not arrange the yarn and has the same arrangement as the L2 reed. Other than that, the warp knitted fabric was knitted in the same manner as in Example 1. The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
  • Comparative example 2 A warp knitted fabric was knitted in the same manner as in Example 3, except that (A) of the reeds L2 and L3 used only the conductive yarn and did not use the composite yarn with the first non-conductive yarn. The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
  • Comparative example 3 As shown in FIG. 3, a warp knitted fabric was knitted in the same manner as in Example 3, except that in L2 and L3, each composite yarn was changed to a structure having no stitches X. The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
  • Test example 1 Table 1 shows the characteristic values of the antistatic warp knitted fabrics obtained in Examples 1 to 4 and Comparative Examples 1 to 3.
  • the warp knitted fabrics obtained in Examples 1 to 4 satisfy all the requirements (1) to (4) specified in the present invention, and IEC61340-5-1
  • the surface resistance value was low, and the washing durability of the surface resistance value was also excellent.
  • the texture of the surface was small and the snag evaluation was high, it can be seen that the antistatic property can be maintained at a high level.
  • the warp knitted fabric obtained in Comparative Example 1 had large unevenness on the surface and did not satisfy the requirements of (3), so the snag evaluation was low. In other words, there is a high risk that the conductive yarn will break, and there is concern that repeated wear will reduce the antistatic properties. In addition, it can be seen that the warp knitted fabric can be inferior in wearing feeling due to large irregularities on the surface.
  • the warp knitted fabric obtained in Comparative Example 2 uses a single conductive yarn (not a composite yarn consisting of a conductive yarn and a non-conductive yarn), the antistatic property is reduced after repeated washing. , (4) were not satisfied. Also, the conductive yarn was broken during warping and knitting, resulting in poor workability.

Abstract

[Problem] To provide an antistatic warp knitted fabric that has antistatic properties in all directions from among the warp direction, the weft direction, and the bias direction of a knitted fabric, that is capable of effectively maintaining said antistatic properties in all directions even after repeated wearing and washing, and that makes it possible to obtain work clothing provided with both stretchability and favorable feeling of wear. [Solution] A warp knitted fabric which is formed from (a) a composite yarn including a conductive yarn and a first non-conductive yarn, and (b) a second non-conductive yarn, and which is characterized in that: (1) the composite yarn includes a yarn that constitutes at least one of the front surface and/or rear surface of the warp knitted fabric; (2) the composite yarn has one or more stitches formed by loops of adjacent composite yarns being overlapped with one another; (3) the variation value (MMD) in surface friction in the weft direction of the warp knitted fabric is 0.01-0.10; and (4) the surface resistance value in the warp direction, the weft direction, and the bias direction after ten washes, measured according to IEC 61340-5-1, is 1.0×1010Ω or less in each direction.

Description

制電性経編地Antistatic warp knitted fabric
 本発明は、例えば食品、電化製品、精密機器などを生産する工場のように、高度な制電性が要求される現場での着用に適した制電性経編地及びそれを用いてなる作業用衣服に関する。 The present invention provides an antistatic warp knitted fabric suitable for wearing at sites where high antistatic properties are required, such as factories that produce food, electrical appliances, precision equipment, etc., and work using it for clothing.
 合成繊維からなる布帛は、一般に強度、耐久性及び低発塵性に優れ、作業用衣服として広く使用されている。特に、電子デバイス、電子部品又は電子材料を取り扱う作業においては、高度の制電性が要求されている。ところが、合成繊維は、低湿度下では非常に静電気を発生しやすく、作業中に加工物がその静電気によって破壊されるという問題がある。このため、静電気対策として、種々の制電性繊維、織編物等の提案がなされている。  Fabrics made of synthetic fibers are generally excellent in strength, durability, and low dust generation, and are widely used as work clothes. In particular, high antistatic properties are required in operations involving electronic devices, electronic components, or electronic materials. However, synthetic fibers are very prone to generate static electricity under low humidity, and there is a problem that the static electricity destroys the workpiece during work. For this reason, various antistatic fibers, woven and knitted fabrics, etc. have been proposed as countermeasures against static electricity.
 現在、エレクトロニクス産業での作業用衣服の制電性を評価する基準として、準国際基準で定められた特性がある。より具体的には、IEC61340-5-1,5-2に準拠する表面抵抗値が1×1011Ω以下であることが好ましいとされている。なお、制電性とは、上記のように、静電気等による帯電を防止する機能に優れた性能をいう。 Currently, there are properties defined in semi-international standards as standards for evaluating the antistatic properties of work clothing in the electronics industry. More specifically, it is preferred that the surface resistance value conforming to IEC61340-5-1, 5-2 is 1×10 11 Ω or less. As described above, the antistatic property means excellent performance in preventing electrification due to static electricity or the like.
 特許文献1には、この基準を満足する制電性を有する作業用衣服として、電子デバイス、電子部品、又は電子材料を取り扱う作業者等の作業用衣服として好適な制電作業着が提案されている。特許文献1に記載された制電作業着は、導電繊維を含んで構成される導電性複合糸を格子状に織編した布帛を用いて縫製されたものである。 Patent Literature 1 proposes antistatic work clothes suitable as work clothes for workers who handle electronic devices, electronic parts, or electronic materials as work clothes having antistatic properties that satisfy this standard. there is The antistatic work wear described in Patent Document 1 is sewn using a cloth obtained by weaving and knitting conductive composite yarns including conductive fibers in a grid pattern.
 しかしながら、特許文献1に記載の制電性作業着は、優れた制電性を具備するも、織物からなるものであるため、ストレッチ性に欠け、作業着としての着用感に欠ける。また、導電繊維を含んで構成される導電性複合糸が格子状に織り込まれているため、バイアス方向の制電性は不十分である。 However, although the antistatic workwear described in Patent Document 1 has excellent antistatic properties, it lacks stretchability because it is made of woven fabric, and lacks comfort as workwear. In addition, since the conductive composite yarns containing conductive fibers are woven in a grid pattern, the antistatic property in the bias direction is insufficient.
 また、特許文献2には、編地のタテ方向、ヨコ方向、バイアス方向のいずれの方向にも制電性を有する編物が提案されている。 In addition, Patent Document 2 proposes a knitted fabric having antistatic properties in all of the warp, weft, and bias directions of the knitted fabric.
 しかしながら、特許文献2においては、導電繊維をそのまま(単体)で使用しているため、整経又は編経時に導電繊維の糸切れが多発しやすく、品位に優れた編地を生産性良く得ることが困難である。このため、作業用衣服の生産にはコストがかかる。さらには、この編地は、洗濯時又は着用時に導電繊維の糸切れが生じやすので、制電性の持続性が劣る。 However, in Patent Document 2, since the conductive fiber is used as it is (single substance), the conductive fiber tends to break frequently during warping or knitting, and it is difficult to obtain a knitted fabric with excellent quality with good productivity. is difficult. For this reason, the production of work clothes is costly. Furthermore, this knitted fabric is prone to breakage of the conductive fibers during washing or wearing, resulting in poor sustainability of the antistatic property.
 このように、特にエレクトロニクス産業をはじめ、各種の業務で使用される作業用衣服は、着用及び洗濯の頻度が高いため、着用及び洗濯を繰り返しても制電性の低下がなく、従って持続性(耐久性)に優れた制電性を有する編地が求められている。 In this way, work clothes used in various business fields, especially in the electronics industry, are worn and washed frequently, so that the antistatic properties do not deteriorate even after repeated wearing and washing, and therefore the durability ( There is a demand for a knitted fabric having excellent antistatic properties in terms of durability.
特開2008-7869号公報Japanese Unexamined Patent Application Publication No. 2008-7869 特開2005-344245号公報JP 2005-344245 A
 従って、本発明の主な目的は、上記のような問題点を解決するものであり、編地のタテ方向、ヨコ方向及びバイアス方向のいずれの方向にも制電性を有するとともに、これらのいずれの方向の制電性も着用又は洗濯が繰り返された後であっても高く維持されており、かつ、ストレッチ性及び良好な着心地も備えた作業用衣服を得ることができる制電性経編地を提供することにある。 Therefore, the main object of the present invention is to solve the above problems, and to have antistatic properties in all of the warp, weft and bias directions of the knitted fabric, and to Antistatic warp knitting that can obtain work clothes that maintain high antistatic properties in the direction of and even after repeated wearing or washing, and also have stretchability and good comfort. It is to provide the land.
 本発明者は、前記課題を解決すべく鋭意研究を行い、特定の構成を有する経編地を採用することにより、上記目的を達成できることを見出し、本発明を完成するに至ったものである。 The inventor of the present invention has conducted intensive research to solve the above problems, and has found that the above objects can be achieved by adopting a warp knitted fabric having a specific structure, and has completed the present invention.
 すなわち、本発明は、下記の制電性経編地に係る。
1. (a)導電糸と第1非導電糸を含む複合糸及び(b)第2非導電糸で編成された経編地であって、下記(1)~(4)の要件:
(1)複合糸は、経編地の表面及び裏面の少なくともいずれかの面を編成する糸に含まれていること、
(2)複合糸は、互いに隣り合う複合糸同士のループの重なりにより形成される編目を1つ以上有すること、
(3)経編地のヨコ方向における表面摩擦の変動値(MMD)が0.01~0.10であること、及び
(4)10洗後にIEC61340-5-1により測定されるタテ方向、ヨコ方向及びバイアス方向の表面抵抗値がいずれも1.0×1010Ω以下であること、
を満たすことを特徴とする制電性経編地。
2. 複合糸は、(i)合撚糸、(ii)カバーリング糸及び(iii)インターレース加工糸からなる群から選ばれた少なくとも1種である、前項1に記載の制電性経編地。
3. 経編地の全質量中における導電糸の含有量が0.5~10.0質量%である、前記項1又は2に記載の制電性経編地。
4. 100回洗後にIEC61340-5-1により測定されるタテ方向、ヨコ方向及びバイアス方向の表面抵抗値が、いずれも1.0×1011Ω以下である、前記項1~3のいずれかに記載の制電性経編地。
5. 当該複合糸同士のループの重なりにより形成される編目に編み込まれている糸の合計総繊度のうち最大の合計総繊度(A)と、それ以外の編目に編み込まれている糸の合計総繊度のうち最小の合計総繊度(B)との差(A-B)が200dtex以下である、前記項1に記載の制電性経編地。
6. 当該複合糸同士のループの重なりにより形成される編目は、経編地のヨコ方向において2cmあたり1個以上の割合で含まれる、前記項1~5のいずれかに記載の制電性経編地。
7. 衣料用途に用いられる、前記項1~6のいずれかに記載の制電性経編地。
8. 前記項1~7のいずれかに記載の制電性経編地を含む作業用衣服。
That is, the present invention relates to the following antistatic warp knitted fabric.
1. A warp knitted fabric knitted with (a) a composite yarn containing a conductive yarn and a first non-conductive yarn and (b) a second non-conductive yarn, the requirements of (1) to (4) below:
(1) The composite yarn is included in the yarn that knits at least one of the surface and the back surface of the warp knitted fabric,
(2) the composite yarn has one or more stitches formed by overlapping loops of mutually adjacent composite yarns;
(3) The surface friction variation value (MMD) in the horizontal direction of the warp knitted fabric is 0.01 to 0.10, and (4) The vertical direction and horizontal direction measured by IEC61340-5-1 after 10 washes both the surface resistance values in the direction and the bias direction are 1.0×10 10 Ω or less;
An antistatic warp knitted fabric characterized by satisfying
2. 2. The antistatic warp knitted fabric according to item 1, wherein the composite yarn is at least one selected from the group consisting of (i) plied yarn, (ii) covering yarn and (iii) interlaced yarn.
3. 3. The antistatic warp knitted fabric according to item 1 or 2, wherein the content of the conductive yarn in the total mass of the warp knitted fabric is 0.5 to 10.0% by mass.
4. 4. Any one of the above items 1 to 3, wherein the surface resistance values in the vertical direction, the horizontal direction, and the bias direction measured by IEC61340-5-1 after washing 100 times are all 1.0×10 11 Ω or less. Antistatic warp knitted fabric.
5. The maximum total fineness (A) of the yarns knitted into the stitches formed by overlapping the loops of the composite yarns, and the total total fineness of the yarns knitted into the other stitches. Item 2. The antistatic warp knitted fabric according to Item 1, wherein the difference (AB) from the minimum total fineness (B) is 200 dtex or less.
6. 6. The antistatic warp knitted fabric according to any one of Items 1 to 5, wherein the stitches formed by overlapping the loops of the composite yarns are included at a rate of 1 or more per 2 cm in the horizontal direction of the warp knitted fabric. .
7. 7. The antistatic warp knitted fabric according to any one of items 1 to 6, which is used for clothing.
8. Work clothes comprising the antistatic warp knitted fabric according to any one of the above items 1 to 7.
 なお、本発明において、「10洗後」とは、特に日本産業規格「JIS L 0217 103」法(家庭用電気洗濯機法)の条件に従った洗濯操作を10回繰り返した後の状態を意味する。すなわち、上記条件下での「洗い」~「すすぎ」~「乾燥」からなる一連の操作を1サイクルとし、そのサイクルを連続して10回実施した後の状態を意味する。また、「100洗後」とは、特に日本産業規格「JIS L 0217 103」法(家庭用電気洗濯機法)の条件に従った洗濯操作を100回繰り返した後の状態を意味する。すなわち、上記条件下での「洗い」~「すすぎ」~「乾燥」からなる一連の操作を1サイクルとし、そのサイクルを連続して100回実施した後の状態を意味する。 In the present invention, "after 10 washes" particularly means the state after repeating the washing operation 10 times according to the conditions of the Japanese Industrial Standard "JIS L 0217 103" method (household electric washing machine method). do. That is, it means the state after 10 consecutive cycles of a series of operations consisting of "washing", "rinsing", and "drying" under the above conditions. In addition, "after 100 washes" means the state after repeating the washing operation 100 times in accordance with the Japanese Industrial Standards "JIS L 0217 103" method (household electric washing machine method). That is, it means the state after 100 consecutive cycles of a series of operations consisting of "washing", "rinsing", and "drying" under the above conditions.
 本発明によれば、編地のタテ方向、ヨコ方向及びバイアス方向のいずれの方向にも制電性を有するとともに、これらのいずれの方向の制電性も着用又は洗濯を繰り返しても効果的に維持することができ、かつ、ストレッチ性及び良好な着心地も備えた作業用衣服を得ることができる制電性経編地を提供することができる。 According to the present invention, the knitted fabric has antistatic properties in all of the warp, weft, and bias directions, and the antistatic properties in any of these directions are effective even after repeated wearing or washing. It is possible to provide an antistatic warp knitted fabric which can be maintained and which can provide work clothes having stretchability and good comfort.
 すなわち、本発明の制電性経編地は、初期の制電性に優れることに加え、着用又は洗濯を繰り返した後でも制電性が低下しにくく、良好な制電性を維持することができる。特に、本発明の制電性経編地の制電性においては、準国際基準で定められた数値を保持することもできる。 That is, the antistatic warp knitted fabric of the present invention has excellent initial antistatic properties, and in addition, the antistatic properties do not easily decrease even after repeated wearing or washing, and it is possible to maintain good antistatic properties. can. In particular, the antistatic properties of the antistatic warp knitted fabric of the present invention can also hold values specified by quasi-international standards.
 また、本発明の制電性経編地は、編地であることから、織物と比較してストレッチ性にも優れている。すなわち、本発明によれば、上記のような高い制電性等を発揮するとともに、編地本来の特性を得ることもできる。 In addition, since the antistatic warp knitted fabric of the present invention is a knitted fabric, it has excellent stretchability compared to woven fabrics. That is, according to the present invention, it is possible to exhibit the above-mentioned high antistatic property and the like, and also to obtain the original characteristics of the knitted fabric.
 さらに、本発明の制電性経編地においては、その複合糸の凹凸が小さく、滑らかな編地表面を有しているので、良好な着心地を有する衣服を提供することもできる。 Furthermore, in the antistatic warp knitted fabric of the present invention, the unevenness of the composite yarn is small and the knitted fabric surface is smooth, so that it is possible to provide clothes that are comfortable to wear.
 このような特徴をもつ本発明の制電性経編地は、エレクトロニクス産業等のように静電気対策を講じる必要がある各種の業務で使用でき、かつ、着用時の着心地にも優れた作業用衣服を好適に提供することができる。 The antistatic warp knitted fabric of the present invention having such characteristics can be used in various works such as the electronics industry that require countermeasures against static electricity, and is comfortable to wear when worn. Clothing can be conveniently provided.
本発明の制電性経編地における「導電糸と第1非導電糸を含む複合糸」の編組織の一実施態様を示す編成組織図である。1 is a knitting structure diagram showing one embodiment of a knitting structure of "a composite yarn containing a conductive yarn and a first non-conductive yarn" in the antistatic warp knitted fabric of the present invention. FIG. 本発明の制電性経編地における「導電糸と第1非導電糸を含む複合糸」の編組織の他の実施態様を示す編成組織図である。Fig. 2 is a knitting structure diagram showing another embodiment of a knitting structure of "a composite yarn containing a conductive yarn and a first non-conductive yarn" in the antistatic warp knitted fabric of the present invention. 比較例3の経編地における「導電糸と第1非導電糸を含む複合糸」の編組織編組織を示す編成組織図である。10 is a knitting structure diagram showing a knitting structure of "a composite yarn containing a conductive yarn and a first non-conductive yarn" in the warp knitted fabric of Comparative Example 3. FIG. 本発明の制電性経編地で使用される導電性合成繊維の断面の一例を示す図である。図4Aは、導電性合成繊維の外周の一部に導電性ポリマー部の露出部を有する実施形態を示す。図4Bは、導電性合成繊維の外周全部に導電性ポリマー部の露出部を有する実施形態を示す。1 is a diagram showing an example of a cross section of a conductive synthetic fiber used in the antistatic warp knitted fabric of the present invention; FIG. FIG. 4A shows an embodiment having an exposed portion of the conductive polymer portion on a portion of the circumference of the conductive synthetic fiber. FIG. 4B shows an embodiment having an exposed portion of the conductive polymer portion around the entire perimeter of the conductive synthetic fiber.
 本発明の制電性経編地は、(a)導電糸と第1非導電糸を含む複合糸及び(b)第2非導電糸で編成された経編地であって、下記(1)~(4)の要件:
(1)複合糸は、経編地の表面及び裏面の少なくともいずれかの面を編成する糸に含まれていること、
(2)複合糸は、互いに隣り合う複合糸同士のループの重なりにより形成される編目を1つ以上有すること、
(3)経編地のヨコ方向における表面摩擦の変動値(MMD)が0.01~0.10であること、及び
(4)10洗後にIEC61340-5-1により測定されるタテ方向、ヨコ方向及びバイアス方向の表面抵抗値がいずれも1.0×1010Ω以下であること
を満たすことを特徴とする。
The antistatic warp knitted fabric of the present invention is a warp knitted fabric knitted with (a) a composite yarn containing a conductive yarn and a first non-conductive yarn and (b) a second non-conductive yarn, and has the following (1) Requirements for ~(4):
(1) The composite yarn is included in the yarn that knits at least one of the surface and the back surface of the warp knitted fabric,
(2) the composite yarn has one or more stitches formed by overlapping loops of mutually adjacent composite yarns;
(3) The surface friction variation value (MMD) in the horizontal direction of the warp knitted fabric is 0.01 to 0.10, and (4) The vertical direction and horizontal direction measured by IEC61340-5-1 after 10 washes It is characterized by satisfying the surface resistance value of 1.0×10 10 Ω or less both in the direction and the bias direction.
 本発明の制電性経編地は、(a)導電糸と第1非導電糸を含む複合糸及び(b)第2非導電糸で編成されている。 The antistatic warp knitted fabric of the present invention is knitted from (a) a composite yarn containing a conductive yarn and a first non-conductive yarn and (b) a second non-conductive yarn.
 まず、導電糸について説明する。導電糸は、主として、本発明の制電性経編地に制電性を発現させる機能を果たす。 First, the conductive thread will be explained. The conductive yarn mainly functions to develop antistatic properties in the antistatic warp knitted fabric of the present invention.
 導電糸としては、導電性ポリマーを用いて構成された合成繊維(導電性合成繊維)が好ましい。導電性ポリマーとは、通常、繊維を形成するのに用いられる熱可塑性樹脂に導電性微粒子を配合して得られた材料である。すなわち、熱可塑性樹脂及び導電性微粒子を含む樹脂組成物を導電性ポリマーとして用いることができる。 As the conductive thread, a synthetic fiber (conductive synthetic fiber) configured using a conductive polymer is preferable. A conductive polymer is a material obtained by blending conductive fine particles into a thermoplastic resin that is usually used to form fibers. That is, a resin composition containing a thermoplastic resin and conductive fine particles can be used as the conductive polymer.
 導電性微粒子としては、限定的でなく、例えば導電性カーボンブラック等の炭素材料の粉末、各種粉末、硫化銅、硫化亜鉛、沃化銅等の金属又はその化合物の粉末を挙げることができる。この中でも導電性カーボンブラックが好ましい。導電性微粒子の大きさ等も、繊維の大きさ等に応じて適宜設定することができ、特に限定されない。また、導電性微粒子の含有量も、所望の導電性等に応じて適宜設定できるので、特に限定されない。 Examples of conductive fine particles include, but are not limited to, powders of carbon materials such as conductive carbon black, various powders, powders of metals such as copper sulfide, zinc sulfide, and copper iodide, and powders of compounds thereof. Among these, conductive carbon black is preferred. The size and the like of the conductive fine particles can also be appropriately set according to the size and the like of the fibers, and are not particularly limited. Also, the content of the conductive fine particles is not particularly limited because it can be appropriately set according to the desired conductivity and the like.
 熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系ポリマー、ナイロン6、ナイロン66、ナイロン4、ナイロン12等のポリアミド系ポリマー、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリテトラメチレンテレフタレート等のポリエステル系ポリマーを使用することができる。その中でも、耐熱性等の面から、ポリエステル系ポリマー、ポリアミド系ポリマー等の少なくとも1種が好ましい。 Examples of thermoplastic resins include polyolefin polymers such as polyethylene and polypropylene; polyamide polymers such as nylon 6, nylon 66, nylon 4 and nylon 12; and polyester polymers such as polyethylene terephthalate, polybutylene terephthalate and polytetramethylene terephthalate. can be used. Among them, at least one polymer such as a polyester-based polymer or a polyamide-based polymer is preferable from the viewpoint of heat resistance.
 導電性合成繊維としては、単一の導電性ポリマーで形成された繊維でもよいが、導電性ポリマーで形成された導電性ポリマー部と、導電性微粒子を含まない熱可塑性樹脂で形成された非導電性ポリマー部とから構成された、複合型の断面形状を有する繊維であることが好ましい。この場合、導電性ポリマー部又は非導電性ポリマー部には、上記の熱可塑性樹脂を使用することができる。 The conductive synthetic fiber may be a fiber made of a single conductive polymer. It is preferably a fiber having a composite cross-sectional shape, which is composed of a flexible polymer portion. In this case, the above thermoplastic resin can be used for the conductive polymer portion or the non-conductive polymer portion.
 導電性を向上させるために導電性微粒子の含有量を増すと、得られる繊維の強度又は風合いが損なわれる傾向にあるところ、上記のような複合型の断面形状を有する繊維とすることで、強度又は風合いを良好に保つことができる。複合型断面の形状としては、導電性を向上させるためには、単繊維の横断面形状において、導電性ポリマーが繊維表面に露出していることが好ましい。 When the content of the conductive fine particles is increased in order to improve conductivity, the strength or texture of the resulting fiber tends to be impaired. Alternatively, the texture can be kept good. As for the cross-sectional shape of the composite type, it is preferable that the conductive polymer is exposed on the fiber surface in the cross-sectional shape of the single fiber in order to improve the conductivity.
 これに関し、導電性合成繊維の断面例を図4に示す。図4Aに示す導電性合成繊維10は、導電性ポリマー部10aと非導電性ポリマー部10bを含む。前記のように、導電性ポリマー部10aが導電性合成繊維の表面に露出していることが好ましく、その場合の露出度の指標として、導電性合成繊維の外周長Cに対する導電性ポリマー部の露出部(円弧C1,C2,C3,C4の合計)の割合[(C1+C2+C3+C4)/C]×100(%)で示す。図4Bに示す導電性合成繊維10’は、導電性ポリマー部10’aと非導電性ポリマー部10’bを含み、導電性合成繊維10’の全周に導電性ポリマー部が露出しているので、その割合は100%となる。 In this regard, Fig. 4 shows a cross-sectional example of a conductive synthetic fiber. The conductive synthetic fiber 10 shown in FIG. 4A includes a conductive polymer portion 10a and a non-conductive polymer portion 10b. As described above, it is preferable that the conductive polymer portion 10a is exposed on the surface of the conductive synthetic fiber. It is indicated by the ratio [(C1+C2+C3+C4)/C]×100(%) of the portion (total of arcs C1, C2, C3, and C4). The conductive synthetic fiber 10' shown in FIG. 4B includes a conductive polymer portion 10'a and a non-conductive polymer portion 10'b, and the conductive polymer portion is exposed around the entire circumference of the conductive synthetic fiber 10'. So the percentage is 100%.
 本発明においては、導電性ポリマー部の露出部は、外周長の30%以上を占めるものが好ましく、特に外周長の50%以上を占めるものがより好ましく、その中でも導電性ポリマー部が外周長の100%を占めるものが最も好ましい。 In the present invention, the exposed portion of the conductive polymer portion preferably occupies 30% or more of the outer peripheral length, and more preferably occupies 50% or more of the outer peripheral length. 100% is most preferred.
 本発明では、導電糸(特に複合型断面形状の導電糸)としては、市販品を用いることもできる。例えば、クラレ社製「クラカーボ」(商品名)、KBセーレン社製「ベルトロン」(商品名)、東レ社製「ルアナ」(商品名)、ユニチカトレーディング社製「メガーナ」(商品名)などが挙げられる。 In the present invention, a commercial product can also be used as the conductive yarn (especially the conductive yarn with a composite cross-sectional shape). For example, "Curacarbo" (trade name) manufactured by Kuraray Co., Ltd., "Beltron" (trade name) manufactured by KB Seiren, "Luana" (trade name) manufactured by Toray Industries, Inc., and "Megana" (trade name) manufactured by Unitika Trading. be done.
 一般に、導電糸が編地表面に配されることによりIEC61340-5-1、5-2に準拠する表面抵抗値は良好な結果を得られる。ところが、一般に、導電糸は繊度が細いうえ、強度も弱いため、単体で使用すると整経及び整編工程において糸切れの問題が生じやすく、安定した実施が困難となる。これに対し、本発明においては、導電糸を第1非導電糸とともに用い、合撚糸、混繊糸、カバーリング糸等の複合糸とするため、上記のような問題が生じることがない。 In general, by disposing the conductive yarn on the surface of the knitted fabric, the surface resistance value conforming to IEC61340-5-1 and 5-2 can be obtained with good results. However, in general, the conductive yarn has a small fineness and a low strength, so that if it is used alone, the problem of yarn breakage is likely to occur in the warping and knitting processes, making stable implementation difficult. In contrast, in the present invention, the conductive yarn is used together with the first non-conductive yarn to form a composite yarn such as a plied yarn, a mixed yarn, a covered yarn, etc., so that the above problems do not occur.
 次に、非導電糸(第1非導電糸、第2非導電糸)について説明する。非導電糸は、熱可塑性樹脂より得られるものであることが好ましい。例えば、導電性微粒子を含まず、かつ、熱可塑性樹脂を含む樹脂組成物から形成することができる。熱可塑性樹脂としては、特に限定されず、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系ポリマー、ナイロン6、ナイロン66、ナイロン4、ナイロン12等のポリアミド系ポリマー、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリテトラメチレンテレフタレート等のポリエステル系ポリマーを使用することができる。この中でも、耐熱性等の面から、ポリエステル系ポリマーが好ましい。 Next, the non-conductive threads (first non-conductive thread, second non-conductive thread) will be described. The non-conductive yarn is preferably obtained from a thermoplastic resin. For example, it can be formed from a resin composition containing no conductive fine particles and containing a thermoplastic resin. The thermoplastic resin is not particularly limited, and examples thereof include polyolefin polymers such as polyethylene and polypropylene, polyamide polymers such as nylon 6, nylon 66, nylon 4 and nylon 12, polyethylene terephthalate, polybutylene terephthalate, and polytetramethylene terephthalate. A polyester-based polymer such as can be used. Among these, polyester-based polymers are preferable from the viewpoint of heat resistance and the like.
 非導電糸としては、上記のような熱可塑性樹脂を含む樹脂組成物を溶融紡糸して得られる繊維であって、マルチフィラメント又はモノフィラメントの長繊維又は短繊維から得られる紡績糸を好適に用いることができる。本発明の制電性経編地を構成する繊維として、長繊維を使用することで繊維から生じる発塵をより少ないものとすることができる。その中でもポリエステル長繊維が好ましい。ポリエステル長繊維としては、例えばポリエステル系ポリマーを含む樹脂組成物を溶融紡糸して得られるもの等を好適に用いることができる。 As the non-conductive yarn, a fiber obtained by melt-spinning a resin composition containing a thermoplastic resin as described above, and a spun yarn obtained from multifilament or monofilament long fibers or short fibers is preferably used. can be done. By using long fibers as the fibers constituting the antistatic warp knitted fabric of the present invention, dust generation from the fibers can be reduced. Among them, polyester long fibers are preferred. As the polyester long fibers, for example, those obtained by melt-spinning a resin composition containing a polyester-based polymer can be suitably used.
 また、非導電糸としては、上記した熱可塑性樹脂を用いたものであれば限定されない。また、非導電糸は、芯鞘型、サイドバイサイド型等の複合繊維であってもよい。複合繊維の場合、異なる種類の樹脂を2種以上用いた複合繊維のほか、組成、特性値等が異なる同種の樹脂を2種以上用いた複合繊維等を用いることができる。 In addition, the non-conductive yarn is not limited as long as it uses the thermoplastic resin described above. Also, the non-conductive yarn may be a composite fiber such as a core-sheath type or a side-by-side type. In the case of conjugated fibers, in addition to conjugated fibers using two or more kinds of different resins, conjugated fibers using two or more kinds of the same resins having different compositions, characteristic values, etc. can be used.
 複合型断面を有する導電性合成繊維の場合、導電性ポリマー部を形成するポリマーと非導電性ポリマー部を形成するポリマーとの組み合わせとしては、互いに同じ種類ポリマーの組み合わせでも、互いに異なる種類のポリマーの組み合わせでもよい。本発明では、相溶性の面から、互いに同じ種類のポリマーの組み合わせが好ましい。中でも熱可塑性樹脂としてはポリエステル系ポリマー、ポリアミド系ポリマー等の少なくとも1種を用いることが好ましい。 In the case of a conductive synthetic fiber having a composite cross-section, the combination of the polymer forming the conductive polymer portion and the polymer forming the non-conductive polymer portion may be a combination of the same types of polymers or a combination of different types of polymers. A combination may be used. In the present invention, a combination of polymers of the same type is preferred from the viewpoint of compatibility. Among them, as the thermoplastic resin, it is preferable to use at least one of polyester-based polymer, polyamide-based polymer, and the like.
 次に、導電糸と第1非導電糸からなる複合糸について説明する。複合糸の形態としては、合撚糸、カバーリング糸、インターレース加工糸等のいずれかであることが好ましい。 Next, the composite yarn consisting of the conductive yarn and the first non-conductive yarn will be explained. The form of the composite yarn is preferably any one of plied yarn, covered yarn, interlaced yarn, and the like.
 合撚糸としては、限定的ではないが、例えば導電糸と第1非導電糸とをリング撚糸機等の公知の撚糸機を使用して撚糸したものであって、撚数が200~700t/Mのものが好ましい。 Although the plied yarn is not limited, for example, a conductive yarn and a first non-conductive yarn are twisted using a known yarn twisting machine such as a ring twisting machine, and the number of twists is 200 to 700 t / M. is preferred.
 カバーリング糸としては、限定されないが、例えば芯糸として導電糸を使用し、鞘糸として第1非導電糸を使用したシングルカバーリング糸又はダブルカバーリング糸であって、撚糸回数が200~700t/Mのものが好ましい。 The covering yarn is not limited, but for example, a single covering yarn or double covering yarn using a conductive yarn as a core yarn and a first non-conductive yarn as a sheath yarn, and the number of twists is 200 to 700 t. /M is preferred.
 インターレース加工糸としては、限定されないが、例えば芯糸として導電糸を使用し、浮糸として第1非導電糸を使用し、インターレースノズルにて両糸をエアーの力で結束させたインターレース加工糸であって、交絡数が30~100個/mのものが好ましい。 The interlaced yarn is not limited, but for example, it is an interlaced yarn in which a conductive yarn is used as a core yarn, a first non-conductive yarn is used as a floating yarn, and both yarns are bound by an interlace nozzle with the force of air. It is preferable that the entanglement number is 30 to 100/m.
 本発明においては、導電糸を単体で用いることなく、非導電糸とともに上記のような複合糸として用いることにより、導電糸の糸切れを減少させることができる。これにより、編地を得る際の操業性を高めることができるほか、得られる編地の品質とともに制電性を効果的に持続させることができる。 In the present invention, by using the conductive yarn as a composite yarn as described above together with the non-conductive yarn, instead of using the conductive yarn alone, it is possible to reduce the breakage of the conductive yarn. As a result, it is possible to improve the operability when obtaining a knitted fabric, and to effectively maintain the quality of the obtained knitted fabric and the antistatic property.
 複合糸に用いる導電糸の単繊維繊度は、限定的ではないが、4~20dtexとすることが好ましい。総繊度は、特に制限されないが、20~35dtexとすることが好ましい。 Although the single fiber fineness of the conductive yarn used for the composite yarn is not limited, it is preferably 4 to 20 dtex. Although the total fineness is not particularly limited, it is preferably 20 to 35 dtex.
 複合糸に用いる第1非導電糸の単繊維繊度は、限定的ではないが、1~5dtexであることが好ましい。総繊度は、限定的ではないが、30~120dtexであることが好ましい。複合糸の総繊度は、限定的ではないが、50~150dtexであることが好ましい。 Although the single fiber fineness of the first non-conductive yarn used for the composite yarn is not limited, it is preferably 1 to 5 dtex. Although the total fineness is not limited, it is preferably 30 to 120 dtex. Although the total fineness of the composite yarn is not limited, it is preferably 50 to 150 dtex.
 本発明の制電性経編地は、上記した複合糸と第2非導電糸で編成されたものであるが、制電性を十分に発現させるために、複合糸が経編地の表面及び裏面の少なくともいずれかの面を編成する糸に含まれている。すなわち、本発明の制電性経編地では、複合糸が制電性経編地の表面及び/又は裏面に露出するように配置されている。露出する度合いは、後記に示すように、10洗後に、IEC61340-5-1により測定されるタテ方向、ヨコ方向及びバイアス方向の表面抵抗値が1.0×1010Ω以下となる程度とすれば良い。ただし、複合糸が露出すればするほど摩耗しやすくなる結果、導電性も低下しやすくなるため、本発明の制電性経編地は、後記に示す変動値(MMD)0.01~0.10の範囲内を満たすことを条件として、上記の表面抵抗値を有することが望ましい。 The antistatic warp knitted fabric of the present invention is knitted from the above-described composite yarn and the second non-conductive yarn. Included in the yarn that knits at least one side of the back side. That is, in the antistatic warp knitted fabric of the present invention, the composite yarn is arranged so as to be exposed on the front surface and/or the back surface of the antistatic warp knitted fabric. As will be described later, the degree of exposure should be such that the surface resistance in the vertical, horizontal and bias directions measured according to IEC61340-5-1 is 1.0×10 10 Ω or less after 10 washes. Good luck. However, the more the composite yarn is exposed, the more likely it is to be worn, resulting in a decrease in electrical conductivity. It is desirable to have the above surface resistance value provided that it satisfies the range of 10.
 ここで、第2非導電糸の単繊維繊度は、後記の(A-B)を満たす限りは限定されないが、通常は1~10dtexであることが好ましい。また、総繊度は、通常は20~150dtexであることが好ましい。 Here, the single fiber fineness of the second non-conductive yarn is not limited as long as it satisfies (AB) below, but it is usually preferably 1 to 10 dtex. Also, the total fineness is preferably from 20 to 150 dtex.
 本発明の制電性経編地において、複合糸は、互いに隣り合う複合糸同士のループの重なりにより形成される編目(以下「編目X」ともいう。)を1つ以上有する。この点について、図1を用いて説明する。図1は、本発明の制電性経編地の一実施態様を示す編成組織図である。図1A、図1Bに示された編成組織図において、互いに隣り合う複合糸(a),(b)は、両複合糸のループの重なりによって、タテ方向に連続する2つの編目(丸印部分)を形成している。本発明では、編目Xの配列方法は、特に限定されず、図1のように、編目X(例えば図1A、図1B中の丸印部分)が連続して形成されていても良いが、別の実施形態として図2に示すように、編目X(例えば図2中の丸印部分)がそれ以外の編目(以下「編目Y」ともいう。)(例えば図2中の四角印部分)を介して形成されていても良い。 In the antistatic warp knitted fabric of the present invention, the composite yarn has one or more stitches (hereinafter also referred to as "stitch X") formed by overlapping loops of mutually adjacent composite yarns. This point will be described with reference to FIG. FIG. 1 is a knitting structure diagram showing one embodiment of the antistatic warp knitted fabric of the present invention. In the knitting structure diagrams shown in FIGS. 1A and 1B, the adjacent composite yarns (a) and (b) are two stitches (circled parts) that are continuous in the warp direction due to the overlapping of the loops of both composite yarns. forming In the present invention, the method of arranging the stitches X is not particularly limited, and as shown in FIG. As shown in FIG. 2 as an embodiment, the stitch X (for example, the circle mark portion in FIG. 2) is a stitch (hereinafter also referred to as “stitch Y”) other than that (for example, the square mark portion in FIG. 2). It may be formed by
 複合糸において、編目Xが形成されていない場合には、タテ方向すなわちウェール方向においては導電性があるが、ヨコ方向すなわちコース方向に導電性がなく、結果としてヨコ方向及びバイアス方向の表面抵抗値が高くなる。これに対し、本発明では、各複合糸(全ての複合糸)において、編目Xが1個以上あるので、複合糸中の導電糸同士が接触でき、各導電糸が導通(通電)することになるので、タテ方向に加え、ヨコ方向及びバイアス方向においても導電性を有し、表面抵抗値が低くなる。 In the composite yarn, when the stitch X is not formed, there is conductivity in the warp direction, that is, the wale direction, but there is no conductivity in the transverse direction, that is, the course direction. becomes higher. On the other hand, in the present invention, each composite yarn (all composite yarns) has one or more stitches X, so that the conductive yarns in the composite yarns can contact each other, and the conductive yarns are electrically connected (energized). Therefore, it has conductivity not only in the vertical direction, but also in the horizontal direction and the bias direction, and the surface resistance value becomes low.
 本発明の制電性経編地において、編目Xは、経編地のタテ方向において10cmあたり5個(5個/10cm)以上の割合で含まれることが好ましく、その中でも10cmあたり10個(10個/10cm)以上の割合で含まれることがより好ましい。これによって、より高い導電性を確保することができる。 In the antistatic warp knitted fabric of the present invention, the stitches X are preferably included at a rate of 5 per 10 cm (5/10 cm) or more in the warp knitted fabric in the warp knitted fabric, and among them, 10 per 10 cm (10 It is more preferable to be contained at a ratio of 1/10 cm) or more. This makes it possible to ensure higher electrical conductivity.
 また、本発明の制電性経編地は、上述した図1A、図1B又は図2に示すような組織を有するものであるが、編目Xは、編地のヨコ方向において2cmあたり1個(1個/2cm)以上の割合で含まれることが好ましい。その中でも、経編地のヨコ方向において2cmあたり2~5個(2~5個/2cm)の割合で含まれることがより好ましい。 In addition, the antistatic warp knitted fabric of the present invention has a structure as shown in FIG. 1A, FIG. 1B or FIG. It is preferably contained at a ratio of 1 piece/2 cm) or more. Among them, it is more preferable to contain 2 to 5 pieces per 2 cm in the horizontal direction of the warp knitted fabric (2 to 5 pieces/2 cm).
 本発明の制電性経編地は、ヨコ方向における表面摩擦の変動値(MMD)が0.01~0.10の範囲内であることが好まし、その中でも0.015~0.06であることがより好ましい。また、タテ方向における表面摩擦の変動値(MMD)も上記範囲を満足することが好ましい。 The antistatic warp knitted fabric of the present invention preferably has a surface friction variation value (MMD) in the horizontal direction within the range of 0.01 to 0.10, especially 0.015 to 0.06. It is more preferable to have Moreover, it is preferable that the variation value (MMD) of the surface friction in the longitudinal direction also satisfies the above range.
 この値は、経編地の凹凸の度合いを示す値であり、ヨコ方向における表面摩擦の変動値(MMD)が0.01~0.10であることにより、経編地表面の凹凸感が少なく、表面が滑らかな経編地であると同時に、IEC61340-5-1により測定される表面抵抗値を低いものとすることができる。 This value is a value that indicates the degree of unevenness of the warp knitted fabric, and when the surface friction variation value (MMD) in the horizontal direction is 0.01 to 0.10, the unevenness on the surface of the warp knitted fabric is small. , the warp knitted fabric has a smooth surface and at the same time, the surface resistance value measured by IEC61340-5-1 can be made low.
 また、表面の凹凸が少なく、表面が滑らかであることにより、着用時のスレなどが発生しても導電糸が切れにくくなり、より確実に制電性を持続させることが可能となる。なお、着用時のスレなどによる導電糸の切れにくさは、スナッグ試験により評価することが可能であり、スナッグ試験評価が3級以上であることが好ましく、中でも4級以上であることがより好ましい。さらには、表面の凹凸が少なく、表面が滑らかであることにより、着用時の着心地にも優れる経編地となる。 In addition, since the surface is smooth with little unevenness, the conductive thread is less likely to break even if it gets scratched when worn, making it possible to maintain antistatic properties more reliably. It should be noted that the resistance of the conductive thread to breakage due to scratches or the like during wearing can be evaluated by a snag test, and the snag test evaluation is preferably grade 3 or higher, and more preferably grade 4 or higher. . Furthermore, the warp knitted fabric is excellent in comfort when worn because the surface is smooth with little unevenness.
 IEC61340-5-1により測定される表面抵抗値は、測定される編地の表面に導電糸が露出し、大きな凸部を形成しているほど電極間に流れる電流が大きくなり、表面抵抗値が低くなる傾向がある。つまり、編地の表面が平滑になるほど電極間に流れる電流が小さくなり、表面抵抗値が高くなる傾向がある。したがって、表面摩擦の変動値(MMD)が0.01未満であると、タテ方向、ヨコ方向及びバイアス方向における表面抵抗値が高いものとなりやすい。 The surface resistance value measured by IEC61340-5-1 is that the conductive yarn is exposed on the surface of the knitted fabric to be measured, and the larger the convex portion is formed, the larger the current flowing between the electrodes, and the higher the surface resistance value. tends to be lower. That is, the smoother the surface of the knitted fabric, the smaller the current flowing between the electrodes and the higher the surface resistance. Therefore, if the surface friction variation value (MMD) is less than 0.01, the surface resistance values in the vertical, horizontal and bias directions tend to be high.
 本発明の制電性経編地は、ヨコ方向における表面摩擦の変動値(MMD)が0.01~0.10を満足することにより、表面抵抗値が低く、着用時のスレに対する耐久性を有し、着用時の着心地にも優れたものとなる。 The antistatic warp knitted fabric of the present invention has a surface friction variation value (MMD) in the horizontal direction that satisfies 0.01 to 0.10, so that the surface resistance value is low and the durability against scratches during wearing is improved. It has excellent comfort when worn.
 なお、本発明において、経編地の表面摩擦の変動値(MMD)は、以下のようにして測定する。すなわち、KES表面特性試験機(カトーテック社製、「KESFB2-A」)を用いて、試料となる経編地を荷重MIU:50gf、接触圧:10gf、試料張力:20gf/cm、速度1mm/secの条件で測定することができる。 In the present invention, the surface friction variation value (MMD) of the warp knitted fabric is measured as follows. That is, using a KES surface property tester (manufactured by Kato Tech Co., Ltd., "KESFB2-A"), a warp knitted fabric as a sample was loaded with a load MIU of 50 gf, a contact pressure of 10 gf, a sample tension of 20 gf/cm, and a speed of 1 mm/ It can be measured under the condition of sec.
 本発明の制電性経編地の表面摩擦の変動値(MMD)を0.01~0.10にするには、編地の凹凸を小さくすることが好ましい。より具体的には、本発明の制電性経編地は、導電糸と第1非導電糸からなる複合糸と、第2非導電糸とで編成されたものであるが、各編目に編み込まれている糸の合計総繊度が最も大きくなる編目の合計総繊度(最大の合計総繊度:A)と、各編目に編み込まれている糸の合計総繊度が最も小さくなる編目の合計総繊度(最小の合計総繊度:B)との差(A-B)は、通常200dtex以下であることが好ましく、中でも差(A-B)が150dtex以下であることがより好ましく、さらには100dtex以下であることが最も好ましい。なお、上記(A-B)の下限値は、例えば5dtexと設定することができるが、これに限定されない。 In order to make the surface friction variation value (MMD) of the antistatic warp knitted fabric of the present invention 0.01 to 0.10, it is preferable to reduce the unevenness of the knitted fabric. More specifically, the antistatic warp knitted fabric of the present invention is knitted with a composite yarn composed of a conductive yarn and a first non-conductive yarn, and a second non-conductive yarn. The total fineness of the stitch where the total fineness of the yarns in each stitch is the largest (maximum total fineness: A), and the total fineness of the stitch where the total fineness of the yarns knitted into each stitch is the smallest ( The difference (AB) from the minimum total total fineness: B) is usually preferably 200 dtex or less, more preferably 150 dtex or less, and further preferably 100 dtex or less. is most preferred. The lower limit of (AB) above can be set to 5 dtex, for example, but is not limited to this.
 特に、本発明の制電性経編地においては、最大の合計総繊度が編目Xに編み込まれている糸の合計総繊度となることが多いことから、編目Xに編み込まれている糸の合計総繊度のうち最大の合計総繊度(A)と、それ以外の編目(編目Y)に編み込まれている糸の合計総繊度のうち最小の合計総繊度(B)との差(A-B)が200dtex以下であることが好ましい。(A-B)の下限値は、例えば5dtexとすることもできるが、これに限定されない。 In particular, in the antistatic warp knitted fabric of the present invention, the maximum total total fineness is often the total total fineness of the yarns knitted into the stitches X. Therefore, the total total fineness of the yarns knitted into the stitches X The difference (AB) between the maximum total fineness (A) of the total fineness and the minimum total fineness (B) of the total fineness of the yarns knitted in the other stitches (stitch Y) is preferably 200 dtex or less. The lower limit of (AB) can be, for example, 5 dtex, but is not limited to this.
 なお、最大の合計総繊度(A)及び最小の合計総繊度(B)に関し、例えば、各編目Xが互いに異なる合計総繊度を有する場合、その合計総繊度が最大となる編目Xmaxにおける合計総繊度を上記Aとする。同様に、各編目Yが互いに異なる合計総繊度を有する場合、その合計総繊度が最小となる編目Yminにおける合計総繊度を上記Bとする。 Regarding the maximum total fineness (A) and the minimum total fineness (B), for example, when each stitch X has a different total fineness, the total fineness of the stitch Xmax where the total fineness is the maximum is referred to as A above. Similarly, when the stitches Y have different total finenesses, B is the total fineness of the stitch Ymin with the smallest total fineness.
 これについて、後記の実施例1を例に挙げると、L1、L2(A)、L3(A)で構成される編目(編目X)が最も太くなり、最大の合計総繊度が188dtexとなる。他方、L1、L2(B)、L3(B)で構成される編目(編目Y)が最も細くなり、最小の合計総繊度が168dtexとなる。従って、上記(A-B)の値は、188-168=20dtexとなる。 Regarding this, taking Example 1 below as an example, the stitch (stitch X) composed of L1, L2 (A), and L3 (A) is the thickest, and the maximum total fineness is 188 dtex. On the other hand, the stitch (stitch Y) composed of L1, L2(B), and L3(B) is the thinnest, and the minimum total fineness is 168 dtex. Therefore, the value of (AB) above is 188-168=20 dtex.
 本発明の制電性経編地は、上記のような糸使いで編成することにより、初期の制電性に優れるとともに、10洗後の制電性にも優れるものであり、中でも100洗後の制電性にも優れるものであることが好ましい。具体的には、10洗後において、IEC61340-5-1により測定されるタテ方向、ヨコ方向及びバイアス方向の表面抵抗値が1.0×1010Ω以下であり、中でも1.0×10Ω以下であることが好ましく、特に1.0×10Ω以下であることがより好ましい。 The antistatic warp knitted fabric of the present invention has excellent initial antistatic properties and excellent antistatic properties after 10 washes, especially after 100 washes. It is preferable that the antistatic property is also excellent. Specifically, after 10 washes, the surface resistance values in the vertical, horizontal and bias directions measured by IEC61340-5-1 are 1.0×10 10 Ω or less, especially 1.0×10 9 Ω. It is preferably Ω or less, and more preferably 1.0×10 8 Ω or less.
 また、IEC61340-5-1により測定される初期のタテ方向、ヨコ方向及びバイアス方向の表面抵抗値は、1.0×1010Ω以下であることが好ましく、中でも1.0×10Ω以下であることがより好ましく、特に1.0×10Ω以下であることが最も好ましい。 The initial surface resistance values in the vertical, horizontal and bias directions measured by IEC61340-5-1 are preferably 1.0×10 10 Ω or less, especially 1.0×10 9 Ω or less. more preferably, and most preferably 1.0×10 8 Ω or less.
 さらには、100洗後のIEC61340-5-1により測定されるタテ方向、ヨコ方向及びバイアス方向の表面抵抗値は、1.0×1011Ω以下であることが好ましく、中でも1.0×1010Ω以下であることがより好ましく、特に1.0×10Ω以下であることが最も好ましい。 Furthermore, the surface resistance values in the vertical, horizontal and bias directions measured by IEC61340-5-1 after 100 washes are preferably 1.0×10 11 Ω or less, especially 1.0×10 It is more preferably 10 Ω or less, and most preferably 1.0×10 9 Ω or less.
 なお、IEC61340-5-1により測定される表面抵抗値は、その値が低いほど制電性に優れる編物となるが、繊維強度、風合い等の面で問題が生じる場合があるので、表面抵抗値の下限としては、特に限定されないが、1.0×10Ω程度が好ましい。 The lower the surface resistance value measured by IEC61340-5-1, the better the antistatic properties of the knitted fabric. Although the lower limit of is not particularly limited, it is preferably about 1.0×10 4 Ω.
 また、タテ方向、ヨコ方向、バイアス方向に加えて、経編地を縫製した際の縫目間の表面抵抗値が初期、10洗後及び100洗後のいずれも上記範囲内を満足することが好ましい。 In addition to the vertical direction, the horizontal direction, and the bias direction, the surface resistance value between the stitches when the warp knitted fabric is sewn satisfies the above range at the initial stage, after 10 washes, and after 100 washes. preferable.
 本発明においては、表面抵抗値はIEC61340-5-1により測定するものであるが、より詳細には測定機器として、「PORSTAT Resistance System PRS-801」を使用し、測定環境23℃×12%RH、測定間距離250mmの条件で表面抵抗値を測定する。また、洗濯条件は、日本産業規格JIS L 0217 103法に従う。 In the present invention, the surface resistance value is measured according to IEC61340-5-1. More specifically, as a measuring device, "PORSTAT Resistance System PRS-801" is used, and the measurement environment is 23 ° C. x 12% RH. , the surface resistance value is measured under the condition that the distance between measurements is 250 mm. Also, the washing conditions comply with the Japanese Industrial Standard JIS L 0217 103 method.
 本発明の制電性経編地は上記のような制電性を有するものであるが、経編地中の導電糸の含有量は、通常0.5~10質量%であることが好ましく、特に1~8質量%であることがより好ましい。導電性糸の含有量が0.5質量%未満では、本発明の目的とする制電性が得られ難い。一方、10質量%を超えると、経編地の強度又は風合いが損なわれる傾向にあり、コスト的にも割高になるおそれがある。 The antistatic warp knitted fabric of the present invention has antistatic properties as described above, and the content of the conductive yarn in the warp knitted fabric is generally preferably 0.5 to 10% by mass. In particular, it is more preferably 1 to 8% by mass. If the content of the conductive yarn is less than 0.5% by mass, it is difficult to obtain the desired antistatic property of the present invention. On the other hand, if it exceeds 10% by mass, the strength or texture of the warp knitted fabric tends to be impaired, and the cost may be relatively high.
 本発明の導電性経編地は、整編後、例えば染色加工、吸水加工、帯電加工等の種々の加工を施してもよい。 After knitting, the conductive warp knitted fabric of the present invention may be subjected to various treatments such as dyeing, water absorption, and electrification.
 本発明の制電性経編地は、衣料用途に好適に使用できるものであるが、衣料の種類は、特に限定されず、上半身に着る衣料、下半身に着る衣料等のほか、ソックス、グローブ、マフラー、帽子等を含む。 The antistatic warp knitted fabric of the present invention can be suitably used for clothing, but the type of clothing is not particularly limited. Including mufflers, hats, etc.
 そして、本発明の制電性経編地は、エレクトロニクス産業をはじめ、各種の業務で使用される作業用衣服として使用することが可能であり、優れた制電性が要求されるクリーンルーム用途及び食品取り扱い用途、一般電気作業用途に使用する作業用衣服用途に使用することができる。上記のような作業用衣服は、本発明の制電性経編地を少なくとも一部に用いて、通常の編成技術、縫製技術等により得ることができる。 And the antistatic warp knitted fabric of the present invention can be used as work clothes used in various businesses including the electronics industry. It can be used for work clothes used for handling applications and general electric work applications. Work clothes such as those described above can be obtained by using the antistatic warp knitted fabric of the present invention at least in part, and using ordinary knitting techniques, sewing techniques, and the like.
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、実施例中の各種の値は以下のようにして測定した。 Examples and comparative examples are shown below to more specifically explain the features of the present invention. However, the scope of the present invention is not limited to the examples. Various values in the examples were measured as follows.
〔スナッグ〕
 日本産業規格JIS L 1058 2011 D-3法に従い、得られた経編地から4枚の試験片を採取して、4枚の試験結果を判定し、その平均値を算出した。3級以上を合格とした。
〔表面摩擦の変動値〕
 前記の方法にて測定した。なお、タテ方向とヨコ方向の変動値(MMD)の測定を行った。
〔表面抵抗値〕
 得られた経編地の初期、10洗後及び100洗後の3種類の経編地において、タテ方向、ヨコ方向及びバイアス方向のそれぞれの表面抵抗値を、IEC61340-5-1により測定した。洗濯は、JIS L 0217 103法に従って行った。このとき、得られた経編地を長辺方向が35cm、短辺方向が30cmの長方形のサンプルを下記の(a)~(c)に示す条件でカットした3種類のサンプルを用意した。
(a)長辺方向がタテ方向、短辺方向がヨコ方向
(b)長辺方向がヨコ方向、短辺方向がタテ方向
(c)長辺方向がバイアス方向、短辺方向がバイアス方向
 そして、(a)、(b)、(c)の順で載置し、(a)、(b)の長辺方向同士と(b)、(c)の長辺方向同士の2か所を片倒しダブルステッチで縫製し、サンプル(d)とした。
 タテ方向の表面抵抗値は、(a)のサンプルを使用し、長辺方向に測定間距離を25cmで測定を行った。
 ヨコ方向の表面抵抗値は、(b)のサンプルを使用し、長辺方向に測定間距離を25cmで測定を行った。
 バイアス方向の表面抵抗値は、(c)のサンプルを使用し、長辺方向に測定間距離を25cmで測定を行った。
 縫目間の表面抵抗値は、(d)のサンプルを使用し、片倒しダブルステッチで縫製した2か所の縫目を含むようにし、短辺方向に長さ60cmの測定間距離で測定を行った。
[Snag]
According to the Japanese Industrial Standard JIS L 1058 2011 D-3 method, four test pieces were taken from the obtained warp knitted fabric, the test results of the four pieces were determined, and the average value was calculated. Grade 3 or above was considered a pass.
[Variation value of surface friction]
It was measured by the method described above. In addition, the variation value (MMD) in the vertical direction and the horizontal direction was measured.
[Surface resistance value]
The surface resistance values in the warp knitted fabric, the warp knitted fabric obtained at the initial stage, the warp knitted fabric after 10 washes and the warp knitted fabric after 100 washes were measured in the warp, weft and bias directions according to IEC61340-5-1. Washing was performed according to the JIS L 0217 103 method. At this time, three types of samples were prepared by cutting the obtained warp knitted fabric into rectangular samples having a long side direction of 35 cm and a short side direction of 30 cm under the following conditions (a) to (c).
(a) The long side direction is the vertical direction and the short side direction is the horizontal direction (b) The long side direction is the horizontal direction and the short side direction is the vertical direction (c) The long side direction is the bias direction and the short side direction is the bias direction (a), (b), and (c) are placed in this order, and two places, (a) and (b) facing each other in the long side direction and (b) and (c) facing each other in the long side direction, are laid down to one side. A sample (d) was obtained by sewing with a double stitch.
The surface resistance value in the vertical direction was measured using the sample (a) with a distance between measurements of 25 cm in the long side direction.
The surface resistance value in the horizontal direction was measured using the sample (b) with a distance between measurements of 25 cm in the long side direction.
The surface resistance value in the bias direction was measured using the sample (c) with a distance between measurements of 25 cm in the long side direction.
The surface resistance value between seams is measured using the sample of (d), including two seams sewn with one-sided double stitches, and a distance between measurements of 60 cm in length in the short side direction. gone.
 実施例1
(糸使い)
 L1筬:ポリエチレンテレフタレートからなるポリエステルマルチフィラメント(56dtex/36f)(第2非導電糸)
 L2筬:(A):以下に示す第1非導電糸と導電糸からなる複合糸(撚り数(Z撚)400T/mの合撚糸)
 第1非導電糸…ポリエチレンテレフタレートからなるポリエステルマルチフィラメント(33dtex/12f)
 導電糸…KBセーレン社製「ベルトロン」(33dtex/6f、鞘部の導電性ポリマーが外周長の100%を占める)
 (B) :ポリエチレンテレフタレートからなるポリエステルマルチフィラメント(56dtex/36f)(第2非導電糸)
 (A)を6コースに1本配列し、それ以外は(B)を配列し、フルセットとした。
 L3筬:(A)にL2筬(A)と同じ複合糸を使用し、(B)にL2筬(B)と同じポリエステルマルチフィラメント(第2非導電糸)を用い、L2筬と同じ配列とした。
(編組織)
 L1筬にバック糸、L2筬にミドル糸、L3筬にフロント糸を配し、これらの糸を用いて、28ゲージのトリコット編機(Karl MAYER社製)にて、図1Aに示す組織(L2筬、L3筬のみ図示)にて経編地を編成した。
 得られた経編地をサーキュラー染色試験機、界面活性剤(日華化学株式会社製、サンモールFL)を1g/Lの濃度で使用し、リラックス精練を90℃で30分行った。
 次いで、上記と同じサーキュラー染色試験機にて、130℃×30分間の吸水・染色加工を行った後、仕上げセットを行い、制電性経編地を得た。
Example 1
(Thread use)
L1 reed: Polyester multifilament (56dtex/36f) made of polyethylene terephthalate (second non-conductive yarn)
L2 reed: (A): Composite yarn composed of first non-conductive yarn and conductive yarn shown below (twisted yarn with a twist number (Z twist) of 400 T / m)
First non-conductive thread: Polyester multifilament made of polyethylene terephthalate (33dtex/12f)
Conductive thread: "Beltron" manufactured by KB Seiren (33dtex/6f, the conductive polymer of the sheath accounts for 100% of the outer circumference)
(B): Polyester multifilament made of polyethylene terephthalate (56dtex/36f) (second non-conductive yarn)
(A) was arranged in 6 courses, and (B) was arranged for the rest to form a full set.
L3 reed: (A) uses the same composite yarn as L2 reed (A), (B) uses the same polyester multifilament (second non-conductive yarn) as L2 reed (B), and has the same arrangement as L2 reed. did.
(knitted structure)
A back yarn is arranged on the L1 reed, a middle yarn is arranged on the L2 reed, and a front yarn is arranged on the L3 reed. Using these yarns, a structure (L2 The warp knitted fabric was knitted with a reed (only L3 reed is shown).
The resulting warp knitted fabric was subjected to relaxation scouring at 90° C. for 30 minutes using a circular dyeing tester and a surfactant (Sunmor FL, manufactured by Nicca Chemical Co., Ltd.) at a concentration of 1 g/L.
Then, using the same circular dyeing tester as above, the fabric was subjected to water absorption and dyeing processing at 130° C. for 30 minutes, followed by finishing setting to obtain an antistatic warp knitted fabric.
 実施例2
 L2、L3筬の配列を、(A)を14コースに1本配列し、それ以外は(B)糸を配列、フルセットとし、図1Bに示す組織(L2筬、L3筬のみ図示)とした以外は、実施例1と同様にして経編地を編成した。得られた経編地を実施例1と同様にして吸水・染色加工・仕上げセットを行い、制電性経編地を得た。
Example 2
The arrangement of the L2 and L3 reeds was such that (A) was arranged one in 14 courses, and the other (B) yarns were arranged and set as a full set, and the organization shown in FIG. 1B (only L2 reeds and L3 reeds are shown). A warp knitted fabric was knitted in the same manner as in Example 1, except for the above. The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
 実施例3
 L2、L3筬の配列を、(A)を14コースに1本配列し、(B)糸を配列しない以外は実施例2と同様にして経編地を編成した。得られた経編地を実施例1と同様にして吸水・染色加工・仕上げセットを行い、制電性経編地を得た。
Example 3
A warp knitted fabric was knitted in the same manner as in Example 2, except that the L2 and L3 reeds were arranged in 14 courses in (A) and (B) the yarn was not arranged. The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
 実施例4
(糸使い)
 L2筬、L3筬:(A):実施例1と同じ複合糸(合撚糸)
 (B) :実施例1と同じポリエステルマルチフィラメント(56dtex/36f)(第2非導電糸)
 (A)を6コースに1本配列し、それ以外は(B)を配列し、フルセットとした。
(編組織)
 L2筬にミドル糸、L3筬にフロント糸を配し、これらの糸を用いて、28ゲージのトリコット編機(Karl MAYER社製)にて、図2に示す組織にて経編地を編成した。得られた経編地を実施例1と同様にして吸水・染色加工・仕上げセットを行い、制電性経編地を得た。
 なお、得られた経編地は、編目Xがタテ方向において10cmあたり50個(50個/10cm)の割合で含まれていた。
Example 4
(Thread use)
L2 reed, L3 reed: (A): The same composite yarn (plied twisted yarn) as in Example 1
(B): Same polyester multifilament (56dtex/36f) as in Example 1 (second non-conductive yarn)
(A) was arranged in 6 courses, and (B) was arranged in the rest to form a full set.
(knitted structure)
A middle yarn is arranged on the L2 reed and a front yarn is arranged on the L3 reed, and using these yarns, a warp knitted fabric is knitted with the structure shown in FIG. . The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
The obtained warp knitted fabric contained 50 stitches X per 10 cm in the vertical direction (50 stitches/10 cm).
 比較例1
 L1筬:ポリエチレンテレフタレートからなるポリエステルマルチフィラメント(84dtex/36f)(第2非導電糸)
 L2筬:(A):以下に示す第1非導電糸と導電糸からなる複合糸(撚り数(Z撚)400T/mの合撚糸)
 第1非導電糸…ポリエチレンテレフタレートからなるポリエステルマルチフィラメント(84dtex/36f)
 導電糸…KBセーレン社製「ベルトロン」(33dtex/6f、鞘部の導電性ポリマーが外周長の100%を占める)
(B):糸を配列しないものとした。
L3筬:(A)にL2筬(A)と同糸を用い、(B)は糸を配列しないものとし、L2筬と同じ配列とした。
 それ以外は、実施例1と同様にして経編地を編成した。得られた経編地を実施例1と同様に吸水・染色加工・仕上げセットを行い、制電性経編地を得た。
Comparative example 1
L1 reed: Polyester multifilament (84dtex/36f) made of polyethylene terephthalate (second non-conductive yarn)
L2 reed: (A): Composite yarn (twisting number (Z twist) of 400 T / m) composed of the first non-conductive yarn and conductive yarn shown below
First non-conductive thread: Polyester multifilament made of polyethylene terephthalate (84dtex/36f)
Conductive thread: "Beltron" manufactured by KB Seiren (33dtex/6f, the conductive polymer of the sheath accounts for 100% of the outer circumference)
(B): Yarns were not arranged.
L3 reed: (A) uses the same yarn as the L2 reed (A), and (B) does not arrange the yarn and has the same arrangement as the L2 reed.
Other than that, the warp knitted fabric was knitted in the same manner as in Example 1. The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
 比較例2
 L2、L3筬の(A) を導電糸のみを用い、第1非導電糸との複合糸としなかった以外は、実施例3と同様にして経編地を編成した。得られた経編地を実施例1と同様にして吸水・染色加工・仕上げセットを行い、制電性経編地を得た。
Comparative example 2
A warp knitted fabric was knitted in the same manner as in Example 3, except that (A) of the reeds L2 and L3 used only the conductive yarn and did not use the composite yarn with the first non-conductive yarn. The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
 比較例3
 図3のように、L2、L3において、各複合糸が編目Xを有しない組織に変更した以外は、実施例3と同様にして経編地を編成した。得られた経編地を実施例1と同様にして吸水・染色加工・仕上げセットを行い、制電性経編地を得た。
Comparative example 3
As shown in FIG. 3, a warp knitted fabric was knitted in the same manner as in Example 3, except that in L2 and L3, each composite yarn was changed to a structure having no stitches X. The obtained warp knitted fabric was subjected to water absorption, dyeing processing and finishing setting in the same manner as in Example 1 to obtain an antistatic warp knitted fabric.
 試験例1
 実施例1~4、比較例1~3で得られた制電性経編地の特性値を表1に示す。
Test example 1
Table 1 shows the characteristic values of the antistatic warp knitted fabrics obtained in Examples 1 to 4 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からも明らかなように、実施例1~4で得られた経編地は、本発明で規定する(1)~(4)の要件を全て満足するものであり、IEC61340-5-1による表面抵抗値が低く、表面抵抗値の洗濯耐久性にも優れるものであった。また、表面の凹凸感が少なく、スナッグ評価が高いものであったため、制電性を持続できる性能が高いことがわかる。 As is clear from Table 1, the warp knitted fabrics obtained in Examples 1 to 4 satisfy all the requirements (1) to (4) specified in the present invention, and IEC61340-5-1 The surface resistance value was low, and the washing durability of the surface resistance value was also excellent. In addition, since the texture of the surface was small and the snag evaluation was high, it can be seen that the antistatic property can be maintained at a high level.
 一方、比較例1で得られた経編地は、表面の凹凸が大きく、(3)の要件を満足しないものであったため、スナッグ評価が低いものであった。つまり、導電糸の糸切れリスクが高く、繰り返し着用すると制電性の低下が懸念されるものであった。また、表面の凹凸が大きいことから着用感にも劣る経編地となり得ることがわかる。 On the other hand, the warp knitted fabric obtained in Comparative Example 1 had large unevenness on the surface and did not satisfy the requirements of (3), so the snag evaluation was low. In other words, there is a high risk that the conductive yarn will break, and there is concern that repeated wear will reduce the antistatic properties. In addition, it can be seen that the warp knitted fabric can be inferior in wearing feeling due to large irregularities on the surface.
 比較例2で得られた経編地は、導電糸を単糸使いしている(導電糸と非導電糸からなる複合糸としていない)ため、洗濯を繰り返すと制電性が低下するものであり、(4)の要件を満足しないものであった。また、整経及び編立時にも導電糸の糸切れが生じ、操業性にも劣るものであった。 Since the warp knitted fabric obtained in Comparative Example 2 uses a single conductive yarn (not a composite yarn consisting of a conductive yarn and a non-conductive yarn), the antistatic property is reduced after repeated washing. , (4) were not satisfied. Also, the conductive yarn was broken during warping and knitting, resulting in poor workability.
 比較例3で得られた経編地は、複合糸同士が編目Xを有していないものであり、(2)の要件を満足しないものであったため、ヨコ及びバイアス方向の表面抵抗値(初期値)が高いものとなり、(4)の要件を満足しないものであった。

 
In the warp knitted fabric obtained in Comparative Example 3, the composite yarns did not have stitches X and did not satisfy the requirements of (2). value) was high and did not satisfy the requirement (4).

Claims (8)

  1. (a)導電糸と第1非導電糸を含む複合糸及び(b)第2非導電糸で編成された経編地であって、下記(1)~(4)の要件:
    (1)複合糸は、経編地の表面及び裏面の少なくともいずれかの面を編成する糸に含まれていること、
    (2)複合糸は、互いに隣り合う複合糸同士のループの重なりにより形成される編目を1つ以上有すること、
    (3)経編地のヨコ方向における表面摩擦の変動値(MMD)が0.01~0.10であること、及び
    (4)10洗後にIEC61340-5-1により測定されるタテ方向、ヨコ方向及びバイアス方向の表面抵抗値がいずれも1.0×1010Ω以下であること
    を満たすことを特徴とする制電性経編地。
    A warp knitted fabric knitted with (a) a composite yarn containing a conductive yarn and a first non-conductive yarn and (b) a second non-conductive yarn, the requirements of (1) to (4) below:
    (1) The composite yarn is included in the yarn that knits at least one of the surface and the back surface of the warp knitted fabric,
    (2) the composite yarn has one or more stitches formed by overlapping loops of mutually adjacent composite yarns;
    (3) The surface friction variation value (MMD) in the horizontal direction of the warp knitted fabric is 0.01 to 0.10, and (4) The vertical direction and horizontal direction measured by IEC61340-5-1 after 10 washes An antistatic warp knitted fabric characterized by satisfying surface resistance values of 1.0×10 10 Ω or less in both the direction and the bias direction.
  2. 複合糸は、(i)合撚糸、(ii)カバーリング糸及び(iii)インターレース加工糸からなる群から選ばれた少なくとも1種である、請求項1に記載の制電性経編地。 2. The antistatic warp knitted fabric according to claim 1, wherein the composite yarn is at least one selected from the group consisting of (i) plied yarn, (ii) covering yarn and (iii) interlaced yarn.
  3. 経編地の全質量中における導電糸の含有量が0.5~10.0質量%である、請求項1に記載の制電性経編地。 The antistatic warp knitted fabric according to claim 1, wherein the content of the conductive yarn in the total mass of the warp knitted fabric is 0.5 to 10.0% by mass.
  4. 100回洗後にIEC61340-5-1により測定されるタテ方向、ヨコ方向及びバイアス方向の表面抵抗値が、いずれも1.0×1011Ω以下である、請求項1に記載の制電性経編地。 The antistatic fabric according to claim 1, wherein the surface resistance values in the vertical direction, the horizontal direction, and the bias direction measured by IEC61340-5-1 after washing 100 times are all 1.0 × 10 11 Ω or less. Knitted fabric.
  5. 当該複合糸同士のループの重なりにより形成される編目に編み込まれている糸の合計総繊度のうち最大の合計総繊度(A)と、それ以外の編目に編み込まれている糸の合計総繊度のうち最小の合計総繊度(B)との差(A-B)が200dtex以下である、請求項1に記載の制電性経編地。 The maximum total fineness (A) of the yarns knitted into the stitches formed by overlapping the loops of the composite yarns, and the total total fineness of the yarns knitted into the other stitches. 2. The antistatic warp knitted fabric according to claim 1, wherein the difference (AB) from the smallest total total fineness (B) is 200 dtex or less.
  6. 当該複合糸同士のループの重なりにより形成される編目は、経編地のヨコ方向において2cmあたり1個以上の割合で含まれる、請求項1に記載の制電性経編地。 2. The antistatic warp knitted fabric according to claim 1, wherein the stitches formed by overlapping the loops of the composite yarns are included at a rate of 1 or more per 2 cm in the horizontal direction of the warp knitted fabric.
  7. 衣料用途に用いられる、請求項1~6のいずれかに記載の制電性経編地。 The antistatic warp knitted fabric according to any one of claims 1 to 6, which is used for clothing.
  8. 請求項1~6のいずれかに記載の制電性経編地を含む作業用衣服。 Work clothes comprising the antistatic warp knitted fabric according to any one of claims 1 to 6.
PCT/JP2021/038296 2021-04-09 2021-10-15 Antistatic warp knitted fabric WO2022215289A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180096474.9A CN117098885A (en) 2021-04-09 2021-10-15 Antistatic warp knitted fabric

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-066605 2021-04-09
JP2021066605 2021-04-09
JP2021104245A JP6932285B1 (en) 2021-04-09 2021-06-23 Antistatic warp knitted fabric
JP2021-104245 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022215289A1 true WO2022215289A1 (en) 2022-10-13

Family

ID=77549928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038296 WO2022215289A1 (en) 2021-04-09 2021-10-15 Antistatic warp knitted fabric

Country Status (3)

Country Link
JP (1) JP6932285B1 (en)
CN (1) CN117098885A (en)
WO (1) WO2022215289A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291375B1 (en) * 1998-10-29 2001-09-18 Guilford Mills, Inc. Textile fabric for dissipating electrical charges
JP2005344245A (en) * 2004-06-03 2005-12-15 Unitica Fibers Ltd Antistatic warp knitted fabric and working cloth for clean room using the same
JP2018087391A (en) * 2016-11-28 2018-06-07 株式会社ユニチカテクノス Double raschel knitted fabric having antislip function and antistatic function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291375B1 (en) * 1998-10-29 2001-09-18 Guilford Mills, Inc. Textile fabric for dissipating electrical charges
JP2005344245A (en) * 2004-06-03 2005-12-15 Unitica Fibers Ltd Antistatic warp knitted fabric and working cloth for clean room using the same
JP2018087391A (en) * 2016-11-28 2018-06-07 株式会社ユニチカテクノス Double raschel knitted fabric having antislip function and antistatic function

Also Published As

Publication number Publication date
JP2022161787A (en) 2022-10-21
JP6932285B1 (en) 2021-09-08
CN117098885A (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JP5298840B2 (en) Textile and garment using the same
US4422483A (en) Antistatic fabric and garment made therefrom
US4557968A (en) Directional electrostatic dissipating fabric and method
US8393282B2 (en) Sewn product and clothes
KR101682429B1 (en) Work glove
JP3880743B2 (en) Woven fabric and dust-proof garment with excellent conductivity and antistatic properties
KR20030081432A (en) Fiber complex and its use
JP2008001996A (en) Antistatic garment
WO2022215289A1 (en) Antistatic warp knitted fabric
JP2007002374A (en) Conductive conjugated fiber and conductive fabric
JP3212193U (en) Antistatic yarn and antistatic fabric
JP4477941B2 (en) Antistatic warp knitted fabric and cleanroom workwear using the same
JP2010047847A (en) Garment
JP2017106134A (en) Conductive composite textured yarn and conductive woven fabric
JP6297800B2 (en) Antistatic work clothes with excellent electrostatic performance
WO2021186943A1 (en) Conductive textured composite yarn, and fabric and clothing
JP6944021B1 (en) Warp knitted fabric for clothing
JPH09250007A (en) Antistatic wear
WO2023136107A1 (en) Anti-fraying fabric
JP2003147665A (en) Cloth
RU2110628C1 (en) Working dress fabric
JPH03269131A (en) Antistatic conjugate yarn
JP2008007869A (en) Antistatic working wear
JP2023133778A (en) knitted fabric
JP2022166674A (en) Antistatic woven fabric and antistatic garment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180096474.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936088

Country of ref document: EP

Kind code of ref document: A1