WO2011016451A1 - 太陽電池モジュールの製造方法、および、その製造方法で製造された太陽電池モジュール - Google Patents

太陽電池モジュールの製造方法、および、その製造方法で製造された太陽電池モジュール Download PDF

Info

Publication number
WO2011016451A1
WO2011016451A1 PCT/JP2010/063099 JP2010063099W WO2011016451A1 WO 2011016451 A1 WO2011016451 A1 WO 2011016451A1 JP 2010063099 W JP2010063099 W JP 2010063099W WO 2011016451 A1 WO2011016451 A1 WO 2011016451A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
resin
cell module
manufacturing
sheet
Prior art date
Application number
PCT/JP2010/063099
Other languages
English (en)
French (fr)
Inventor
清水 彰
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2011525896A priority Critical patent/JP5490802B2/ja
Priority to US13/388,357 priority patent/US20120125438A1/en
Publication of WO2011016451A1 publication Critical patent/WO2011016451A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module manufacturing method and a solar cell module manufactured by the manufacturing method.
  • solar cell modules There are various types of solar cell modules according to their use and usage environment.
  • One such solar cell module is a solar cell module having a laminated glass structure.
  • This solar cell module has a structure in which a solar cell is sealed inside the module by sandwiching a plurality of solar cells that are electrically connected to each other between a front side plate glass and a back side plate glass.
  • the solar cell module provided with this laminated glass structure In the solar cell module provided with this laminated glass structure, the sunlight that has passed through the surface side plate glass and entered the solar cell module passes through the translucent resin sealing layer in the portion where no solar cell exists. Reach the back side plate glass. The sunlight that has reached the back side plate glass passes through the back side plate glass and passes outside the solar cell module. Therefore, sunlight can be taken even in the space located on the back side of the solar cell module.
  • the solar cell module provided with the laminated glass structure is suitably used as a so-called daylighting type solar cell module.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-26455
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-288677
  • Patent Document 11 Japanese Patent Application Laid-Open No. 11-31834.
  • Patent Laid-Open No. 10-1334 Patent Document 4
  • Patent Document 5 Japanese Utility Model Publication No. 61-177464
  • the solar cell is sealed with a translucent resin sealing layer. Modularization is performed by inserting and placing solar cells sealed in a translucent resin sealing layer into a subassembly made of a front side plate glass and a back side plate glass.
  • sealing is performed between two glass sheets. A stop is formed, solar cells are arranged in the sealing part, and air or a filler is sealed.
  • FIG. 12 is a cross-sectional view showing an example of the structure of a solar battery cell in which a sealing portion between two plate glasses is filled with resin.
  • solar cells 3 are arranged on the upper surface of glass substrate 1.
  • the solar battery cell 3 is composed of a front electrode, a semiconductor layer, a back electrode, and the like.
  • the surface side plate glass 2 is arranged so as to face the glass substrate 1. Between the glass substrate 1 and the surface side plate glass 2, the resin member 11 is filled so that the photovoltaic cell 3 may be covered.
  • the solar battery cell 3 is sealed by attaching the waterproof frame 12 to the side surfaces of the glass substrate 1 and the front side plate glass 2.
  • FIG. 13 is a cross-sectional view showing another example of the structure of a solar battery cell in which a sealing portion between two plate glasses is filled with resin.
  • solar cells 3 are arranged on the upper surface of glass substrate 1.
  • a peripheral sealing member 5 is disposed on the upper surface of the glass substrate 1 so as to surround the solar battery cell 3.
  • the surface side plate glass 2 is arranged so as to face the glass substrate 1.
  • the sealing member formed by being surrounded by the glass substrate 1, the front side plate glass 2 and the peripheral sealing member 5 is filled with the resin member 11.
  • FIG. 14 is a cross-sectional view showing an example of the structure of a solar battery cell in which air is filled in a sealing portion between two plate glasses.
  • solar cells 3 are arranged on the upper surface of glass substrate 1.
  • a peripheral sealing member 5 is disposed on the upper surface of the glass substrate 1 so as to surround the solar battery cell 3.
  • the surface side plate glass 2 is arranged so as to face the glass substrate 1.
  • a sealing portion surrounded by the glass substrate 1, the front side plate glass 2, and the peripheral sealing member 5 is filled with air 13.
  • FIG. 15A is a cross-sectional view illustrating a process of laminating the resin member 14, the peripheral sealing member 5, and the surface side plate glass 2 on the glass substrate 1.
  • FIG. 15B is a cross-sectional view illustrating a state in which a lamination process is performed.
  • FIG. 15C is a cross-sectional view showing a state after the lamination process.
  • the resin member 14 and the peripheral sealing member 5 are disposed on the upper surface of the glass substrate 1 on which one or more photovoltaic cells 3 are disposed, and are opposed to the glass substrate 1 above the resin member 14.
  • the surface side plate glass 2 is arrange
  • the front side glass sheet 2 is pressurized in the direction indicated by the arrow from the upper surface side. Until the lower surface of the surface side plate glass 2 and the upper surface of the peripheral sealing member 5 are in contact with each other, the air 6 in the sealing portion formed by being surrounded by the glass substrate 1, the surface side plate glass 2, and the peripheral sealing member 5 is formed. Exhausted. After the surface side glass sheet 2 and the peripheral sealing member 5 are in contact with each other, there is no path for exhausting the air 6 in the sealing portion to the outside, so that the air 6 in the sealing portion cannot be exhausted sufficiently. .
  • the heated resin member 14 becomes the translucent resin layer 15, but the air 6 remains as bubbles inside the sealed portion.
  • the air bubbles thermally expand to cause deterioration such as cracks in the surrounding translucent resin layer 15. .
  • the translucent resin layer 15 deteriorates, it becomes difficult to maintain the performance of the solar battery cell 3.
  • the present invention has been made in view of the above-mentioned problems, and can prevent bubbles from remaining inside the sealing portion, and can reduce the number of work steps in the manufacturing process, a method for manufacturing a solar cell module, And it aims at providing the solar cell module manufactured with the manufacturing method.
  • a peripheral sealing member is arranged on the periphery of the upper surface of the first plate member, and one is provided on the upper surface of the first plate member surrounded by the peripheral sealing member.
  • the above solar cells are arranged, and the resin member is arranged on the upper surface of the solar cell from the height from the upper surface of the first plate member to the upper surface of the peripheral sealing member, from the upper surface of the first plate member.
  • a stacking step of stacking the second plate-like member so as to face the first plate-like member above the resin member.
  • the method for manufacturing a solar cell module includes a resin member that is heated and pressurized in an exhaust environment and laminated to form a translucent resin layer, from the upper surface of the first plate member to the upper surface of the peripheral sealing member.
  • a resin member that is heated and pressurized in an exhaust environment and laminated to form a translucent resin layer, from the upper surface of the first plate member to the upper surface of the peripheral sealing member.
  • the resin member can be dissolved by heating while sufficiently exhausting the sealing portion surrounded by the first plate-like member, the second plate-like member, and the peripheral portion sealing member.
  • the thickness of the resin member decreases, so that the lower surface of the second plate-shaped member and the upper surface of the peripheral sealing member approach each other.
  • the lower surface of the second plate-shaped member and the upper surface of the peripheral sealing member come into contact with each other, so that the solar battery cell and the translucent resin layer are sealed in the sealing portion. As a result, the generation of bubbles in the inside of the sealing portion is suppressed.
  • the resin member may be composed of a sheet-like resin member group in which a plurality of sheet-like resin members are laminated.
  • the thickness of the resin member can be increased, and the laminating process can be performed while ensuring the exhaust path of the sealing portion. Therefore, the translucent resin layer can be formed in a state in which bubbles are suppressed from being generated inside the sealing portion.
  • the lowermost sheet-shaped resin member of the sheet-shaped resin member group is formed of one sheet, and is in contact with the upper surface of the lowermost sheet-shaped resin member.
  • a plurality of other sheet-like resin members may be arranged.
  • the thickness of the resin member is increased by appropriately stacking and arranging another sheet-like resin member on the upper surface of the lowermost sheet-like resin member, and the sealing portion is exhausted. It is possible to perform the laminating process while securing the route. Therefore, the translucent resin layer can be formed in a state in which bubbles are suppressed from being generated inside the sealing portion.
  • a plurality of other sheet-like resin members may be arranged to be spaced apart from each other on the upper surface of the lowermost sheet-like resin member. Good. In this case, since the other sheet-like resin member is dispersed and arranged on the upper surface of the lowermost sheet-like resin member, the second plate-like member is stably arranged on the upper surface of the sheet-like resin member. can do.
  • the lowermost sheet-shaped resin member is formed of one sheet in the sheet-shaped resin member group, and is in contact with the upper surface of the lowermost sheet-shaped resin member, Further, another sheet-like resin member may be arranged continuously over the entire periphery of the upper surface. In this case, since the other sheet-like resin member is laminated continuously around the entire periphery of the upper surface of the lowermost sheet-like resin member, when the resin member is melted by heating, the lowermost sheet The resin can be smoothly diffused outside the resin-like resin member.
  • a gap may be formed between the outer periphery of the resin member and the inner periphery of the peripheral sealing member.
  • the resin when the resin member is melted by heating, the resin can be smoothly diffused into the gap between the outer periphery of the sheet-like resin member and the inner periphery of the peripheral sealing member.
  • irregularities may be formed on the surface of the sheet-like resin member. Further, the unevenness may be formed by embossing.
  • the resin member may be composed of one or more block-shaped resin members.
  • the block-shaped resin member may be formed in a column shape.
  • the block-shaped resin member may be formed in a weight shape.
  • the pressure applied to the resin member may be increased stepwise in the laminating process in the sealing step.
  • a resin plate, a metal plate, or a ceramic plate may be used as the first plate member or the second plate member.
  • an ethylene vinyl acetate copolymer, polyvinyl butyral, other olefinic resin, or silicon resin may be used as the sheet-like resin member.
  • the peripheral sealing member may be made of a moisture-proof material.
  • the material having moisture resistance may be any of butyl tape, butyl sheet, hot butyl, hygroscopic resin, and metal cored resin.
  • the second plate-like member is held by a resin member thicker than the peripheral sealing member, and is laminated by heating and pressurizing in an exhaust environment, whereby the lower surface of the second plate-like member is formed by the resin member.
  • a gap can be ensured between the upper surface of the peripheral sealing member and the peripheral sealing member. Therefore, sealing the solar cell and the translucent resin layer while sufficiently exhausting the sealing portion formed by being surrounded by the first plate member, the second plate member, and the peripheral sealing member. Can do. As a result, the generation of bubbles in the inside of the sealing portion is suppressed.
  • the step of filling the resin member and the step of arranging the peripheral sealing member in the lamination step the number of work steps in the manufacturing process of the solar cell module can be reduced.
  • FIG. 1 It is a top view which shows the state which looked at the solar cell module from the downward direction of surface side plate glass in the solar cell module after the lamination process which concerns on a 7th arrangement example.
  • FIG. 11 is a top view which shows the state which looked at the solar cell module after a lamination process from the downward direction of the surface side plate glass in the manufacturing method of the solar cell module which concerns on Embodiment 3 of this invention. It is a schematic cross section which shows an example of the structure of the photovoltaic cell which filled resin into the sealing part between two plate glass. It is a schematic cross section which shows another example of the structure of the photovoltaic cell which filled resin into the sealing part between two plate glass. It is a schematic cross section which shows an example of the structure of the photovoltaic cell which filled the sealing part between two plate glass with air.
  • FIG. 1A is a cross-sectional view showing a step of laminating a first laminate film, a peripheral sealing member, and a surface side plate glass on a glass substrate in the method for manufacturing a solar cell module according to Embodiment 1 of the present invention.
  • FIG. 1B is a cross-sectional view illustrating a state in which a lamination process is performed in the method for manufacturing a solar cell module according to the present embodiment.
  • FIG. 1C is a cross-sectional view showing a state after the lamination process in the method for manufacturing the solar cell module according to this embodiment.
  • the solar cell module according to Embodiment 1 of the present invention includes a glass substrate 1 as a first plate member, a surface side plate glass 2 as a second plate member, and an upper surface of the glass substrate 1.
  • the solar cell 3 and the peripheral sealing member 5 and the resin member 4 which are arranged are mainly provided.
  • the solar cell module has a substantially rectangular outer shape in plan view from above the glass substrate 1, and a main surface on one side thereof is configured as a light receiving surface for receiving sunlight.
  • the solar cell 3 of this embodiment is composed of one or more thin film solar cells formed by forming a semiconductor layer having a semiconductor junction such as a front electrode, a pn junction, and a back electrode on the upper surface of the glass substrate 1. ing.
  • the solar battery cell 3 is composed of a plurality of thin film solar cells, the thin film solar cells are connected to each other by a wiring (not shown).
  • the solar cell 3 is not limited to a thin film solar cell, and may be a crystalline solar cell formed from a wafer.
  • the front side plate glass 2 is disposed above the glass substrate 1 with an interval so that its main surface faces the glass substrate 1.
  • the glass substrate 1 and the surface side plate glass 2 for example, blue plate glass, white plate glass, mold plate glass, tempered glass, double tempered glass or netted glass can be used.
  • the glass substrate 1 and the surface side plate glass 2 are not necessarily the same type of plate glass, and different types of plate glasses may be used. What kind of plate glass is used is appropriately selected in consideration of the surrounding environment in which the solar cell module is installed.
  • a peripheral sealing member 5 is disposed in the peripheral portion of the upper surface of the glass substrate 1 on the side facing the front side plate glass 2.
  • the peripheral sealing member 5 has a surrounding shape in which edge portions arranged at four end portions of the solar cell module are connected to adjacent edge portions at the respective end portions, and has a predetermined space inside. have.
  • the peripheral sealing member 5 is arranged in the space inside the peripheral sealing member 5 so that the solar battery cells 3 are accommodated.
  • the four edge portions of the peripheral sealing member 5 are arranged so as to be positioned between the peripheral portion of each glass substrate 1 and the peripheral portion of the surface side plate glass 2.
  • the outer shape of the peripheral sealing member 5 is configured to be approximately the same size as the glass substrate 1 and the front side plate glass 2.
  • the peripheral sealing member 5 has a predetermined thickness in the thickness direction of the solar cell module, and plays a role of separating the glass substrate 1 and the surface side plate glass 2 in the thickness direction.
  • a member made of glass, resin, metal, or the like having heat resistance at least enough to withstand heat applied in a laminating process described later can be used.
  • the first laminate film 4 that is a resin member is disposed on the upper surface of the solar battery cell 3 disposed in the space inside the peripheral sealing member 5.
  • the size of the first laminate film 4 is adjusted in advance so that the first laminate film 4 is accommodated in the space inside the peripheral sealing member 5.
  • the size of the first laminate film 4 is set to be the same as or equivalent to the size of the space inside the peripheral sealing member 5.
  • the first laminate film 4 is formed so as to be thicker than the peripheral sealing member 5. Therefore, the height from the upper surface of the glass substrate 1 to the upper surface of the peripheral sealing member 5 is arranged so that the height from the upper surface of the glass substrate 1 to the upper surface of the first laminate film 4 is higher.
  • the laminated body obtained through the above laminating process is heated while pressure is applied in the direction indicated by the arrow from above the surface-side plate glass 2 in a vacuumed state. Is done.
  • the front side plate glass 2 is held by the first laminate film 4. Since the first laminate film 4 is thicker than the peripheral sealing member 5, there is a gap 7 between the lower surface of the surface side glass sheet 2 in contact with the upper surface of the first laminate film 4 and the upper surface of the peripheral sealing member 5. It is formed.
  • the first laminate film 4 may have irregularities formed on the surface. This unevenness may be formed by embossing.
  • embossing since the thickness of the sheet-shaped resin member increases due to unevenness or embossing, even when using a sheet-shaped resin member having a relatively thin original thickness before the unevenness or embossing is formed, Lamination can be performed while ensuring a gap 7 that serves as an exhaust path of the sealing portion.
  • the triangular pyramid-shaped emboss is formed on the bottom surface of the first laminate film, but the formed unevenness or the shape of the emboss is not limited thereto.
  • a square pyramid-shaped emboss may be formed on the upper surface of the first laminate film 4 or may be formed on both surfaces.
  • the air 6 exists in the sealing part surrounded by the glass substrate 1, the surface side plate glass 2, and the peripheral sealing member 5 before the sealing step.
  • the first laminate film 4 has a predetermined hardness at room temperature. When the first laminate film 4 is heated and the temperature rises, the first laminate film 4 has a reduced viscosity and fluidity.
  • the initial stage of the laminating process is a stage where heating is started, and the first laminate film 4 maintains its shape, and the gap 7 exists. Under vacuum conditions, the air 6 is discharged from the gap 7 to the outside of the sealing portion.
  • the viscosity of the first laminate film 4 decreases to become fluid, and the surface side plate glass 2 and the peripheral sealing member 5 gradually approach each other. Even in this state, the air 6 inside the sealing portion is exhausted.
  • the first laminate film 4 melts and flows around the solar battery cell 3 without a gap, and then hardens by causing a crosslinking reaction.
  • the translucent light having a thickness equal to or less than the thickness of the peripheral sealing member 5 is formed in the sealing portion formed so as to be surrounded by the glass substrate 1, the front side plate glass 2, and the peripheral sealing member 5.
  • the conductive resin layer 8 is formed. Since the air 6 existing inside the sealing portion is exhausted to the outside of the sealing portion, it hardly remains inside the sealing portion.
  • the height from the upper surface of the glass substrate 1 to the upper surface of the translucent resin layer 8 is made equal or lower than the height from the upper surface of the glass substrate 1 to the upper surface of the peripheral sealing member 5.
  • the surface side plate glass 2 and the peripheral sealing member 5 are in close contact with each other, and the solar battery cell 3 and the translucent resin layer 8 are sealed in the sealing portion.
  • the translucent resin layer 8 is in close contact with the glass substrate 1, the front side plate glass 2 and the peripheral sealing member 5.
  • the translucent resin layer 8 it is necessary to use a material that does not easily damage the solar cells 3 in the laminating step. From the viewpoint of weather resistance, it is preferable to use a material that does not easily deteriorate even when exposed to a high temperature and high humidity environment for a long period of time.
  • the resin material constituting the translucent resin layer 8 for example, a resin material containing ethylene vinyl acetate copolymer, polyvinyl butyral, silicon resin, or the like can be suitably used.
  • These resin members have sufficient hardness at room temperature, and are brought into a state of low viscosity and high fluidity by heating during the lamination process. Therefore, since the resin member diffuses smoothly in the sealing portion, the translucent resin layer 8 can be uniformly formed in the sealing portion.
  • the pressure applied to the first laminate film 4 is constant in the laminating process in the sealing step, but the pressure may be increased stepwise.
  • strong pressure is applied to the surface side plate glass 2 to transmit the first laminate film 4.
  • the layer can be laminated through the step of forming the conductive resin layer 8.
  • the peripheral sealing member 5 is preferably a member having heat resistance at least enough to withstand the heat applied in the laminating process. Furthermore, the peripheral sealing member 5 is preferably made of a moisture-proof material. Since the peripheral sealing member 5 has moisture resistance, the amount of moisture absorbed from the outside into the sealing portion is reduced. As a result, the performance of the solar battery cell 3 can be maintained for a long time, and the life of the solar battery module can be extended.
  • butyl tape, butyl sheet, hot butyl, hygroscopic resin, metal cored resin, and the like can be used as the moisture-proof material.
  • Butyl tape, butyl sheet, and hot butyl have a characteristic that when butyl tape is subjected to a load higher than a predetermined load, butyl is crushed and deformed. Therefore, when any of butyl tape, butyl sheet, and hot butyl is used for the peripheral sealing member 5, the thickness of the peripheral sealing member 5 is set to be slightly thicker than the translucent resin layer 8. The butyl is crushed and deformed at the time of lamination, and becomes the same thickness as the translucent resin layer 8. Therefore, the adhesion between the translucent resin layer 8 and the glass substrate 1 and the front side plate glass 2 is easily ensured.
  • peripheral sealing member 5 When a hygroscopic resin is used for the peripheral sealing member 5, a part of the translucent resin layer 8 flows between the peripheral sealing member 5 and the glass substrate 1 or the front side plate glass 2 and is sandwiched therebetween. Even when the sealing is somewhat incomplete, the peripheral sealing member 5 absorbs moisture, so that moisture can be prevented from entering the sealing portion.
  • the butyl in the portion close to the glass substrate 1 or the surface side plate glass 2 is slightly crushed so that the end of the solar cell module
  • the dimensional accuracy of the thickness may be reduced.
  • a resin containing a metal core material is used for the peripheral sealing member 5 since the deformation resistance of the resin is large, the dimensional accuracy of the thickness of the end portion of the solar cell module is improved. If the dimensional accuracy of this portion is improved, troubles due to the dimensions related to the jig or frame for fixing the solar cell module to the gantry are reduced.
  • the glass substrate 1 is used as the first plate member and the front side plate glass is used as the second plate member.
  • resin, metal, or ceramic is used as the first plate member or the second plate member.
  • a plate made of steel may be used.
  • the first plate-like member or the second plate-like member is formed of a plate having a predetermined hardness, when the second plate-like member is held by the first laminate film 4, It can suppress that the edge part of 2 plate-shaped member hangs down. Therefore, the clearance gap between a 2nd plate-shaped member and a periphery sealing member can be ensured, and it can laminate, ensuring the exhaust path of a sealing part. Therefore, the translucent resin layer 8 can be formed in a state in which bubbles are suppressed from being generated inside the sealing portion.
  • the thickness of the translucent resin layer 8 is preferably 80% or less of the thickness of the first laminate film 4 before the lamination process.
  • the gap 7 serving as a path for exhausting the air 6 from the sealing portion is secured before the laminating process, and after the laminating process, the transparent member is transparent. Since the thickness of the light-sensitive resin layer 8 is equal to or less than the thickness of the peripheral sealing member 5, the surface side glass sheet 2 and the peripheral sealing member 5 can be sealed so as to be in close contact with each other.
  • the first laminate film 4 can be dissolved by heating while sufficiently exhausting the sealing portion formed by being surrounded by the glass substrate 1, the surface side plate glass 2 and the peripheral sealing member 5. While the first laminate film 4 is dissolved and fills the inside of the sealing portion, the thickness of the first laminate film 4 is reduced, so that the lower surface of the front side plate glass 2 and the upper surface of the peripheral sealing member 5 approach each other.
  • the solar battery cell 3 is sealed in the sealing portion.
  • the generation of bubbles in the inside of the sealing portion is suppressed.
  • the performance of the solar battery cell 3 is maintained for a long period of time, and the life of the solar battery module is extended.
  • FIG. 2A is a cross-sectional view showing a step of laminating a first laminate film, a peripheral sealing member, and a surface side plate glass on a glass substrate in the method for manufacturing a solar cell module according to Embodiment 2 of the present invention.
  • FIG. 2B is a cross-sectional view showing a state in which a lamination process is performed in the method for manufacturing a solar cell module according to the present embodiment.
  • FIG. 2C is a cross-sectional view showing a state after the lamination process in the method for manufacturing the solar cell module according to this embodiment.
  • the second laminate film 9 is laminated on the upper surface of the first laminate film 4 in the lamination step. Since the required amount of the resin member is constant, the peripheral portion of the first laminate film 4 is reduced by an amount corresponding to the weight of the second laminate film 9.
  • the resin member is composed of a sheet-like resin member group in which laminate films 4 and 9 that are a plurality of sheet-like resin members are laminated. Since other configurations are the same as those in the first embodiment, description thereof will not be repeated.
  • the gap 7 between the lower surface of the surface side plate glass 2 and the upper surface of the peripheral sealing member 5 is implemented during the laminating process in the sealing step. Compared to the first mode, it can be ensured. Since the gap 7 becomes a path for exhausting the air 6 in the sealing portion, the air 6 in the sealing portion can be discharged more smoothly by ensuring a large gap 7 in the initial stage of the laminating process. be able to. Moreover, since the peripheral part of the 1st laminate film 4 is reduced as mentioned above, the space of the part and the clearance gap 7 are connected, and the exhaust path of the air 6 in a sealing part is formed.
  • the first laminate film 4 and the second laminate film 9 are melted and spread around the solar battery cell 3 without a gap by heating during the laminating process, and then cured by causing a crosslinking reaction.
  • the translucency that is equal to or less than the thickness of the peripheral sealing member 5 is formed in the sealing portion that is formed by being surrounded by the glass substrate 1, the surface side plate glass 2, and the peripheral sealing member 5.
  • a resin layer 8 is formed. Since the air 6 existing inside the sealing portion is exhausted to the outside of the sealing portion, it hardly remains inside the sealing portion.
  • FIG. 3 is a plan view showing a state in which the solar cell module is viewed from below the surface side plate glass in the solar cell module after the stacking process according to the first arrangement example.
  • the peripheral sealing member 5 is disposed in the peripheral portion of the upper surface of the glass substrate 1. It arrange
  • the first laminate film 4 that is the lowermost sheet-like resin member is formed of one sheet.
  • the first laminate film 4 has a length from one inner wall of the peripheral sealing member 5 to the other inner wall in the longitudinal direction, and a predetermined gap is formed between the inner wall of the peripheral sealing member 5 in the width direction.
  • the width is as large as possible.
  • Two second laminate films 9 are arranged at intervals between both ends of the upper surface of the first laminate film 4 in the width direction.
  • the second laminate film 9 has a length from the one inner wall of the peripheral sealing member 5 to the other inner wall in the longitudinal direction.
  • FIG. 4 is a plan view showing a state in which the solar cell module is viewed from below the surface side plate glass in the solar cell module after the stacking process according to the second arrangement example.
  • the difference from the solar cell module shown in FIG. 3 is that, as shown in FIG. 4, the lengths of the first laminate film 4 and the second laminate film 9 are such that a predetermined gap is formed with the inner wall of the peripheral sealing member 5. It is a short point.
  • FIG. 5 is a plan view showing a state in which the solar cell module is viewed from below the surface side plate glass in the solar cell module after the stacking process according to the third arrangement example.
  • the difference from the solar cell module shown in FIG. 4 is that the length of the second laminate film 9 is longer than the length of the first laminate film 4 as shown in FIG.
  • the translucent resin layer formed near the corner on the inner peripheral side of the peripheral sealing member 5 tends to be insufficient.
  • the second laminate film 9 is lengthened, and the resin member is disposed in the vicinity of the corner on the inner peripheral side of the peripheral sealing member 5 so that the translucent resin layer is uniformly formed in the sealing portion. It becomes easy to be done.
  • FIG. 6 is a plan view showing a state in which the solar cell module is viewed from below the surface side plate glass in the solar cell module after the stacking process according to the fourth arrangement example.
  • the difference from the solar cell module shown in FIG. 4 is that the second laminate film 9 is arranged so as to be continuous with the entire periphery of the upper surface of the first laminate film 4 as shown in FIG. In this case, when the first laminate film 4 and the second laminate film 9 are dissolved by heating, the resin can be diffused smoothly and evenly.
  • the second laminate film 9 in contact with the surface side plate glass is disposed around the first laminate film 4, so that the surface side plate glass is stably held.
  • FIG. 7 is a plan view showing a state in which the solar cell module is viewed from below the surface side plate glass in the solar cell module after the stacking process according to the fifth arrangement example.
  • the difference from the solar cell module shown in FIG. 6 is that the second laminate film 9 extends in the vicinity of the corner on the inner peripheral side of the second laminate film 9, as shown in FIG.
  • the translucent resin layer evenly in the sealing portion.
  • FIG. 8 is a plan view showing a state in which the solar cell module is viewed from below the surface side plate glass in the solar cell module after the stacking process according to the sixth arrangement example.
  • the difference from the solar cell module shown in FIG. 4 is that, as shown in FIG. 8, a second laminate film is further disposed with a gap between the ends of the two second laminate films 9. .
  • FIG. 9 is a plan view showing a state in which the solar cell module is viewed from below the surface side plate glass in the solar cell module after the stacking process according to the seventh arrangement example.
  • the first laminated film 4 which is the lowermost sheet-shaped resin member in the sheet-shaped resin member group is formed of one sheet, and a plurality of sheets are formed on the upper surface of the first laminated film.
  • the second laminated films 9 are dispersed and arranged at intervals.
  • the first laminate film 4 and the second laminate film 9 cause the lower surface of the surface side plate glass 2 and the upper surface of the peripheral sealing member 5 to A gap can be secured between the two. Therefore, the first laminate film 4 and the second laminate film 9 are dissolved by heating while sufficiently exhausting the sealing portion formed by being surrounded by the glass substrate 1, the surface side plate glass 2 and the peripheral sealing member 5. be able to. While the first laminate film 4 and the second laminate film 9 are dissolved to fill the inside of the sealing portion, the thickness of the first laminate film 4 and the second laminate film 9 is reduced, so that the lower surface and the periphery of the surface side plate glass 2 are reduced. The upper surface of the sealing member 5 approaches.
  • the solar battery cell 3 is sealed in the sealing portion.
  • the generation of bubbles in the inside of the sealing portion is suppressed.
  • the performance of the solar battery cell 3 is maintained for a long time, and the life of the solar battery module is extended.
  • FIG. 10A is a cross-sectional view showing a step of laminating a laminate block, a peripheral sealing member, and a surface side plate glass on a glass substrate in the method for manufacturing a solar cell module according to Embodiment 3 of the present invention.
  • FIG. 10B is a cross-sectional view showing a state in which a lamination process is performed in the method for manufacturing a solar cell module according to the present embodiment.
  • FIG. 10C is a cross-sectional view showing a state after the lamination process in the method for manufacturing the solar cell module according to this embodiment.
  • one or more block-shaped resin members which are one or more block-shaped resin members, are laminated above the solar cells 3. Is done. Since other configurations are the same as those in the first embodiment, description thereof will not be repeated.
  • the thickness of the resin member is increased as compared with the sheet-shaped resin member. Therefore, the laminate process can be performed while further securing the exhaust path of the sealing portion. Therefore, the translucent resin layer can be formed in a state in which the generation of bubbles inside the sealing portion is further suppressed.
  • the laminate block 10 is formed in a columnar shape such as a cylindrical column or a quadrangular column.
  • the thickness of the resin member is increased, and the surface side plate glass 2 is stably laminated on the upper surface of the laminate block 10 and laminated while securing the exhaust path of the sealing portion. Can do.
  • the laminate block 10 may be formed in a cone shape such as a cone or a pyramid.
  • the laminate block 10 holds the surface side plate glass 2 in a point contact. Therefore, when a non-uniform load is applied to the laminate block 10, the laminate block 10 is easily deformed according to the load. It is possible to suppress warping or uneven pressure applied to the front side plate glass 2.
  • FIG. 11 is a plan view showing a state in which the solar cell module after the stacking process is viewed from below the front side plate glass in the method for manufacturing the solar cell module according to Embodiment 3 of the present invention.
  • the peripheral sealing member 5 is disposed in the peripheral portion of the upper surface of the glass substrate 1.
  • the solar cells 3 are disposed in the space inside the peripheral sealing member 5, and the laminate block 10 is disposed above the solar cells 3.
  • the solar battery cell can be sealed.
  • the laminate block 10 can be dissolved by heating while sufficiently exhausting the sealing portion formed by being surrounded by the glass substrate 1, the front surface side glass plate 2 and the peripheral sealing member 5. While the laminate block 10 is melted and the sealing portion is filled, the thickness of the laminate block 10 is reduced, so that the lower surface of the surface side plate glass 2 and the upper surface of the peripheral sealing member 5 approach each other.
  • the solar battery cell 3 is sealed in the sealing portion.
  • the generation of bubbles in the inside of the sealing portion is suppressed.
  • the performance of the solar battery cell 3 is maintained for a long time, and the life of the solar battery module is extended.

Abstract

 太陽電池モジュールの製造方法は、ガラス基板(1)の上面の周辺部に周辺封止部材(5)を配置し、周辺封止部材(5)で囲まれた、ガラス基板(1)の上面に1つ以上の太陽電池セル(3)を配置し、第1ラミネートフィルム(4)を太陽電池セル(3)の上面に配置し、第1ラミネートフィルム(4)の上方において表面側板ガラス(2)がガラス基板(1)と対向するように積層する積層工程を備える。さらに、太陽電池モジュールの製造方法は、第1ラミネートフィルム(4)を排気環境下で加熱および加圧してラミネート処理することにより透光性樹脂層(8)とし、ガラス基板(1)、表面側板ガラス(2)および周辺部封止部材(5)により囲まれる空間内に太陽電池セル(3)および透光性樹脂層(8)を封止する封止工程を備える。この方法により、封止部の内部に気泡が発生することを防ぐとともに、製造過程における作業工数を削減することができる。

Description

太陽電池モジュールの製造方法、および、その製造方法で製造された太陽電池モジュール
 本発明は、太陽電池モジュールの製造方法、および、その製造方法で製造された太陽電池モジュールに関する。
 太陽電池モジュールには、その用途や使用環境などに応じて種々の構造のものが存在する。このような太陽電池モジュールのひとつとして、合わせガラス構造を備えた太陽電池モジュールがある。この太陽電池モジュールは、表面側板ガラスと裏面側板ガラスとで、互いに電気的に接続された複数の太陽電池セルを挟み込むことにより、モジュール内部に太陽電池セルを封止した構造を有するものである。
 この合わせガラス構造を備えた太陽電池モジュールにおいては、表面側板ガラスを透過して太陽電池モジュール内に入射した太陽光が、太陽電池セルが存在しない部分の透光性樹脂封止層を通過して裏面側板ガラスに達する。裏面側板ガラスに達した太陽光は、裏面側板ガラスを通過して太陽電池モジュール外に透過する。したがって、太陽電池モジュールの裏面側に位置する空間においても、太陽光を採光することができる。このように、合わせガラス構造を備えた太陽電池モジュールは、いわゆる採光型太陽電池モジュールとして好適に利用されるものである。
 上述した合わせガラス構造を備えた太陽電池モジュールを開示した先行文献として、特開2003-26455号公報(特許文献1)、特開2004-288677号公報(特許文献2)、特開平11-31834号公報(特許文献3)、特開平10-1334号公報(特許文献4)、および、実開昭61-177464号公報(特許文献5)がある。
 特開2003-26455号公報および特開2004-288677号公報に記載された、合わせガラス構造を備えた太陽電池モジュールにおいては、太陽電池セルを透光性樹脂封止層によって封止するとともに、この透光性樹脂封止層に封止された太陽電池セルを表面側板ガラスおよび裏面側板ガラスからなるサブアセンブリ内に挿入配置することにより、モジュール化が行なわれている。
 特開平11-31834号公報、特開平10-1334号公報、および、実開昭61-177464号公報に記載された、合わせガラス構造を備えた太陽電池モジュールにおいては、2枚の板ガラス間に封止部が形成され、その封止部に太陽電池セルが配置されるとともに、空気または充填材が封止されている。
 以下、合わせガラス構造を有する太陽電池モジュールの封止方法を説明する。図12は、2枚の板ガラスの間の封止部に樹脂を充填した太陽電池セルの構造の一例を示す断面図である。図12に示すように、ガラス基板1の上面に太陽電池セル3が配置される。太陽電池セル3は、表面電極、半導体層および裏面電極などから構成されている。ガラス基板1と対向するように表面側板ガラス2が配置される。ガラス基板1と表面側板ガラス2との間に、太陽電池セル3を覆うように樹脂部材11が充填される。ガラス基板1および表面側板ガラス2の側面に防水用の枠12が取り付けられることにより、太陽電池セル3が封止される。
 図13は、2枚の板ガラスの間の封止部に樹脂を充填した太陽電池セルの構造の他の一例を示す断面図である。図13に示すように、ガラス基板1の上面に太陽電池セル3が配置される。ガラス基板1の上面に太陽電池セル3を囲むように周辺封止部材5が配置される。ガラス基板1と対向するように表面側板ガラス2が配置される。ガラス基板1と表面側板ガラス2と周辺封止部材5とにより囲まれて形成される封止部に、樹脂部材11が充填される。
 図14は、2枚の板ガラスの間の封止部に空気を充填した太陽電池セルの構造の一例を示す断面図である。図14に示すように、ガラス基板1の上面に太陽電池セル3が配置される。ガラス基板1の上面に太陽電池セル3を囲むように周辺封止部材5が配置される。ガラス基板1と対向するように表面側板ガラス2が配置される。ガラス基板1と表面側板ガラス2と周辺封止部材5とにより囲まれて形成される封止部に、空気13が充填される。
特開2003-26455号公報 特開2004-288677号公報 特開平11-31834号公報 特開平10-1334号公報 実開昭61-177464号公報
 図12に示すように、ガラス基板1および表面側板ガラス2の外側から枠12により、太陽電池セル3が封止される場合、太陽電池モジュールが大きくなる問題がある。図13に示す太陽電池モジュールの太陽電池セルを封止する工程においては、樹脂部材11を充填する工程と、周辺封止部材5を配置する工程とが別々に行なわれている。そのため、作業工数が多くなるという問題があった。
 図14に示すような空気を充填した太陽電池モジュールにおいては、空気層を有するため、結露対策が必要となる。また、空気を充填した太陽電池モジュールでは、ガラス基板1および表面側板ガラス2の対荷重強度が確保しづらく、かつ、ガラス飛散防止効果を有さないため、ガラス基板1および表面側板ガラス2として未強化ガラスを使用しにくいという問題点があった。そのため、太陽電池モジュールの強度を確保するために、樹脂を充填した合わせガラス構造を有する樹脂充填型太陽電池モジュールが使用される。
 樹脂充填型太陽電池モジュールの製造方法において、作業工数を削減するために、樹脂部材11を充填する工程と周辺封止部材5を配置する工程とを、表面側板ガラス2をガラス基板1に対向配置する工程に含めることが考えられる。図15Aは、ガラス基板1上に樹脂部材14、周辺封止部材5および表面側板ガラス2を積層する工程を示す断面図である。図15Bは、ラミネート処理している状態を示す断面図である。図15Cは、ラミネート処理後の状態を示す断面図である。
 図15Aに示すように、1つ以上の太陽電池セル3が配置されたガラス基板1の上面に、樹脂部材14および周辺封止部材5が配置され、その上方において、ガラス基板1と対向するように表面側板ガラス2が配置される。
 図15Bに示すように、排気環境下で、表面側板ガラス2は、上面側から矢印で示す方向に加圧される。表面側板ガラス2の下面と周辺封止部材5の上面とが接触するまでは、ガラス基板1と表面側板ガラス2と周辺封止部材5とにより囲まれて形成される封止部内の空気6が排気される。表面側板ガラス2と周辺封止部材5とが接触した後は、封止部内の空気6を外部に排気するための経路が存在しないため、封止部内の空気6を十分に排気することができない。
 図15Cに示すように、加熱された樹脂部材14は、透光性樹脂層15になるが、空気6はそのまま封止部の内部に気泡として残留する。封止部の内部に気泡が存在した場合、太陽電池モジュールが日光により加熱された際にその気泡が熱膨張して、周囲の透光性樹脂層15には亀裂が生じるなどの劣化が引き起こされる。透光性樹脂層15が劣化した場合、太陽電池セル3の性能の維持が難しくなる。
 本発明は上記の問題点に鑑みなされたものであって、封止部の内部に気泡が残留することを防ぐことができるともに、製造過程における作業工数を削減できる、太陽電池モジュールの製造方法、および、その製造方法で製造された太陽電池モジュールを提供することを目的とする。
 本発明に係る太陽電池モジュールの製造方法は、第1板状部材の上面の周辺部に周辺封止部材を配置し、周辺封止部材で囲まれた、第1板状部材の上面に1つ以上の太陽電池セルを配置し、樹脂部材を太陽電池セルの上面に、第1板状部材の上面から周辺封止部材の上面までの高さより、第1板状部材の上面から樹脂部材の上面までの高さが高くなるように配置し、樹脂部材の上方において第2板状部材が第1板状部材と対向するように積層する積層工程を備える。さらに、太陽電池モジュールの製造方法は、樹脂部材を排気環境下で加熱および加圧してラミネート処理することにより透光性樹脂層とし、第1板状部材の上面から周辺封止部材の上面までの高さより、第1板状部材の上面から透光性樹脂層の上面までの高さが同一または低くなるようにすることによって、第2板状部材と周辺封止部材とが密着して、第1板状部材、第2板状部材および周辺部封止部材により囲まれる空間内に太陽電池セルおよび透光性樹脂層を封止する封止工程を備える。
 このように製造することにより、ラミネート処理を行なう際に、樹脂部材によって第2板状部材の下面と周辺封止部材の上面との間に隙間を確保することができる。よって、第1板状部材、第2板状部材および周辺部封止部材により囲まれる封止部内の排気を十分に行ないつつ、加熱することによって樹脂部材を溶解させることができる。樹脂部材が溶解して封止部内を埋めつつ、樹脂部材の厚さが薄くなることにより、第2板状部材の下面と周辺封止部材の上面とが接近する。最終的に、第2板状部材の下面と周辺封止部材の上面とが接触することにより、太陽電池セルおよび透光性樹脂層が封止部内に封止される。この結果、封止部の内部に気泡が発生することが抑制される。
 本発明に係る太陽電池モジュールの製造方法においては、樹脂部材が、複数のシート状樹脂部材を積層したシート状樹脂部材群で構成されるようにしてもよい。このようにした場合、シート状樹脂部材を適宜積層して配置することにより、樹脂部材の厚さを増加させて、封止部の排気の経路を確保しつつ、ラミネート処理することができる。よって、封止部の内部に気泡が発生することを抑制した状態で、透光性樹脂層を形成することができる。
 本発明に係る太陽電池モジュールの製造方法においては、シート状樹脂部材群のうち、最下層のシート状樹脂部材は1枚のシートで形成され、この最下層のシート状樹脂部材の上表面に接するように、他の複数のシート状樹脂部材が配置されるようにしてもよい。このようにした場合、最下層のシート状樹脂部材の上表面上に、他のシート状樹脂部材を適宜積層して配置することにより、樹脂部材の厚さを増加させて、封止部の排気の経路を確保しつつ、ラミネート処理することができる。よって、封止部の内部に気泡が発生することを抑制した状態で、透光性樹脂層を形成することができる。
 本発明に係る太陽電池モジュールの製造方法においては、最下層のシート状樹脂部材の上表面に、他の複数のシート状樹脂部材同士が互いに間隔を置いて分散して配置されるようにしてもよい。このようにした場合、最下層のシート状樹脂部材の上表面に他のシート状樹脂部材を分散して配置しているため、シート状樹脂部材の上面に第2板状部材を安定して配置することができる。
 本発明に係る太陽電池モジュールの製造方法においては、シート状樹脂部材群のうち、最下層のシート状樹脂部材は1枚のシートで形成され、この最下層のシート状樹脂部材の上面に接し、かつ、この上面の周縁全周に連続して、他のシート状樹脂部材が配置されるようにしてもよい。このようにした場合、最下層のシート状樹脂部材の上面の周縁全周に連続して、他のシート状樹脂部材が積層されるため、樹脂部材が加熱により溶解した際に、最下層のシート状樹脂部材の外側に円滑に樹脂を拡散させることができる。
 本発明に係る太陽電池モジュールの製造方法においては、樹脂部材の外周と周辺封止部材の内周との間に隙間が形成されるようにしてもよい。このようにした場合、樹脂部材が加熱により溶解した際に、シート状樹脂部材の外周と周辺封止部材の内周との間の隙間に円滑に樹脂を拡散させることができる。
 本発明に係る太陽電池モジュールの製造方法においては、シート状樹脂部材の表面に凹凸が形成されていてもよい。また、この凹凸が、エンボス加工により形成されるようにしてもよい。
 本発明に係る太陽電池モジュールの製造方法においては、樹脂部材が、1つ以上のブロック状樹脂部材で構成されるようにしてもよい。そのブロック状樹脂部材が、柱状で形成されるようにしてもよい。または、ブロック状樹脂部材が、錘状で形成されるようにしてもよい。
 本発明に係る太陽電池モジュールの製造方法においては、封止工程のラミネート処理において、樹脂部材への加圧力を段階的に上昇させるようにしてもよい。また、本発明に係る太陽電池モジュールの製造方法においては、第1板状部材または第2板状部材として、樹脂製、金属製またはセラミック製の板を用いるようにしてもよい。さらに、本発明に係る太陽電池モジュールの製造方法においては、シート状樹脂部材として、エチレン酢酸ビニルコポリマー、ポリビニルブチラール、その他オレフィン系樹脂またはシリコン樹脂を用いるようにしてもよい。
 本発明に係る太陽電池モジュールの製造方法においては、周辺封止部材が防湿性を有する材料で構成されるようにしてもよい。その防湿性を有する材料は、ブチルテープ、ブチルシート、ホットブチル、吸湿性樹脂および金属製芯材入り樹脂のいずれかであるようにしてもよい。また、本発明に係る太陽電池モジュールの製造方法においては、透光性樹脂層の厚さが、ラミネート処理前の樹脂部材の厚さの80%以下であるようにしてもよい。
 本発明においては、周辺封止部材より厚い樹脂部材で第2板状部材を保持しつつ、排気環境下で加熱および加圧してラミネート処理を行なうことにより、樹脂部材によって第2板状部材の下面と周辺封止部材の上面との間に隙間を確保することができる。よって、第1板状部材、第2板状部材および周辺封止部材により囲まれて形成される封止部内の排気を十分に行ないつつ、太陽電池セルおよび透光性樹脂層を封止することができる。この結果、封止部の内部に気泡が発生することが抑制される。さらに、樹脂部材を充填する工程と周辺封止部材を配置する工程とを積層工程に含めることにより、太陽電池モジュールの製造過程における作業工数を削減することができる。
本発明の実施の形態1に係る太陽電池モジュールの製造方法において、ガラス基板上に第1ラミネートフィルム、周辺封止部材および表面側板ガラスを積層する工程を示す断面図である。 同実施形態に係る太陽電池モジュールの製造方法において、ラミネート処理している状態を示す断面図である。 同実施形態に係る太陽電池モジュールの製造方法におけるラミネート処理後の状態を示す断面図である。 本発明の実施の形態2に係る太陽電池モジュールの製造方法において、ガラス基板上に第1ラミネートフィルム、周辺封止部材および表面側板ガラスを積層する工程を示す断面図である。 同実施形態に係る太陽電池モジュールの製造方法において、ラミネート処理している状態を示す断面図である。 同実施形態に係る太陽電池モジュールの製造方法におけるラミネート処理後の状態を示す断面図である。 第1配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。 第2配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。 第3配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。 第4配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。 第5配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。 第6配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。 第7配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。 本発明の実施の形態3に係る太陽電池モジュールの製造方法において、ガラス基板上にラミネートブロック、周辺封止部材および表面側板ガラスを積層する工程を示す断面図である。 同実施形態に係る太陽電池モジュールの製造方法において、ラミネート処理している状態を示す断面図である。 同実施形態に係る太陽電池モジュールの製造方法におけるラミネート処理後の状態を示す断面図である。 図11は、本発明の実施の形態3に係る太陽電池モジュールの製造方法において、積層工程後の太陽電池モジュールを表面側板ガラスの下方から見た状態を示す平面図である。 2枚の板ガラスの間の封止部に樹脂を充填した太陽電池セルの構造の一例を示す模式断面図である。 2枚の板ガラスの間の封止部に樹脂を充填した太陽電池セルの構造の他の一例を示す模式断面図である。 2枚の板ガラスの間の封止部に空気を充填した太陽電池セルの構造の一例を示す模式断面図である。 ガラス基板上に樹脂部材、周辺封止部材および表面側板ガラスを積層する工程を示す断面図である。 ラミネート処理している状態を示す断面図である。 ラミネート処理後の状態を示す断面図である。
 以下、この発明に基づいた実施の形態における太陽電池モジュールの製造方法について、図を参照しながら説明する。なお、以下に示す実施形態においては、合わせガラス構造を備えた太陽電池モジュールの製造方法を例示して説明を行なう。
 実施の形態1
 図1Aは、本発明の実施の形態1に係る太陽電池モジュールの製造方法において、ガラス基板上に第1ラミネートフィルム、周辺封止部材および表面側板ガラスを積層する工程を示す断面図である。図1Bは、本実施形態に係る太陽電池モジュールの製造方法において、ラミネート処理している状態を示す断面図である。図1Cは、本実施形態に係る太陽電池モジュールの製造方法におけるラミネート処理後の状態を示す断面図である。
 図1Aに示すように、本発明の実施の形態1に係る太陽電池モジュールは、第1板状部材としてガラス基板1と、第2板状部材として表面側板ガラス2と、ガラス基板1の上面に配置された太陽電池セル3および周辺封止部材5と、樹脂部材4とを主として備えている。太陽電池モジュールは、ガラス基板1の上方から平面視して、略矩形状の外形を有しており、その片側の主面が太陽光を受光するための受光面として構成されている。
 本実施形態の太陽電池セル3は、表面電極、pn接合などの半導体接合を有する半導体層および裏面電極をガラス基板1の上面に成膜して形成された1つ以上の薄膜太陽電池から構成されている。太陽電池セル3が複数の薄膜太陽電池で構成される場合には、図示しない配線によって薄膜太陽電池同士が接続されている。ただし、太陽電池セル3は、薄膜太陽電池に限られず、ウエハから形成される結晶系太陽電池であってもよい。
 表面側板ガラス2は、ガラス基板1の上方に、その主面がガラス基板1と対向するように間隔を置いて配置される。ガラス基板1および表面側板ガラス2としては、たとえば、青板ガラス、白板ガラス、型板ガラス、強化ガラス、倍強化ガラスまたは網入りガラスなどが利用可能である。ガラス基板1と表面側板ガラス2とは、必ずしも同種の板ガラスである必要はなく、異種の板ガラスが使用されてもよい。どのような種類の板ガラスが使用されるかは、太陽電池モジュールが設置される周辺環境などが考慮されて適宜選択される。太陽電池モジュールの受光面側に配置される表面側板ガラス2は、透光性を有する板ガラスから形成されている。
 表面側板ガラス2と対向する側のガラス基板1の上面の周辺部に、周辺封止部材5が配置される。この周辺封止部材5は、太陽電池モジュールの4つの端部に配置された縁部分がそれぞれの端部において隣接する縁部分と接続されてなる囲い形状を有しており、内部に所定の空間を有している。この周辺封止部材5の内部の空間に、太陽電池セル3が収容されるように周辺封止部材5が配置される。
 周辺封止部材5の4つの縁部分は、それぞれのガラス基板1の周辺部と表面側板ガラス2の周辺部との間に位置するように配置されている。周辺封止部材5の外形は、ガラス基板1および表面側板ガラス2と略同サイズとなるように構成されている。周辺封止部材5は、太陽電池モジュールの厚み方向において所定の厚みを有しており、ガラス基板1と表面側板ガラス2とを上記厚み方向に離間させる役割を果たしている。周辺封止部材5としては、後述するラミネート工程において加えられる熱に少なくとも耐えうる程度の耐熱性を有するガラス製、樹脂製または金属製などの部材が使用可能である。
 次に、ガラス基板1の上面において、周辺封止部材5の内部の空間に配置された太陽電池セル3の上面に樹脂部材である第1ラミネートフィルム4が配置される。このとき、第1ラミネートフィルム4が、周辺封止部材5の内部の空間に収容されるように、予め、第1ラミネートフィルム4の大きさが調整されている。具体的には、第1ラミネートフィルム4の大きさは、周辺封止部材5の内部の空間の大きさと同じかあるいは同等程度に設定されている。
 また、第1ラミネートフィルム4は、周辺封止部材5より厚くなるように形成されている。よって、ガラス基板1の上面から周辺封止部材5の上面までの高さより、ガラス基板1の上面から第1ラミネートフィルム4の上面までの高さが高くなるように配置される。
 次に、以上の積層工程を経ることによって得られた積層体は、図1Bに示すように、真空引きされた状態で、表面側板ガラス2の上方から矢印で示す方向に圧力が負荷されつつ加熱される。表面側板ガラス2は、第1ラミネートフィルム4によって保持される。第1ラミネートフィルム4は、周辺封止部材5より厚いため、第1ラミネートフィルム4の上面と接触した状態の表面側板ガラス2の下面と周辺封止部材5の上面との間に、隙間7が形成される。
 第1ラミネートフィルム4は、図1Bに示すように、表面に凹凸が形成されていてもよい。この凹凸は、エンボス加工により形成されていてもよい。このようにした場合、凹凸またはエンボスによりシート状樹脂部材の厚さが増加するため、凹凸またはエンボスが形成される前の元々の厚さが比較的薄いシート状樹脂部材を使用した場合にも、封止部の排気の経路となる隙間7を確保しつつ、ラミネート処理することができる。本実施形態では、第1ラミネートフィルムの底面に三角錘状のエンボスを形成したが、形成される凹凸またはエンボスの形状はこれに限られない。たとえば、四角錘状のエンボスが第1ラミネートフィルム4の上面に形成されてもよいし、両面に形成されてもよい。
 封止工程前の、ガラス基板1と表面側板ガラス2と周辺封止部材5とにより囲まれて形成される封止部には、空気6が存在する。第1ラミネートフィルム4は、室温では所定の硬さを有しており、加熱されて温度が上昇すると粘度が低下して流動性を有するようになる。ラミネート工程の初期の段階は、加熱が開始された段階であり、第1ラミネートフィルム4は形状を保持しており、上記隙間7が存在している。真空条件下において、空気6は、隙間7から封止部の外部に排出される。
 加熱がある程度進行するにつれて、第1ラミネートフィルム4の粘度が低下して流動性を有するようになり、徐々に、表面側板ガラス2と周辺封止部材5とが接近する。この状態の際にも、封止部の内部の空気6の排気が行なわれている。
 さらに、加熱が進み、ラミネート工程の終期の段階になると、第1ラミネートフィルム4は、太陽電池セル3の周囲に隙間なく溶融して流動し、その後、架橋反応が起こることによって硬化する。この結果、図1Cに示すように、ガラス基板1、表面側板ガラス2および周辺封止部材5に囲まれるように形成される封止部内に、周辺封止部材5の厚さ以下である透光性樹脂層8が形成される。封止部の内部に存在した空気6は、封止部の外部に排気されているため、封止部の内部にほとんど残存しない。
 このように、ガラス基板1の上面から周辺封止部材5の上面までの高さより、ガラス基板1の上面から透光性樹脂層8の上面までの高さが同一または低くなるようにする。その結果、表面側板ガラス2と周辺封止部材5とが密着して、封止部内に太陽電池セル3および透光性樹脂層8が封止される。
 透光性樹脂層8は、ガラス基板1、表面側板ガラス2および周辺封止部材5にそれぞれ密着している。透光性樹脂層8としては、ラミネート工程において、太陽電池セル3に損傷を与え難い材料を用いることが必要である。また、対候性の観点から長期間にわたって高温高湿環境下にさらされても劣化が生じ難い材質のものを使用することが好ましい。
 このような観点から、透光性樹脂層8を構成する樹脂材料としては、たとえば、エチレン酢酸ビニルコポリマー、ポリビニルブチラールまたはシリコン樹脂などを含む樹脂材料が好適に利用可能である。これらの樹脂部材は、室温で十分な硬さを有し、ラミネート処理時の加熱により、低粘度で流動性が高い状態になる。よって、樹脂部材は、封止部において円滑に拡散するため、封止部内に均一に透光性樹脂層8を形成することができる。
 本実施形態では、上記の封止工程のラミネート処理において、第1ラミネートフィルム4への加圧力は一定にしたが、加圧力を段階的に上昇させるようにしてもよい。このようにした場合、表面側板ガラス2に低い圧力をかけつつ、第1ラミネートフィルム4を加熱して溶解させる段階の後、表面側板ガラス2に強い圧力をかけて第1ラミネートフィルム4を透光性樹脂層8にする段階を経てラミネート処理することができる。最初から、表面側板ガラス2に強い圧力をかけた場合には、表面側板ガラス2が割れる可能性があるが、段階的に加圧力を上昇させることにより、その可能性を減ずることができる。
 なお、周辺封止部材5としては、上述したように、ラミネート工程において加えられる熱に少なくとも耐えうる程度の耐熱性を有する部材であることが好ましい。さらに、周辺封止部材5は、防湿性を有する材料で構成されていることが好ましい。周辺封止部材5が防湿性を有することにより、封止部の内部に外部から吸収される水分の量が削減される。その結果、太陽電池セル3の性能を長期間維持することが可能となり、太陽電池モジュールの長寿命化が図れる。
 防湿性を有する材料として、たとえば、ブチルテープ、ブチルシート、ホットブチル、吸湿性樹脂および金属製芯入り樹脂などを使用することができる。ブチルテープ、ブチルシートおよびホットブチルは、所定の荷重以上の負荷を受けた場合、ブチルが押しつぶされて変形する特性を有している。そのため、周辺封止部材5にブチルテープ、ブチルシートおよびホットブチルのいずれかを使用した場合、周辺封止部材5の厚さを僅かに透光性樹脂層8より厚くなるように設定することにより、ラミネート時にブチルが押しつぶされて変形し、透光性樹脂層8の厚さと同じ厚さとなる。よって、透光性樹脂層8とガラス基板1および表面側板ガラス2との密着性が確保されやすくなる。
 周辺封止部材5に吸湿性樹脂を使用した場合、透光性樹脂層8の一部が周辺封止部材5と、ガラス基板1または表面側板ガラス2との間に流れ込んで挟まった状態になって、封止が多少不完全になった場合においても、周辺封止部材5が水分を吸収するため、封止部の内部に水分が浸入することが抑制される。
 上述のように、ブチルなどの柔らかい樹脂を周辺封止部材5に使用した際のラミネート時に、ガラス基板1または表面側板ガラス2に近い部分のブチルが多少押しつぶされすぎて、太陽電池モジュールの端部の厚さの寸法精度が低下する場合がある。周辺封止部材5に金属製芯材入り樹脂を使用した場合、樹脂の変形抵抗が大きいため、太陽電池モジュールの端部の厚さの寸法精度が向上される。この部分の寸法精度が向上すれば、太陽電池モジュールを架台に固定する治具または枠に関する、寸法に起因するトラブルが減少する。
 本実施形態では、第1板状部材としてガラス基板1、第2板状部材として表面側板ガラスが用いられたが、第1板状部材または第2板状部材として、樹脂製、金属製またはセラミック製の板が用いられてもよい。このようにした場合、第1板状部材または第2板状部材が所定の硬さを有する板で形成されているため、第2板状部材を第1ラミネートフィルム4で保持した際に、第2板状部材の端部が垂れ下がることを抑制することができる。よって、第2板状部材と周辺封止部材との間の隙間を確保することができ、封止部の排気の経路を確保しつつ、ラミネート処理することができる。よって、封止部の内部に気泡が発生することを抑制した状態で、透光性樹脂層8を形成することができる。
 透光性樹脂層8の厚さは、ラミネート処理前の第1ラミネートフィルム4の厚さの80%以下であることが好ましい。ラミネート処理の前後で、樹脂部材の厚さが20%程度変化することにより、ラミネート処理前では、封止部から空気6を排気する経路となる隙間7を確保しつつ、ラミネート処理後では、透光性樹脂層8の厚さが周辺封止部材5の厚さ以下となるため、表面側板ガラス2と周辺封止部材5とが密着するように封止することができる。
 本実施形態のように太陽電池モジュールを製造することにより、ラミネート処理を行なう際に、第1ラミネートフィルム4によって表面側板ガラス2の下面と周辺封止部材5の上面との間に隙間を確保することができる。よって、ガラス基板1、表面側板ガラス2および周辺封止部材5により囲まれて形成される封止部内の排気を十分に行ないつつ、加熱によって第1ラミネートフィルム4を溶解させることができる。第1ラミネートフィルム4が溶解して封止部内を埋めつつ、第1ラミネートフィルム4の厚さが薄くなることにより、表面側板ガラス2の下面と周辺封止部材5の上面とが接近する。
 最後には、表面側板ガラス2の下面と周辺封止部材5の上面とが接触することにより、太陽電池セル3が封止部内に封止される。この結果、封止部の内部に気泡が発生することが抑制される。封止部の内部に気泡が発生することが抑制されることにより、太陽電池セル3の性能が長期間維持され、太陽電池モジュールが長寿命化される。
 実施の形態2
 図2Aは、本発明の実施の形態2に係る太陽電池モジュールの製造方法において、ガラス基板上に第1ラミネートフィルム、周辺封止部材および表面側板ガラスを積層する工程を示す断面図である。図2Bは、本実施形態に係る太陽電池モジュールの製造方法において、ラミネート処理している状態を示す断面図である。図2Cは、本実施形態に係る太陽電池モジュールの製造方法におけるラミネート処理後の状態を示す断面図である。
 本発明の実施の形態2に係る太陽電池モジュールの製造方法では、図2Aに示すように、積層工程において、第1ラミネートフィルム4の上面に第2ラミネートフィルム9が積層されている。樹脂部材の必要量は一定であるため、第2ラミネートフィルム9の重量に相当する分だけ、第1ラミネートフィルム4の周辺部分が削減されている。
 本実施形態では、樹脂部材が、複数のシート状樹脂部材であるラミネートフィルム4,9を積層したシート状樹脂部材群で構成されている。その他の構成については、実施の形態1と同様であるため、説明を繰り返さない。
 図2Bに示すように、第2ラミネートフィルム9を配置することにより、封止工程のラミネート処理時に、表面側板ガラス2の下面と周辺封止部材5の上面との間の隙間7を、実施の形態1に比較して大きく確保することができる。隙間7は、封止部内の空気6を排気する際の経路となるため、ラミネート処理時の初期段階において、隙間7を大きく確保することにより、封止部内の空気6の排出をより円滑に行なうことができる。また、上述のように第1ラミネートフィルム4の周辺部分を削減しているため、その部分の空間と隙間7とが繋がって、封止部内の空気6の排気経路が形成される。
 ラミネート処理の際の加熱により、第1ラミネートフィルム4および第2ラミネートフィルム9は、溶融して太陽電池セル3の周囲に隙間なく行き渡り、その後、架橋反応が起こることによって硬化する。この結果、図2Cに示すように、ガラス基板1、表面側板ガラス2および周辺封止部材5に囲まれて形成される封止部内に、周辺封止部材5の厚さ以下である透光性樹脂層8が形成される。封止部の内部に存在した空気6は、封止部の外部に排気されているため、封止部の内部にほとんど残存しない。
 このように、第1ラミネートフィルム4の上面に第2ラミネートフィルム9を積層する場合に、第1ラミネートフィルム4および第2ラミネートフィルム9の形状および配置によって、加熱時の樹脂部材の流動特性、および、加圧時の樹脂部材による表面側板ガラス2の保持状態の荷重バランスなどが異なる。以下、第1ラミネートフィルム4および第2ラミネートフィルム9の形状および配置に係る7つの例について説明する。
 図3は、第1配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。図3に示すように、ガラス基板1の上面の周辺部に周辺封止部材5が配置される。周辺封止部材5の内部の空間に太陽電池セル3が収容されるように配置され、太陽電池セル3の上方に第1ラミネートフィルム4が配置される。シート状樹脂部材群のうち、最下層のシート状樹脂部材である第1ラミネートフィルム4は、1枚のシートで形成されている。
 第1ラミネートフィルム4は、長手方向において、周辺封止部材5の一方の内壁から他方の内壁に達するまでの長さを有し、幅方向において、周辺封止部材5の内壁と所定の隙間ができる程度の幅を有している。第1ラミネートフィルム4の上面の幅方向の両端部に、2つの第2ラミネートフィルム9が互いに間隔を置いて配置される。第2ラミネートフィルム9は、長手方向において、周辺封止部材5の一方の内壁から他方の内壁に達するまでの長さを有している。
 このように、第1ラミネートフィルム4および第2ラミネートフィルム9を積層して、ラミネート処理時に、排気を行ないながら加熱することにより、封止部の内部に気泡が発生することを抑制しつつ、透光性樹脂層を形成して太陽電池セルを封止することができる。
 図4は、第2配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。図3に示す太陽電池モジュールと異なる点は、図4に示すように、第1ラミネートフィルム4および第2ラミネートフィルム9の長さを、周辺封止部材5の内壁と所定の隙間ができる程度に短くしている点である。
 このように、樹脂部材である第1ラミネートフィルム4および第2ラミネートフィルム9の外周と、周辺封止部材5の内周との間に隙間が形成されるようにする。そうすることで、第1ラミネートフィルム4および第2ラミネートフィルム9の配置位置が多少ずれた場合でも、周辺封止部材5の上部に第1ラミネートフィルム4および第2ラミネートフィルム9の一部が乗り上げることが抑制される。
 図5は、第3配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。図4に示す太陽電池モジュールと異なる点は、図5に示すように、第2ラミネートフィルム9の長さが、第1ラミネートフィルム4の長さより長い点である。
 ラミネート処理時に溶融される樹脂は、周辺封止部材5の内周側の角部近傍には流れ込みにくい。そのため、周辺封止部材5の内周側の角部近傍に形成される透光性樹脂層が不足しやすい。上記のように、第2ラミネートフィルム9を長くして、周辺封止部材5の内周側の角部近傍に樹脂部材を配置することにより、透光性樹脂層が封止部内において均等に形成されやすくなる。
 図6は、第4配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。図4に示す太陽電池モジュールと異なる点は、図6に示すように、第2ラミネートフィルム9が第1ラミネートフィルム4の上面の周縁全周に連続するように配置される点である。このようにした場合、第1ラミネートフィルム4および第2ラミネートフィルム9が加熱により溶解した際に、円滑に均等に樹脂を拡散させることができる。
 また、積層工程において、表面側板ガラスと接する第2ラミネートフィルム9が、第1ラミネートフィルム4の周囲に配置されるため、表面側板ガラスが安定して保持される。
 図7は、第5配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。図6に示す太陽電池モジュールと異なる点は、図7に示すように、第2ラミネートフィルム9の内周側の角部近傍に、第2ラミネートフィルム9が延設されている点である。このようにした場合、周辺封止部材5の内周側の角部近傍に樹脂部材を多く配置することにより、透光性樹脂層が封止部内において均等に形成されやすくすることができる。
 図8は、第6配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。図4に示す太陽電池モジュールと異なる点は、図8に示すように、2つの第2ラミネートフィルム9の端部同士の間に隙間を置いて、さらに第2ラミネートフィルムが配置される点である。
 このようにすることで、積層工程において、表面側板ガラスと接する第2ラミネートフィルム9が、第1ラミネートフィルム4の周縁に配置されるため、表面側板ガラスが安定して保持される。また、第2ラミネートフィルム9同士が互いに隙間を置いて配置されるため、第2ラミネートフィルム9の内周側の空間に存在する空気が排気されやすい。
 図9は、第7配置例に係る積層工程後の太陽電池モジュールにおいて、表面側板ガラスの下方から太陽電池モジュールを見た状態を示す平面図である。図9に示すように、シート状樹脂部材群のうち、最下層のシート状樹脂部材である第1ラミネートフィルム4は、1枚のシートで形成され、この第1ラミネートフィルムの上表面に、複数の第2ラミネートフィルム9同士が互いに間隔を置いて分散して配置される。
 このようにすることで、積層工程において、表面側板ガラスと接する第2ラミネートフィルム9が、分散して配置されているため、表面側板ガラスが安定して保持される。よって、サイズの大きな表面側板ガラスを第2ラミネートフィルム9の上面に積層した場合の、表面側板ガラスのたわみの発生が抑制される。
 本実施の形態のように太陽電池モジュールを製造することにより、ラミネート処理を行なう際に、第1ラミネートフィルム4および第2ラミネートフィルム9によって表面側板ガラス2の下面と周辺封止部材5の上面との間に隙間を確保することができる。よって、ガラス基板1、表面側板ガラス2および周辺封止部材5により囲まれて形成される封止部内の排気を十分に行ないつつ、加熱によって第1ラミネートフィルム4および第2ラミネートフィルム9を溶解させることができる。第1ラミネートフィルム4および第2ラミネートフィルム9が溶解して封止部内を埋めつつ、第1ラミネートフィルム4および第2ラミネートフィルム9の厚さが薄くなることにより、表面側板ガラス2の下面と周辺封止部材5の上面とが接近する。
 最終的に、表面側板ガラス2と周辺封止部材5とが接触することにより、太陽電池セル3が封止部内に封止される。この結果、封止部の内部に気泡が発生することが抑制される。封止部の内部の気泡の発生が抑制されることにより、太陽電池セル3の性能が長期間維持され、太陽電池モジュールが長寿命化される。
 実施の形態3
 図10Aは、本発明の実施の形態3に係る太陽電池モジュールの製造方法において、ガラス基板上にラミネートブロック、周辺封止部材および表面側板ガラスを積層する工程を示す断面図である。図10Bは、本実施形態に係る太陽電池モジュールの製造方法において、ラミネート処理している状態を示す断面図である。図10Cは、本実施形態に係る太陽電池モジュールの製造方法におけるラミネート処理後の状態を示す断面図である。
 本発明の実施の形態3に係る太陽電池モジュールの製造方法では、図10Aに示すように、積層工程において、太陽電池セル3の上方に1つ以上のブロック状樹脂部材であるラミネートブロック10が積層される。その他の構成については、実施の形態1と同様であるため、説明を繰り返さない。
 ブロック状樹脂部材を使用した場合、シート状樹脂部材に比べて、樹脂部材の厚さが増加するため、封止部の排気の経路をより確保しつつ、ラミネート処理することができる。よって、封止部の内部に気泡が発生することをさらに抑制した状態で、透光性樹脂層を形成することができる。
 本実施形態では、ラミネートブロック10は、円柱および四角柱などの柱状で形成されている。このようにした場合、樹脂部材の厚さを増加させて、封止部の排気の経路を確保しつつ、表面側板ガラス2をラミネートブロック10の上面上に安定して積層してラミネート処理することができる。
 また、ラミネートブロック10は円錐および角錐などの錘状で形成されてもよい。このようにした場合、ラミネートブロック10は、表面側板ガラス2を点接触で保持する。よって、ラミネートブロック10に不均一な荷重がかかった際に、その荷重に応じてラミネートブロック10が変形しやすいため、ラミネートブロック10の高さにばらつきがある場合などに発生する表面側板ガラス2の反りまたは表面側板ガラス2にかかる圧力のむらを抑制することができる。
 図11は、本発明の実施の形態3に係る太陽電池モジュールの製造方法において、積層工程後の太陽電池モジュールを表面側板ガラスの下方から見た状態を示す平面図である。図11に示すように、ガラス基板1の上面の周辺部に周辺封止部材5が配置される。周辺封止部材5の内部の空間に太陽電池セル3が収容されるように配置され、太陽電池セル3の上方にラミネートブロック10が配置される。
 このように、ラミネートブロック10を積層することにより、ラミネート処理時に、排気を行ないつつ加熱することにより、封止部の内部に気泡が発生することを抑制しつつ、透光性樹脂層を形成して太陽電池セルを封止することができる。
 本実施の形態のように太陽電池モジュールを製造することにより、ラミネート処理を行なう際に、ラミネートブロック10によって表面側板ガラス2の下面と周辺封止部材5の上面との間に隙間を確保することができる。よって、ガラス基板1、表面側板ガラス2および周辺封止部材5により囲まれて形成される封止部内の排気を十分に行ないつつ、加熱によってラミネートブロック10を溶解させることができる。ラミネートブロック10が溶解して封止部内を埋めつつ、ラミネートブロック10の厚さが薄くなることにより、表面側板ガラス2の下面と周辺封止部材5の上面とが接近する。
 最終的に、表面側板ガラス2と周辺封止部材5とが接触することにより、太陽電池セル3が封止部内に封止される。この結果、封止部の内部に気泡が発生することが抑制される。封止部の内部の気泡の発生が抑制されることにより、太陽電池セル3の性能が長期間維持され、太陽電池モジュールが長寿命化される。
 なお、今回開示した上記実施の形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるものではなく、請求の範囲の記載に基づいて画定される。また、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 1 ガラス基板、2 表面側板ガラス、3 太陽電池セル、4 第1ラミネートフィルム、5 周辺封止部材、6 空気、7 隙間、8,15 透光性樹脂層、9 第2ラミネートフィルム、10 ラミネートブロック、11,14 樹脂部材、12 枠、13 空気。

Claims (18)

  1.  第1板状部材(1)の上面の周辺部に周辺封止部材(5)を配置し、前記周辺封止部材(5)で囲まれた、前記第1板状部材(1)の上面に1つ以上の太陽電池セル(3)を配置し、樹脂部材(4,10)を前記太陽電池セル(3)の上面に、前記第1板状部材(1)の上面から前記周辺封止部材(5)の上面までの高さより、前記第1板状部材(1)の上面から前記樹脂部材(4,10)の上面までの高さが高くなるように配置し、前記樹脂部材(4,10)の上方において前記第2板状部材(2)を前記第1板状部材(1)と対向するように積層する積層工程と、
     前記樹脂部材(4,10)を排気環境下で加熱および加圧してラミネート処理することにより透光性樹脂層(8)とし、前記第1板状部材(1)の上面から前記周辺封止部材(5)の上面までの高さより、前記第1板状部材(1)の上面から前記透光性樹脂層(8)の上面までの高さが同一または低くなるようにすることによって、前記第2板状部材(2)と前記周辺封止部材(5)とが密着して、前記第1板状部材(1)、前記第2板状部材(2)および前記周辺部封止部材(5)により囲まれる空間内に前記太陽電池セル(3)および前記透光性樹脂層(8)を封止する封止工程とを備える、太陽電池モジュールの製造方法。
  2.  前記樹脂部材(4)は、複数のシート状樹脂部材が積層されたシート状樹脂部材群で構成される、請求の範囲第1項に記載の太陽電池モジュールの製造方法。
  3.  前記積層工程において、前記シート状樹脂部材群のうち、最下層のシート状樹脂部材は1枚のシートで形成され、前記最下層のシート状樹脂部材の上表面に接するように、他の複数のシート状樹脂部材を配置する、請求の範囲第2項に記載の太陽電池モジュールの製造方法。
  4.  前記積層工程において、前記最下層のシート状樹脂部材の上表面に、前記他の複数のシート状樹脂部材同士を互いに間隔を置いて分散して配置する、請求の範囲第3項に記載の太陽電池モジュールの製造方法。
  5.  前記積層工程において、前記シート状樹脂部材群のうち、最下層のシート状樹脂部材は1枚のシートで形成され、前記最下層のシート状樹脂部材の上面に接し、かつ、該上面の周縁全周に連続して、他のシート状樹脂部材(9)を配置する、請求の範囲第2項に記載の太陽電池モジュールの製造方法。
  6.  前記積層工程において、前記樹脂部材の外周と前記周辺封止部材の内周との間に隙間が形成されるように、前記周辺封止部材と前記樹脂部材とを配置する、請求の範囲第1項から第5項のいずれかに記載の太陽電池モジュールの製造方法。
  7.  表面に凹凸が形成されている前記樹脂部材(4)を用いる、請求の範囲第1項から第6項のいずれかに記載の太陽電池モジュールの製造方法。
  8.  エンボス加工により前記凹凸が形成されている前記樹脂部材(4)を用いる、請求の範囲第7項に記載の太陽電池モジュールの製造方法。
  9.  1つ以上のブロック状樹脂部材で構成される前記樹脂部材を用いる、請求の範囲第1項に記載の太陽電池モジュールの製造方法。
  10.  柱状の外形を有する前記ブロック状樹脂部材(10)を用いる、請求の範囲第9項に記載の太陽電池モジュールの製造方法。
  11.  錘状の外形を有する前記ブロック状樹脂部材を用いる、請求の範囲第9項に記載の太陽電池モジュールの製造方法。
  12.  前記封止工程の前記ラミネート処理において、前記樹脂部材(4,10)への加圧力を段階的に上昇させる、請求の範囲第1項に記載の太陽電池モジュールの製造方法。
  13.  前記第1板状部材(1)または前記第2板状部材(2)として、樹脂製、金属製またはセラミック製の板を用いる、請求の範囲第1項から第12項のいずれかに記載の太陽電池モジュールの製造方法。
  14.  前記シート状樹脂部材の材料として、エチレン酢酸ビニルコポリマー、ポリビニルブチラールまたはシリコン樹脂を用いる、請求の範囲第2項から第13項のいずれかに記載の太陽電池モジュールの製造方法。
  15.  前記周辺封止部材(5)が防湿性を有する材料で構成される、請求の範囲第1項から第14項のいずれかに記載の太陽電池モジュールの製造方法。
  16.  前記防湿性を有する材料が、ブチルテープ、ブチルシート、ホットブチル、吸湿性樹脂および金属製芯材入り樹脂のいずれかである前記周辺封止部材(5)を用いる、請求の範囲第15項に記載の太陽電池モジュールの製造方法。
  17.  前記封止工程の前記ラミネート処理において、前記透光性樹脂層(8)の厚さを、ラミネート処理前の前記樹脂部材の厚さの80%以下にする、請求の範囲第1項から第16項のいずれかに記載の太陽電池モジュールの製造方法。
  18.  請求の範囲第1項から第17項のいずれかに記載の製造方法で製造される、太陽電池モジュール。
PCT/JP2010/063099 2009-08-04 2010-08-03 太陽電池モジュールの製造方法、および、その製造方法で製造された太陽電池モジュール WO2011016451A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011525896A JP5490802B2 (ja) 2009-08-04 2010-08-03 太陽電池モジュールの製造方法、および、その製造方法で製造された太陽電池モジュール
US13/388,357 US20120125438A1 (en) 2009-08-04 2010-08-03 Manufacturing method of solar battery module, and solar battery module manufactured with that manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009181667 2009-08-04
JP2009-181667 2009-08-04

Publications (1)

Publication Number Publication Date
WO2011016451A1 true WO2011016451A1 (ja) 2011-02-10

Family

ID=43544346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063099 WO2011016451A1 (ja) 2009-08-04 2010-08-03 太陽電池モジュールの製造方法、および、その製造方法で製造された太陽電池モジュール

Country Status (3)

Country Link
US (1) US20120125438A1 (ja)
JP (1) JP5490802B2 (ja)
WO (1) WO2011016451A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT12559U1 (de) * 2011-02-21 2012-07-15 Inova Lisec Technologiezentrum Verfahren zum herstellen von modulen
WO2012113000A3 (de) * 2011-02-21 2013-05-30 Inova Lisec Technologiezentrum Gmbh Verfahren zum herstellen von modulen
JP2015518661A (ja) * 2012-04-18 2015-07-02 ガーディアン・インダストリーズ・コーポレーション 車両の屋根に用いられる改善された光起電力モジュール及び/又はその製造方法
KR20150084828A (ko) * 2012-11-12 2015-07-22 다우 코닝 코포레이션 전자 물품의 형성 방법
KR101733054B1 (ko) 2011-02-22 2017-05-08 엘지전자 주식회사 태양전지 모듈
JP2017216465A (ja) * 2011-08-04 2017-12-07 コーニング インコーポレイテッド 光電池モジュールパッケージ
CN109390424A (zh) * 2018-11-15 2019-02-26 江苏润达光伏无锡有限公司 贴膜全黑光伏组件及其制造方法
JP2019195046A (ja) * 2018-02-28 2019-11-07 ザ・ボーイング・カンパニーTheBoeing Company ソーラーセルをパネルに取り付けるための無加圧接合プロセス
WO2021200418A1 (ja) * 2020-03-30 2021-10-07 株式会社カネカ 太陽電池モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI691097B (zh) 2011-08-04 2020-04-11 康寧公司 光伏模組
US9991405B2 (en) * 2014-02-28 2018-06-05 Sunpower Corporation Solar module with aligning encapsulant
KR101994466B1 (ko) 2014-10-29 2019-06-28 테사 소시에타스 유로파에아 활성화될 수 있는 게터 물질을 함유하는 접착제 화합물

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513998A (en) * 1978-06-14 1980-01-31 Bfg Glassgroup Panel having at least one photocell and method of manufacturing same
JPS62128652U (ja) * 1986-02-07 1987-08-14
WO1995022843A1 (en) * 1994-02-17 1995-08-24 Ase Americas, Inc. Improvement in solar cell modules and method of making same
WO2001061763A1 (fr) * 2000-02-18 2001-08-23 Bridgestone Corporation Film d'etancheite pour cellule solaire et procede de fabrication de cellule solaire
WO2003050891A2 (en) * 2001-10-23 2003-06-19 Bp Corporation North America Inc. Sealed thin film photovoltaic modules
JP2005079332A (ja) * 2003-08-29 2005-03-24 Haishiito Kogyo Kk 太陽電池封止用シート
US20070144576A1 (en) * 2005-12-22 2007-06-28 Crabtree Geoffrey J Photovoltaic module and use
WO2007071703A1 (en) * 2005-12-22 2007-06-28 Shell Erneuerbare Energien Gmbh Photovoltaic device and method for encapsulating
JP2007242677A (ja) * 2006-03-06 2007-09-20 Sekisui Jushi Co Ltd 太陽電池モジュール、太陽電池装置及び太陽電池モジュールの製造方法
JP2008258269A (ja) * 2007-04-02 2008-10-23 Sharp Corp 太陽電池モジュールおよびその製造方法
WO2009043817A2 (en) * 2007-10-04 2009-04-09 Saes Getters S.P.A. Method for manufacturing photovoltaic panels by the use of a polymeric tri-layer comprising a composite getter system
WO2009076411A2 (en) * 2007-12-10 2009-06-18 Davis, Joseph And Negley Methods for bond or seal glass pieces of photovoltaic cell modules
WO2009085736A2 (en) * 2007-12-20 2009-07-09 Truseal Technologies, Inc. Hot melt sealant containing desiccant for use in photovoltaic modules

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513998A (en) * 1978-06-14 1980-01-31 Bfg Glassgroup Panel having at least one photocell and method of manufacturing same
JPS62128652U (ja) * 1986-02-07 1987-08-14
WO1995022843A1 (en) * 1994-02-17 1995-08-24 Ase Americas, Inc. Improvement in solar cell modules and method of making same
WO2001061763A1 (fr) * 2000-02-18 2001-08-23 Bridgestone Corporation Film d'etancheite pour cellule solaire et procede de fabrication de cellule solaire
WO2003050891A2 (en) * 2001-10-23 2003-06-19 Bp Corporation North America Inc. Sealed thin film photovoltaic modules
JP2005079332A (ja) * 2003-08-29 2005-03-24 Haishiito Kogyo Kk 太陽電池封止用シート
US20070144576A1 (en) * 2005-12-22 2007-06-28 Crabtree Geoffrey J Photovoltaic module and use
WO2007071703A1 (en) * 2005-12-22 2007-06-28 Shell Erneuerbare Energien Gmbh Photovoltaic device and method for encapsulating
JP2007242677A (ja) * 2006-03-06 2007-09-20 Sekisui Jushi Co Ltd 太陽電池モジュール、太陽電池装置及び太陽電池モジュールの製造方法
JP2008258269A (ja) * 2007-04-02 2008-10-23 Sharp Corp 太陽電池モジュールおよびその製造方法
WO2009043817A2 (en) * 2007-10-04 2009-04-09 Saes Getters S.P.A. Method for manufacturing photovoltaic panels by the use of a polymeric tri-layer comprising a composite getter system
WO2009076411A2 (en) * 2007-12-10 2009-06-18 Davis, Joseph And Negley Methods for bond or seal glass pieces of photovoltaic cell modules
WO2009085736A2 (en) * 2007-12-20 2009-07-09 Truseal Technologies, Inc. Hot melt sealant containing desiccant for use in photovoltaic modules

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT12559U1 (de) * 2011-02-21 2012-07-15 Inova Lisec Technologiezentrum Verfahren zum herstellen von modulen
WO2012113000A3 (de) * 2011-02-21 2013-05-30 Inova Lisec Technologiezentrum Gmbh Verfahren zum herstellen von modulen
CN103392240A (zh) * 2011-02-21 2013-11-13 爱诺华李赛克技术中心有限公司 用于制造模块的方法
JP2014509078A (ja) * 2011-02-21 2014-04-10 イノバ・リゼツク・テクノロジーツエントルム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング モジュールの作成法
KR101733054B1 (ko) 2011-02-22 2017-05-08 엘지전자 주식회사 태양전지 모듈
JP2017216465A (ja) * 2011-08-04 2017-12-07 コーニング インコーポレイテッド 光電池モジュールパッケージ
JP2015518661A (ja) * 2012-04-18 2015-07-02 ガーディアン・インダストリーズ・コーポレーション 車両の屋根に用いられる改善された光起電力モジュール及び/又はその製造方法
KR20150084828A (ko) * 2012-11-12 2015-07-22 다우 코닝 코포레이션 전자 물품의 형성 방법
JP2020174218A (ja) * 2012-11-12 2020-10-22 ダウ シリコーンズ コーポレーション 電子物品の形成方法
KR102184894B1 (ko) * 2012-11-12 2020-12-01 다우 실리콘즈 코포레이션 전자 물품의 형성 방법
JP2019195046A (ja) * 2018-02-28 2019-11-07 ザ・ボーイング・カンパニーTheBoeing Company ソーラーセルをパネルに取り付けるための無加圧接合プロセス
US11626833B2 (en) 2018-02-28 2023-04-11 The Boeing Company Solar panels and electronic devices comprising solar panels
JP7421864B2 (ja) 2018-02-28 2024-01-25 ザ・ボーイング・カンパニー ソーラーセルをパネルに取り付けるための無加圧接合プロセス
CN109390424A (zh) * 2018-11-15 2019-02-26 江苏润达光伏无锡有限公司 贴膜全黑光伏组件及其制造方法
WO2021200418A1 (ja) * 2020-03-30 2021-10-07 株式会社カネカ 太陽電池モジュール

Also Published As

Publication number Publication date
US20120125438A1 (en) 2012-05-24
JPWO2011016451A1 (ja) 2013-01-10
JP5490802B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5490802B2 (ja) 太陽電池モジュールの製造方法、および、その製造方法で製造された太陽電池モジュール
US20060207645A1 (en) Method of manufacturing a solor cell module
JP5209229B2 (ja) 太陽電池モジュールの製造方法
US20110083717A1 (en) Solar Cell Module and Method of Manufacturing the Same
JPH1131834A (ja) ガラスサンドイッチ型太陽電池パネル
EP2590227A1 (en) Method for manufacturing solar cell module, and solar cell module manufactured by the method
JP2002039631A (ja) 光熱ハイブリッドパネル及びそれを用いたハイブリッドパネル本体及び光熱ハイブリッドパネルの製造方法
JP6087164B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2007123451A (ja) 太陽電池モジュールの製造方法
TW201424019A (zh) 背接式太陽能面板以及製造該太陽能面板的方法
JP2010040769A (ja) 太陽電池モジュールの製造方法
US20130306132A1 (en) Solar photoelectrical module and fabrication thereof
WO2012165001A1 (ja) 太陽電池モジュール及びその製造方法
JP2010278147A (ja) 太陽電池モジュールの製造方法
TWI583014B (zh) 太陽能模組及其製造及重工方法
JP2011135068A (ja) 太陽電池モジュールの製造方法
JP4550390B2 (ja) 太陽電池モジュール
JP2012212948A (ja) 太陽電池モジュール
JP2011249835A (ja) 太陽電池モジュールの製造方法
JP2007311651A (ja) 真空ラミネート装置および真空ラミネート方法
JP2006156873A (ja) 樹脂フィルムおよびそれを用いた半導体モジュールの製造方法
JP2017022204A (ja) 太陽電池モジュールの製造方法
WO2012029263A1 (ja) 太陽電池モジュールの製造方法
EP2383796A1 (en) Solar cell module
TW201543704A (zh) 太陽面板及製造其的方法及包含該太陽面板的壁覆蓋元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525896

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13388357

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806450

Country of ref document: EP

Kind code of ref document: A1