WO2011017721A1 - Verfahren zur lichtbogendetektion in photovoltaikanlagen und eine solche photovoltaikanlage - Google Patents

Verfahren zur lichtbogendetektion in photovoltaikanlagen und eine solche photovoltaikanlage Download PDF

Info

Publication number
WO2011017721A1
WO2011017721A1 PCT/AT2010/000194 AT2010000194W WO2011017721A1 WO 2011017721 A1 WO2011017721 A1 WO 2011017721A1 AT 2010000194 W AT2010000194 W AT 2010000194W WO 2011017721 A1 WO2011017721 A1 WO 2011017721A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
voltage
current
arc
values
Prior art date
Application number
PCT/AT2010/000194
Other languages
English (en)
French (fr)
Inventor
Andreas Pamer
Günter RITZBERGER
Friedrich Oberzaucher
Original Assignee
Fronius International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fronius International Gmbh filed Critical Fronius International Gmbh
Priority to JP2012524046A priority Critical patent/JP5393891B2/ja
Priority to KR1020127006716A priority patent/KR101354643B1/ko
Priority to BR112012003368-9A priority patent/BR112012003368B1/pt
Priority to AU2010282204A priority patent/AU2010282204B2/en
Priority to CN201080035538.6A priority patent/CN102472789B/zh
Priority to IN1351DEN2012 priority patent/IN2012DN01351A/en
Priority to US13/389,360 priority patent/US8576520B2/en
Priority to EP10721919.8A priority patent/EP2464986B1/de
Publication of WO2011017721A1 publication Critical patent/WO2011017721A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Inverter Devices (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Detektion von Lichtbögen in einem Gleichstrompfad einer Photovoltaikanlage, wobei Werte eines Stroms (IDC) des Gleichstrompfads während eines sich wiederholenden Zeitfensters (7) erfasst und ein Mittelwert (8) gebildet wird, sowie eine solche Photovoltaikanlage. Zur sicheren Detektion von Lichtbögen mit einer Komponente der Photovoltaikanlage werden während der Zeitfenster (7) Werte einer Spannung (UDC) des Gleichstrompfades erfasst und wird ein Mittelwert (8, 8') gebildet, und basierend auf den Mittelwerten (8, 8') für den Strom (IDC) und die Spannung (UDC) über ein Berechnungsverfahren zumindest ein Detektionssignal (9) und zumindest eine Detektionsschwelle (10) kontinuierlich berechnet.

Description

Verfahren zur Lichtboqendetektion in Photovoltaikanlagen und eine solche Photovoltaikanlaqe
Die Erfindung betrifft ein Verfahren zur Detektion von Lichtbögen in einem Gleichstrompfad einer Photovoltaikanlage, wobei Werte eines Stroms des Gleichstrompfads während eines sich wiederholenden Zeitfensters erfasst und ein Mittelwert gebildet wird.
Ebenso betrifft die Erfindung eine Photovoltaikanlage mit Komponenten zum Einspeisen in ein Wechselspannungsnetz, mit einem DC- DC-Wandler und einem DC-AC-Wandler zur Umwandlung der von zumindest einer Solarzelle erzeugten Gleichspannung mit zugehörigem Gleichstrom in eine Wechselspannung zur Einspeisung in das Wechselspannungsnetz, und einer Steuereinrichtung.
Gleichstromlichtbögen, wie Serienlichtbögen oder Parallellichtbögen, führen in Photovoltaikanlagen oft zu gefährlichen und teuren Bränden, weil sich das umliegende Material in kürzester Zeit entzündet. Da Gleichstromlichtbögen keinen Nulldurchgang besitzen, erlöschen diese nicht selbstständig. Daher ist eine Detektion von Lichtbögen erforderlich.
Aus der WO 95/25374 Al ist ein Detektionsverfahren für Serien- und Parallellichtbögen bekannt. Hierbei wird die Detektionsein- heit mit den Gleichstromhauptleitungen der Photovoltaikanlage verbunden, damit Spannungsänderungen und somit Lichtbögen detek- tiert werden können. Die Detektionseinheit ist dabei analog aufgebaut und umfasst insbesondere zwei induktiv gekoppelte
Schwingkreise, zwei Komparatoren und eine Verzögerungsstufe, so- dass ein DC-Trenner in der Gleichstromhauptleitung aktiviert und deaktiviert werden kann. Nachteilig ist hierbei, dass zusätzliche Hardwarekomponenten für das Detektionsverfahren in die Photovoltaikanlage integriert werden müssen, wodurch zusätzliche Kosten entstehen. Ebenso ist von Nachteil, dass im Wesentlichen keine nachträglichen Änderungen bzw. Anpassungen von Parametern des Detektionsverfahrens möglich sind.
Ein weiteres Detektionsverfahren für Serien- und Parallellicht- bögen ist aus der EP 1 796 238 A2 bekannt, welches mit einem Softwaremodul durchgeführt wird. Zur Detektion eines Serienlichtbogens wird in Zeitfenstern des Stromverlaufs der arithmetische Mittelwert gebildet. Überschreitet die Differenz der Mittelwerte während zweier aufeinanderfolgender Zeitfenster einen Schwellwert, wird ein Zähler erhöht. Bleibt die Differenz unter dem Schwellwert, wird der Zähler verringert. Ein Serienlichtbogen wird dann detektiert, wenn der Zählerstand einen gewissen Wert überschreitet. Zur Detektion eines
Parallellichtbogens wird in einem Zeitfenster ein Maximum und ein Minimum des Stromverlaufs bestimmt und die Differenz davon berechnet. Ist die Differenz größer als ein bestimmter Schwellwert, wird ein weiterer Zähler erhöht. Bleibt die Differenz unter dem Schwellwert, wird dieser Zähler verringert. Ein
Parallellichtbogen wird dann detektiert, wenn der Zählerstand einen gewissen Wert überschreitet. Nachteilig ist hierbei, dass lediglich der Stromverlauf berücksichtigt wird. Ebenso wird erst nach mehreren Stromänderungen ein Lichtbogen detektiert, sodass bereits ein Schaden entstehen kann. Auch ist nachteilig, dass unterschiedliche Detektionsverfahren für Serienlichtbögen und Parallellichtbögen eingesetzt werden.
Die Aufgabe der Erfindung besteht darin, ein oben genanntes Verfahren und eine oben genannte Photovoltaikanlage zu schaffen, mit der die Sicherheit der Photovoltaikanlagen mit einer Komponente der Photovoltaikanlage überwacht werden kann. Nachteile bekannter Systeme sollen vermieden oder zumindest reduziert werden.
Die Aufgabe der Erfindung wird in verfahrensmäßiger Hinsicht dadurch gelöst, dass während der Zeitfenster Werte einer Spannung des Gleichstrompfads erfasst und ein Mittelwert gebildet wird, und dass basierend auf den Mittelwerten für den Strom und die Spannung über ein Berechnungsverfahren zumindest ein Detektions- signal und zumindest eine Detektionsschwelle kontinuierlich berechnet wird.
Ebenso wird die Aufgabe der Erfindung durch eine oben genannte Photovoltaikanlage gelöst, bei der eine Messeinrichtung zur Messung der Gleichspannung und des Gleichstromes vorgesehen ist, und dass die Steuereinrichtung zur Durchführungdes oben genannten Detektionsverfahrens ausgebildet ist.
Vorteilhaft ist hierzu und zu den weiteren Ansprüchen, dass die Detektion immer im Verhältnis zur Ausgangsleistung des Wechselrichters durchgeführt wird, da Strom und Spannung erfasst werden. Dadurch kann das Detektionsverfahren zwischen Lichtbögen und Einstrahlungsänderungen unterscheiden. Somit werden auch Lichtbögen mit kleineren Leistungen erkannt, wodurch eine Früherkennung der Lichtbögen erfolgt. Von Vorteil ist auch, dass die Empfindlichkeit des Verfahrens über Korrekturfaktoren einstellbar ist und mit einer Komponente der Photovoltaikanlage, beispielsweise mit der Steuereinrichtung des Wechselrichters, durchführbar ist. Somit kann das in vorteilhafter Weise digital ausgebildete Verfahren durch ein Softwareupdate implementiert werden. Daher wird auch eine einfache Umrüstung bzw. Integration in zumindest eine bestehende Komponente der Photovoltaikanlage erreicht. Vorteilhaft ist des Weiteren, dass das Detektionsver- fahren auch mit einer geringen Abtastrate (bis in den Hundert-Hz-Bereich) durchgeführt werden kann. Dadurch müssen entsprechend weniger Werte verarbeitet werden, sodass vorhandene Ressourcen verwendet bzw. die Bauteilkosten gering gehalten werden können.
Weitere Vorteile können der nachfolgenden Beschreibung entnommen werden.
Die vorliegende Erfindung wird anhand der beigefügten, schematischen Zeichnungen näher erläutert, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen übertragen werden können. Weiters können auch Einzelmerkmale aus dem gezeigten Ausführungsbeispiel bzw. aus den gezeigten Ausführungsbeispielen für sich eigenständige, erfindungsgemäße Lösungen darstellen.
Darin zeigen:
Fig. 1 ein schematisches Blockschaltbild einer Photovoltaikanlage;
Fig. 2 schematische zeitliche Verläufe von Strom und Spannung einer Photovoltaikanlage zur Ermittlung der jeweiligen Mittelwerte;
Fig. 3 einen schematischen zeitlichen Verlauf des Mittelwerts und des Langzeitmittelwerts der Spannung bis zum Auftreten eines Lichtbogens sowie das resultierende Detektionssignal;
Fig. 4 einen schematischen zeitlichen Verlauf des Mittelwerts und des Langzeitmittelwerts des Stroms bis zum Auftreten eines Lichtbogens sowie das resultierende Detektionssignal;
Fig. 5 schematisch einen Zeitverlauf während der Detektion eines Serienlichtbogens ;
Fig. 6 schematisch einen Zeitverlauf während der Detektion eines Parallellichtbogens; und
Fig. 7 schematisch die bei einem Lichtbogen resultierenden Arbeitspunkte des Wechselrichters einer Photovoltaikanlage.
Einführend wird festgehalten, dass gleiche Teile des Ausführungsbeispiels mit gleichen Bezugszeichen versehen werden.
Anhand der Fig. 1 bis 7 wird ein Verfahren zur Detektion von Lichtbögen in einem Gleichstrompfad einer Photovoltaikanlage beschrieben.
Dabei zeigt Fig. 1 ein Blockschaltbild eines Wechselrichters 1 einer Photovoltaikanlage zum Einspeisen einer von zumindest einer Solarzelle 2 erzeugten Eingangsgleichspannung UDC mit zugehörigem Eingangsgleichstrom IDC in eine Wechselspannung OhCf welche in ein Wechselspannungsnetz 3 eingespeist wird oder einem Verbraucher zur Verfügung gestellt wird. Die Photovoltaikanlage kann neben dem Wechselrichter 1 weitere Komponenten, wie zum Beispiel eine Anschlussbox und/oder Ähnliches (nicht dargestellt) aufweisen. Der Wechselrichter 1 beinhaltet einen DC-D- C-Wandler 4, welcher die Eingangsgleichspannung UDC in eine für den nachfolgenden DC-AC-Wandler 5 des Wechselrichters 1 geeignete Gleichspannung UDC' umwandelt. Durch den DC-AC-Wandler 5 und eine entsprechende Steuereinrichtung 6 wird die Gleichspannung UDC' in die Wechselspannung UAC umgewandelt. Entsprechend befindet sich zwischen der Solarzelle 2 und dem Wechselrichter 1 (strich- liert dargestellt) der Gleichstrompfad. Dieser fasst im Wesentlichen alle parallel und in Serie geschalteten Solarzellen 2 beispielsweise in einer Anschlussbox zusammen, welche mit dem Wechselrichter 1 verbunden ist. Demzufolge umfasst der Gleichstrompfad mehrere Leitungen und Kontaktstellen, wobei der Übersicht halber nur eine Leitung dargestellt ist.
Die Kontaktstellen können dabei beispielsweise durch Temperaturschwankungen, Alterung, Installationsmängel und/oder schlechter Verschraubung/Klemmung gelockert werden, und dadurch sogenannte Serienlichtbögen entstehen. Im Gegensatz dazu resultieren Parallellichtbögen hauptsächlich aufgrund von Mängeln bzw. Beschädigungen der Isolation, wenn die Leitungen nebeneinander geführt sind. Die Lichtbögen entstehen während des Betriebs des Wechselrichters 1 aufgrund des im Gleichstrompfad fließenden Stroms IDC und können zu gefährlichen Bränden führen. Um dies zu verhindern, werden Verfahren zur Detektion solcher Lichtbögen eingesetzt. Dabei werden Werte des Stroms IDC des Gleichstrompfads während eines sich wiederholenden Zeitfensters 7 erfasst und daraus pro Zeitfenster 7 ein Mittelwert 8, 8' gebildet, wie dies in Fig. 2 ersichtlich ist. Der aktuelle Mittelwert 8, 8' bzw. der Mittelwert 8, 81 des letzten Zeitfensters 7 wird dann mit dem Mittelwert 8, 8' des vorhergehenden Zeitfensters 7 verglichen. Erfindungsgemäß ist nun vorgesehen, dass während der Zeitfenster 7 Werte der Spannung UDC und des Stroms IDC des
Gleichstrompfads erfasst und jeweils ein Mittelwert 8, 8' gebildet wird, und basierend auf den Mittelwerten 8, 8' für Strom IDC und Spannung UDC über ein Berechnungsverfahren ein Detektionssi- gnal 9 und eine Detektionsschwelle 10 kontinuierlich berechnet wird. Durch Vergleichen des Detektionssignals 9 mit der Detektionsschwelle 10 wird ein Serien- und/oder Parallellichtbogen erkannt .
Als Grundlage für das Detektionsverfahren dienen die kontinuierlich am Eingang der Komponente der Photovoltaikanlage - wie dem Wechselrichter 1 - mit einer Messeinrichtung erfassten Werte für die Spannung UDC und den Strom IDC des Gleichstrompfads. Diese gemessenen Werte werden dem Berechnungsverfahren zur Verfügung ge- stellt, welches beispielsweise mit der Steuereinrichtung 6 des Wechselrichters 1 durchgeführt wird. Grundsätzlich kann die Berechnung für die Spannung UDC und den Strom IDC in gleicher Weise durchgeführt werden. Wesentlich für das Detektionsverfahren ist auch, dass eine Änderung der Lichteinstrahlung nicht als Lichtbogen detektiert wird. Ein Lichtbogen verursacht eine einmalige, schnelle Änderung des Stroms IDC und der Spannung UDC, wohingegen Änderungen der Einstrahlung im Vergleich dazu langsam und kontinuierlich erfolgen.
Das Detektionsverfahren wird nach einem Startvorgang des Wechselrichters 1 gestartet, wobei die Werte des Detektionsverfah- rens mit dem Startvorgang vorzugsweise rückgesetzt werden. Die Messeinrichtung liefert die kontinuierlich gemessenen Werte, welche vom Berechnungsverfahren in gleich große Zeitfenster 7 unterteilt werden. In jedem Zeitfenster 7 werden die Werte für den Strom IDC und die Spannung UDC mit einer Abtastfrequenz er- fasst, wobei die Zeitfenster 7 eine definierte Dauer von beispielsweise 50 ms aufweisen. Nach einem Zeitfenster 7 werden aus den im Zeitfenster 7 erfassten Werten der aktuelle Mittelwert 8 des Stroms IDC und der aktuelle Mittelwert 81 der Spannung UDC gebildet, wie in den Diagrammen in Fig. 2 dargestellt ist. Durch die Berechnung der Mittelwerte 8, 81 werden sporadische Änderungen entsprechend ausgeglichen. Die Mittelwerte 8, 8' des Stromes IDe und der Spannung UDC sind innerhalb der Zeitfenster 7 strich- liert eingezeichnet. Der zeitliche Verlauf dieser einzelnen Mittelwerte 8, 8' ist anhand eines Beispiels in den Fig. 3 und 4 dargestellt .
Im nächsten Schritt wird mit dem Berechnungsverfahren jeweils aus den aktuellen Mittelwerten 8, 8' und den Mittelwerten 8, 81 des vorhergehenden Zeitfensters 7, also aus zwei aufeinander folgenden Mittelwerten 8, 8', ein Differenzmittelwert berechnet. Somit können schnelle Änderungen zwischen zwei Zeitfenstern 7 erkannt werden.
Auch werden die aktuellen Mittelwerte 8, 81 zur Berechnung der jeweiligen aktuellen Langzeitmittelwerte 11 herangezogen, welche kontinuierlich aktualisiert werden. Der Verlauf der Langzeitmittelwerte 11, 11' ist ebenfalls in den Fig. 3 und 4 dargestellt. Die Langzeitmittelwerte 11, II1 werden aus den aktuellen Mittelwerten 8, 8' mittels einer digitalen Tiefpassfilterung berechnet, sodass der Einfluss des aktuellen Mittelwerts 8, 8' auf den aktuellen Langzeitmittelwert 11, II1 gering ist. Mit geeignet gewählten Zeitkonstanten bzw. Filterkoeffizienten kann damit gewährleistet werden, dass Lichtbögen von Einstrahlungsänderungen unterschieden werden können. Der aktuelle Langzeitmittelwert 11, 11' ändert sich demnach im Vergleich zur schnellen Änderung des Mittelwerts 8, 8' im Wesentlichen nur langsam.
Nach demselben Prinzip werden auch die jeweiligen Langzeitdifferenzmittelwerte durch digitale Tiefpassfilterung mit den gleichen Filterkoeffizienten aus den jeweiligen aktuellen
Differenzmittelwerten berechnet. Entsprechend ist auch hier der Einfluss des jeweiligen Differenzmittelwerts gering. Somit verhält sich der Langzeitdifferenzmittelwert wie ein Verzögerungsglied, sodass sich dieser langsamer als der Differenzmittelwert ändert. Demzufolge dienen die Langzeitdifferenzmittelwerte als Maß für die Einstrahlungsstärke, wodurch Lichtbögen von Einstrahlungsänderungen unterschieden werden können.
Anhand der Differenzmittelwerte, der Langzeitmittelwerte 11, 11' und der Langzeitdifferenzmittelwerte - welche entsprechend auf Basis der Mittelwerte 8, 8' berechnet wurden - kann nun sowohl das Detektionssignal 9 als auch die Detektionsschwelle 10 berechnet werden.
Zur Berechnung des Detektionssignals 9 wird ein Wert aus dem Langzeitdifferenzmittelwert und dem Differenzmittelwert der Spannung UDC gebildet - welcher einem Detektionssignal 9u für die Spannung UDC entspricht - und mit einem aus dem Langzeitdifferenzmittelwert und dem Differenzmittelwert des Stroms IDC gebildeten Wert - welcher einem Detektionssignal 9i für den Strom IDC entspricht - multipliziert. Dabei sind die Werte jeweils die Differenz zwischen dem Langzeitdifferenzmittelwert und dem Differenzmittelwert, welche zum gleichen Zeitpunkt berechnet wurden. Demnach resultiert eine größere Differenz bei schnellen Änderungen der Spannung UDC bzw. des Stroms IDC. Dies deshalb, da sich schnelle Änderungen im Differenzmittelwert viel deutlicher auswirken als im Langzeitdifferenzmittelwert. Auch ist dadurch sichergestellt, dass es sich um kurze, schnelle Änderungen handelt, wie dies beim Zünden eines Lichtbogens der Fall ist. Handelt es sich um Änderungen aufgrund der Einstrahlungsstärke, hat dies gleiche Auswirkungen auf den Langzeitmittelwert 11, 11' und den Mittelwert 8, 8', da solche Änderungen über einen längeren Zeitraum erfolgen, sodass die Differenz im Wesentlichen Null ist.
Gemäß den Fig. 3 und 4 ist eine schnelle Änderung zum Zeitpunkt 12 anhand der Mittelwerte 8, 8' und Langzeitmittelwerte 11, 11' dargestellt, aus welchen die entsprechenden Detektionssignale 9u bzw. 9i resultieren. Entsprechend resultiert bei langsamen Ände¬ rungen kein Detektionssignal 9u bzw. 9i.
Durch Multiplikation dieser beiden Differenzen bzw. der Detektionssignale 9u und 9i von Strom IDC und Spannung UDC wird die Änderung entsprechend verstärkt, sodass ein Lichtbogen schnell erkannt wird. Aus einer derartigen Berechnung resultiert, dass das Detektionssignal 9 im Wesentlichen Null ist, solange keine schnellen Änderungen der Spannung UDC und des Stroms IDC zeitgleich auftreten. Das heißt also, dass sich bei langsamen Änderungen der Langzeitdifferenzmittelwert und der
Differenzmittelwert gleich verhalten, sodass deren Differenz und entsprechend das Detektionssignal 9 Null ist. Resultiert allerdings durch einen auftretenden Lichtbogen eine schnelle, zeitgleiche Änderung, ändert sich auch das Detektionssignal 9 deutlich. Somit spiegelt das Detektionssignal 9 im Wesentlichen die Leistungsänderung wieder, welche den Leistungsverlust aufgrund des Lichtbogens beschreibt.
Zur Berechnung der Detektionsschwelle 10 werden hingegen die zum gleichen Zeitpunkt berechneten Langzeitmittelwerte 11 von Strom IDC und Spannung UDC multipliziert. Somit entspricht die Detektionsschwelle 10 im Wesentlichen der aktuellen Leistung.
Durch eine derartige Berechnung des Detektionssignals 9 und der Detektionsschwelle 10 sind diese immer an die Ausgangsleistung des Wechselrichters 1 angepasst, da diese kontinuierlich basierend auf der Spannung UDC und des Stroms IDC berechnet werden.
Damit in weiterer Folge ein Lichtbogen detektiert werden kann, muss das Detektionssignal 9 die Detektionsschwelle 10 überschreiten, wie zum Zeitpunkt 12 gemäß Fig. 5 und 6 ersichtlich. Um einen Lichtbogen zu detektieren müsste die Leistungsänderung die aktuelle Leistung überschreiten. Da dies nicht möglich ist, wird zumindest zur Berechnung der Detektionsschwelle 10 oder des Detektionssignals 9 ein Korrekturfaktor eingesetzt. Selbstverständlich kann sowohl zur Berechnung der Detektionsschwelle 10 als auch zur Berechnung des Detektionssignals 9 jeweils ein Korrekturfaktor multiplikativ eingesetzt werden. Dabei weist der Korrekturfaktor für das Detektionssignal 9 einen Wert größer Eins und der Korrekturfaktor für die Detektionsschwelle 10 einen Wert kleiner Eins auf. Somit ist gewährleistet, dass auch Lichtbögen mit geringer Leistung - also mit kurzer Lichtbogenlänge - erkannt werden können. Aufgrund dieser Berechnungen wird die Detektionsschwelle 10 an langsame Änderungen des Stroms IDC und der Spannung UDC angepasst. Da die Detektionsschwelle 10 der aktuellen Leistung entspricht und die Leistung wiederum von der Einstrahlungsstärke abhängt, ist die Detektionsschwelle 10
automatisch an die aktuellen Gegebenheiten angepasst. Zusätzlich kann durch die jeweiligen Korrekturfaktoren die Empfindlichkeit der Detektion der Lichtbögen angepasst werden, indem der Korrekturfaktor für die Detektionsschwelle 10 und der Korrekturfaktor für das Detektionssignal 9 aufeinander entsprechend abgestimmt werden.
Grundsätzlich wird für einen Serienlichtbogen und einen Parallellichtbogen ein unterschiedlicher Korrekturfaktor zur Berechnung der jeweiligen Detektionsschwelle 10 verwendet, sodass eine Detektionsschwelle 10s für einen Serienlichtbogen und eine Detektionsschwelle 10p für einen Parallellichtbogen resultiert. Zur Detektion eines Lichtbogens wird dabei das gemeinsame Detektionssignal 9 verwendet. Somit kann zum Einen ein gemeinsames Detektionsverfahren für beide Arten von Lichtbögen verwendet werden und zum Anderen auch eine Erkennung der Art des auftretenden Lichtbogens ermöglicht werden. Zurückzuführen ist dies auf ein unterschiedliches Verhalten der Photovoltaikanlage bei einem Serienlichtbogen und bei einem Parallellichtbogen, wodurch der Wechselrichter 1 den Arbeitspunkt AP ändert, wie in Fig. 7 dargestellt. Tritt in der Photovoltaikanlage ein Serienlichtbogen auf, verringert sich die Eingangsgleichspannung UDC durch den Lichtbogenspannungsabfall, wodurch der Wechselrichter 1 seinen
Arbeitspunkt AP auf einen Arbeitspunkt AP3 aufgrund des Serienlichtbogens verändert. Dadurch sinkt zwar die Ausgangsleistung, aber der Betrieb des Wechselrichters 1 ist weiterhin möglich. Im Gegensatz zu einer geringfügigen Änderung des Arbeitspunktes AP bei einem Serienlichtbogen ändert sich der Arbeitspunkt AP im Falle eines Parallellichtbogens erheblich. Da der Parallellichtbogen parallel zum Eingang des Wechselrichters 1 mit einer gewissen geringen Lichtbogenspannung brennt und einen gegenüber dem Wechselrichterwiderstand niederohmigen Lichtbogenwiderstand aufweist, fließt nur ein sehr geringer Teil des Stroms IDC zum Wechselrichter 1. Demzufolge verändert sich der Arbeitspunkt AP gemäß Fig. 7 deutlich, sodass ein Arbeitspunkt APP aufgrund des Parallellichtbogens resultiert. Mit einem derartigen Arbeitspunkt APp ist ein sinnvoller Betrieb des Wechselrichters 1 nicht mehr möglich.
Die Spannungsänderung und Stromänderung ist also bei einem Parallellichtbogen viel größer als bei einem Serienlichtbogen. Demzufolge ist die Detektionsschwelle 10p für einen
Parallellichtbogen auch höher als die Detektionsschwelle 10s für einen Serienlichtbogen. Überschreitet das Detektionssignal 9 die Detektionsschwelle 10s für den Serienlichtbogen und nicht für die Detektionsschwelle 10p für den Parallellichtbogen gemäß Fig. 5, wird ein Serienlichtbogen detektiert. Werden vom Detektionssignal 9 beide Detektionsschwellen 10s und 10p gemäß Fig. 6 überschritten, wird hingegen ein Parallellichtbogen detektiert. Das Detektionssignal 9 wird gemäß dem Berechnungsverfahren bei schnellen Änderungen von Strom und/oder Spannung bzw. des Arbeitspunktes AP gebildet, wobei bei langsamen Änderungen des Arbeitspunktes AP aufgrund von Änderungen der Einstrahlungsstärke im Wesentlichen kein Detektionssignal 9 gebildet wird.
Nachdem mit dem Berechnungsverfahren das Detektionssignal 9 und die Detektionsschwellen 10s und 10p berechnet wurden, werden gemäß dem Detektionsverfahren das Detektionssignal 9 und die Detektionsschwellen 10s/10p miteinander verglichen. Überschreitet dabei das Detektionssignal 9 zumindest eine der Detektions- schwellen 10s/10p, ist ein Lichtbogen aufgetreten. Das heißt, dass entweder ein Serienlichtbogen oder ein Parallellichtbogen detektiert wurde. Eine Unterscheidung der Lichtbogenart ist erforderlich, da nach einer Detektion auch unterschiedliche Maßnahmen erforderlich sind.
Wird das Detektionsverfahren in einer anderen Komponente der Photovoltaikanlage als dem Wechselrichter 1 (wie beschrieben) durchgeführt, erfolgt eine entsprechende Kommunikation dieser anderen Komponente mit dem Wechselrichter 1. Die Kommunikation kann beispielsweise drahtlos oder drahtgebunden erfolgen (eigenes Bussystem, aufmoduliert auf den Gleichstrompfad, usw.) .
Bei Detektion eines Serienlichtbogens wird der Wechselrichter derart in einen sicheren Zustand gebracht, indem im Wesentlichen kein Wechselstrom mehr erzeugt wird. Demnach wird der Stromfluss im Gleichstrompfad unterbrochen und der Lichtbogen erlischt. Wird hingegen ein Parallellichtbogen detektiert, wird der
Gleichstrompfad durch einen Schalter kurzgeschlossen. Dadurch wird die Lichtbogenspannung im Wesentlichen Null, sodass der Lichtbogen erlischt. Als Schalter kann dabei der DC-DC-Wandler 4 verwendet werden oder aber auch ein eigener, zum Wechselrichter 1 parallel geschalteter Schalter.
Das beschriebene Detektionsverfahren kann auch mit einer frequenzselektiven Auswertung (z.B. durch digitale Filter) und/oder mit einer Auswertung im Frequenzbereich (z.B. Fast Fourier
Transformation) kombiniert werden. Dabei wird aufgrund der Höhe der Spektralanteile im Verlauf der Spannung UDC und/oder des Stroms IDC ein zusätzliches Detektionssignal 9 und eine zusätzliche Detektionsschwelle 10 erzeugt, welche mit den Ergebnissen des Berechnungsverfahrens entsprechend kombiniert werden können. Somit wird die Zuverlässigkeit weiter erhöht.
Auch kann eine Alarmmeldung generiert werden, welche über das Internet, Mobilfunk oder dergleichen versendet wird.
Wird kein Lichtbogen detektiert, bleibt also das Detektionssignal 9 unter der Detektionsschwelle 10, läuft das Detektionsver- fahren weiter. Im Allgemeinen wird das Detektionsverfahren während des Betriebs des Wechselrichters 1 durchgeführt. Gestartet wird das Detektionsverfahren nach einem Startvorgang des Wechselrichters 1, sodass stabile Werte am Eingang des Wechselrichters 1 zur Verfügung stehen.
In definierten Abständen kann auch ein Testlauf des Detektionsverfahrens durchgeführt werden. Dabei wird die Funktion des Detektionsverfahrens überprüft. Beispielsweise erfolgt dies direkt vom Wechselrichter 1 oder durch ein externes Gerät, wobei dies in einem Ruhezustand der Photovoltaikanlage erfolgt. Der Testlauf erfolgt beispielsweise derart, dass am Eingang des Wechselrichters 1 sich unterschiedlich schnell ändernde Spannungs- und/oder Stromverläufe angelegt werden, welche beispielsweise von einem Impulsgenerator, Signalgenerator oder dergleichen erzeugt werden. Ebenso können diese Spannungs- und/oder Stromverläufe auch durch bestimmte Werte simuliert werden. Diese Werte werden entsprechend dem Detektionsverfahren anstelle der kontinuierlich gemessenen Werte von Strom IDC und Spannung UDC verwendet. Die Amplituden dieser Verläufe sind an die Ausgangsleistung des Wechselrichters 1 entsprechend angepasst. Die Verläufe werden mit einer entsprechenden Frequenz verändert, sodass sowohl langsame als auch schnelle Änderungen simuliert werden können. Demnach darf bei geringen Frequenzen der Verläufe kein Lichtbogen detektiert werden - da dies einer Änderung der Einstrahlungsstärke entspricht, wobei bei höheren Frequenzen ein
Lichtbogen detektiert werden sollte. Durch geeignete Wahl der Amplitude kann auch überprüft werden, ob das Detektionsverfahren zwischen Serienlichtbögen und Parallellichtbögen unterscheiden kann.

Claims

Patentansprüche :
1. Verfahren zur Detektion von Lichtbögen in einem Gleichstrompfad einer Photovoltaikanlage, wobei Werte eines Stroms (IDC) des Gleichstrompfads während eines sich wiederholenden Zeitfensters (7) erfasst und ein Mittelwert (8) gebildet wird, dadurch gekennzeichnet, dass während der Zeitfenster (7) Werte einer Spannung (UDC) des Gleichstrompfads erfasst und ein Mittelwert (8') gebildet wird, und dass basierend auf den Mittelwerten
(8, 81) für den Strom (IDc) und die Spannung (UDC) über ein Berechnungsverfahren zumindest ein Detektionssignal (9) und zumindest eine Detektionsschwelle (10) kontinuierlich berechnet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Berechnung des zumindest einen Detektionssignals (9) aus den jeweiligen Mittelwerten (8, 8') Differenzmittelwerte berechnet werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Berechnung des zumindest einen Detektionssignals (9) und der zumindest einen Detektionsschwelle (10) aus den jeweiligen Mittelwerten (8, 8') Langzeitmittelwerte (11, II1) durch digitale Tiefpassfilterung berechnet werden.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass zur Berechnung des zumindest einen Detektionssignals (9) aus den jeweiligen Differenzmittelwerten Langzeitdifferenzmittelwerte durch digitale Tiefpassfilterung berechnet werden.
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass nach jedem Zeitfenster (7) das Detektionssignal (9) und die Detektionsschwelle (10) anhand eines Differenzmittelwerts, eines Langzeitmittelwerts (11, 11') und eines Langzeitdifferenzmittelwerts jeweils des Stroms (IDc) und der
Spannung (UDC) berechnet wird.
6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass ein Wert aus dem Langzeitdifferenzmittelwert und dem Differenzmittelwert der Spannung (UDC) gebildet wird und mit einem aus dem Langzeitdifferenzmittelwert und dem Differenzmit- telwert des Stroms (IDC) gebildeten Wert zur Bildung des Detekti- onssignals (9) multipliziert wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Werte des Detektionssignals (9) mit einem Korrekturfaktor größer 1 multipliziert werden.
8. Verfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die Langzeitmittelwerte (11, 11') des Stroms (IDc) und der Spannung (UDC) zur Bildung der Detektionsschwelle (10) multipliziert werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Detektionsschwelle (10) für die Erkennung eines Serienlichtbogens mit einem Korrekturfaktor kleiner 1 multipliziert wird.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Detektionsschwelle (10) für die Erkennung eines Parallellichtbogens mit einem Korrekturfaktor kleiner 1 multipliziert wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein Lichtbogen detektiert wird, wenn die Detektionsschwelle (10) vom Detektionssignals (9) überschritten wird, und zwischen einem Serienlichtbogen und einem Parallellichtbogen unterschieden wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass nach Detektion eines Lichtbogens dieser gelöscht wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass zur Löschung des Parallellichtbogens der Gleichstrompfad mit einem Schalter kurzgeschlossen wird und zur Löschung des Serienlichtbogens der Stromfluss im Gleichstrompfad unterbrochen wird.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Funktion des Detektionsverfahrens mit einem Testlauf überprüft wird.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekenn- zeichnet, dass das Detektionsverfahren nach einem Startvorgang der Photovoltaikanlage aktiviert wird.
16. Photovoltaikanlage mit Komponenten zum Einspeisen in ein Wechselspannungsnetz (3), mit einem DC-DC-Wandler (4) und einem DC-AC-Wandler (5) zur Umwandlung der von zumindest einer Solarzelle (2) erzeugten Gleichspannung (UDC) mit zugehörigem Gleichstrom (IDc) in eine Wechselspannung (UAC) zur Einspeisung in das Wechselspannungsnetz (3), und einer Steuereinrichtung (6), dadurch gekennzeichnet, dass eine Messeinrichtung zur Messung der Gleichspannung (UDC) und des Gleichstromes (IDc) vorgesehen ist, und dass die Steuereinrichtung (6) zur Durchführung des Verfahrens zur Detektion von Lichtbögen in einem Gleichstrompfad der Photovoltaikanlage gemäß den Ansprüchen 1 bis 15 ausgebildet ist.
PCT/AT2010/000194 2009-08-14 2010-06-02 Verfahren zur lichtbogendetektion in photovoltaikanlagen und eine solche photovoltaikanlage WO2011017721A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012524046A JP5393891B2 (ja) 2009-08-14 2010-06-02 光起電システムにおけるアーク検出方法及びそのような光起電システム
KR1020127006716A KR101354643B1 (ko) 2009-08-14 2010-06-02 광전지 시스템들에서 아크들을 검출하기 위한 방법 및 이러한 광전지 시스템
BR112012003368-9A BR112012003368B1 (pt) 2009-08-14 2010-06-02 Processo para detecção de arcos voltaicos em um percurso de corrente contínua de um sistema fotovoltaico e sistema fotovoltaico
AU2010282204A AU2010282204B2 (en) 2009-08-14 2010-06-02 Method for detecting arcs in photovoltaic systems and such a photovoltaic system
CN201080035538.6A CN102472789B (zh) 2009-08-14 2010-06-02 光电系统中电弧的检测方法
IN1351DEN2012 IN2012DN01351A (de) 2009-08-14 2010-06-02
US13/389,360 US8576520B2 (en) 2009-08-14 2010-06-02 Method for detecting arcs in photovoltaic systems and such a photovoltaic system
EP10721919.8A EP2464986B1 (de) 2009-08-14 2010-06-02 Verfahren zur lichtbogendetektion in photovoltaikanlagen und eine solche photovoltaikanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1285/2009 2009-08-14
AT0128509A AT509251A1 (de) 2009-08-14 2009-08-14 4erfahren zur lichtbogendetektion in photovoltaikanlagen und eine solche photovoltaikanlage

Publications (1)

Publication Number Publication Date
WO2011017721A1 true WO2011017721A1 (de) 2011-02-17

Family

ID=42670514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2010/000194 WO2011017721A1 (de) 2009-08-14 2010-06-02 Verfahren zur lichtbogendetektion in photovoltaikanlagen und eine solche photovoltaikanlage

Country Status (10)

Country Link
US (1) US8576520B2 (de)
EP (1) EP2464986B1 (de)
JP (1) JP5393891B2 (de)
KR (1) KR101354643B1 (de)
CN (1) CN102472789B (de)
AT (1) AT509251A1 (de)
AU (1) AU2010282204B2 (de)
BR (1) BR112012003368B1 (de)
IN (1) IN2012DN01351A (de)
WO (1) WO2011017721A1 (de)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028247A1 (de) * 2010-08-31 2012-03-08 Ellenberger & Poensgen Gmbh Verfahren und vorrichtung zum sicheren schalten einer photovoltaikanlage nach unterscheidung der lichtbogenart
GB2485527A (en) * 2010-11-09 2012-05-23 Solaredge Technologies Ltd Arc detection in a system including a photovoltaic panel
WO2012116722A1 (en) * 2011-02-28 2012-09-07 Sma Solar Technology Ag Method and system for detecting an arc fault in a power circuit
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2013004762A1 (fr) * 2011-07-04 2013-01-10 Commissariat à l'énergie atomique et aux énergies alternatives Detection d'arcs electriques dans les installations photovoltaïques
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
JP2013132157A (ja) * 2011-12-22 2013-07-04 Mitsubishi Electric Corp 太陽光発電システム
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US8570017B2 (en) 2007-02-20 2013-10-29 Commissariat A L'energie Atomique Voltage limiter and protection of a photovoltaic module
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
DE102013219490A1 (de) 2013-09-27 2015-04-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Lokalisieren eines Lichtbogens in einem Strompfad einer Fotovoltaikanlage
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US9006569B2 (en) 2009-05-22 2015-04-14 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
TWI494580B (zh) * 2013-02-27 2015-08-01 Inventec Solar Energy Corp 電池片檢測方法與裝置
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
DE102014005524A1 (de) * 2014-04-15 2015-10-15 Lisa Dräxlmaier GmbH Unterbrechung eines Stromes
EP2959304A1 (de) * 2013-02-22 2015-12-30 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Verfahren und vorrichtung zur erkennung von lichtbögen in einer fotovoltaikanlage
EP2959303A1 (de) * 2013-02-22 2015-12-30 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Verfahren und vorrichtung zur erkennung von lichtbögen in einer photovoltaikanlage
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
DE102014226999A1 (de) 2014-12-29 2016-06-30 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen eines Lichtbogens in einer Fotovoltaikanlage
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9843288B2 (en) 2013-08-29 2017-12-12 Commissariat à l'énergie atomique et aux énergies alternatives Parallel electric arc detection across the main terminals of a photovoltaic installation
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10078105B2 (en) 2015-09-23 2018-09-18 Abb Schweiz Ag Electrical system with arc fault detection
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10432139B2 (en) 2013-08-29 2019-10-01 Commissariat à l'énergie atomique et aux énergies alternatives Electric arc detection in photovoltaic installations
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
EP3667340A1 (de) * 2018-12-12 2020-06-17 Hamilton Sundstrand Corporation Detektion von lichtbogenfehlern mit hoher frequenz
WO2020151840A1 (de) * 2019-01-24 2020-07-30 Siemens Aktiengesellschaft Betreiben einer lastzone an einem stromnetz
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11016133B2 (en) 2018-12-12 2021-05-25 Hamilton Sunstrand Corporation Arc fault detection with sense wire monitoring
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
DE102020100838A1 (de) 2020-01-15 2021-07-15 Sma Solar Technology Ag Verfahren und schaltungsanordnung zur detektion eines lichtbogens und photovoltaik (pv) - wechselrichter mit einer entsprechenden schaltungsanordnung
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11290056B2 (en) 2018-02-20 2022-03-29 Taiyo Yuden Co., Ltd. Solar power generation fault diagnosis device and solar power generation fault diagnosis method
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120039036A (ko) * 2009-07-23 2012-04-24 엔페이즈 에너지, 인코포레이티드 Dc 아크 장애들의 검출 및 제어를 위한 방법 및 장치
DE102011082940A1 (de) * 2011-09-19 2013-03-21 Bender Gmbh & Co. Kg Verfahren und Vorrichtung zur Erkennung mechanischer Einwirkungen auf elektrische Anlagen
CN102914709B (zh) * 2012-10-09 2015-01-07 常州加伏沃新能源科技有限公司 基于信号回声器区分逆变器噪音和直流电弧信号的方法
GB2511836A (en) * 2013-03-15 2014-09-17 Control Tech Ltd Electrical fault detection
US9995796B1 (en) * 2013-05-23 2018-06-12 National Technology & Engineering Solutions Of Sandia, Llc Identifying an arc-fault type in photovoltaic arrays
CN103336223A (zh) * 2013-06-14 2013-10-02 上海叠泉信息科技有限公司 故障电弧检测与定位系统和方法
EP3041104B1 (de) * 2013-08-26 2021-06-02 Mitsubishi Electric Corporation Gleichstromerzeugungssystem und schutzverfahren für das gleichstromerzeugungssystem
KR101376725B1 (ko) * 2013-10-14 2014-03-27 주식회사 넥스트스퀘어 태양광 모듈 접속반
DE102014204253B4 (de) * 2014-03-07 2016-06-09 Siemens Aktiengesellschaft Detektieren eines seriellen Lichtbogens in einer elektrischen Anlage
FR3023377B1 (fr) 2014-07-04 2016-08-12 Schneider Electric Ind Sas Procede et dispositif de detection d'arcs electriques pour installations electriques a source de courant continu
JP2016157364A (ja) * 2015-02-26 2016-09-01 京セラ株式会社 電力制御装置及びその制御方法
FR3044489B1 (fr) * 2015-12-01 2017-12-22 Commissariat Energie Atomique Procede et dispositif de detection d'un arc electrique parasite dans une installation photovoltaique
FR3044488B1 (fr) 2015-12-01 2017-12-22 Commissariat Energie Atomique Procede et dispositif d'evaluation de l'energie produite par un arc electrique dans une installation photovoltaique
FR3044487B1 (fr) * 2015-12-01 2017-12-22 Commissariat Energie Atomique Procede et dispositif de detection d'un arc electrique dans une installation photovoltaique
WO2017207535A1 (de) 2016-05-31 2017-12-07 Siemens Aktiengesellschaft Störlichtbogenerkennungseinheit
DE102016209445B4 (de) * 2016-05-31 2021-06-10 Siemens Aktiengesellschaft Störlichtbogenerkennungseinheit
DE102016209444A1 (de) * 2016-05-31 2017-11-30 Siemens Aktiengesellschaft Störlichtbogenerkennungseinheit
US11205891B2 (en) 2016-05-31 2021-12-21 Siemens Aktiengesellschaft Arc fault detection unit
CN109478775B (zh) 2016-05-31 2020-12-25 西门子股份公司 故障电弧识别单元
ES2746193T3 (es) * 2017-02-27 2020-03-05 Abb Schweiz Ag Método para proteger un conjunto inversor contra el arco de corriente continua, y conjunto inversor
WO2018160924A1 (en) * 2017-03-02 2018-09-07 Rosemount Inc. Trending functions for partial discharge
DE202017006946U1 (de) 2017-07-31 2018-12-12 Ellenberger & Poensgen Gmbh Abschaltvorrichtung
US11067639B2 (en) 2017-11-03 2021-07-20 Rosemount Inc. Trending functions for predicting the health of electric power assets
US10794736B2 (en) 2018-03-15 2020-10-06 Rosemount Inc. Elimination of floating potential when mounting wireless sensors to insulated conductors
US11181570B2 (en) 2018-06-15 2021-11-23 Rosemount Inc. Partial discharge synthesizer
US10985695B2 (en) 2018-08-28 2021-04-20 Analog Devices International Unlimited Company DC arc detection and photovoltaic plant profiling system
US10833531B2 (en) 2018-10-02 2020-11-10 Rosemount Inc. Electric power generation or distribution asset monitoring
EP3874593A4 (de) * 2018-10-31 2022-08-10 The University of Queensland Solarparkfehlerdetektion und diagnose
CN109596956B (zh) * 2019-01-08 2021-04-20 中国恩菲工程技术有限公司 直流串联电弧检测方法及装置
CN110108971B (zh) * 2019-06-26 2021-06-25 云南电网有限责任公司电力科学研究院 一种架空裸导线经树木接地故障的电弧检测方法
US11313895B2 (en) 2019-09-24 2022-04-26 Rosemount Inc. Antenna connectivity with shielded twisted pair cable
CN114561619B (zh) * 2022-01-29 2022-09-27 深圳市瀚强科技股份有限公司 电源以及电弧处理方法
US20230251297A1 (en) * 2022-02-07 2023-08-10 General Electric Company Noise tolerant electrical discharge detection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025374A1 (de) 1994-03-16 1995-09-21 Alpha Real Ag Verfahren zum schutz einer elektrischen anlage, insbesondere einer gleichspannungs-, z.b. einer photovoltaik-anlage, anlage sowie detektionseinheit für die anlage
DE19633527A1 (de) * 1996-08-09 1998-02-12 Siemens Ag Verfahren zum Erzeugen eines einen Lichtbogenfehler kennzeichnenden Fehlerkennzeichnungssignals
US20040150410A1 (en) * 2003-01-31 2004-08-05 Schoepf Thomas J. Smart wire harness for an electrical circuit
DE102004056436A1 (de) 2004-11-19 2006-06-01 Esw-Extel Systems Wedel Gesellschaft Für Ausrüstung Mbh Verfahren und Vorrichtung zur Erkennung von Fehlerstrom-Lichtbögen in elektrischen Stromkreisen
EP1796238A2 (de) 2005-12-09 2007-06-13 Hamilton Sundstrand Corporation Gleichstrom Lichtbogenfehler-Detektion und Schutz
EP1918727A1 (de) * 2006-11-03 2008-05-07 SMA Technologie AG Verfahren zur Überwachung eines Photovoltaikgenerators
FR2912848A1 (fr) * 2007-02-20 2008-08-22 Commissariat Energie Atomique Limiteur de tension et protection d'un module photovoltaique

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481378A (en) * 1982-07-30 1984-11-06 Motorola, Inc. Protected photovoltaic module
US5513620A (en) * 1995-01-26 1996-05-07 Chrysler Corporation Ignition energy and breakdown voltage circuit and method
US5703743A (en) * 1996-04-29 1997-12-30 Schweitzer Engineering Laboratories, Inc. Two terminal active arc suppressor
US6021052A (en) * 1997-09-22 2000-02-01 Statpower Technologies Partnership DC/AC power converter
US6456471B1 (en) * 1998-02-19 2002-09-24 Square D Company Test, reset and communications operations in an ARC fault circuit interrupter with optional memory and/or backup power
US7463465B2 (en) * 2006-12-28 2008-12-09 General Electric Company Series arc fault current interrupters and methods
KR20120039036A (ko) 2009-07-23 2012-04-24 엔페이즈 에너지, 인코포레이티드 Dc 아크 장애들의 검출 및 제어를 위한 방법 및 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025374A1 (de) 1994-03-16 1995-09-21 Alpha Real Ag Verfahren zum schutz einer elektrischen anlage, insbesondere einer gleichspannungs-, z.b. einer photovoltaik-anlage, anlage sowie detektionseinheit für die anlage
DE19633527A1 (de) * 1996-08-09 1998-02-12 Siemens Ag Verfahren zum Erzeugen eines einen Lichtbogenfehler kennzeichnenden Fehlerkennzeichnungssignals
US20040150410A1 (en) * 2003-01-31 2004-08-05 Schoepf Thomas J. Smart wire harness for an electrical circuit
DE102004056436A1 (de) 2004-11-19 2006-06-01 Esw-Extel Systems Wedel Gesellschaft Für Ausrüstung Mbh Verfahren und Vorrichtung zur Erkennung von Fehlerstrom-Lichtbögen in elektrischen Stromkreisen
EP1796238A2 (de) 2005-12-09 2007-06-13 Hamilton Sundstrand Corporation Gleichstrom Lichtbogenfehler-Detektion und Schutz
EP1918727A1 (de) * 2006-11-03 2008-05-07 SMA Technologie AG Verfahren zur Überwachung eines Photovoltaikgenerators
FR2912848A1 (fr) * 2007-02-20 2008-08-22 Commissariat Energie Atomique Limiteur de tension et protection d'un module photovoltaique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. HAEBERLIN, MARKUS REAL: "Arc Detector for Remote Detection of Dangerous Arcs on the DC Side of PV Plants", CONFERENCE PROCEEDINGS OF 22ND EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE, MILANO, ITALY, September 2007 (2007-09-01), 22nd European Photovoltaic Solar Energy Conference, Milano, Italy, pages 1 - 6, XP002600942 *

Cited By (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8659188B2 (en) 2006-12-06 2014-02-25 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9041339B2 (en) 2006-12-06 2015-05-26 Solaredge Technologies Ltd. Battery power delivery module
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8570017B2 (en) 2007-02-20 2013-10-29 Commissariat A L'energie Atomique Voltage limiter and protection of a photovoltaic module
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US8773092B2 (en) 2007-08-06 2014-07-08 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US8599588B2 (en) 2007-12-05 2013-12-03 Solaredge Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11695371B2 (en) 2009-05-22 2023-07-04 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10879840B2 (en) 2009-05-22 2020-12-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9006569B2 (en) 2009-05-22 2015-04-14 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9748897B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US11509263B2 (en) 2009-05-22 2022-11-22 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10411644B2 (en) 2009-05-22 2019-09-10 Solaredge Technologies, Ltd. Electrically isolated heat dissipating junction box
US9748896B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10686402B2 (en) 2009-05-22 2020-06-16 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10270255B2 (en) 2009-12-01 2019-04-23 Solaredge Technologies Ltd Dual use photovoltaic system
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US11735951B2 (en) 2009-12-01 2023-08-22 Solaredge Technologies Ltd. Dual use photovoltaic system
US11056889B2 (en) 2009-12-01 2021-07-06 Solaredge Technologies Ltd. Dual use photovoltaic system
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9564882B2 (en) 2010-01-27 2017-02-07 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9231570B2 (en) 2010-01-27 2016-01-05 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9917587B2 (en) 2010-01-27 2018-03-13 Solaredge Technologies Ltd. Fast voltage level shifter circuit
WO2012028247A1 (de) * 2010-08-31 2012-03-08 Ellenberger & Poensgen Gmbh Verfahren und vorrichtung zum sicheren schalten einer photovoltaikanlage nach unterscheidung der lichtbogenart
JP2013542699A (ja) * 2010-08-31 2013-11-21 エレンベルガー ウント ペンスゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング アークタイプを識別後に太陽光発電システムを安全に遮断するための方法および装置
US8929038B2 (en) 2010-08-31 2015-01-06 Ellenberger & Poensgen Gmbh Method and device for safely switching a photovoltaic system after differentiating the arc type
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) * 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527A (en) * 2010-11-09 2012-05-23 Solaredge Technologies Ltd Arc detection in a system including a photovoltaic panel
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
WO2012116722A1 (en) * 2011-02-28 2012-09-07 Sma Solar Technology Ag Method and system for detecting an arc fault in a power circuit
US9136688B2 (en) 2011-02-28 2015-09-15 Sma Solar Technology Ag Method and system for detecting an arc fault in a power circuit
CN103635820A (zh) * 2011-07-04 2014-03-12 原子能与替代能源委员会 光伏设备中的电弧检测
US9746528B2 (en) 2011-07-04 2017-08-29 Commissariat à l'énergie atomique et aux énergies alternatives Detection of electrical arcs in photovoltaic equipment
WO2013004762A1 (fr) * 2011-07-04 2013-01-10 Commissariat à l'énergie atomique et aux énergies alternatives Detection d'arcs electriques dans les installations photovoltaïques
FR2977677A1 (fr) * 2011-07-04 2013-01-11 Commissariat Energie Atomique Detection d'arcs electriques dans les installations photovoltaiques
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
JP2013132157A (ja) * 2011-12-22 2013-07-04 Mitsubishi Electric Corp 太陽光発電システム
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US11740647B2 (en) 2012-05-25 2023-08-29 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10705551B2 (en) 2012-05-25 2020-07-07 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11334104B2 (en) 2012-05-25 2022-05-17 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
EP2959303A1 (de) * 2013-02-22 2015-12-30 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Verfahren und vorrichtung zur erkennung von lichtbögen in einer photovoltaikanlage
EP2959304A1 (de) * 2013-02-22 2015-12-30 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Verfahren und vorrichtung zur erkennung von lichtbögen in einer fotovoltaikanlage
TWI494580B (zh) * 2013-02-27 2015-08-01 Inventec Solar Energy Corp 電池片檢測方法與裝置
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9843288B2 (en) 2013-08-29 2017-12-12 Commissariat à l'énergie atomique et aux énergies alternatives Parallel electric arc detection across the main terminals of a photovoltaic installation
US10432139B2 (en) 2013-08-29 2019-10-01 Commissariat à l'énergie atomique et aux énergies alternatives Electric arc detection in photovoltaic installations
DE102013219490A1 (de) 2013-09-27 2015-04-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Lokalisieren eines Lichtbogens in einem Strompfad einer Fotovoltaikanlage
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
DE102014005524A1 (de) * 2014-04-15 2015-10-15 Lisa Dräxlmaier GmbH Unterbrechung eines Stromes
US9859702B2 (en) 2014-04-15 2018-01-02 Lisa Draexlmaier Gmbh Interruption of a current
DE102014005524B4 (de) 2014-04-15 2022-10-20 Lisa Dräxlmaier GmbH Unterbrechung eines Stromes
DE102014226999A1 (de) 2014-12-29 2016-06-30 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen eines Lichtbogens in einer Fotovoltaikanlage
US10078105B2 (en) 2015-09-23 2018-09-18 Abb Schweiz Ag Electrical system with arc fault detection
US10540530B2 (en) 2016-03-03 2020-01-21 Solaredge Technologies Ltd. Methods for mapping power generation installations
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11538951B2 (en) 2016-03-03 2022-12-27 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11824131B2 (en) 2016-03-03 2023-11-21 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11290056B2 (en) 2018-02-20 2022-03-29 Taiyo Yuden Co., Ltd. Solar power generation fault diagnosis device and solar power generation fault diagnosis method
EP3667340A1 (de) * 2018-12-12 2020-06-17 Hamilton Sundstrand Corporation Detektion von lichtbogenfehlern mit hoher frequenz
US11047899B2 (en) 2018-12-12 2021-06-29 Hamilton Sunstrand Corporation High frequency arc fault detection
US11016133B2 (en) 2018-12-12 2021-05-25 Hamilton Sunstrand Corporation Arc fault detection with sense wire monitoring
WO2020151840A1 (de) * 2019-01-24 2020-07-30 Siemens Aktiengesellschaft Betreiben einer lastzone an einem stromnetz
DE102020100838B4 (de) 2020-01-15 2021-07-29 Sma Solar Technology Ag Verfahren und schaltungsanordnung zur detektion eines lichtbogens und photovoltaik (pv) - wechselrichter mit einer entsprechenden schaltungsanordnung
DE102020100838A1 (de) 2020-01-15 2021-07-15 Sma Solar Technology Ag Verfahren und schaltungsanordnung zur detektion eines lichtbogens und photovoltaik (pv) - wechselrichter mit einer entsprechenden schaltungsanordnung
WO2021144434A1 (de) 2020-01-15 2021-07-22 Sma Solar Technology Ag Verfahren und schaltungsanordnung zur detektion eines lichtbogens und photovoltaik (pv) - wechselrichter mit einer entsprechenden schaltungsanordnung
WO2021144462A1 (de) 2020-01-15 2021-07-22 Sma Solar Technology Ag Verfahren und schaltungsanordnung zur detektion eines lichtbogens und photovoltaik (pv) - wechselrichter mit einer entsprechenden schaltungsanordnung

Also Published As

Publication number Publication date
AU2010282204A1 (en) 2012-03-01
EP2464986B1 (de) 2014-02-26
JP5393891B2 (ja) 2014-01-22
KR20120066636A (ko) 2012-06-22
BR112012003368A2 (pt) 2016-02-16
CN102472789B (zh) 2015-02-18
EP2464986A1 (de) 2012-06-20
KR101354643B1 (ko) 2014-01-21
AU2010282204B2 (en) 2014-06-12
BR112012003368B1 (pt) 2019-06-25
IN2012DN01351A (de) 2015-06-05
CN102472789A (zh) 2012-05-23
AT509251A1 (de) 2011-07-15
JP2013502054A (ja) 2013-01-17
US8576520B2 (en) 2013-11-05
US20120134058A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
EP2464986B1 (de) Verfahren zur lichtbogendetektion in photovoltaikanlagen und eine solche photovoltaikanlage
EP1909368B1 (de) Schaltungsanordnung und Verfahren zur Isolationsüberwachung für Umrichteranwendungen
EP2581941A2 (de) Photovoltaikanlage
DE102014005524B4 (de) Unterbrechung eines Stromes
DE19729168A1 (de) Fehlerstrom-Schutzschalter
DE3720683A1 (de) Vorrichtung und verfahren zur ansteuerung und kontrolle von elektrischen verbrauchern, insbesondere gluehkerzen
DE102019202163A1 (de) Schutzvorrichtung und Verfahren zum Abschalten zumindest einer Batteriezelle in einem Batteriesystem im Falle eines elektrischen Kurzschlusses sowie Kraftfahrzeug, Batteriesystem und Batteriezelle mit der Schutzvorrichtung
DE112022000383T5 (de) Lichtbogen-Erkennungsvorrichtung mit einer Funktion zur Unterscheidung eines Mehrfachfrequenzbandes
DE102010063419A1 (de) Verfahren zum Detektieren von Störlichtbogenereignissen durch einen Fehlerzähler und Vorrichtung
WO2015106869A1 (de) Überlast-überwachungsvorrichtung und verfahren zur überlast-überwachung
EP3748599B1 (de) Verfahren zum betrieb und tests eines gefahrenmeldesystems mit einem bussystem, melder zum anschluss an ein bussystem und gefahrenmeldesystem mit einem bussystem.
WO2012072810A1 (de) Verfahren und vorrichtung zur überwachung von schaltgeräten
DE102011121197B4 (de) Verfahren zur Inbetriebnahme eines Wechselrichters und Wechselrichter
WO2015144390A1 (de) Verfahren und vorrichtung zum detektieren und signalisieren eines kontaktfehlers innerhalb eines photovoltaikmoduls
DE102016106431A1 (de) Temperaturüberwachung
EP2015419B1 (de) Verfahren zum Zuordnen eines Fehlerstroms zu einer der drei Phasenleitungen eines Drei-Phasen-Systems sowie Fehlerstromschutzschalter
DE10318951A1 (de) Vorrichtung und Verfahren zur Erkennung von Lichtbögen in einem Stromkreis, insbesondere in einem Kraftfahrzeugbordnetz
CH684660A5 (de) Verfahren zur Ueberwachung mindestens einer elektrischen Leitung.
EP2936667B1 (de) Verfahren zum überwachen eines halbbrückenzweiges in einer halbbrücke sowie stromrichter mit dieser überwachung
WO2021144462A1 (de) Verfahren und schaltungsanordnung zur detektion eines lichtbogens und photovoltaik (pv) - wechselrichter mit einer entsprechenden schaltungsanordnung
EP2399328B1 (de) Schutzschalter mit detektion der aperiodischen stromänderungen
EP3797408B1 (de) Einrichtung, verfahren und steuermodul zur überwachung einer zweidrahtleitung
DE3619740A1 (de) Verfahren und anordnung zum schutz von abschaltbaren thyristoren
EP0660973B1 (de) Schutzauslöseverfahren
DE102022208878A1 (de) Verfahren und Anordnung zum Identifizieren eines Erdschlusses in einer Antriebseinheit eines Fahrzeugs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035538.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10721919

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010721919

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010282204

Country of ref document: AU

Ref document number: 13389360

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012524046

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1351/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010282204

Country of ref document: AU

Date of ref document: 20100602

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127006716

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012003368

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012003368

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120214