WO2011017884A1 - 降低多载波相互干扰的方法与装置 - Google Patents

降低多载波相互干扰的方法与装置 Download PDF

Info

Publication number
WO2011017884A1
WO2011017884A1 PCT/CN2009/075906 CN2009075906W WO2011017884A1 WO 2011017884 A1 WO2011017884 A1 WO 2011017884A1 CN 2009075906 W CN2009075906 W CN 2009075906W WO 2011017884 A1 WO2011017884 A1 WO 2011017884A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulated signal
signal
phase
modulated
carrier
Prior art date
Application number
PCT/CN2009/075906
Other languages
English (en)
French (fr)
Inventor
毕文仲
劳锦明
李凡龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to RU2012107913/07A priority Critical patent/RU2492578C1/ru
Priority to US13/259,077 priority patent/US8699954B2/en
Publication of WO2011017884A1 publication Critical patent/WO2011017884A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03821Inter-carrier interference cancellation [ICI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA

Definitions

  • the present invention relates to a processing technique for multi-carrier mutual interference in a communication system, and more particularly to a method and apparatus for reducing multi-carrier mutual interference. Background technique
  • the wireless communication system can support multi-carrier operation mode.
  • the carrier signals transmitted and received by the relevant network elements are combined signals of multiple single carriers.
  • the bandwidth of a single carrier is 1.23 MHz
  • the center frequency interval of adjacent carriers is 1.23 MHz
  • multiple carriers, such as three carriers adjacent to each other are three single carriers of 1.23 MHz bandwidth. Together, they form a multiplexed wave with a bandwidth of about 3.69 MHz.
  • the center frequencies of the three carriers can be set to 871.11 MHz, 872.34 MHz, and 873.57 MHz (other frequencies are also possible).
  • FIG. 1 is a schematic diagram of carrier interference of three adjacent carriers in a frequency domain in a Code Division Multiple Access (CDMA) code system.
  • CDMA Code Division Multiple Access
  • the frequency of the first carrier in the figure is 871.11 MHz, and second.
  • the carrier frequency is 872.34 MHz, and the frequency of the third carrier is 873.57 MHz.
  • the phenomenon that part of the information of one carrier is aliased into the adjacent carrier occurs, that is, mutual interference between multiple carriers occurs, and the interference phenomenon is particularly obvious when the carrier is adjacently arranged. It can be seen from Fig.
  • the two shaded areas are the aliasing areas of the carrier, that is, the partial information of the first carrier is aliased to the second carrier, and part of the information in the second carrier is aliased to the first In the carrier.
  • the second carrier and the third carrier When the information of another carrier is aliased in one carrier, the information will become an interference and affect the quality of the signal. Due to the existence of such interference, the receiver may not be able to properly demodulate the signal at the receiving end. This kind of interference is particularly significant for the EV-DO (Evolution-Data Optimized) signal in the CDMA system.
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • a method for reducing multi-carrier mutual interference comprising:
  • Each baseband signal is separately modulated onto each modulated signal
  • the phase of at least one modulated signal in the modulated signal is adjusted until all the baseband signals can be correctly demodulated; , the current phase value is used as the phase value of the modulated signal of each baseband signal.
  • the adjusting the phase of the at least one modulated signal is specifically: adjusting the phase of the modulated signal of each carrier simultaneously.
  • the adjusting the phase of the at least one modulated signal is specifically: sequentially adjusting the modulated signals of the carriers.
  • the phase of the corresponding modulated signal is adjusted step by step until each modulation of the final stage output
  • the phase value determined by each level of modulation is used as the phase value of the modulated signal of each baseband signal.
  • the phase of the modulated signal includes a carrier frequency of the modulated signal and an initial phase of the modulated signal.
  • the adjusting the phase of the modulated signal is to adjust an initial phase of the modulated signal.
  • a device for reducing multi-carrier mutual interference comprising an adjusting unit, a modulating unit, a demodulating unit, a determining unit and a determining unit, wherein:
  • An adjusting unit configured to adjust a phase of at least one modulated signal
  • a modulating unit configured to separately modulate each baseband signal to each modulated signal
  • a demodulation unit configured to demodulate each modulated signal modulated by the modulation unit; and a determining unit, configured to determine whether the demodulation unit can correctly demodulate each baseband signal, and a baseband that cannot be correctly demodulated
  • the adjusting unit is triggered to further adjust the phase of at least one of the modulated signals in the modulated signal until the baseband signals are correctly demodulated; and when the signals are correctly demodulated, the determining unit is triggered;
  • a determining unit is configured to use the current phase value as a phase value of the modulated signal of each baseband signal.
  • the adjusting unit adjusts the phase of the modulated signal of each carrier simultaneously.
  • the adjusting unit sequentially adjusts the modulated signals of the carriers.
  • the adjusting unit adjusts the phase of the corresponding modulated signal step by step until the determination
  • the determining unit uses the phase value determined by each level of modulation as the phase value of the modulated signal of each baseband signal.
  • the phase of the modulated signal includes a carrier frequency of the modulated signal and an initial phase of the modulated signal.
  • the adjustment unit adjusts an initial phase of the modulated signal.
  • the mutual interference problem of multi-carrier signals in a wireless communication system can be better solved, especially for multi-carrier in a CDMA system
  • Mutual interference between EV-DO signals is especially noticeable in the case of multi-carrier adjacent configuration.
  • the same wireless signal coverage area can have multiple carriers working at the same time, greatly improving spectrum utilization, improving flexibility of wireless planning, improving cell service capacity, transmission rate, and service quality, and improving user experience.
  • FIG. 1 is a schematic diagram of a carrier trunk 4 in a frequency domain adjacent to three carriers in a CDMA system
  • FIG. 2 is a schematic diagram of a single carrier modulation scheme in a wireless communication system
  • FIG. 3 is a schematic diagram of a multi-carrier modulation method according to the present invention.
  • Figure 5 is a schematic structural view of a parameter selection device of the present invention.
  • FIG. 6 is a schematic structural diagram of adjusting a modulated signal by using a parameter selection device according to the present invention
  • FIG. 7 is a schematic structural diagram of a device for reducing interference interference during carrier multi-level modulation according to the present invention
  • FIG. 8 is a structural diagram of a device for reducing multi-carrier mutual interference according to the present invention; schematic diagram. detailed description
  • the basic idea of the present invention is: In a multi-carrier system, especially between adjacent carriers in the frequency domain, mutual interference is relatively serious.
  • the present invention controls the phase of the modulated signal of each carrier to control the interference between the multiple carriers to the level at which the effective signal in the modulated signal can be correctly demodulated. Since the phase of the modulated signal is related to the carrier frequency and initial phase of the carrier, and the carrier frequency of the carrier has been planned by the communication system, it is a non-adjustable parameter. Therefore, the present invention mainly adjusts the initial phase of the modulated signal. To reduce interference between multiple carriers. The solution of the invention realizes the single and practical.
  • the transmitted signal in modern wireless communication systems is transmitted by modulating information onto the modulated signal, wherein the modulated signal can be controlled by a digitally controlled oscillator (NCO, Numerical). Control Oscillator) or analog oscillators are generated.
  • the modulation process can be performed by a modulator such as a real modulator, a complex modulator, or a quadrature modulator.
  • A is the amplitude
  • f is the carrier frequency
  • is the initial phase of the modulated signal
  • (2 ⁇ ⁇ + ⁇ ) is the phase of the modulated signal, which is a function related to the frequency ⁇ time t and the initial phase ,
  • W ( t, f, ⁇ ) W. If it is a real modulation, you only need to use the real part of C ( t ).
  • the frequency of the modulated signal is specified to reduce the inter-carrier interference, and the phase W of the modulated signal is not specifically specified to reduce the inter-carrier interference.
  • the phase W of the modulated signal is a function related to the frequency f, the time t and the initial phase ,, where t is a change in time, indicating the characteristic of the signal, which is uncontrollable.
  • f and ⁇ are two controlled variables, and the purpose of adjusting the phase W of the modulated signal can be achieved by changing either or both of them.
  • the offset range of f is relatively narrow, so the flexibility of adjustment is weak, and the initial phase ⁇ has a large adjustment range and flexibility.
  • the technical solution of the present invention is proposed in response to this feature.
  • FIG. 2 is a schematic diagram of a single carrier modulation mode in a wireless communication system. As shown in FIG. 2, the figure includes two components, a modulator 200 and a modulated signal generator 201.
  • the modulator 200 is configured to modulate the input signal X onto the modulated signal to obtain an output signal y.
  • the input signal is also referred to as a baseband signal, and the output signal includes a modulated baseband signal, that is, a modulated signal.
  • Modulator 200 is a real number modulator, a complex debugger or a quadrature modulator commonly used in wireless communication systems.
  • the modulated signal generator 201 generates a modulated signal in accordance with the input parameters.
  • phase of the modulated signal is not specifically determined according to the parameters of the input signal and whether the output signal can demodulate the effective signal to achieve the purpose of reducing inter-carrier interference. Therefore, the phase ⁇ is not an input signal.
  • a function of X and the output signal y is not an input signal.
  • FIG. 3 is a schematic diagram of a multi-carrier modulation method according to the present invention.
  • the figure also includes two components, a modulator 300 and a modulated signal generator 301, which functions as the modulator 200 and the
  • the modulation signal generators 201 are respectively identical, but the phase and frequency parameters input to the modulated signal generator 201 are a function of the input signal X and the output signal y, unlike the conventional signal modulation process, which does not specifically specify the phase of the modulated signal.
  • the present invention selectively sets the phase of the modulated signal by the modulation method of Fig. 3, thereby achieving the purpose of reducing the mutual interference between carriers.
  • FIG. 4 is a flowchart of a method for reducing multi-carrier mutual interference according to the present invention. As shown in FIG. 4, the method for reducing multi-carrier mutual interference according to the present invention includes the following steps:
  • Step 401 Set the input parameters.
  • Input parameters include relevant parameters that represent the input signal.
  • the type of input carrier in this example is the CDMA IX signal; the number of input carriers, in this example is the three carriers; the center frequency information of the input carrier, in this example, the configuration of the adjacent carrier is set to 871.11MHz carrier, 872.34MHz Carrier, 873.57MHz carrier; Input the initial phase parameter of the modulated signal.
  • the initial phase of the carrier will be obtained by a function of a random series generator, and the generator seed will be set to 0 at the first time.
  • the initial values of the three carrier phases obtained by the seed 0 are used as input parameters; the frequency parameters of the first-stage modulated signals corresponding to the input carrier are used, and in this example, the adjacent carriers are respectively configured to be -1.23 MHz, 0 MHz, 1.23 MHz.
  • FIG. 5 is a schematic structural diagram of a parameter selection apparatus according to the present invention.
  • several input parameters required for the parameter selection apparatus of the present invention are: carrier type parameter n, carrier number parameter m, carrier center frequency information k, The initial phase of the signal being modulated, the output feedback signal and the initial frequency of the modulated signal are referenced. In actual use, depending on different systems or carrier conditions, only some or all of the input parameters may be used.
  • the output parameter of the parameter selection device of the present invention includes a modulated signal phase The bit parameter W, the frequency parameter f of the modulated signal, and the parameter selection result indication signal.
  • the result indication signal indicates an operational state of the parameter selection device, and the end state is still in operation.
  • the device works according to the parameter selection mode shown in FIG. 3 (ie, the initial phase of the modulated signal is continuously adjusted to determine whether the baseband signal modulated onto the modulated signal can be correctly demodulated), and can be used in the system. Used before running, it can also be used during system operation.
  • a modulator group is used for implementing modulation of multiple carriers, and may be various types of modulators used in a wireless communication system.
  • the modulator group has two sets of input signals, one is the input carrier signal (baseband signal) x. xm, and the other is the modulated signal 1...m output by the modulated signal generator.
  • the combiner is used to combine the modulated m single carriers.
  • the coupler is used to feed the output signal back into the parameter selection device as an input parameter to the parameter selection device. Together with other input parameters, the parameter selection device will select the phase parameters according to a certain optimization algorithm.
  • the invention further includes a demodulator (not shown) for demodulating the finally output modulated signal, and multiplexing the finally output modulated signal into the demodulator, the demodulator
  • the demodulation result is input to the parameter selection device of the present invention as a basis for whether or not to continue adjusting the initial phase of the modulated signal.
  • the demodulator can be selected from an existing demodulator.
  • the invention demodulates the modulated baseband signal by setting a demodulation device, and compares it with the pre-configured baseband signal. If the same, the interference between the carriers is considered to meet the communication requirement, otherwise the communication requirements are not met, and the carriers are continuously adjusted. The initial phase value until the baseband signal is properly demodulated.
  • the demodulation device can be implemented by hardware or software, and can be any existing demodulator or software implemented by a demodulation algorithm.
  • Step 402 Demodulate the baseband signal modulated by the modulated signal.
  • the process of signal demodulation is the inverse process of signal modulation, that is, the signal to be modulated is determined by channel estimation or the like, and the baseband signal is demodulated.
  • Step 403 Ratio of the baseband signal demodulated in step 402 to the pre-configured baseband signal The result is used as the basis for the phase selection of the modulated signal. If the demodulated baseband signal is the same as the pre-configured baseband signal, exit the phase adjustment process, proceed to step 405, otherwise proceed to step 404;
  • Step 404 Adjust the step amount (adjustment amount), and return to step 401 to further adjust the initial phase of the signal to be modulated.
  • the adjustment algorithm of the initial phase of the modulated signal is a continuous cycle process, and the loop is not exited until the demodulated baseband signal meets the requirements.
  • the initial phase adjustment process of the present invention will be described in detail below.
  • the number from the largest to the smallest is given in order according to the frequency parameter of the modulated signal. For example, the number corresponding to -1.23MHz is 1 , the number corresponding to 0MHz is 2, and the number corresponding to 1.23MHz is 3; the priority of the phase setting of the modulated signal will be determined according to the number of the signal being modulated. If it is an adjacent configuration, the lowest priority has the lowest priority, the highest numbered priority, and the other numbers have the highest priority in the order of the number. If the carrier is a non-adjacent configuration, the adjusted signal number is the priority, and the greater the priority, the higher the priority. After the setup is complete, you will get a priority and the tuned signal number - the corresponding array of high to low arrays.
  • the priority corresponding to the modulated signals of each number is: Number 1 corresponds to 1 , Number 2 corresponds to 3, and Number 3 corresponds to 2. The higher the priority level, the higher the priority.
  • the coarse adjustment step amount set by the present invention is 20°, and the stepping amount is gradually reduced when the requirement is not satisfied, until the appropriate initial phase is determined. .
  • the present invention implements the initial phase adjustment of the carrier.
  • the initial phase of the carriers 1, 2, and 3 (generally the initial phase is 0. start) values are changed respectively.
  • the initial phase change of the carrier here is not the same as the initial phase change of the three carriers.
  • the invention is to determine each phase value corresponding to each carrier (in increments of an integer multiple of the step amount) between each phase value corresponding to other carriers (in increments of integer multiples of the step size) The case where the interference is minimal, and the initial phase (the phase value of the currently modulated signal) that minimizes the interference is used as the initial phase of the modulated signal of the baseband signal.
  • the initial phase change value of each carrier can be realized by the foregoing parameter selection device, as long as the corresponding carrier increase and decrease flag is set for each carrier according to the set program (incremented by an integral multiple of the aforementioned step size). Quantity), as long as the interference between all the initial phase values between the carriers is determined.
  • the step size is 20.
  • the stepping amount is adjusted, for example, adjusted to 10°, and again, when various initial phases appear between the carriers, respectively, as described above, Interference between each carrier (can enable each carrier to demodulate the baseband signal), each carrier can correctly demodulate the initial phase of the modulated signal of the baseband signal as the modulated signal of the baseband signal of each carrier Initial phase.
  • the step size is 20.
  • the step amount is further adjusted, for example, adjusted to 5. Or 1. Etc., the initial phase of each carrier is still adjusted as described above, thereby determining that each carrier can correctly demodulate the modulated signal of the baseband signal.
  • the initial phase of each carrier may be simultaneously adjusted, that is, the initial phase of each carrier is changed at the same time (the initial phases of the carriers are not the same at the same time), thereby determining that each carrier can be correctly demodulated.
  • the initial phase of each carrier may be sequentially adjusted, that is, the initial phase of one or more carriers is first changed, and the initial phase of at least one of the carriers is unchanged, thereby determining that each carrier can correctly demodulate the baseband.
  • the signal of the signal is modulated. Regardless of how the initial phase is adjusted, the way the signal is modulated is the same.
  • the present invention is also applicable to the case of three or more carrier adjustments, specifically, Set the stepping amount of the carrier initial phase adjustment separately according to the foregoing method, and set the interference condition of each carrier in various initial phases (in increments of integer multiples of the step amount) according to the set step amount until it is determined.
  • Each carrier can correctly demodulate the modulated signal of the baseband signal.
  • Step 405 The initial phase of the carrier is solidified, that is, the currently determined initial phase value is determined as the initial phase value of the modulated signal of the modulated baseband signal.
  • the phase of the corresponding modulated signal is adjusted step by step from the modulated signal corresponding to the first-stage modulation, until the modulated signal outputted in the last stage.
  • the current initial phase determined by each level of modulation is used as the initial phase of the modulated signal of the baseband signal.
  • FIG. 7 is a schematic structural diagram of a device for reducing interference in a carrier multi-level modulation according to the present invention, and FIG. 7 shows an application situation of m carrier n-level modulation.
  • Each level of the modulator group adjusts each of the modulated signals generated by the modulated signal generator group in a similar manner to the previously described adjustment method.
  • the frequency parameter F of the modulated signal in the input parameter of the parameter selection device is extended to m, n groups, and the initial phase of the modulated signal is expanded to m groups of n.
  • the multi-stage modulation can selectively adjust the initial phase of the modulated signal of one or more stages, and the purpose is to enable the determined modulated signal to correctly demodulate the baseband signal.
  • a demodulator (not shown) for demodulating the modulated signal outputted from the last stage is further included, and the modulated signal of the last stage output may be multiplexed and input to the corresponding demodulator.
  • the demodulation result of the demodulator is input to the parameter selection device of the present invention as a basis for whether or not to continue adjusting the initial phase of the modulated signal.
  • the demodulator can be selected from an existing demodulator.
  • the technical solution described in the present invention is also suitable for a multi-carrier operation mode of different types of multi-carriers, such as a hybrid configuration of carrier EV-DO signals and carrier IX signals in a CDMA system.
  • the initial phase adjustment step amount of the carrier is still set separately in the foregoing manner, and each carrier is in various phases (in increments of integer multiples of the step size) Whether each carrier can correctly demodulate the baseband signal, and each carrier can be positive
  • the current initial phase of the baseband signal is demodulated as the initial phase of the modulated signal of each carrier baseband signal.
  • the initial phase adjustment between different communication systems is no different from the initial phase of the carrier in the same system.
  • the standard is still that each carrier can correctly demodulate the initial phase of the baseband signal as the initial phase of the modulated signal of the baseband signal.
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple
  • TD-SCDMA Time Division-Synchronous Code Division Multiple
  • FIG. 8 is a schematic structural diagram of a device for reducing multi-carrier mutual interference according to the present invention.
  • the apparatus for reducing multi-carrier mutual interference according to the present invention includes an adjusting unit 80, a modulating unit 81, a demodulating unit 82, a determining unit 83, and a determining unit 84, wherein the adjusting unit 80 is configured to adjust a phase of the at least one modulated signal; the modulating unit 81 is configured to separately modulate each baseband signal to each modulated signal; and the demodulating unit 82 is configured to modulate the modulated unit The subsequent modulated signals are demodulated; the determining unit 83 is configured to determine whether the demodulation unit 80 can correctly demodulate the baseband signals, and when there is a baseband signal that cannot be correctly demodulated, the trigger adjusting unit 80 further adjusts the modulated signals.
  • the adjusting unit 80 simultaneously adjusts the phase of the modulated signal of each carrier.
  • the adjusting unit 80 sequentially adjusts the modulated signals of the respective carriers.
  • the phase of the modulated signal includes the carrier frequency of the modulated signal, and the initial phase of the modulated signal. Adjustment unit 80 adjusts the initial phase of the modulated signal.
  • the adjusting unit 80 adjusts the phase of the corresponding modulated signal step by step until the determining unit 84 determines the output of the final stage.
  • the determining unit 84 uses the initial phase determined by each level of modulation as the initial phase of the modulated signal of each baseband signal. Bit.
  • the apparatus for reducing multi-carrier mutual interference shown in FIG. 8 of the present invention is designed to implement the foregoing method for reducing multi-carrier mutual interference, and the implementation functions of each processing unit in the apparatus shown in FIG. 8 may be With reference to the related description in the foregoing method for reducing multi-carrier mutual interference, it is understood that the functions of each unit can be implemented by a program running on a processor or by a corresponding logic circuit.

Description

降低多载波相互干扰的方法与装置 技术领域
本发明涉及通信系统中多载波相互干扰的处理技术, 尤其涉及一种降 低多载波相互干扰的方法与装置。 背景技术
目前无线通信系统多能支持多载波工作模式, 多载波工作模式下, 相 关网元发射和接收的载波信号都是多个单载波的合波。 例如对于 800MHz 频段的 CDMA2000 lx通信系统而言,单载波的带宽是 1.23MHz,相邻载波 的中心频率间隔为 1.23MHz , 多个载波如三载波相邻配置时就是三个 1.23MHz带宽的单载波共同组成一个占用带宽约 3.69MHz的合波, 三个载 波的中心频率可以分别设置为 871.11MHz, 872.34MHz, 873.57MHz (也可 以是其它频率)。 图 1为码分多址(CDMA, Code Division Multiple Access ) 系统中频域相邻的三载波出现的载波干扰示意图, 如图 1 所示, 图中第一 个载波的频点为 871.11MHz, 第二个载波频点为 872.34MHz, 第三个载波 的频点为 873.57MHz。 多载波模式中, 会出现一个载波的部分信息混叠到 相邻的载波内的现象, 即出现了多载波间的相互干扰, 载波相邻配置时这 种干扰现象尤为明显。 从图 1 可以看出, 两个阴影区域即为载波的混叠区 域, 即第一个载波的部分信息混叠到了第二个载波中, 同时第二个载波中 的部分信息混叠到第一个载波中。 第二个载波和第三个载波也有类似情况。 一个载波中混叠有另外一个载波的信息时, 该部分信息将成为一种干扰而 影响信号的质量。 由于这种干扰的存在, 在接收端接收机很可能无法对信 号作正确的解调, 这种干扰对 CDMA 系统中的 EV-DO ( Evolution-Data Optimized )信号的影响表现尤为突出。 当然, 在宽带码分多址( WCDMA, Wideband Code Division Multiple Access ) 和时分同 步码分多 址 ( TD-SCDMA, Time Division-Synchronous Code Division Multiple Access ) 等系统中也存在类似的多载波干扰问题。
多载波无线通信系统中, 为了保证通信的质量, 尤其是 CDMA系统中 多载波 EV-DO通信模式下, 必须减小载波之间的相互干扰的影响。 目前业 界尚无对无线通信系统中尤其是 CDMA系统中多载波 EV-DO相邻配置的 多载波相互干扰的解决方法。 发明内容
有鉴于此, 本发明的主要目的在于提供一种降低多载波相互干扰的方 法与装置, 能明显降低相邻载频的多载波相互干扰。
为达到上述目的, 本发明的技术方案是这样实现的:
一种降低多载波相互干扰的方法, 包括:
调整至少一个被调信号的相位;
将各基带信号分别调制到各被调信号上;
判断是否能正确解调出各基带信号, 存在不能正确解调的基带信号时, 调整被调信号中至少一个被调信号的相位, 直到均能正确解调各基带信号; 均能正确解调时, 将当前的相位值作为各基带信号的被调信号的相位值。
优选地, 所述调整至少一个被调信号的相位, 具体为: 对各载波的被 调信号的相位同时进行调整。
优选地, 所述调整至少一个被调信号的相位, 具体为: 对各载波的被 调信号依次进行调整。
优选地, 所述基带信号的调制方式为级联调制时, 从第一级调制对应 的被调信号开始, 逐级对所对应的被调信号的相位进行调整, 直到最后一 级输出的各调制信号均能正确解调出基带信号时, 将各级调制所确定出的 相位值作为各基带信号的被调信号的相位值。 优选地, 所述被调信号的相位包括所述被调信号的载频、 所述被调信 号的初始相位。
优选地, 所述调整被调信号的相位为, 调整所述被调信号的初始相位。 一种降低多载波相互干扰的装置, 包括调整单元、 调制单元、 解调单 元、 判断单元和确定单元, 其中:
调整单元, 用于调整至少一个被调信号的相位;
调制单元, 用于将各基带信号分别调制到各被调信号上;
解调单元, 用于对所述调制单元调制后的各被调信号进行解调; 判断单元, 用于判断所述解调单元是否能正确解调出各基带信号, 存 在不能正确解调的基带信号时, 触发所述调整单元进一步调整被调信号中 至少一个被调信号的相位, 直到均能正确解调各基带信号; 均能正确解调 时, 触发确定单元;
确定单元, 用于将当前的相位值作为各基带信号的被调信号的相位值。 优选地, 所述调整单元对各载波的被调信号的相位同时进行调整。 优选地, 所述调整单元对各载波的被调信号依次进行调整。
优选地, 所述基带信号的调制方式为级联调制时, 从第一级调制对应 的被调信号开始, 所述调整单元逐级对所对应的被调信号的相位进行调整, 直到所述判断单元确定最后一级输出的各调制信号均能正确解调出基带信 号时, 所述确定单元将各级调制所确定出的相位值作为各基带信号的被调 信号的相位值。
优选地, 所述被调信号的相位包括所述被调信号的载频、 所述被调信 号的初始相位。
优选地, 所述调整单元调整所述被调信号的初始相位。
通过以上技术方案, 本发明实现了以下有益效果: 可以较好的解决无 线通信系统中多载波信号的相互干扰问题, 尤其对于 CDMA系统中多载波 EV-DO信号之间的相互干扰。 在多载波相邻配置情况下对性能的改善尤为 明显。 这样使得同一个无线信号覆盖区域可以有多载波同时工作, 大大提 高了频谱利用率, 提高无线规划的灵活性, 提高小区的业务容量、 传输速 率和服务质量, 改善了用户体验。 附图说明
图 1为 CDMA系统中频域相邻的三载波出现的载波干 4尤示意图; 图 2为无线通信系统中对单载波调制方式示意图;
图 3为本发明多载波的调制方式的示意图;
图 4为本发明降低多载波相互干扰的方法的流程图;
图 5为本发明参数选择装置的结构示意图;
图 6为本发明利用参数选择装置调整被调信号的结构示意图; 图 7为本发明载波多级调制时降干扰处理装置的结构示意图; 图 8为本发明降低多载波相互干扰的装置的组成结构示意图。 具体实施方式
本发明的基本思想是: 在多载波系统中, 特别是频域相邻的载波之间, 相互干扰比较严重。 本发明通过调整各载波的被调信号的相位, 使多载波 之间的干扰控制在能正确解调出调制信号中的有效信号的水平。 由于被调 信号的相位与载波的载频及初始相位相关, 而载波的载频已被通信系统所 规划好, 属于不可调的参数, 因此, 本发明主要通过对被调信号的初始相 位的调整来降低多载波之间的干扰。 本发明方案实现筒单且实用。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
现代无线通信系统中的发射信号是通过将信息调制到被调信号上来实 现信息传输的, 其中, 被调信号可以由数字控制振荡器 (NCO, Numerical Control Oscillator )或模拟振荡器等装置产生。 调制过程可以由调制器如实 数调制器、 复数调制器或正交调制器等多种类型的调制器来完成。
反映被调信号特性的参数有很多, 频率和相位是其中的两个。 例如, 被调信号 C ( t )可以表示为: C ( t ) = Axcos ( 2 π ft+ θ ) + jxAx sin ( 2 π ft+ θ )。其中 A为幅度, f为载波频率, Θ为被调信号的初始相位, (2 π ίΐ+ θ ) 为被调信号的相位, 它是一个与频率^ 时间 t和初始相位 Θ相关的函数, 本发明中统一用 W ( t, f, θ )来表示, 筒称为 W。 如果是实数调制, 只 需要使用 C ( t ) 中的实部。
传统的多载波无线通信系统中只对被调信号的频率作出指定来减少载 波间干扰, 而并没有通过对被调信号的相位 W作出特别的指定来达到减少 载波间干扰的目的。
而被调信号的相位 W是一个与频率 f、时间 t和初始相位 Θ相关的函数, 其中 t是一个时间的变化量, 表示了信号的特性, 不可控。 f和 Θ是两个受 控的变量, 可以通过改变其中任何一个或同时改变两个变量来达到调节被 调信号相位 W的目的。 在无线通信系统中, 对发射的载波的中心频率有较 严格的要求, f的偏移范围相对较窄, 因此调整的灵活性弱, 而初始相位 Θ 具有较大的调节范围和灵活性。 本发明的技术方案正是针对这一特点而提 出的。
以下通过附图进一步阐明这一点。
图 2为无线通信系统中对单载波调制方式示意图, 如图 2所示, 图中 包括两个部件即调制器 200和被调信号发生器 201。调制器 200用于将输入 信号 X调制到被调信号上得到输出信号 y, 输入信号又称为基带信号, 输出 信号中包括调制后的基带信号即调制信号。 调制器 200是无线通信系统中 常用的实数调制器、 复数调试器或正交调制器等。 被调信号发生器 201 是 按照输入参数生成被调信号。 图中仅给出了两个输入参数, 分别为频率参 数 f和初始相位输出参数 Θ。传统的调制方式中并没有根据输入信号的参数 和输出信号能否解调出有效信号来对被调信号相位作特别的指定而达到减 少载波间干扰的目的, 所以图中相位 Θ并不是输入信号 X和输出信号 y的 函数。
图 3为本发明多载波的调制方式的示意图, 如图 3所示, 图中同样包 括两个部件即调制器 300和被调信号发生器 301 ,其功能与图 2中的调制器 200和被调信号发生器 201分别相同,但输入到被调信号发生器 201的相位 和频率参数是输入信号 X和输出信号 y的函数, 不同于传统的信号调制过 程中不对被调信号相位做特别的指定。 本发明通过图 3 的调制方式, 有选 择性地设置被调信号相位, 从而达到减小载波间相互干扰影响的目的。
图 4为本发明降低多载波相互干扰的方法的流程图, 如图 4所示, 本 发明降低多载波相互干扰的方法包括以下步骤:
步骤 401 : 设置输入参数。 输入参数包括表示输入信号的相关参数。 例 如: 输入载波的类型, 本示例中是 CDMA IX信号; 输入载波数目, 本示 例中是三载波; 输入载波的中心频率信息, 本示例中相邻载波的配置设定 为 871.11MHz载波、 872.34MHz载波、 873.57MHz载波; 输入被调信号的 初始相位参数, 本例中载波的初始相位将通过一个随机系列发生器的函数 获得, 并在第一次开始将发生器种子都设置为 0。通过种子 0获得的三个载 波相位初值作为输入参数; 输入载波对应的第一级被调信号的频率参数, 本例中, 相邻载波分别配置为 -1.23MHz、 0MHz、 1.23MHz。
图 5为本发明参数选择装置的结构示意图, 如图 5所示, 本发明参数 选择装置工作时需要的几个输入参数有:载波类型参数 n,载波数目参数 m, 载波的中心频率信息 k,被调信号初始相位 Θ , 输出的反馈信号和被调信号 的初始频率参 ¾ F。 实际使用中根据不同的系统或者载波情况,可以只用部 分或者全部的输入参数。 本发明参数选择装置的输出参数包括被调信号相 位参数 W, 被调信号的频率参数 f 和参数选择结果指示信号。 结果指示信 号表示了参数选择装置的一个工作状态, 结束状态还是正在运行状态。 该 装置按照图 3所示的参数选择方式(即对被调信号的初始相位不断进行调 整, 以确定调制到被调信号上的基带信号是否能被正确解调)的原理工作, 既可以在系统运行前使用, 也可以在系统运行过程中使用。
图 6为本发明利用参数选择装置调整被调信号的结构示意图, 如图 6 所示, 调制器组用于实现多载波的调制, 可以是无线通信系统中采用的各 种类型的调制器。调制器组具有两组输入信号,一组是输入的载波信号(基 带信号)x . xm, 另外一个是被调信号发生器输出的被调信号 1…… m。 合 波器用于将调制后的 m个单载波合波。 耦合器用于将输出信号反馈到参数 选择装置中, 作为参数选择装置的一个输入参数。 连同其它的输入参数一 起, 参数选择装置将按照一定的优化算法进行相位参数的选取。 最后将选 择好的相位参数 W和频率参数 f设置到被调信号发生器中。 本发明中还包 括解调器(图中未示出), 以对最后输出的调制后的信号进行解调, 可将最 后输出的调制后信号复用后输入到解调器中, 解调器的解调结果输入到本 发明的参数选择装置中, 作为是否继续调整被调后信号的初始相位的依据。 解调器选用现有的解调器即可。
本发明通过设置解调装置来解调出被调制的基带信号, 与预先配置的 基带信号进行比较, 如果相同则认为各载波之间的干扰符合通信要求, 否 则不符合通信要求, 继续调整各载波的初始相位值, 直到能正确解调出基 带信号。 该解调装置可以通过硬件或者软件实现, 可以是现有的任何一种 解调器或通过解调算法实现的软件。
步骤 402: 解调被被调信号调制的基带信号。信号解调的过程是信号调 制的逆过程, 即通过信道估计等确定出被被调信号, 再解调出基带信号。
步骤 403:将步骤 402中解调出的基带信号与预先配置的基带信号的比 较结果作为被调信号的相位选择的依据。 如果解调出的基带信号与预先配 置的基带信号相同, 则退出相位调整流程, 进入到步骤 405 中, 否则进入 到步骤 404;
步骤 404: 调整步进量(调整量), 并返回步骤 401进一步调整被被调 信号的初始相位。
被调信号初始相位的调整算法是一个不断循环的过程, 直到解调出的 基带信号满足要求时才会退出循环。 以下详细说明本发明的初始相位调整 过程。
首先按照被调信号的频率参数从大到小依次给出从大到小的编号。 如 本示例中 -1.23MHz对应的编号为 1 , 0MHz对应的编号为 2, 1.23MHz对应 的编号为 3; 被调信号相位设置优先级的高低将按照被调信号的编号来确 定。 如果是相邻配置, 那么编号最低的优先级最低, 编号最高的优先级次 之, 其它编号的优先级按照编号的大小顺序从大到小排列。 如果载波是非 相邻配置, 那么被调信号编号即为优先级, 越大优先级越高。 设置完成后 将得到一个优先级和被调信号编号——对应且由高到低排列的数组。 本示 例针对的是载波的载频连续的情形, 因此各个编号的被调信号对应的优先 级为: 编号 1对应的是 1 , 编号 2对应的是 3 , 编号 3对应的是 2。 优选级 数字越大优先级越高。
初始相位调整时, 需要设置每次调整的步进量(调整量), 本发明设置 的粗调步进量为 20° , 不能满足要求时逐步缩小步进量, 直到确定出合适 的初始相位为止。
以步进量为 20° 为例说明本发明是如何实现载波的初始相位调整的。 分别改变载波 1、 2、 3的初始相位(一般以初始相位为 0。 开始 )值, 注意, 这里载波的初始相位改变, 并非是三个载波的初始相位改变完全相同。 每 次调整载波初始相位时, 如果三个载波每次调整的步进量都相同, 相当于 三个载波的初始相位变化始终为 0° , 其之间的干扰情况将始终相同, 这种 相位调整是没有意义的。 本发明即是确定每个载波对应的每一相位值(以 步进量的整数倍为增量) 与其他载波对应的每一相位值(以步进量的整数 倍为增量)之间的干扰最小的情况, 并将干扰最小的初始相位(当前被调 信号的相位值)作为基带信号的被调信号的初始相位。
如前所述, 各载波初始相位的改变值可通过前述的参数选择装置实现, 只要按设定的程序为各载波设定相应的载波增减标识 (以前述的步进量的 整数倍为增量), 只要将各载波之间所有的初始相位值之间的干扰情况确定 即可。
当步进量为 20。 时, 各载波之间不能确定出能同时正确解调各载波的 基带信号时, 调整步进量, 例如调整为 10° , 再次按前述方式分别确定各 载波之间以各种初始相位出现时, 各载波之间的干扰情况(能否使各载波 均能解调出基带信号), 各载波均能正确解调出基带信号的被调信号的初始 相位作为各载波的基带信号的被调信号的初始相位。 如果步进量为 20。 时 仍不能确定出各载波的基带信号的被调信号, 则进一步调整步进量, 例如 调整为 5。 或 1。 等, 仍按前述方式对各载波的初始相位进行调整, 从而确 定出各载波能正确解调基带信号的被调信号。
需要说明的是, 上述的各载波的初始相位可以是同时调整的方式, 即 各载波的初始相位同时改变(各载波的初始相位不会同时相同), 从而确定 出各载波均能正确解调出基带信号的被调信号。 也可以对各载波的初始相 位依次调整, 即首先改变其中一个或两个以上的载波的初始相位, 使其中 的至少一个载波的初始相位不变, 从而确定出各载波均能正确解调出基带 信号的被调信号。 不管初始相位的调整方式是如何的, 确定被调信号的方 式却是相同的。
需要说明的是, 本发明同样适用于三个以上载波调整的情形, 具体的, 按前述的方式分别设定载波初始相位调整的步进量, 按所设置的步进量对 各载波处于各种初始相位(以步进量的整数倍为增量) 的干扰情况, 直到 确定出各载波均能正确解调出基带信号的被调信号。
步骤 405: 固化载波的初始相位, 即将当前确定初始相位值确定作为调 制基带信号的被调信号的初始相位值。
需要说明的是, 基带信号的调制方式为级联调制时, 从第一级调制对 应的被调信号开始, 逐级对所对应的被调信号的相位进行调整, 直到最后 一级输出的调制信号能正确解调出基带信号时, 将各级调制所确定出的当 前的初始相位作为基带信号的被调信号的初始相位。
图 7 为本发明载波多级调制时降干扰处理装置的结构示意图, 如图 7 所示是 m个载波 n级调制的应用情况。 每级的调制器组对被调信号发生器 组生成的各被调信号进行调整, 调整的方式与前述的调整方式类似。 参数 选择装置的输入参数中被调信号的频率参数 F扩展到 m个, n组, 被调信 号的初始相位 Θ扩展到 m个 n组。 多级调制时候可以选择性的对一级或者 多级的被调信号的初始相位进行调整, 其目的是使所确定出的被调信号能 正确解调出基带信号。 本发明中, 还包括对最后一级输出的调制后信号解 调的解调器(图中未示出), 可将最后一级输出的调制后信号复用后输入到 对应的解调器中, 解调器的解调结果输入到本发明的参数选择装置中, 作 为是否继续调整调制后信号的初始相位的依据。 解调器选用现有的解调器 即可。
本发明所记载的技术方案同样适合于不同类型多载波处于多载波工作 模式, 如 CDMA系统中的载波 EV-DO信号和载波 IX信号的混合配置。
对于不同通信系统中各载波之间的干扰问题, 仍然按前述的方式分别 设置载波的初始相位调整步进量, 并对各载波处于各种相位(以步进量的 整数倍为增量) 时, 各载波是否均能正确解调出基带信号, 各载波均能正 确解调出基带信号的当前初始相位作为各载波基带信号的被调信号的初始 相位。 不同通信系统之间的初始相位调整方式与同系统中的载波初始相位 并无差异, 标准仍然是各载波均能正确解调出基带信号的初始相位作为基 带信号的被调信号的初始相位。
本发明所记载的技术方案同样适合其它制式的无线通信系统, 宽带码 分多址( WCDMA, Wideband Code Division Multiple Access )系统和时分同 步码分多址( TD-SCDMA, Time Division-Synchronous Code Division Multiple Access ) 系统。
图 8 为本发明降低多载波相互干扰的装置的组成结构示意图, 如图 8 所示, 本发明降低多载波相互干扰的装置包括调整单元 80、 调制单元 81、 解调单元 82、 判断单元 83和确定单元 84, 其中, 调整单元 80用于调整至 少一个被调信号的相位; 调制单元 81用于将各基带信号分别调制到各被调 信号上; 解调单元 82用于对所述调制单元调制后的各被调信号进行解调; 判断单元 83用于判断解调单元 80是否能正确解调出各基带信号, 存在不 能正确解调的基带信号时, 触发调整单元 80进一步调整被调信号中的至少 一个被调信号相位, 直到均能正确解调各基带信号; 均能正确解调时, 触 发确定单元 84;确定单元 84用于将当前的相位值作为各基带信号的被调信 号的相位值。 调整单元 80对各载波的被调信号的相位同时进行调整。 调整 单元 80对各载波的被调信号依次进行调整。 被调信号的相位包括所述被调 信号的载频、 所述被调信号的初始相位。 调整单元 80调整所述被调信号的 初始相位。
基带信号的调制方式为级联调制时, 从第一级调制对应的被调信号开 始, 调整单元 80逐级对所对应的被调信号的相位进行调整, 直到判断单元 84确定最后一级输出的各调制信号均能正确解调出基带信号时, 确定单元 84 将各级调制所确定出的初始相位作为各基带信号的被调信号的初始相 位。
本领域技术人员应当理解, 本发明图 8所示的降低多载波相互干扰的 装置是为实现前述降低多载波相互干扰的方法而设计的, 图 8所示装置中 的各处理单元的实现功能可参照前述降低多载波相互干扰的方法中的相关 描述而理解, 各单元的功能可通过运行于处理器上的程序而实现, 也可通 过相应的逻辑电路而实现。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种降低多载波相互干扰的方法, 其特征在于, 包括:
调整至少一个被调信号的相位;
将各基带信号分别调制到各被调信号上;
判断是否能正确解调出所述各基带信号, 存在不能正确解调的基带信 号时, 调整被调信号中至少一个被调信号的相位, 直到均能正确解调各基 带信号; 均能正确解调所述各基带信号时, 将当前的相位值作为各基带信 号的被调信号的相位值。
2、 根据权利要求 1所述的方法, 其特征在于, 所述调整至少一个被调 信号的相位, 具体为: 对各载波的被调信号的相位同时进行调整。
3、 根据权利要求 1所述的方法, 其特征在于, 所述调整至少一个被调 信号的相位, 具体为: 对各载波的被调信号依次进行调整。
4、 根据权利要求 1所述的方法, 其特征在于, 所述基带信号的调制方 式为级联调制时, 从第一级调制对应的被调信号开始, 逐级对所对应的被 调信号的相位进行调整, 直到最后一级输出的各调制信号均能正确解调出 基带信号时, 将各级调制所确定出的相位值作为各基带信号的被调信号的 相位值。
5、 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述被调 信号的相位包括所述被调信号的载频、 所述被调信号的初始相位。
6、 根据权利要求 5所述的方法, 其特征在于, 所述调整被调信号的相 位为, 调整所述被调信号的初始相位。
7、 一种降低多载波相互干扰的装置, 其特征在于, 包括调整单元、 调 制单元、 解调单元、 判断单元和确定单元, 其中:
调整单元, 用于调整至少一个被调信号的相位;
调制单元, 用于将各基带信号分别调制到各被调信号上; 解调单元, 用于对所述调制单元调制后的各被调信号进行解调; 判断单元, 用于判断所述解调单元是否能正确解调出各基带信号, 存 在不能正确解调的基带信号时, 触发所述调整单元进一步调整被调信号中 至少一个被调信号的相位, 直到均能正确解调所述各基带信号; 均能正确 解调所述各基带信号时, 触发确定单元;
确定单元, 用于将当前的相位值作为各基带信号的被调信号的相位值。
8、 根据权利要求 7所述的装置, 其特征在于, 所述调整单元对各载波 的被调信号的相位同时进行调整。
9、 根据权利要求 7所述的装置, 其特征在于, 所述调整单元对各载波 的被调信号依次进行调整。
10、 根据权利要求 7所述的装置, 其特征在于, 所述基带信号的调制 方式为级联调制时, 从第一级调制对应的被调信号开始, 所述调整单元逐 级对所对应的被调信号的相位进行调整, 直到所述判断单元确定最后一级 输出的各调制信号均能正确解调出基带信号时, 所述确定单元将各级调制 所确定出的相位值作为各基带信号的被调信号的相位值。
11、 根据权利要求 7至 10中任一项所述的装置, 其特征在于, 所述被 调信号的相位包括所述被调信号的载频、 所述被调信号的初始相位。
12、 根据权利要求 11所述的装置, 其特征在于, 所述调整单元调整所 述被调信号的初始相位。
PCT/CN2009/075906 2009-08-08 2009-12-23 降低多载波相互干扰的方法与装置 WO2011017884A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2012107913/07A RU2492578C1 (ru) 2009-08-08 2009-12-23 Способ и устройство для ослабления взаимных помех сигналов нескольких несущих
US13/259,077 US8699954B2 (en) 2009-08-08 2009-12-23 Method and device for reducing mutual interference of multi-carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910165244.4A CN101997795B (zh) 2009-08-08 2009-08-08 降低多载波相互干扰的方法与装置
CN200910165244.4 2009-08-08

Publications (1)

Publication Number Publication Date
WO2011017884A1 true WO2011017884A1 (zh) 2011-02-17

Family

ID=43585873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075906 WO2011017884A1 (zh) 2009-08-08 2009-12-23 降低多载波相互干扰的方法与装置

Country Status (4)

Country Link
US (1) US8699954B2 (zh)
CN (1) CN101997795B (zh)
RU (1) RU2492578C1 (zh)
WO (1) WO2011017884A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998610B (zh) * 2009-08-08 2014-06-11 中兴通讯股份有限公司 降低多载波相互干扰的方法与装置
EP3834456A4 (en) * 2018-08-09 2022-03-16 Telefonaktiebolaget LM Ericsson (publ.) METHOD AND DEVICE FOR OPERATIONS IN DIFFERENT FREQUENCY BANDS WITHIN A RADIO DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514555A (zh) * 2002-12-31 2004-07-21 �����ʩ���عɷݹ�˾ 自适应载波间干扰自消除的方法与收发信机
JP2005192000A (ja) * 2003-12-26 2005-07-14 Toshiba Corp マルチキャリア通信システムおよびこのシステムに用いられる送信装置、受信装置、送信方法、受信方法
CN101185269A (zh) * 2005-05-30 2008-05-21 松下电器产业株式会社 多载波通信中的无线通信基站装置和无线通信方法
CN101361307A (zh) * 2006-01-06 2009-02-04 松下电器产业株式会社 无线通信装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520697B2 (ja) * 1987-10-23 1996-07-31 アンリツ株式会社 位相信号濾波装置
US5955992A (en) 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
DE19961777A1 (de) 1999-12-21 2001-07-12 Rudolf Bannasch Verfahren und Vorrichtungen zur Informationsübertragung
US7200188B2 (en) 2003-01-27 2007-04-03 Analog Devices, Inc. Method and apparatus for frequency offset compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514555A (zh) * 2002-12-31 2004-07-21 �����ʩ���عɷݹ�˾ 自适应载波间干扰自消除的方法与收发信机
JP2005192000A (ja) * 2003-12-26 2005-07-14 Toshiba Corp マルチキャリア通信システムおよびこのシステムに用いられる送信装置、受信装置、送信方法、受信方法
CN101185269A (zh) * 2005-05-30 2008-05-21 松下电器产业株式会社 多载波通信中的无线通信基站装置和无线通信方法
CN101361307A (zh) * 2006-01-06 2009-02-04 松下电器产业株式会社 无线通信装置

Also Published As

Publication number Publication date
CN101997795B (zh) 2015-01-28
US8699954B2 (en) 2014-04-15
RU2492578C1 (ru) 2013-09-10
US20120129558A1 (en) 2012-05-24
CN101997795A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
CN105530217B (zh) 基于加权分数傅里叶变换的gfdm系统的信号发射和接收方法
JP3455537B2 (ja) 時間領域パイロット成分を有する通信信号
JP5062852B2 (ja) パイロット信号伝送の方法
US20050025042A1 (en) Bi-directional communication channel
US5903614A (en) Communication method and receiving apparatus
US8045580B2 (en) Band control method and communication apparatus
EP0847643A1 (en) Method for simplifying the demodulation in multiple carrier transmission system
KR20080070711A (ko) 무선 통신 시스템에서의 스케일러블 주파수 대역 동작
JP2011155694A (ja) 送信方法および無線装置
JPH09266466A (ja) デジタル伝送システム
CN1983918A (zh) 实现软频率复用、数据发送的方法及接入设备
EP2090051B1 (en) Method and apparatus for generating data packets for transmission in an ofdm communication system
US6195341B1 (en) Communication method, base station and terminal apparatus
WO2011017884A1 (zh) 降低多载波相互干扰的方法与装置
US8467463B2 (en) Apparatus and method for producing a signal to reduce the PAR in a multicarrier system
JP2002319919A (ja) 電力線通信装置
JPH11308195A (ja) マルチキャリア信号の生成方法及び送信装置
WO2011017880A1 (zh) 降低多载波之间相互干扰的方法与装置
WO2011017883A1 (zh) 降低多载波相互干扰的方法与装置
CN107735942B (zh) 信号处理方法、发射机和接收机
WO2011017885A1 (zh) 降低多载波相互干扰的方法与装置
WO2011017886A1 (zh) 降低多载波相互干扰的方法与装置
WO2011017882A1 (zh) 降低多载波相互干扰的方法与装置
WO2011017887A1 (zh) 降低多载波相互干扰的方法与装置
JP3941015B2 (ja) デイジタル信号伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13259077

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1289/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012107913

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09848214

Country of ref document: EP

Kind code of ref document: A1