WO2011017886A1 - 降低多载波相互干扰的方法与装置 - Google Patents

降低多载波相互干扰的方法与装置 Download PDF

Info

Publication number
WO2011017886A1
WO2011017886A1 PCT/CN2009/075913 CN2009075913W WO2011017886A1 WO 2011017886 A1 WO2011017886 A1 WO 2011017886A1 CN 2009075913 W CN2009075913 W CN 2009075913W WO 2011017886 A1 WO2011017886 A1 WO 2011017886A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulated signal
modulated
phase
signal
carrier
Prior art date
Application number
PCT/CN2009/075913
Other languages
English (en)
French (fr)
Inventor
李凡龙
劳锦明
毕文仲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011017886A1 publication Critical patent/WO2011017886A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Definitions

  • the present invention relates to a processing technique for multi-carrier mutual interference in a communication system, and more particularly to a method and apparatus for reducing multi-carrier mutual interference. Background technique
  • the wireless communication system can support multi-carrier operation mode.
  • the carrier signals transmitted and received by the relevant network elements are combined signals of multiple single carriers.
  • the bandwidth of a single carrier is 1.23 MHz
  • the center frequency interval of adjacent carriers is 1.23 MHz
  • multiple carriers, such as three carriers adjacent to each other are three single carriers of 1.23 MHz bandwidth. Together, they form a multiplexed wave with a bandwidth of about 3.69 MHz.
  • the center frequencies of the three carriers can be set to 871.11 MHz, 872.34 MHz, and 873.57 MHz (other frequencies are also possible).
  • FIG. 1 is a schematic diagram of carrier interference of three adjacent carriers in a frequency domain in a Code Division Multiple Access (CDMA) code system.
  • CDMA Code Division Multiple Access
  • the frequency of the first carrier in the figure is 871.11 MHz, and second.
  • the carrier frequency is 872.34 MHz, and the frequency of the third carrier is 873.57 MHz.
  • the phenomenon that part of the information of one carrier is aliased into the adjacent carrier occurs, that is, mutual interference between multiple carriers occurs, and the interference phenomenon is particularly obvious when the carrier is adjacently arranged. It can be seen from Fig.
  • the two shaded areas are the aliasing areas of the carrier, that is, the partial information of the first carrier is aliased to the second carrier, and part of the information in the second carrier is aliased to the first In the carrier.
  • the second carrier and the third carrier When the information of another carrier is aliased in one carrier, the information will become an interference and affect the quality of the signal. Due to the existence of such interference, the receiver may not be able to properly demodulate the signal at the receiving end. This kind of interference is particularly significant for the EV-DO (Evolution-Data Optimized) signal in the CDMA system.
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • a method for reducing multi-carrier mutual interference comprising:
  • Each baseband signal is separately modulated on each modulated signal
  • the adjusting the phase of the at least one modulated signal is specifically: adjusting the phase of the modulated signal of each carrier simultaneously.
  • the adjusting the phase of the at least one modulated signal is specifically: sequentially adjusting the modulated signals of the carriers.
  • the phase of the corresponding modulated signal is adjusted step by step until the modulated signal outputted in the last stage.
  • the performance index reaches the set performance index, the modulation at each level is confirmed.
  • Each of the determined modulated signals is used as a modulated signal of each corresponding baseband signal.
  • the phase of the modulated signal includes a carrier frequency of the modulated signal and an initial phase of the modulated signal.
  • the adjusting the phase of the modulated signal is to adjust an initial phase of the modulated signal.
  • the performance indicator comprises at least one of a ratio of a carrier inactive code channel maximum power to an active code channel total power MAX IT, and a waveform quality Rho.
  • a device for reducing multi-carrier mutual interference comprising an adjusting unit, a modulating unit, a performance index determining unit, a comparing unit and a determining unit, wherein:
  • An adjusting unit configured to adjust a phase of at least one modulated signal
  • a modulating unit configured to separately modulate each baseband signal to each modulated signal
  • a performance indicator determining unit configured to determine a performance index between the modulated signals of the modulation unit; and a comparing unit, configured to compare performance indicators between the modulated signals with the set performance indicators, and when the set performance index cannot be met, Trimming the adjusting unit to further adjust a phase of at least one modulated signal in the modulated signal until the performance index between the signals satisfies a set performance index; when the set performance index is met, triggering the determining unit;
  • the determining unit is configured to use the current modulated signals as the modulated signals of the respective baseband signals.
  • the adjusting unit adjusts the phase of the modulated signal of each carrier simultaneously.
  • the adjusting unit sequentially adjusts the modulated signals of the carriers.
  • the adjusting unit adjusts the phase of the corresponding modulated signal step by step until the comparison
  • the unit determines that the performance index between the modulated signals outputted by the last stage reaches the set performance index uses each modulated signal determined by each level of modulation as a modulated signal of each corresponding baseband signal.
  • the phase of the modulated signal includes a carrier frequency of the modulated signal and an initial phase of the modulated signal.
  • the adjustment unit adjusts an initial phase of the modulated signal.
  • the performance indicator comprises at least one of a ratio of a carrier inactive code channel maximum power to an active code channel total power MAX IT, and a waveform quality Rho.
  • the mutual interference problem of multi-carrier signals in the wireless communication system can be better solved, especially for mutual interference between multi-carrier EV-DO signals in the CDMA system.
  • the performance improvement is especially noticeable in the case of multi-carrier adjacent configurations.
  • the same wireless signal coverage area can have multiple carriers working at the same time, which greatly improves spectrum utilization, improves flexibility of wireless planning, improves cell service capacity, transmission rate and service quality, and improves user experience.
  • FIG. 1 is a schematic diagram of a carrier trunk 4 in a frequency domain adjacent to three carriers in a CDMA system
  • FIG. 2 is a schematic diagram of a single carrier modulation scheme in a wireless communication system
  • FIG. 3 is a schematic diagram of a multi-carrier modulation method according to the present invention.
  • Figure 5 is a schematic structural view of a parameter selection device of the present invention.
  • FIG. 6 is a schematic structural diagram of adjusting a modulated signal by using a parameter selection device according to the present invention
  • FIG. 7 is a schematic structural diagram of a device for reducing interference interference during carrier multi-level modulation according to the present invention
  • FIG. 8 is a structural diagram of a device for reducing multi-carrier mutual interference according to the present invention; schematic diagram. detailed description
  • the basic idea of the present invention is: In a multi-carrier system, especially between adjacent carriers in the frequency domain, mutual interference is relatively serious.
  • the invention adjusts the phase of the modulated signal of each carrier so that the performance index of each modulated signal satisfies the set performance index. Since the phase of the modulated signal is related to the carrier frequency and initial phase of the carrier, and the carrier frequency of the carrier has been planned by the communication system, it is a non-adjustable parameter. Therefore, the present invention mainly adjusts the initial phase of the modulated signal. To reduce multi-carrier Interference.
  • the solution of the invention realizes the single and practical.
  • the transmitted signal in a modern wireless communication system is realized by modulating information onto a modulated signal, wherein the modulated signal can be generated by a device such as a Numerical Control Oscillator (NCO) or an analog oscillator.
  • NCO Numerical Control Oscillator
  • the modulation process can be performed by a modulator such as a real modulator, a complex modulator, or a quadrature modulator.
  • A is the amplitude
  • f is the carrier frequency
  • is the initial phase of the modulated signal
  • (2 ⁇ ⁇ + ⁇ ) is the phase of the modulated signal, which is a function related to the frequency ⁇ time t and the initial phase ,
  • W ( t, f, ⁇ ) W. If it is a real modulation, you only need to use the real part of C ( t ).
  • the frequency of the modulated signal is specified to reduce the inter-carrier interference, and the phase W of the modulated signal is not specifically specified to reduce the inter-carrier interference.
  • the phase W of the modulated signal is a function related to the frequency f, the time t and the initial phase ,, where t is a change in time, indicating the characteristic of the signal, which is uncontrollable.
  • f and ⁇ are two controlled variables, and the purpose of adjusting the phase W of the modulated signal can be achieved by changing either or both of them.
  • the center frequency of the transmitted carrier has strict requirements, and the offset range of f is relatively narrow, so the adjustment flexibility is weak, and the initial phase ⁇ has a large adjustment range and flexibility.
  • the technical solution of the present invention is proposed in response to this feature.
  • FIG. 2 is a schematic diagram of a single carrier modulation method in a wireless communication system, as shown in FIG.
  • the modulator 200 is configured to modulate the input signal X onto the modulated signal to obtain an output signal y.
  • the input signal is also referred to as a baseband signal, and the output signal includes a modulated baseband signal, that is, a modulated signal.
  • Modulator 200 is a real number modulator, a complex debugger or a quadrature modulator commonly used in wireless communication systems.
  • the modulated signal generator 201 generates a modulated signal in accordance with the input parameters. Only two input parameters are shown in the figure, namely the frequency parameter f and the initial phase output parameter ⁇ .
  • the phase of the modulated signal is not specifically specified according to the parameters of the input signal and the performance index of the output signal, so as to reduce the interference between carriers, the phase ⁇ in the figure is not the input signal X and the output signal.
  • the function of y is not the input signal X and the output signal.
  • FIG. 3 is a schematic diagram of a multi-carrier modulation method according to the present invention.
  • the figure also includes two components, a modulator 300 and a modulated signal generator 301, which functions as the modulator 200 and the
  • the modulation signal generators 201 are respectively identical, but the phase and frequency parameters input to the modulated signal generator 201 are a function of the input signal X and the output signal y, unlike the conventional signal modulation process, which does not specifically specify the phase of the modulated signal.
  • the present invention selectively sets the phase of the modulated signal by the modulation method of Fig. 3, thereby achieving the purpose of reducing the mutual interference between carriers.
  • FIG. 4 is a flowchart of a method for reducing multi-carrier mutual interference according to the present invention. As shown in FIG. 4, the method for reducing multi-carrier mutual interference according to the present invention includes the following steps:
  • Step 401 Set input parameters.
  • Input parameters include parameters that represent the relevant parameters of the input signal and the output signal performance metrics.
  • the type of input carrier in this example is the CDMA IX signal; the number of input carriers, in this example is the three carriers; the center frequency information of the input carrier, in this example the adjacent carrier configuration is set to 871.11MHz carrier, 872.34MHz carrier , 873.57MHz carrier; input the initial phase parameter of the modulated signal.
  • the initial phase of the carrier will be obtained by a function of a random series generator, and the generator seed will be set to 0 at the first time.
  • the three carrier phase initial values obtained by the seed 0 are used as input parameters; the frequency parameters of the first-stage modulated signal corresponding to the input carrier are input.
  • the adjacent carriers are respectively configured to be -1.23 MHz, 0 MHz, 1.23 MHz.
  • This example is for the IX signal.
  • the indicators for measuring the IX signal are: The ratio of the maximum power of the carrier inactive code channel to the total power of the active code channel MAX IT, the standard requirement is -27dBc (dBc is the representation) The unit of relative power value is exactly the same as the calculation method of dB); the waveform quality Rho, the standard requirement is 0.912.
  • FIG. 5 is a schematic structural diagram of a parameter selection apparatus according to the present invention.
  • several input parameters required for the parameter selection apparatus of the present invention are: carrier type parameter n, carrier number parameter m, carrier center frequency information k, The initial phase of the signal being modulated, the output feedback signal and the initial frequency of the modulated signal are referenced. In actual use, depending on different systems or carriers, only some or all of the input parameters may be used.
  • the output parameters of the parameter selection device of the present invention include a modulated signal phase parameter W, a frequency parameter f of the modulated signal, and a parameter selection result indication signal.
  • the result indication signal indicates an operational state of the parameter selection device, and the end state is still in operation.
  • the device works according to the parameter selection method shown in FIG. 3 (ie, the initial phase of the modulated signal is continuously adjusted to determine whether the performance index of the modulated signal satisfies the set performance index), and the system can be used in the system. Used before running, it can also be used during system operation.
  • a modulator group is used for implementing modulation of multiple carriers, and may be various types of modulators used in a wireless communication system.
  • the modulator group has two sets of input signals, one is the input carrier signal (baseband signal) x. xm, and the other is the modulated signal 1...m output by the modulated signal generator.
  • the combiner is used to combine the modulated m single carriers.
  • the coupler is used to feed the output signal back into the parameter selection device as an input parameter to the parameter selection device. Together with other input parameters, the parameter selection device will select the phase parameters according to a certain optimization algorithm. Finally, the selected phase parameter W and frequency parameter f are set to the modulated signal generator.
  • Step 402 Determine a performance indicator of the signal.
  • the manner in which the performance index of the signal is determined may be obtained by using a general measuring instrument to extract three carrier performance indicators corresponding to the initial phase, that is, the values of MAX IT and Rho of each carrier.
  • the signal can also be calculated by the corresponding measurement software. Performance indicators.
  • Step 403 Compare the performance indicator obtained in step 402 with the set performance indicator, and obtain a corresponding difference, as a basis for selecting a phase of the carrier. If the performance indicator of the signal meets the set performance index requirement, the phase adjustment process is exited, and the process proceeds to step 405; otherwise, the process proceeds to step 404;
  • Step 404 Adjust the step amount (adjustment amount), and return to step 401 to further adjust the initial phase of the signal to be modulated.
  • the adjustment algorithm of the initial phase of the modulated signal is a cyclical process that does not exit the cycle until the baseband signal decoded by the receiver meets the requirements.
  • the number from the largest to the smallest is given in order according to the frequency parameter of the modulated signal.
  • the number corresponding to -1.23MHz is 1, the number corresponding to 0MHz is 2, and the number corresponding to 1.23MHz is 3; the priority of the phase setting of the modulated signal will be determined according to the number of the signal being modulated. If the carriers are adjacent, the lowest priority is the lowest, the highest priority is second, and the other numbers are ranked in the order of the number. When the setup is complete, you will get a priority and the tuned signal number—the corresponding and high-to-low array.
  • the priority corresponding to each number in this example is: Number 1 corresponds to 1 , Number 2 corresponds to 3 , and Number 3 corresponds to 2. The higher the number, the higher the priority.
  • the step size is divided into two levels according to the difference between the requirements of the respective carrier performance indicators and the set performance indicators calculated in step 403: a large step amount and a small step amount. If a difference in the performance metric obtained in step 403 is greater than 0.6, then the initial phase is adjusted with a larger step size, using 50 in this example. If the difference in step 403 is less than 0.6, then the phase is adjusted with a smaller step size.
  • the step size used in this example is 20°. After the step size is set, you can get a modulated signal number and step size - the corresponding array. The step size setting will be dynamically changed according to the size of the performance difference.
  • the initial of each modulated signal according to the priority and the step size The phase is adjusted until the performance index of the corresponding carrier is optimized, and the adjustment is stopped.
  • the optimal decision basis is: The phase increase and decrease will cause the carrier performance to deteriorate, and the corresponding carrier performance is optimal.
  • a set of phases that make the performance of each carrier relatively good will be obtained, and it is called the first round of adjustment to obtain the phase group.
  • the first round it is only necessary to check whether the performance of each carrier is relatively good as the stop basis. Due to the mutual influence between the phase modulations, the phase obtained in the first round does not necessarily make each carrier performance meet the standard requirements.
  • the phase group obtained after the first round of adjustment is jointly checked to see if each carrier can meet the requirements, and the exit is satisfied, and if it is not satisfied, the next round of adjustment is performed.
  • the second theory When adjusting the second theory, first set the phase obtained by the first round adjustment and extract the performance index of each carrier, and calculate the difference between the signal performance index of the modulated signal with the current optimal initial phase, according to the difference size.
  • the priority of each carrier of the second round of phase modulation the greater the difference, the higher the priority.
  • the adjustment is performed with a smaller step size, such as a step size of 10°.
  • the performance index of the corresponding phase-modulated carrier is extracted, and the calculation is improved. If there is improvement, the adjustment of the carrier is continued. If there is no improvement, the carrier adjustment is stopped and the next carrier is adjusted. This is repeated until the phase of all carriers is adjusted, and the phase group obtained by the round adjustment is referred to as the second phase group.
  • the second round of adjustment After the second round of adjustment, jointly check whether each carrier can meet the requirements, and the exit is satisfied. If it is not satisfied, the next round of adjustment is performed. In the previous two rounds, a large amount of coarse adjustment and a small step precision adjustment were used to obtain a set of phase groups with relatively optimal performance of each carrier. In the next adjustment, after each adjustment is completed, it will observe whether all carrier performance is improved. Only when the performance of all carriers is improved, the phase of the corresponding carrier is updated. Otherwise, it is not updated, and the priority is continuously updated according to the difference value. , keep following as in 1. To gradually reduce the step size, calculate the performance of each carrier to meet the requirements after each phase adjustment, and exit if the requirements are met. If not, continue polling.
  • the polled phase step amount When the polled phase step amount is set to 0, it indicates that based on the initial phase generated by the random function generator using the seed all zeros in the first step in step 401, a suitable set cannot be found.
  • the phase group makes the carrier performance meet the requirements. At this time, a new set of random number generator seeds must be updated to repeat the initial phase adjustment process of the above method.
  • the first random number generator seed is initially given an initial value, as in this example, 0
  • other times the seed update is always obtained when the phase is stepped to 0 in the previous cycle.
  • the set of phases at a reasonable phase is used as a new seed.
  • the loop search is performed, but it is necessary to avoid the situation that the random phase of the random function generator cannot be found after the seed update in some cases, and the adjustment is prevented from entering an infinite loop, so it is necessary to specify the seed in one search.
  • this phase adjustment will be exited and the search will be notified. Wait for a while and then re-initialize the initial phase adjustment until you find the appropriate initial phase for each carrier.
  • Step 405 The initial phase of the carrier is solidified, that is, the modulated signal that currently meets the performance indicator is determined as the modulated signal of the baseband signal.
  • the phase of the corresponding modulated signal is adjusted step by step from the modulated signal corresponding to the first-stage modulation, until the modulated signal outputted in the last stage.
  • the performance indicator reaches the set performance index, the modulated signal determined by each level of modulation is used as the modulated signal of the baseband signal.
  • FIG. 7 is a schematic structural diagram of a device for reducing interference in a carrier multi-level modulation according to the present invention, and FIG. 7 shows an application situation of m carrier n-level modulation.
  • Each level of the modulator group adjusts each of the modulated signals generated by the modulated signal generator group in a similar manner to the previously described adjustment method.
  • the frequency parameter F of the modulated signal in the input parameter of the parameter selection device is extended to m, n groups, and the initial phase of the modulated signal is expanded to m groups of n.
  • the initial phase of the modulated signal of one or more stages can be selectively adjusted, and the purpose is to enable the determined modulated signal to correctly demodulate the baseband signal.
  • the indicators for measuring the EV-DO signal are: the waveform quality Rho 1 corresponding to the pilot channel, the waveform quality Rho2 corresponding to the MAC channel, the waveform quality Rho3 corresponding to the DATA channel, the MAX IT1 corresponding to the pilot channel, and the MAX IT2 corresponding to the MAC channel.
  • the DATA channel corresponds to MAX IT3.
  • the present invention is also applicable to a case where a hybrid configuration of a two-carrier EV-DO signal and a 1-carrier IX signal in an adjacent configuration is performed in a CDMA system, and the difference from the foregoing adjustment manner is:
  • the input IX is simultaneously input.
  • the required performance indicators of the carrier of the EV-DO also require a slight change in the configuration of the priority in step 403.
  • the EV-DO signal and the IX signal are first distinguished separately and divided into two pure EV-DO and pure IX signal groups. The two sets of signals are respectively set to the priority of the phase modulation according to the foregoing example.
  • the initial phase adjustment of the carrier is performed according to the principle that the priority of the EV-DO is always higher than the priority of the IX. For example, in this example, if the frequency parameter of the modulated signal of the IX signal is 1.23 MHz, the other two EV-DOs are 0 MHz, -1.23 MHz, respectively, and the corresponding numbers are 1, 2, and 3 are obtained according to the above description.
  • the priority is: 1, 2, 3.
  • the technical solution described in the present invention is also suitable for wireless communication systems of other standards, Wideband Code Division Multiple Access (WCDMA) system and Time Division Synchronous Code Division Multiple (TD-SCDMA, Time Division-Synchronous Code Division Multiple). Access) system.
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple
  • TD-SCDMA Time Division-Synchronous Code Division Multiple
  • FIG. 8 is a schematic structural diagram of a device for reducing multi-carrier mutual interference according to the present invention.
  • the apparatus for reducing multi-carrier mutual interference according to the present invention includes an adjusting unit 80, a modulating unit 81, a performance indicator determining unit 82, and a comparing unit 83.
  • determining unit 84 wherein the adjusting unit 80 is configured to adjust a phase of the at least one modulated signal; the modulating unit 81 is configured to separately modulate each baseband signal to each modulated signal; and the performance indicator determining unit 82 is configured to determine the modulating unit 81.
  • the comparison unit 83 is configured to compare the performance index between the modulated signals with the set performance index, and when the set performance index is not met, the trigger adjustment unit 80 further adjusts at least one modulated signal in the modulated signal.
  • the adjusting unit 80 simultaneously adjusts the phase of the modulated signal of each carrier.
  • the adjusting unit 80 sequentially adjusts the modulated signals of the respective carriers.
  • the phase of the modulated signal includes a carrier frequency of the modulated signal, and an initial phase of the modulated signal.
  • the adjustment unit 80 adjusts the initial phase of the modulated signal.
  • the performance indicator includes at least one of a ratio MAXI of a carrier inactive code channel maximum power to an active code channel total power and a waveform quality Rho.
  • the adjusting unit 80 adjusts the phase of the corresponding modulated signal step by step until the comparing unit 83 determines the output of the last stage.
  • the determining unit 84 uses the modulated signals determined by the levels of modulation as the modulated signals of the respective baseband signals.
  • the apparatus for reducing multi-carrier mutual interference shown in FIG. 8 of the present invention is designed to implement the foregoing method for reducing multi-carrier mutual interference, and the implementation functions of each processing unit in the apparatus shown in FIG. 8 may be With reference to the related description in the foregoing method for reducing multi-carrier mutual interference, it is understood that the functions of each unit can be implemented by a program running on a processor or by a corresponding logic circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种降低多载波相互干扰的方法,包括:调整至少一个被调信号的相位;将各基带信号分别调制在各被调信号上;将调制后信号间的性能指标与设定的性能指标进行比较,不能满足设定性能指标时,调整被调信号中至少一个被调信号的相位,直到信号间的性能指标满足设定性能指标;满足设定性能指标时,将当前的各被调信号作为各对应基带信号的被调信号。本发明同时公开了一种降低多载波相互干扰的装置。本发明在多载波相邻配置情况下对性能的改善尤为明显,并使得同一个无线信号覆盖区域可以有多载波同时工作,大大提高了频谱利用率。

Description

降低多载波相互干扰的方法与装置 技术领域
本发明涉及通信系统中多载波相互干扰的处理技术, 尤其涉及一种降 低多载波相互干扰的方法与装置。 背景技术
目前无线通信系统多能支持多载波工作模式, 多载波工作模式下, 相 关网元发射和接收的载波信号都是多个单载波的合波。 例如对于 800MHz 频段的 CDMA2000 lx通信系统而言,单载波的带宽是 1.23MHz,相邻载波 的中心频率间隔为 1.23MHz , 多个载波如三载波相邻配置时就是三个 1.23MHz带宽的单载波共同组成一个占用带宽约 3.69MHz的合波, 三个载 波的中心频率可以分别设置为 871.11MHz, 872.34MHz, 873.57MHz (也可 以是其它频率)。 图 1为码分多址(CDMA, Code Division Multiple Access ) 系统中频域相邻的三载波出现的载波干扰示意图, 如图 1 所示, 图中第一 个载波的频点为 871.11MHz, 第二个载波频点为 872.34MHz, 第三个载波 的频点为 873.57MHz。 多载波模式中, 会出现一个载波的部分信息混叠到 相邻的载波内的现象, 即出现了多载波间的相互干扰, 载波相邻配置时这 种干扰现象尤为明显。 从图 1 可以看出, 两个阴影区域即为载波的混叠区 域, 即第一个载波的部分信息混叠到了第二个载波中, 同时第二个载波中 的部分信息混叠到第一个载波中。 第二个载波和第三个载波也有类似情况。 一个载波中混叠有另外一个载波的信息时, 该部分信息将成为一种干扰而 影响信号的质量。 由于这种干扰的存在, 在接收端接收机很可能无法对信 号作正确的解调, 这种干扰对 CDMA 系统中的 EV-DO ( Evolution-Data Optimized )信号的影响表现尤为突出。 当然, 在宽带码分多址( WCDMA, Wideband Code Division Multiple Access ) 和时分同 步码分多 址 ( TD-SCDMA, Time Division-Synchronous Code Division Multiple Access ) 等系统中也存在类似的多载波干扰问题。
多载波无线通信系统中, 为了保证通信的质量, 尤其是 CDMA系统中 多载波 EV-DO通信模式下, 必须减小载波之间的相互干扰的影响。 目前业 界尚无对无线通信系统中尤其是 CDMA系统中多载波 EV-DO相邻配置的 多载波相互干扰的解决方法。 发明内容
有鉴于此, 本发明的主要目的在于提供一种降低多载波相互干扰的方 法与装置, 能明显降低相邻载频的多载波相互干扰。
为达到上述目的, 本发明的技术方案是这样实现的:
一种降低多载波相互干扰的方法, 包括:
调整至少一个被调信号的相位;
将各基带信号分别调制在各被调信号上;
将调制后信号间的性能指标与设定的性能指标进行比较, 不能满足设 定性能指标时, 调整被调信号中至少一个被调信号的相位, 直到信号间的 性能指标满足设定性能指标; 满足设定性能指标时, 将当前的各被调信号 作为各对应基带信号的被调信号。
优选地, 所述调整至少一个被调信号的相位, 具体为: 对各载波的被 调信号的相位同时进行调整。
优选地, 所述调整至少一个被调信号的相位, 具体为: 对各载波的被 调信号依次进行调整。
优选地, 所述基带信号的调制方式为级联调制时, 从第一级调制对应 的被调信号开始, 逐级对所对应的被调信号的相位进行调整, 直到最后一 级输出的调制信号间的性能指标达到设定的性能指标时, 将各级调制所确 定出的各被调信号作为各对应基带信号的被调信号。
优选地, 所述被调信号的相位包括所述被调信号的载频、 所述被调信 号的初始相位。
优选地, 所述调整被调信号的相位为, 调整所述被调信号的初始相位。 优选地, 所述性能指标包括载波非激活码道最大功率与激活码道总功 率的比值 MAX IT、 及波形质量 Rho中的至少一个。
一种降低多载波相互干扰的装置, 包括调整单元、 调制单元、 性能指 标确定单元、 比较单元和确定单元, 其中:
调整单元, 用于调整至少一个被调信号的相位;
调制单元, 用于将各基带信号分别调制到各被调信号上;
性能指标确定单元, 用于确定所述调制单元调制后信号间的性能指标; 比较单元, 用于将调制后信号间的性能指标与设定的性能指标进行比 较, 不能满足设定性能指标时, 触发所述调整单元进一步调整被调信号中 至少一个被调信号的相位, 直到信号间的性能指标满足设定性能指标; 满 足设定性能指标时, 触发确定单元;
确定单元, 用于将当前的各被调信号作为各对应基带信号的被调信号。 优选地, 所述调整单元对各载波的被调信号的相位同时进行调整。 优选地, 所述调整单元对各载波的被调信号依次进行调整。
优选地, 所述基带信号的调制方式为级联调制时, 从第一级调制对应 的被调信号开始, 所述调整单元逐级对所对应的被调信号的相位进行调整, 直到所述比较单元确定最后一级输出的调制信号间的性能指标达到设定的 性能指标时, 所述确定单元将各级调制所确定出的各被调信号作为各对应 基带信号的被调信号。
优选地, 所述被调信号的相位包括所述被调信号的载频、 所述被调信 号的初始相位。 优选地, 所述调整单元调整所述被调信号的初始相位。
优选地, 所述性能指标包括载波非激活码道最大功率与激活码道总功 率的比值 MAX IT、 及波形质量 Rho中的至少一个。
通过以上技术方案, 本发明实现了以下有益效果: 可以较好的解决无 线通信系统中多载波信号的相互干扰问题, 尤其对于 CDMA系统中多载波 EV-DO信号之间的相互干扰。 在多载波相邻配置情况下对性能的改善尤为 明显。 这样使得同一个无线信号覆盖区域可以有多载波同时工作, 大大提 高了频谱利用率, 提高无线规划的灵活性, 提高小区的业务容量、 传输速 率和服务质量, 改善了用户体验。 附图说明
图 1为 CDMA系统中频域相邻的三载波出现的载波干 4尤示意图; 图 2为无线通信系统中对单载波调制方式示意图;
图 3为本发明多载波的调制方式的示意图;
图 4为本发明降低多载波相互干扰的方法的流程图;
图 5为本发明参数选择装置的结构示意图;
图 6为本发明利用参数选择装置调整被调信号的结构示意图; 图 7为本发明载波多级调制时降干扰处理装置的结构示意图; 图 8为本发明降低多载波相互干扰的装置的组成结构示意图。 具体实施方式
本发明的基本思想是: 在多载波系统中, 特别是频域相邻的载波之间, 相互干扰比较严重。 本发明通过调整各载波的被调信号的相位, 使各调制 信号的性能指标满足设定的性能指标。 由于被调信号的相位与载波的载频 及初始相位相关, 而载波的载频已被通信系统所规划好, 属于不可调的参 数, 因此, 本发明主要通过对被调信号的初始相位的调整来降低多载波之 间的干扰。 本发明方案实现筒单且实用。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
现代无线通信系统中的发射信号是通过将信息调制到被调信号上来实 现信息传输的, 其中, 被调信号可以由数字控制振荡器 (NCO, Numerical Control Oscillator )或模拟振荡器等装置产生。 调制过程可以由调制器如实 数调制器、 复数调制器或正交调制器等多种类型的调制器来完成。
反映被调信号特性的参数有很多, 频率和相位是其中的两个。 例如, 被调信号 C ( t )可以表示为: C ( t ) = Axcos ( 2 π ft+ θ ) + jxAx sin ( 2 π ft+ θ )。其中 A为幅度, f为载波频率, Θ为被调信号的初始相位, (2 π ίΐ+ θ ) 为被调信号的相位, 它是一个与频率^ 时间 t和初始相位 Θ相关的函数, 本发明中统一用 W ( t, f, θ )来表示, 筒称为 W。 如果是实数调制, 只 需要使用 C ( t ) 中的实部。
传统的多载波无线通信系统中只对被调信号的频率作出指定来减少载 波间干扰, 而并没有通过对被调信号的相位 W作出特别的指定来达到减少 载波间干扰的目的。
而被调信号的相位 W是一个与频率 f、时间 t和初始相位 Θ相关的函数, 其中 t是一个时间的变化量, 表示了信号的特性, 不可控。 f和 Θ是两个受 控的变量, 可以通过改变其中任何一个或同时改变两个变量来达到调整被 调信号相位 W的目的。 在无线通信系统中, 对发射的载波的中心频率有较 严格的要求, f的偏移范围相对较窄, 因此调整的灵活性弱, 而初始相位 Θ 具有较大的调整范围和灵活性。 本发明的技术方案正是针对这一特点而提 出的。
以下通过附图进一步阐明这一点。
图 2为无线通信系统中对单载波调制方式示意图, 如图 2所示, 图中 包括两个部件即调制器 200和被调信号发生器 201。调制器 200用于将输入 信号 X调制到被调信号上得到输出信号 y, 输入信号又称为基带信号, 输出 信号中包括调制后的基带信号即调制信号。 调制器 200是无线通信系统中 常用的实数调制器、 复数调试器或正交调制器等。 被调信号发生器 201 是 按照输入参数生成被调信号。 图中仅给出了两个输入参数, 分别为频率参 数 f和初始相位输出参数 Θ。传统的调制方式中并没有根据输入信号的参数 和输出信号的性能指标来对被调信号相位作特别的指定而达到减少载波间 干扰的目的, 所以图中相位 Θ并不是输入信号 X和输出信号 y的函数。
图 3为本发明多载波的调制方式的示意图, 如图 3所示, 图中同样包 括两个部件即调制器 300和被调信号发生器 301 ,其功能与图 2中的调制器 200和被调信号发生器 201分别相同,但输入到被调信号发生器 201的相位 和频率参数是输入信号 X和输出信号 y的函数, 不同于传统的信号调制过 程中不对被调信号相位做特别的指定。 本发明通过图 3 的调制方式, 有选 择性地设置被调信号相位, 从而达到减小载波间相互干扰影响的目的。
图 4为本发明降低多载波相互干扰的方法的流程图, 如图 4所示, 本 发明降低多载波相互干扰的方法包括以下步骤:
步骤 401 : 设置输入参数。输入参数包括表示输入信号的相关参数和输 出信号性能指标的参数。 例如: 输入载波的类型, 本示例中是 CDMA IX 信号; 输入载波数目, 本示例中是三载波; 输入载波的中心频率信息, 本 示例中相邻载波配置设定为 871.11MHz载波、 872.34MHz载波、 873.57MHz 载波; 输入被调信号的初始相位参数, 本示例中载波的初始相位将通过一 个随机系列发生器的函数获得, 并在第一次开始将发生器种子都设置为 0。 通过种子 0获得的三个载波相位初值作为输入参数; 输入载波对应的第一 级被调信号的频率参数,本示例中,相邻载波分别配置为 -1.23MHz, 0MHz, 1.23MHz。 输入对信号性能指标的要求, 本示例针对的是 IX信号, 衡量 IX信号 的指标有: 载波非激活码道最大功率与激活码道总功率的比值 MAX IT, 标 准要求为 -27dBc ( dBc是表示功率相对值的单位, 与 dB的计算方法完全一 样); 波形质量 Rho, 标准要求 0.912。
图 5为本发明参数选择装置的结构示意图, 如图 5所示, 本发明参数 选择装置工作时需要的几个输入参数有:载波类型参数 n,载波数目参数 m, 载波的中心频率信息 k,被调信号初始相位 Θ , 输出的反馈信号和被调信号 的初始频率参 ¾ F。 实际使用中根据不同的系统或者载波情况,可以只用部 分或者全部的输入参数。 本发明参数选择装置的输出参数包括被调信号相 位参数 W, 被调信号的频率参数 f 和参数选择数结果指示信号。 结果指示 信号表示了参数选择装置的一个工作状态, 结束状态还是正在运行状态。 该装置按照图 3 所示的参数选择数方式(即对被调信号的初始相位不断进 行调整, 以确定调制后的信号的性能指标是否满足设定的性能指标) 的原 理工作, 既可以在系统运行前使用, 也可以在系统运行过程中使用。
图 6为本发明利用参数选择装置调整被调信号的结构示意图, 如图 6 所示, 调制器组用于实现多载波的调制, 可以是无线通信系统中采用的各 种类型的调制器。调制器组具有两组输入信号,一组是输入的载波信号(基 带信号)x . xm, 另外一个是被调信号发生器输出的被调信号 1…… m。 合 波器用于将调制后的 m个单载波合波。 耦合器用于将输出信号反馈到参数 选择装置中, 作为参数选择装置的一个输入参数。 连同其它的输入参数一 起, 参数选择装置将按照一定的优化算法进行相位参数的选取。 最后将选 择好的相位参数 W和频率参数 f设置到被调信号发生器中。
步骤 402: 确定信号的性能指标。确定信号的性能指标的方式可以是通 过通用的测量仪器提取出当初始相位被设置后对应的三个载波性能指标, 即各载波的 MAX IT及 Rho各值。 也可以通过相应的测量软件计算出信号 的性能指标。
步骤 403: 将步骤 402中得到的性能指标和设定的性能指标进行比较, 得出相应差值, 作为载波选择相位的依据。 如果信号的性能指标满足设定 的性能指标要求, 则退出相位调整流程, 进入到步骤 405 中, 否则进入到 步骤 404;
步骤 404: 调整步进量(调整量), 并返回步骤 401进一步调整被被调 信号的初始相位。
被调信号初始相位的调整算法是一个不断循环的过程, 直到接收机解 调出的基带信号满足要求时才会退出循环。
首先按照被调信号的频率参数从大到小依次给出从大到小的编号。 如 本示例中, -1.23MHz对应的编号为 1 , 0MHz对应的编号为 2, 1.23MHz 对应的编号为 3;被调信号相位设置优先级的高低将按照被调信号的编号来 确定。 如果载波间是相邻配置, 那么编号最低的优先级最低, 编号最高的 优先级次之, 其它编号的优先级按照编号的大小顺序从大到小排列。 设置 完成后将得到一个优先级和被调信号编号——对应且由高到低排列的数 组。 本示例中各个编号对应的优先级为: 编号 1对应的是 1 , 编号 2对应的 是 3 , 编号 3对应的是 2。 数字越大优先级越高。
本发明中, 步进量是按照步骤 403 中计算得到各个载波性能指标和设 定性能指标的要求的差值量分为两个等级: 大步进量和小步进量。 如果步 骤 403中得到性能指标的一个差值大于 0.6, 那么采用较大的步进量调整初 始相位, 本示例中使用 50。 , 如果步骤 403中得到差值小于 0.6, 那么采用 较小的步进量来调整相位, 本示例中采用的步进量为 20° 。 步进量设置完 成后就可以得到一个被调信号编号和步进量——对应的数组。 步进量设置 将会按照性能差值的大小被动态改变。
得到优先级和步进量后, 按照优先级和步进量对各个被调信号的初始 相位进行调整, 直到得到对应载波的性能指标为最优后, 将停止调整, 这 里, 最优的判定依据是: 相位增加和减少都会导致该载波性能恶化, 这时 对应的载波性能为最优。 完成所有相位的调制后将得到一组使得各个载波 性能相对较优的相位组, 并称之为第一轮调整得到相位组。 在第一轮中每 次仅仅查看各个载波性能是否相对较优为停止依据, 由于调相之间的相互 影响, 第一轮得到的相位不一定使得各个载波性能都能满足标准要求。 采 用第一轮调整后得到的相位组, 联合查看是否各个载波都能满足要求, 满 足退出, 不满足则进行下一轮调整。
第二论调整时, 首先设置第一轮调整所得相位并提取出各个载波的性 能指标, 计算与当前最佳初始相位的被调信号的信号性能指标之间的差值, 按照差值的大小设置第二轮调相的各载波的优先级, 差值越大优先级越高。 第二轮调整中统一采用更小步进量进行调整, 如步进量为 10° 。 每设置一 次相位后提取对应调相载波的性能指标, 计算是否有改善, 如果有改善则 继续该载波的调整, 如果无改善则停止该载波调整而进行下一个载波的调 整。 如此重复进行, 直到调整完成所有载波的相位, 该轮调整得到的相位 组称之为第二轮相位组。
第二轮调整后, 联合查看是否各个载波都能满足要求, 满足退出, 不 满足则进行下一轮调整。 前面两轮分别采用大步进量粗调的方式和小步进 量精调的方式获得了各个载波性能相对最优的一组相位组。 接下来的调整 中每次调整完成一次后将观察所有的载波性能是否有改善, 只有所有载波 的性能都有改善才更新对应载波的相位, 否则不更新, 并不断的按照差值 大小更新优先级, 不断的按照如 1。 来逐步的减小步进量,每次调整完相位 后都计算各个载波的性能是否满足要求, 满足要求后退出, 如果不满足则 继续轮询。 当轮询到相位步进量被设置为 0时, 表明基于在步骤 401 中第 一次基于随机函数发生器使用种子全 0产生的初始相位无法找到一组合适 的相位组而使得载波性能满足要求, 这时必须更新一组新随机数发生器种 子, 进行下一次重复上述方法的初始相位调整过程。
本发明中, 除了第一次随机数发生器种子是开始给出的一个初值, 如 本示例中为 0,其它时候种子的更新总是采用上次循环中相位步进到 0时仍 然没有得到合理相位时的那组相位作为新的种子。
按照上述方式进行循环地查找, 但要避免对一些情况多次随机函数发 生器的种子更新后仍然找不到合适相位的情况, 防止调整进入到一个死循 环, 因而在一次查找中有必要规定种子更新的最大次数, 本示例中设置为
20次, 如果超过 20次, 将退出这次相位调整, 并告知该次查找失败。 等待 一段时间后重新进行初始相位调整, 直到为各载波找到合适的初始相位为 止。
步骤 405: 固化载波的初始相位, 即将当前满足性能指标的被调信号确 定作为基带信号的被调信号。
需要说明的是, 基带信号的调制方式为级联调制时, 从第一级调制对 应的被调信号开始, 逐级对所对应的被调信号的相位进行调整, 直到最后 一级输出的调制信号的性能指标达到设定的性能指标时, 将各级调制所确 定出的被调信号作为所述基带信号的被调信号。
图 7 为本发明载波多级调制时降干扰处理装置的结构示意图, 如图 7 所示是 m个载波 n级调制的应用情况。 每级的调制器组对被调信号发生器 组生成的各被调信号进行调整, 调整的方式与前述的调整方式类似。 参数 选择装置的输入参数中被调信号的频率参数 F扩展到 m个, n组, 被调信 号的初始相位 Θ扩展到 m个 n组。 多级调制时可以选择性的对一级或者多 级的被调信号的初始相位进行调整, 其目的是使所确定出的被调信号能正 确解调出基带信号。
对于 CDMA系统中故相邻配置的三载波 EV-DO信号的初始相位的调 整, 对比前述三载波 IX信号相位调整的方式是相同的, 不同处就是在步骤 401中输入的信号的性能指标要求不同。 衡量 EV-DO信号的指标有: 导频 信道对应的波形质量 Rho 1 , MAC信道对应的波形质量 Rho2 , DATA信道 对应的波形质量 Rho3 ,导频信道对应的 MAX IT1 , MAC信道对应的 MAX IT2 , DATA信道对应的 MAX IT3。
另夕卜, 本发明同样适用于 CDMA 系统中做相邻配置的两载波 EV-DO 信号和 1载波 IX信号的混合配置的情况, 与前述调整方式的区别是: 在步 骤 401中要同时输入 IX和 EV-DO的载波的要求的性能指标, 在步骤 403 中还需要对优先级的配置略作改变。 在混合配置模式中首先要将 EV-DO信 号和 IX信号分别区分开, 分为两个纯 EV-DO和纯 IX信号组。 将两组信 号分别按照前述示例中方式设置调相的优先级, 设置完成后将按照 EV-DO 的优先级总是高于 IX优先级的原则对载波进行初始相位的调整。例如本实 例中如果 IX信号的被调信号的频率参数为 1.23MHz , 另外两个 EV-DO分 别为 0 MHz, -1.23 MHz, 给出其对应的编号为 1 , 2, 3按照上面描述得到 对应的优先级为: 1 , 2, 3。
本发明所记载的技术方案同样适合其它制式的无线通信系统, 宽带码 分多址( WCDMA, Wideband Code Division Multiple Access )系统和时分同 步码分多址( TD-SCDMA, Time Division-Synchronous Code Division Multiple Access )系统。 对于其它制式的无限通信系统, 只需要根据不同制式的标准 要求更改信号对应的性能指标参数, 其他步骤将是相同的。
图 8 为本发明降低多载波相互干扰的装置的组成结构示意图, 如图 8 所示, 本发明降低多载波相互干扰的装置包括调整单元 80、 调制单元 81、 性能指标确定单元 82、 比较单元 83和确定单元 84, 其中, 调整单元 80用 于调整至少一个被调信号的相位; 调制单元 81用于将各基带信号分别调制 到各被调信号上; 性能指标确定单元 82用于确定调制单元 81调制后信号 间的性能指标; 比较单元 83用于将调制后信号间的性能指标与设定的性能 指标进行比较, 不能满足设定性能指标时, 触发调整单元 80进一步调整被 调信号中至少一个被调信号的相位, 直到信号间的性能指标满足设定性能 指标; 满足设定性能指标时, 触发确定单元 84; 确定单元 84用于将当前的 各被调信号作为各对应基带信号的被调信号。 调整单元 80对各载波的被调 信号的相位同时进行调整。调整单元 80对各载波的被调信号依次进行调整。 被调信号的相位包括所述被调信号的载频、 所述被调信号的初始相位。 调 整单元 80调整所述被调信号的初始相位。 所述性能指标包括载波非激活码 道最大功率与激活码道总功率的比值 MAX IT及波形质量 Rho中的至少一 个。
基带信号的调制方式为级联调制时, 从第一级调制对应的被调信号开 始, 调整单元 80逐级对所对应的被调信号的相位进行调整, 直到比较单元 83确定最后一级输出的调制信号间的性能指标达到设定的性能指标时, 确 定单元 84将各级调制所确定出的各被调信号作为各对应基带信号的被调信 号。
本领域技术人员应当理解, 本发明图 8所示的降低多载波相互干扰的 装置是为实现前述降低多载波相互干扰的方法而设计的, 图 8所示装置中 的各处理单元的实现功能可参照前述降低多载波相互干扰的方法中的相关 描述而理解, 各单元的功能可通过运行于处理器上的程序而实现, 也可通 过相应的逻辑电路而实现。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种降低多载波相互干扰的方法, 其特征在于, 包括:
调整至少一个被调信号的相位;
将各基带信号分别调制在各被调信号上;
将调制后信号间的性能指标与设定的性能指标进行比较, 不能满足设 定性能指标时, 调整被调信号中至少一个被调信号的相位, 直到信号间的 性能指标满足设定性能指标; 满足设定性能指标时, 将当前的各被调信号 作为各对应基带信号的被调信号。
2、 根据权利要求 1所述的方法, 其特征在于, 所述调整至少一个被调 信号的相位, 具体为: 对各载波的被调信号的相位同时进行调整。
3、 根据权利要求 1所述的方法, 其特征在于, 所述调整至少一个被调 信号的相位, 具体为: 对各载波的被调信号依次进行调整。
4、 根据权利要求 1所述的方法, 其特征在于, 所述基带信号的调制方 式为级联调制时, 从第一级调制对应的被调信号开始, 逐级对所对应的被 调信号的相位进行调整, 直到最后一级输出的调制信号间的性能指标达到 设定的性能指标时, 将各级调制所确定出的各被调信号作为各对应基带信 号的被调信号。
5、 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述被调 信号的相位包括所述被调信号的载频、 所述被调信号的初始相位。
6、 根据权利要求 5所述的方法, 其特征在于, 所述调整被调信号的相 位为, 调整所述被调信号的初始相位。
7、 根据权利要求 5所述的方法, 其特征在于, 所述性能指标包括载波 非激活码道最大功率与激活码道总功率的比值 MAX IT、 及波形质量 Rho 中的至少一个。
8、 一种降低多载波相互干扰的装置, 其特征在于, 包括调整单元、 调 制单元、 性能指标确定单元、 比较单元和确定单元, 其中:
调整单元, 用于调整至少一个被调信号的相位;
调制单元, 用于将各基带信号分别调制到各被调信号上;
性能指标确定单元, 用于确定所述调制单元调制后信号间的性能指标; 比较单元, 用于将调制后信号间的性能指标与设定的性能指标进行比 较, 不能满足设定性能指标时, 触发所述调整单元进一步调整被调信号中 至少一个被调信号的相位, 直到信号间的性能指标满足设定性能指标; 满 足设定性能指标时, 触发确定单元;
确定单元, 用于将当前的各被调信号作为各对应基带信号的被调信号。
9、 根据权利要求 8所述的装置, 其特征在于, 所述调整单元对各载波 的被调信号的相位同时进行调整。
10、 根据权利要求 8所述的装置, 其特征在于, 所述调整单元对各载 波的被调信号依次进行调整。
11、 根据权利要求 8所述的装置, 其特征在于, 所述基带信号的调制 方式为级联调制时, 从第一级调制对应的被调信号开始, 所述调整单元逐 级对所对应的被调信号的相位进行调整, 直到所述比较单元确定最后一级 输出的调制信号间的性能指标达到设定的性能指标时, 所述确定单元将各 级调制所确定出的各被调信号作为各对应基带信号的被调信号。
12、 根据权利要求 8至 11中任一项所述的装置, 其特征在于, 所述被 调信号的相位包括所述被调信号的载频、 所述被调信号的初始相位。
13、 根据权利要求 12所述的装置, 其特征在于, 所述调整单元调整所 述被调信号的初始相位。
14、 根据权利要求 12所述的装置, 其特征在于, 所述性能指标包括载 波非激活码道最大功率与激活码道总功率的比值 MAX IT、及波形质量 Rho 中的至少一个。
PCT/CN2009/075913 2009-08-08 2009-12-23 降低多载波相互干扰的方法与装置 WO2011017886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910165240.6 2009-08-08
CN200910165240.6A CN101998592B (zh) 2009-08-08 2009-08-08 降低多载波相互干扰的方法与装置

Publications (1)

Publication Number Publication Date
WO2011017886A1 true WO2011017886A1 (zh) 2011-02-17

Family

ID=43585875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075913 WO2011017886A1 (zh) 2009-08-08 2009-12-23 降低多载波相互干扰的方法与装置

Country Status (2)

Country Link
CN (1) CN101998592B (zh)
WO (1) WO2011017886A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296684A (zh) * 1998-02-12 2001-05-23 金吉斯通讯公司 多接入方法和系统
CN1514555A (zh) * 2002-12-31 2004-07-21 �����ʩ���عɷݹ�˾ 自适应载波间干扰自消除的方法与收发信机
JP2005192000A (ja) * 2003-12-26 2005-07-14 Toshiba Corp マルチキャリア通信システムおよびこのシステムに用いられる送信装置、受信装置、送信方法、受信方法
CN1667987A (zh) * 2004-03-12 2005-09-14 上海贝尔阿尔卡特股份有限公司 自适应通信方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409701A (zh) * 2008-11-24 2009-04-15 北京朗波芯微技术有限公司 本振缓冲器及相位失配校正方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296684A (zh) * 1998-02-12 2001-05-23 金吉斯通讯公司 多接入方法和系统
CN1514555A (zh) * 2002-12-31 2004-07-21 �����ʩ���عɷݹ�˾ 自适应载波间干扰自消除的方法与收发信机
JP2005192000A (ja) * 2003-12-26 2005-07-14 Toshiba Corp マルチキャリア通信システムおよびこのシステムに用いられる送信装置、受信装置、送信方法、受信方法
CN1667987A (zh) * 2004-03-12 2005-09-14 上海贝尔阿尔卡特股份有限公司 自适应通信方法和装置

Also Published As

Publication number Publication date
CN101998592B (zh) 2014-02-05
CN101998592A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
CA2298360C (en) Orthogonal frequency division multiplexing based spread spectrum multiple access
US10531454B2 (en) Multiband scheduling for wake up radio
US20050190817A1 (en) System and method for unified channelization for multi-band OFDM
US20050180375A1 (en) System and method for channelization and data multiplexing in a wireless communication network
EA018288B1 (ru) Устройство базовой станции, устройство мобильного терминала, система беспроводной связи и способ беспроводной связи
JP6901088B2 (ja) 無線通信装置および無線通信方法
US20020118783A1 (en) Smart antenna based spectrum multiplexing using a pilot signal
US11848726B2 (en) Mode switching method for reducing training overheads in reconfigurable intelligent surface (RIS)-assisted communication system
US8374263B2 (en) OFDM communication with multi-dimensional rate adaptation
CN104301986A (zh) 无线通信系统、基站装置、移动站装置、以及通信方法
CN101523837B (zh) 用于生成在ofdm通信系统中传输的数据包的方法和设备
WO2002069523A1 (en) Smart antenna based spectrum multiplexing using a pilot signal
US8699954B2 (en) Method and device for reducing mutual interference of multi-carrier
US9094271B2 (en) Method and apparatus for reducing mutual interference of multi-carrier
WO2011017886A1 (zh) 降低多载波相互干扰的方法与装置
WO2011017882A1 (zh) 降低多载波相互干扰的方法与装置
CN108111271B (zh) 参考信号的信令指示、参考信号的发送方法及装置
WO2011017887A1 (zh) 降低多载波相互干扰的方法与装置
CN114726492A (zh) 解调参考信号的峰均比修正方法、终端及存储介质
WO2011017880A1 (zh) 降低多载波之间相互干扰的方法与装置
CN101997794B (zh) 降低多载波相互干扰的方法与装置
CN113709079B (zh) 用于ofdm通信系统的跳频方法及装置
RU2808040C2 (ru) Устройство связи, способ связи, интегральная схема для связи
SE516337C2 (sv) Radiosändarsystem, mottagningssystem och förfaranden relaterade till frekvenshoppning
JP2012175268A (ja) 通信装置、通信方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848216

Country of ref document: EP

Kind code of ref document: A1