WO2011018322A1 - Procédé et dispositif de réduction d'oxydes d'azote de gaz de combustion contenant des poussières au moyen d'un catalyseur à réduction catalytique sélective - Google Patents

Procédé et dispositif de réduction d'oxydes d'azote de gaz de combustion contenant des poussières au moyen d'un catalyseur à réduction catalytique sélective Download PDF

Info

Publication number
WO2011018322A1
WO2011018322A1 PCT/EP2010/060706 EP2010060706W WO2011018322A1 WO 2011018322 A1 WO2011018322 A1 WO 2011018322A1 EP 2010060706 W EP2010060706 W EP 2010060706W WO 2011018322 A1 WO2011018322 A1 WO 2011018322A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
exhaust gases
agglomeration
catalyst
conditioning stage
Prior art date
Application number
PCT/EP2010/060706
Other languages
German (de)
English (en)
Inventor
Sebastian Frie
Melanie Tribowski
Mark Colberg
Luis Lagar Garcia
Timo Stender
Original Assignee
Polysius Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polysius Ag filed Critical Polysius Ag
Priority to EP10739543A priority Critical patent/EP2315621A1/fr
Publication of WO2011018322A1 publication Critical patent/WO2011018322A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/02Amassing the particles, e.g. by flocculation
    • B01D51/06Amassing the particles, e.g. by flocculation by varying the pressure of the gas or vapour
    • B01D51/08Amassing the particles, e.g. by flocculation by varying the pressure of the gas or vapour by sound or ultrasonics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices

Definitions

  • the invention relates to a method and a plant for the reduction of nitrogen oxides (NO ⁇ ) dust-containing exhaust gases by means of an SCR catalyst.
  • Exhaust gases are obtained, for example, in furnaces for cement or minerals as well as in power plant technology.
  • Dust loads lead to operating problems due to blockages on the catalytic converter; they may also deactivate the porous surface of the catalyst. Since the catalyst is usually fixedly mounted in the reactor, there are limited opportunities to clean it in operation and reactivate.
  • a process is also known for the purification of gases, in which dust particles contained in the gas stream are first agglomerated by sonication and separated by means of a porous cross-flow filter before it reaches such dust-free clean gas, for example, a catalyst bed is supplied (US 4,319,891 and US 4,378,976).
  • a catalyst bed is supplied (US 4,319,891 and US 4,378,976).
  • the deposition of the dust agglomerates formed by the application of sound takes place directly in the sound chamber, from which a dust-free gas stream is drawn off and fed to a catalyst (US Pat. No. 5,419,877).
  • the invention is based on the object to provide a method and a system that allow a particularly effective and operationally reliable reduction of nitrogen oxides dust-containing exhaust gases by means of an SCR catalyst.
  • Volume flow of dusty exhaust gases is the desired average Particle size of the dust particle agglomerates at least 5 microns, preferably 8 to 15 microns.
  • the agglomeration of dust particles can be brought about acoustically by generating ultrasonic waves in a dusty exhaust gas flow.
  • Another possibility is to cause the agglomeration electrostatically by at least two dust-containing exhaust gas streams are charged electrostatically in opposite directions and then brought together for the purpose of agglomeration of dust particles.
  • Fig. 1 is a schematic representation of a first exemplary embodiment (with acoustic agglomeration), from which the increasing with the size of the formed dust particle agglomerates reducing their
  • FIG. 2 is a schematic representation of the first exemplary embodiment for explaining the pressure drop occurring in the flow shadow of the agglomerates
  • FIG. 3 shows a flow chart of a system according to the invention with acoustic agglomeration
  • FIG. 4 shows a schematic diagram of a further exemplary embodiment with acoustic agglomeration
  • Fig. 5 is a schematic representation of an embodiment with electrostatic agglomeration.
  • the agglomeration of dust particles in the exhaust gas flow is acoustically brought about.
  • dust-containing exhaust gases 3 are fed to a conditioning stage 1 for the agglomeration of dust particles contained in the exhaust gases 3.
  • the conditioning stage 1 is formed by an example horizontally oriented flow tube, in which near the entrance of the dust-containing exhaust gases 3, a sound source 2 is arranged.
  • the sound source 2 acts on the conditioning stage 1 with sound or ultrasonic waves whose frequency is at least 18 kHz, preferably at least 20 kHz, and whose sound level is at least 120 dB, preferably 140 to 160 dB. These ultrasonic waves generate a relative movement between the dust particles and the fluid carrying them, which leads to collisions between the dust particles and to a dust particle agglomeration.
  • the carrier gas 4 i.
  • the gas component of the dust-containing exhaust gases 3 is offset due to its low density of the ultrasonic waves in a vibration with the largest amplitude.
  • Small dust particles oscillate almost synchronously and with approximately the same amplitude as the carrier gas 4.
  • the oscillation amplitude of the forming agglomerates 5 is now lower.
  • the diameter of the agglomerates 5 becomes larger, the different vibration amplitudes supporting the desired collision of the dust particles and thus their agglomeration.
  • FIG. 1 The illustration of the four oscillations of different amplitude in FIG. 1 is to understand quite schematically and to illustrate the relationship between the amplitude of vibration and the size of the forming agglomerates and the space-time growth of the agglomerates.
  • the vibrations of the dust particles and the forming dust particle agglomerates also lead to pressure gradients.
  • the particle A generates behind it a flow shadow, which has a pressure gradient result: the pressure p2 behind the particle A is smaller than the pressure pl in front of the particle A ..
  • the lower pressure p2 in the flow shadow of the particle A leads there to a higher Velocity v2 as before the particle A (vi).
  • the pressure drop behind a particle A causes the particle B following in the flow shadow of the particle A to oscillate more rapidly and therefore additionally increases the collision rate and the agglomeration.
  • a balance between the dust load of the exhaust gases and the propagation of the sound waves in the conditioning stage is required.
  • the acoustic agglomeration is preferably carried out with a dust loading between 3 and 30 g / Nm 3 , preferably between 5 and 20 g / Nm 3 .
  • Extremely high dust loads of the exhaust gases can occur, for example, in the cement industry on the gas outlet side of the preheater.
  • Pre-dedusting are especially suitable cyclones because of their simple structure and their low susceptibility to interference.
  • An existing anyway Zyklonvor Anlagenr the cement kiln can therefore be extended by an additional level for the purpose of the dedusting of the exhaust gases.
  • SCR catalyst types with plate and honeycomb geometries as well as with different channel diameters.
  • At high dust sensitivity of the catalyst as is usually the case especially for small dimensions of the flow channels of the catalyst, it may be appropriate to the dust content of the exhaust gases after the dust agglomeration, but before feeding the
  • Exhaust gases to the catalyst to reduce by deposition of at least a portion of the dust particle agglomerates formed to a suitable value for the SCR catalyst Exhaust gases to the catalyst to reduce by deposition of at least a portion of the dust particle agglomerates formed to a suitable value for the SCR catalyst.
  • the pre- and post-dedusting of the exhaust gases with cyclones increase the
  • the dedusting by a cyclone can be dispensed with, depending on the required purity, even in the case of dust-sensitive catalysts, if the dust particle agglomerates formed in the conditioning stage are at least partly already deposited at the outlet of the conditioning stage.
  • Fig. 3 shows schematically the gas path of a plant for the reduction of nitrogen oxides dust-containing exhaust gases by means of an SCR catalyst, wherein the exiting the preheater tower of a cement combustion exhaust gases are subjected to an acoustic Staubagglomeration before they get into the catalyst.
  • Pre-dedusting of the exhaust gases before the dust agglomeration as well as subsequent dedusting in a dedusting unit between acoustic agglomeration and entry into the SCR catalytic converter are optionally provided.
  • 4 shows a schematic diagram of a system in which an acoustically induced agglomeration takes place in the conditioning stage and subsequently a separation of formed dust particle agglomerates.
  • the dust-containing exhaust gas 3 enters the conditioning stage 1 on the left, which is designed as an approximately horizontally arranged tube.
  • the sound sources 2a, 2b, 2c are in upper area or above the conditioning stage 1 arranged horizontally next to each other.
  • the agglomeration of dust particles in the conditioning stage 1 leads due to gravity to a decrease in the formed dust particle agglomerates. As a result, a partial dedusting of the exhaust gas is already achieved in the conditioning stage 1.
  • Dust particle agglomerates are discharged, while the partially dedusted gas 7 is withdrawn separately.
  • baffles can be provided, for example, in the vicinity of the gas side outlet of the conditioning stage.
  • Fig. 5 shows an embodiment of an electrostatically induced agglomeration.
  • the dust-containing exhaust gas 3 is in this case divided into at least two partial streams 3a, 3b, which then flow through a device 8 for electrostatic charging.
  • the partial flow 3a becomes electropositive and the partial flow 3b is charged electronegatively.
  • the two partial streams are in this case divided into at least two partial streams 3a, 3b, which then flow through a device 8 for electrostatic charging.
  • the partial flow 3a becomes electropositive and the partial flow 3b is charged electronegatively.

Abstract

L'invention concerne un procédé de réduction d'oxydes d'azote de gaz de combustion contenant des poussières au moyen d'un catalyseur à réduction catalytique sélective, selon lequel les gaz de combustion sont conditionnés avant entrée dans le catalyseur par agglomération de particules de poussières à une taille minimale telle que les agglomérats de particules de poussières traversant le catalyseur ne bouchent pas le catalyseur et ne désactivent pas sa surface poreuse.
PCT/EP2010/060706 2009-08-11 2010-07-23 Procédé et dispositif de réduction d'oxydes d'azote de gaz de combustion contenant des poussières au moyen d'un catalyseur à réduction catalytique sélective WO2011018322A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10739543A EP2315621A1 (fr) 2009-08-11 2010-07-23 Procédé et dispositif de réduction d'oxydes d'azote de gaz de combustion contenant des poussières au moyen d'un catalyseur à réduction catalytique sélective

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910036948 DE102009036948A1 (de) 2009-08-11 2009-08-11 Verfahren sowie eine Anlage zur Reduktion von Stickoxiden staubhaltiger Abgase mittels eines SCR-Katalysators
DE102009036948.1 2009-08-11

Publications (1)

Publication Number Publication Date
WO2011018322A1 true WO2011018322A1 (fr) 2011-02-17

Family

ID=42651202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/060706 WO2011018322A1 (fr) 2009-08-11 2010-07-23 Procédé et dispositif de réduction d'oxydes d'azote de gaz de combustion contenant des poussières au moyen d'un catalyseur à réduction catalytique sélective

Country Status (3)

Country Link
EP (1) EP2315621A1 (fr)
DE (1) DE102009036948A1 (fr)
WO (1) WO2011018322A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011000564B4 (de) * 2011-02-08 2013-05-02 Elex Cemcat Ag Verfahren und Anlage zur Herstellung von Zementklinker
DE102015202698B4 (de) * 2015-02-13 2020-11-05 Maerz Ofenbau Ag Verfahren zur Reinigung von Abgasen bei der thermischen Aufarbeitung von Mineralstoffen
JP2019507681A (ja) 2016-03-06 2019-03-22 ヴィント プルス ゾンネ ゲー・エム・ベー・ハーWind plus Sonne GmbH 音響泳動により、エアロゾルと、ガスからの固形物粒子および繊維と、流体からの固形物粒子および繊維とを分離および/または清浄化するための方法および機器
DE102016002600A1 (de) * 2016-03-06 2017-09-07 WindplusSonne GmbH Aerosolreinigung und Trennung für Oberflächenbeschichtungen und Fasern
DE102018007454A1 (de) * 2018-09-20 2020-03-26 Wind Plus Sonne Gmbh Vorrichtung und Verfahren für den fotokatalytischen Abbau von flüchtigen organischen Verbindungen (VOC) und/oder Stickoxiden in Kraftfahrzeugen
US11291939B1 (en) 2021-07-13 2022-04-05 Smart Material Printing B.V. Ultra-fine particle aggregation, neutralization and filtration

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319891A (en) 1980-11-13 1982-03-16 Gas Research Institute Combined sonic agglomerator/cross flow gas filtration system and method
US4378976A (en) 1981-08-14 1983-04-05 Institute Of Gas Technology Combined sonic agglomerator/cross flow filtration apparatus and process for solid particle and/or liquid droplet removal from gas streams
US5419877A (en) 1993-09-17 1995-05-30 General Atomics Acoustic barrier separator
DE10037499A1 (de) 2000-08-01 2002-02-21 Mehldau & Steinfath Feuerungst Verfahren und Vorrichtung zur Reinigung von mit Katalysatoren ausgestatteten Entstickungsanlagen, vorzugsweise DENOX-Reaktoren, in Zement-, Glas-, Metallurgie-, Kraftwerks- und Müllverbrennungsanlagen
DE102005027784A1 (de) * 2005-06-15 2006-12-21 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur Behandlung von Abgasen von Verbrennungskraftmaschinen
DE102005039997A1 (de) 2005-08-24 2007-03-01 Samant, Gurudas, Dr. Verfahren und Vorrichtung zur Reinigung von SCR-Reaktoren im Zementdrehrohrofen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319891A (en) 1980-11-13 1982-03-16 Gas Research Institute Combined sonic agglomerator/cross flow gas filtration system and method
US4378976A (en) 1981-08-14 1983-04-05 Institute Of Gas Technology Combined sonic agglomerator/cross flow filtration apparatus and process for solid particle and/or liquid droplet removal from gas streams
US5419877A (en) 1993-09-17 1995-05-30 General Atomics Acoustic barrier separator
DE10037499A1 (de) 2000-08-01 2002-02-21 Mehldau & Steinfath Feuerungst Verfahren und Vorrichtung zur Reinigung von mit Katalysatoren ausgestatteten Entstickungsanlagen, vorzugsweise DENOX-Reaktoren, in Zement-, Glas-, Metallurgie-, Kraftwerks- und Müllverbrennungsanlagen
DE102005027784A1 (de) * 2005-06-15 2006-12-21 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur Behandlung von Abgasen von Verbrennungskraftmaschinen
DE102005039997A1 (de) 2005-08-24 2007-03-01 Samant, Gurudas, Dr. Verfahren und Vorrichtung zur Reinigung von SCR-Reaktoren im Zementdrehrohrofen

Also Published As

Publication number Publication date
EP2315621A1 (fr) 2011-05-04
DE102009036948A1 (de) 2011-02-24

Similar Documents

Publication Publication Date Title
WO2011018322A1 (fr) Procédé et dispositif de réduction d'oxydes d'azote de gaz de combustion contenant des poussières au moyen d'un catalyseur à réduction catalytique sélective
EP1514057B1 (fr) Centrale a charbon
DE1542314C3 (de) Verfahren und Vorrichtung zur Entfernung von Schwefeloxiden aus Abgasen
EP2462058B1 (fr) Procédé et installation de production de trichlorosilane
EP2237861A1 (fr) Dispositif d'épuration de gaz de fumée
WO2015155339A1 (fr) Procédé et installation de dénitrification de gaz de combustion par rncs (réduction non catalytique sélective) et catalyseur de décomposition d'ammoniac installé en aval
EP2334916B1 (fr) Dispositif et procédé d'épuration de gaz d'échappement au moyen d'un agent reducteur
DE102011052788A1 (de) Verfahren und Vorrichtung zur Reinigung von Abgasen
DE102014005152A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung
DE102015202698A1 (de) Verfahren zur Reinigung von Abgasen bei der thermischen Aufarbeitung von Mineralstoffen sowie Anlage zur thermischen Aufarbeitung von Mineralstoffen
WO2018011430A1 (fr) Système de dispersion et procédés de fabrication d'un mat de matière dispersée au cours de la fabrication de panneaux de matériau
DE19612240A1 (de) Verfahren und Vorrichtung zur Abscheidung von Schadstoffen, insbesondere von Stickoxiden, aus Rauchgas
DE3119300A1 (de) Verfahren zum abscheiden von feststoffteilchen aus abgasen
DE19961691C5 (de) Verfahren zur Reinigung von Rauchgas
DE102007001316B4 (de) Entstaubungsvorrichtung und Verfahren zur Entstaubung, insbesondere von Bandanlagen
EP3299079B1 (fr) Installation de traitement du gaz et procédé de fonctionnement d'une installation de traitement du gaz avec une lance d'injection
AT407346B (de) Verfahren zum aufbereiten von feinkörnigem erz
DE10214400B4 (de) Flugstromreaktor zur Gasreinigung
EP0545943B1 (fr) Procede et systeme de separation de particules solides et/ou liquides et/ou gaseaux contenus dans un courant de gas
DE3616310A1 (de) Verfahren und vorrichtung zum entfernen von stickoxiden aus rauchgasen durch selektive trockenadsorption
EP2263779B1 (fr) Installation de nettoyage de gaz de fumée dotée d'une unité de sortie
DE19717771C2 (de) Verfahren zur Entfernung von Stickoxiden aus den bei der Herstellung von Zement anfallenden Abgasen
DE102009037476A1 (de) SCR-Katalysator mit Druckluftanlage
EP3930885A1 (fr) Dispositif de traitement thermique d'une matière première dans un courant de gaz chaud pulsé
DE102020202322A1 (de) Vorrichtung zur thermischen Behandlung eines Rohstoffs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010739543

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10739543

Country of ref document: EP

Kind code of ref document: A1