WO2011016390A1 - 無線通信システム、移動局装置および基地局装置 - Google Patents

無線通信システム、移動局装置および基地局装置 Download PDF

Info

Publication number
WO2011016390A1
WO2011016390A1 PCT/JP2010/062849 JP2010062849W WO2011016390A1 WO 2011016390 A1 WO2011016390 A1 WO 2011016390A1 JP 2010062849 W JP2010062849 W JP 2010062849W WO 2011016390 A1 WO2011016390 A1 WO 2011016390A1
Authority
WO
WIPO (PCT)
Prior art keywords
station apparatus
mobile station
reference signal
base station
channel
Prior art date
Application number
PCT/JP2010/062849
Other languages
English (en)
French (fr)
Inventor
陽介 秋元
翔一 鈴木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP10806389A priority Critical patent/EP2464184A1/en
Priority to CN2010800339805A priority patent/CN102474857A/zh
Priority to US13/388,821 priority patent/US20120163320A1/en
Priority to BR112012002644A priority patent/BR112012002644A2/pt
Publication of WO2011016390A1 publication Critical patent/WO2011016390A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/006Single carrier frequency division multiple access [SC FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a communication technique, and more particularly to a technique for efficiently transmitting a sounding reference signal corresponding to MIMO in a mobile communication system having a base station apparatus and a mobile station apparatus for transmission and reception, and a reception technique thereof. .
  • Non-Patent Document 1 proposes reducing the number of logical transmission ports by performing precoding on the SRS. Specifically, when the number of antennas of the mobile station apparatus is 4, the number of antenna ports required for SRS, that is, the use of orthogonal resources can be reduced to 3 by multiplying this by a 3 ⁇ 4 matrix. When the base station apparatus knows the optimal rank and precoder in advance, the number of SRS sequences transmitted can be reduced by this method.
  • Non-Patent Document 2 proposes to include information for commanding SRS transmission once in the uplink resource allocation information transmitted to each mobile station apparatus on the downlink control channel when SRS is insufficient. ing.
  • periodic SRS transmission of two times (two subframes) or more in one setting is referred to as periodic SRS, and only one (one subframe) SRS transmission in one setting is aperiodic. This is called SRS.
  • SRS periodic SRS transmission of two times (two subframes) or more in one setting
  • SRS only one (one subframe) SRS transmission in one setting.
  • Non-Patent Document 1 is a method that focuses on determining the modulation method and coding rate, which is one of the uses of SRS.
  • SRS in which the number of logical antenna ports is reduced by performing precoding, The rank and precoder cannot be calculated. Therefore, there is a problem that two types of settings are required: SRS for calculating the rank and precoder, and SRS for determining the modulation scheme and coding rate.
  • Non-Patent Document 2 SRS is transmitted once in one subframe by effectively using the free space of the SRS subframe, but the resource is secured even when the SRS is not used. In order to be able to transmit SRS at any time according to the situation, it is necessary to secure a large number of unused SRS areas. As the flexibility increases, the overhead increases, and as a result, the overhead reduction effect that was originally intended There was a problem that became smaller.
  • the present invention has been made in view of such circumstances, and in the transmission of the aperiodic SRS described above, a radio communication system and a mobile station that reduce resource overhead and do not significantly change from the LTE specification
  • An object is to provide a device and a base station device.
  • the radio communication system of the present invention includes a base station apparatus and a mobile station apparatus that transmits a data signal to the base station apparatus by SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) system.
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • a wireless communication system that transmits a reference signal for channel measurement from a station device to the base station device, wherein the reference signal for channel measurement is a data transmission allocated from the base station device to each mobile station device. It is transmitted using a trusted channel.
  • the channel measurement reference signal is transmitted from the base station apparatus using the data transmission channel assigned to each mobile station apparatus, resources for transmitting SRS (channel measurement reference signal) are transmitted.
  • SRS channel measurement reference signal
  • the overhead related to securing can be reduced.
  • there is no major change from the LTE specification and backward compatibility with existing mobile station devices compatible with LTE is maintained, and the LTE radio physical structure can be used as it is, so the impact on the specification can be reduced. .
  • the base station apparatus allocates a data transmission channel to each of the plurality of mobile station apparatuses, and the first mobile station apparatus is used for data demodulation.
  • a reference signal for channel estimation is transmitted to the base station device, and the second mobile station device is the same time as the time when the first mobile station device transmits the reference signal for channel estimation,
  • a reference signal for channel measurement is transmitted, and the reference signal for channel estimation and the reference signal for channel measurement are sequences orthogonal to each other.
  • the second mobile station apparatus transmits the channel measurement reference signal at the same time as the first mobile station apparatus transmits the channel estimation reference signal, and the channel estimation reference signal. Since the channel measurement reference signals are sequences orthogonal to each other, it is possible to reduce overhead related to securing resources for transmitting the SRS. In addition, there is no major change from the LTE specification, and backward compatibility with existing mobile station devices compatible with LTE is maintained, and the LTE radio physical structure can be used as it is, so the impact on the specification can be reduced. .
  • the reference signal for channel estimation and the reference signal for channel measurement have different cyclic shifts with respect to a CAZAC (Constant-Amplitude-and Zero-AutoCorrelation) sequence. It is generated by applying.
  • CAZAC Constant-Amplitude-and Zero-AutoCorrelation
  • the channel estimation reference signal and the channel measurement reference signal apply different cyclic shifts to the CAZAC (Constant-Amplitude-and-Zero-AutoCorrelation) sequence, and therefore, SC-FDMA that transmits DMRS.
  • SRS can be transmitted only with symbols.
  • the base station apparatus applies an exclusive OR of a predetermined bit sequence to the error detection CRC bits given to the uplink allocation information.
  • the reference signal for channel measurement at the same time as the time when the first mobile station device transmits the reference signal for channel estimation to the second mobile station device. It is characterized by notifying that it transmits.
  • the base station apparatus applies the exclusive OR of the predetermined bit sequence to the error detection CRC bits added to the uplink allocation information, the mobile station apparatus A (first mobile station) Station device) and mobile station device B (second mobile station device) can be identified for UL Grant.
  • the mobile station apparatus maps an orthogonal code sequence of a channel measurement reference signal to any SC-FDMA symbol as a channel measurement reference signal, and transmits An orthogonal code sequence of a reference signal for channel measurement and an SC-FDMA symbol are associated with the antenna and transmitted to the base station apparatus.
  • the SRS is transmitted by a procedure focusing on only one mobile station apparatus.
  • Overhead associated with securing resources can be reduced.
  • there is no major change from the LTE specification and backward compatibility with existing mobile station devices compatible with LTE is maintained, and the LTE radio physical structure can be used as it is, so the impact on the specification can be reduced. .
  • the base station apparatus allocates a data transmission channel to each of a plurality of mobile station apparatuses, and for each of the mobile station apparatuses, the channel measurement channel
  • the SC-FDMA symbol for transmitting the reference signal and the orthogonal code sequence of the reference signal for channel measurement are allocated so as to be different from each other.
  • each mobile station apparatus is assigned so that the combination of the SC-FDMA symbol for transmitting the channel measurement reference signal and the orthogonal code sequence of the channel measurement reference signal is different, a plurality of mobile station apparatuses are allocated. SRS can be multiplexed simultaneously.
  • a data signal or a CQI (Channel Quality Indicator) is mapped to an SC-FDMA symbol to which an orthogonal code sequence of the channel measurement reference signal is not mapped. It transmits to a base station apparatus, It is characterized by the above-mentioned.
  • the SC-FDMA symbol that is not allocated to SRS transmission. Can be used effectively.
  • a mobile station apparatus is a mobile station apparatus that transmits a data signal to a base station apparatus by an SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) method, and is allocated from the base station apparatus.
  • a reference signal for channel measurement is transmitted to the base station apparatus using a data transmission channel to be transmitted.
  • the mobile station apparatus since the channel measurement reference signal is transmitted to the base station apparatus using the data transmission channel allocated from the base station apparatus, the mobile station apparatus uses the SRS (channel measurement reference signal).
  • SRS channel measurement reference signal
  • the overhead related to securing resources for transmitting can be reduced.
  • there is no major change from the LTE specification and backward compatibility with existing mobile station devices compatible with LTE is maintained, and the LTE radio physical structure can be used as it is, so the impact on the specification can be reduced. .
  • the channel measurement reference signal is transmitted at the same time as another mobile station apparatus transmits the channel estimation reference signal, and the channel estimation signal is transmitted.
  • the reference signal and the channel measurement reference signal are sequences orthogonal to each other.
  • the mobile station apparatus can reduce the overhead related to securing resources for transmitting the SRS.
  • the LTE specification there is no major change from the LTE specification, and backward compatibility with existing mobile station devices compatible with LTE is maintained, and the LTE radio physical structure can be used as it is, so the impact on the specification can be reduced. .
  • the base station apparatus of the present invention is a base station apparatus that performs radio communication with the mobile station apparatus described in (9), and in advance, with respect to the error detection CRC bits added to the uplink allocation information, By applying an exclusive OR of the determined bit sequences, it is the same as the time at which the other mobile station apparatus transmits the channel estimation reference signal to the mobile station apparatus on the downlink control channel. It is notified that the reference signal for channel measurement is transmitted at a time.
  • the base station apparatus since the base station apparatus applies the exclusive OR of the predetermined bit sequence to the error detection CRC bits given to the uplink allocation information, the mobile station apparatus The UL Grant transmitted to each of the (first mobile station apparatus) and the mobile station apparatus B (second mobile station apparatus) can be identified.
  • the transmission of the aperiodic SRS described in the present invention it is possible to reduce the overhead related to securing the resources for transmitting the SRS.
  • there is no major change from the LTE specification and backward compatibility with existing mobile station devices compatible with LTE is maintained, and the LTE radio physical structure can be used as it is, so the impact on the specification can be reduced. .
  • W-CDMA Wideband-Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • a communication system based on SC-FDMA Single-Carrier-Frequency-Division-Multiple Access based on resources allocated from a base station apparatus is employed.
  • the modulated transmission signal is converted into a frequency domain signal by DFT (Discrete Fourier Transformation), mapped to the frequency resource allocated by the base station apparatus, and then in the time domain by IDFT (Inverse DFT). It is converted into a signal and transmitted to the base station apparatus.
  • the uplink data corresponds to data that is passed from the upper layer and does not interpret the meaning of each bit in the physical layer, and is referred to as UL-SCH (Uplink Shared Channel) defined in the transport channel.
  • UL-SCH Uplink Shared Channel
  • the data that is actually transmitted is obtained by performing processing such as encoding on the UL-SCH, and this is transmitted on a data transmission channel called PUSCH (Physical Uplink Shared Channel) assigned by the base station apparatus. .
  • LTE uplink In LTE uplink, only antenna switching for adaptively selecting one transmission antenna from two transmission antennas was supported.
  • MIMO Multiple Input Multiple The application of spatial multiplexing by output
  • UL-SCH data is spatially multiplexed and a plurality of sequences are transmitted.
  • the coding rate and the modulation scheme applied to UL-SCH are calculated based on the sounding reference signal (SRS: Sounding Reference Signal, reference signal for channel measurement) transmitted from the mobile station device to the base station device.
  • SRS Sounding Reference Signal, reference signal for channel measurement
  • FIG. 9 is a diagram specifically illustrating a method of transmitting SRS in LTE.
  • the base station apparatus sets a sounding subframe between the entire mobile station apparatus that communicates with the base station apparatus. Specifically, the sounding subframe is given an offset and a period from the reference subframe. The sounding subframe is common to all mobile station apparatuses, which means that SRS is transmitted in this subframe.
  • FIG. 10 is a diagram showing a detailed configuration of a sounding subframe in LTE.
  • FIG. 10 shows only a band that can be used for PUSCH allocation, and a channel for transmitting control information is omitted.
  • the vertical axis in FIG. 10 is the frequency axis, and one block represents a subcarrier. In LTE, 12 consecutive subcarriers are collectively used as a resource allocation unit, which is called a resource block (RB).
  • the horizontal axis is a time axis, in which the frequency domain is converted to the time domain, and the time is divided by a unit that gives a cyclic prefix. This is called a 1SC-FDMA symbol.
  • one slot is composed of consecutive 7SC-FDMA symbols, and one subframe is composed of two slots.
  • the subframe is a resource allocation unit in the time domain in LTE and LTE-A.
  • each SC-FDMA symbol can be used for different purposes, and SC-FDMA symbol No. 3 is a reference signal for data demodulation (DMRS: Demodulation Reference Signal (channel used for data demodulation). It is used for transmission of a reference signal for estimation)).
  • SC-FDMA symbol 6 in slot 1 is used for transmission of SRS.
  • Other SC-FDMA symbols are used for data transmission.
  • DMRS and SRS use orthogonal codes for multiplexing with other users and for antenna identification.
  • a CAZAC Constant-Amplitude-and Zero-AutoCorrelation
  • FIG. 11 is a diagram illustrating an SRS transmission method in LTE.
  • the base station apparatus performs settings related to SRS transmission for each mobile station apparatus.
  • the setting indicates that the position of the subframe that can be used by the mobile station apparatus among the SRS subframes is set by the offset and the period, and the SRS that is supported by the SRS and transmitted in one subframe. It represents the bandwidth and from which antenna it is transmitted.
  • even-numbered subframes are set as SRS subframes, and ⁇ 4, 8, 12, 16, 20, 24 ⁇ subframes are allocated to this mobile station apparatus.
  • the band supported by the SRS of this mobile station apparatus is A, which is a part of the system bandwidth, and one-third of the width of the band A, that is, the bands A1, A2, A3 are determined in advance by one SRS transmission Sent in the order given.
  • this mobile station apparatus has two transmission antennas, and an SRS corresponding to one antenna is transmitted in one subframe.
  • the antennas # 0 and # 1 are set to be alternately transmitted at the respective transmission timings.
  • LTE Long Term Evolution
  • SRS is transmitted according to the procedure as described above.
  • LTE-A supports MIMO spatial multiplexing, it is necessary to change the transmission method of SRS in accordance with this.
  • the channel information corresponding to the transmission antenna that the base station apparatus should have known in LTE was 2, but in LTE-A, spatial multiplexing with a maximum of four transmission antennas is supported.
  • the overhead required for SRS in A can simply be twice that of LTE.
  • the mobile communication system includes a base station device and a mobile station device.
  • FIG. 1 is a functional block diagram showing a configuration example of a base station apparatus according to an embodiment of the present invention.
  • the base station apparatus includes a transmission unit 110, a scheduling unit 120, a reception unit 130, and an antenna 140.
  • the transmission unit 110 includes an encoding unit 111, a modulation unit 112, a mapping unit 113, and a wireless transmission unit 114.
  • the scheduling unit 120 includes a downlink transmission resource information control unit 121, an uplink transmission resource information control unit 122, a periodic SRS transmission schedule control unit 123, and an aperiodic SRS transmission schedule control unit 124.
  • Reference numeral 130 includes a wireless reception unit 131, an SRS separation / calculation unit 132, and an inverse mapping / demodulation processing unit 133.
  • the antennas 140 are provided as many as necessary for transmitting downlink signals and receiving uplink signals.
  • the downlink data generated in the base station device and transmitted to each mobile station device and the scheduling information for control information transmission output from the scheduling unit 120 are input to the encoding unit 111, and each of them is input to the scheduling unit 120. Is encoded according to the control signal from, and an encoded bit string is output.
  • the control signal from the scheduling unit 120 represents information indicating a coding rate and a coding scheme such as a turbo code or a tail biting convolutional code.
  • a plurality of pieces of information may be combined and encoded, and each piece of information may be encoded separately.
  • the information provided from scheduling section 120 is characterized in that it includes control information related to transmission of aperiodic SRS, for example, PUSCH allocation information, aperiodic SRS sequence, SC-FDMA symbol to be transmitted Represents uplink resource allocation information (UL Grant) that contains information such as
  • the plurality of output bit strings of the encoding unit 111 are input to the modulation unit 112, each of which is modulated according to a control signal from the scheduling unit 120, for example, converted into BPSK, QPSK, 16QAM, 64QAM symbols and output.
  • the output of the modulation unit 112 is input to the mapping unit 113 together with the downlink scheduling information provided from the scheduling unit 120, and transmission data is generated.
  • the transmission data refers to, for example, an OFDM signal
  • the mapping operation corresponds to an operation corresponding to the frequency and time resources specified for each mobile station apparatus. If spatial multiplexing by MIMO is employed, this processing is performed in this block.
  • the control information is uplink or downlink resource allocation information, that is, transmission timing and frequency resource information, uplink or downlink signal modulation scheme and coding rate, and CQI, PMI for the mobile station apparatus, This is an RI transmission request or the like.
  • the signal generated by the mapping unit 113 is output to the wireless transmission unit 114.
  • the wireless transmission unit 114 is converted into a form suitable for the transmission method, and if the communication method specifically conforms to OFDMA, IFFT (Inverse Fast Fourier Transformation) is performed on the frequency domain signal, A time domain signal is generated.
  • the output signal of the wireless transmission unit 114 is supplied to the antenna 140 and transmitted from here to each mobile station apparatus.
  • the scheduling unit 120 manages and controls the control information from the higher layer and the information transmitted from the mobile station apparatus, determines the resource allocation to each mobile station apparatus, the modulation scheme, the coding rate, and controls these operations.
  • the control information is output. It is also a feature of the present invention that the scheduling unit 120 manages the transmission timing (time resource), resource block (frequency resource), and code resource of the aperiodic SRS.
  • the downlink transmission resource information control unit 121 schedules and manages downlink resources used by each mobile station apparatus and generates a control signal thereof.
  • the uplink transmission resource information control unit 122 manages uplink resources used by each mobile station apparatus and generates a control signal thereof.
  • Periodic SRS transmission schedule control section 123 manages periodic SRS transmission resources (time resources, frequency resources, code resources) to be applied to each mobile station device, and also performs settings and management for SRS subframes. .
  • the aperiodic SRS transmission schedule control unit 124 manages the transmission resources (time resource, frequency resource, code resource) of the aperiodic SRS applied to each mobile station apparatus, and UL for notifying it Grant creation and management.
  • the signal transmitted from the mobile station apparatus is received by the antenna 140 and then input to the radio reception unit 131.
  • the wireless receiving unit 131 receives data and control signals, generates a digital signal corresponding to the transmission method, and outputs it. Specifically, if the OFDM method or the SC-FDMA method is adopted, after the received signal is converted from analog to digital, a signal subjected to FFT processing in units of processing time is output.
  • the radio reception unit 131 includes a signal for measuring the state of the uplink propagation path and a signal such as a data signal processed in an upper layer and a signal including information to be managed as control information. They are divided into two types and output as a first signal and a second signal, respectively.
  • the first output of the wireless reception unit 131 is output to the SRS separation / calculation unit 132.
  • aperiodic SRS or periodic SRS included in the uplink signal is extracted, and channel information of each mobile station apparatus obtained therefrom is output to scheduling section 120.
  • SRS may be multiplexed for each user or other information depending on time, frequency, and code resources, and resources managed by the periodic SRS transmission schedule control unit 123 or the aperiodic SRS transmission schedule control unit 124 These separations are performed according to the allocation information.
  • the second output of the wireless reception unit 131 is output to the inverse mapping / demodulation processing unit 133.
  • the inverse mapping / demodulation processing unit 133 demodulates and extracts a plurality of types of information transmitted from the mobile station apparatus using the mapping pattern, modulation scheme, and coding rate managed by the scheduling unit 120.
  • the scheduling unit 120 if spatial multiplexing is applied to the uplink signal and two or more types of information having different communication qualities are transmitted at the same time, the time and frequency position in which each signal is included are separated in advance, and scheduling is performed.
  • inverse mapping and demodulation processing using different modulation schemes, coding rates, and spatial multiplexing numbers are performed.
  • those processed in the upper layer are output to the upper layer, and control information managed by the scheduling unit 120, such as CQI and RI, is sent to the scheduling unit 120. Is output.
  • FIG. 2 is a functional block diagram showing a configuration example of the mobile station apparatus according to the embodiment of the present invention.
  • each mobile station apparatus includes a receiving unit 210, a scheduling information management unit 220, a transmission unit 230, and an antenna 240.
  • the reception unit 210 includes a wireless reception unit 211, a demodulation processing unit 212, and a downlink propagation path calculation unit 213.
  • the scheduling information management unit 220 includes a downlink transmission resource information management unit 221, an uplink transmission resource information management unit 222, a periodic SRS transmission schedule management unit 223, and an aperiodic SRS transmission schedule management unit 224.
  • the transmission unit 230 includes an encoding unit 231, a modulation unit 232, a mapping unit 233, and a wireless transmission unit 234.
  • the received signal is input to the radio reception unit 211.
  • the wireless reception unit 211 performs processing according to the communication method in addition to analog / digital (A / D) conversion and the like, and outputs the result. Specifically, in the case of OFDMA, the time-series signal after A / D conversion is subjected to FFT processing, converted into a time / frequency domain signal, and output.
  • the output signal of the wireless reception unit 211 is input to the demodulation processing unit 212.
  • the demodulation processor 212 has downlink signal scheduling information output from the scheduling information manager 220 (that is, information on where the signal addressed to itself is allocated), the number of spatially multiplexed sequences, the modulation method, the code Control information such as the conversion rate is also input, and demodulation processing is performed.
  • the demodulated signals are classified according to the signal type, information processed in the upper layer is passed to the upper layer, and information managed by the scheduling information management unit 220 is input to the scheduling information management unit 220. .
  • the information managed by the scheduling information management unit 220 is characterized by including information related to resources (time, frequency, code resource) for transmitting an aperiodic SRS.
  • the downlink propagation path calculation unit 213 uses the propagation path calculation signal provided from the radio reception unit 211 as an input signal to calculate management information such as the number of spatially multiplexed sequences, modulation scheme, and coding rate applicable to the downlink. . This management information is input to the scheduling information management unit 220.
  • the scheduling information management unit 220 manages control information transmitted from the base station apparatus, and also performs management for transmitting control information calculated by the mobile station apparatus to the base station apparatus.
  • the downlink transmission resource information management unit 221 manages the downlink resource information of the own station transmitted from the base station apparatus, and performs transmission control of the downlink signal.
  • the uplink transmission resource information management unit 222 manages the uplink resource information of the own station transmitted from the base station apparatus, and performs transmission control of the uplink signal.
  • the periodic SRS transmission schedule management unit 223 manages the transmission resources (time resource, frequency resource, code resource) of the periodic SRS transmitted from the base station apparatus, and controls SRS transmission using these resources. To do. It also manages SRS subframes.
  • the aperiodic SRS transmission schedule management unit 224 manages the transmission resources (time resource, frequency resource, code resource) of the aperiodic SRS transmitted from the base station apparatus, and the aperiodic SRS using the resource. It also controls generation.
  • the transmission unit 230 transmits information on uplink resources to which information such as uplink data and aperiodic SRS is assigned.
  • the signals managed by the downlink data and scheduling information management unit 220 are supplied to the encoding unit 231 at the transmission timing, and the input signals are encoded at different coding rates depending on the respective types.
  • the plurality of series of output signals are input to the modulation unit 232 and modulated by different modulation schemes depending on the type. This output is output to mapping section 233, and performs signal mapping according to the spatial multiplexing number for each transmission information and mapping position information. Specifically, when SC-FDMA is applied to the transmission method, the signal is mapped to the assigned frequency domain.
  • the signal mapped by the mapping unit 233 is input to the wireless transmission unit 234.
  • the wireless transmission unit 234 converts these signals into a signal form to be transmitted. Specifically, an operation of converting a frequency domain signal into a time domain signal by IFFT and providing a guard interval corresponds to this.
  • the output of the wireless transmission unit 234 is supplied to the antenna 240.
  • FIG. 3 is a sequence chart assuming that an SRS is set from the base station apparatus according to the first embodiment of the present invention to the mobile station apparatus A and the mobile station apparatus B, and an aperiodic SRS is transmitted. is there.
  • the details of the procedure for transmitting periodic SRS are omitted, but it is possible to coexist with aperiodic SRS, and the same procedure as in this embodiment is used regardless of the timing of the transmission time. It is possible to apply.
  • the base station apparatus notifies the mobile station apparatus A and the mobile station apparatus B of the settings related to SRS (steps S101A and S101B).
  • notification of SRS subframes and notification of information regarding allocation information of periodic SRS are performed.
  • the processing corresponding to steps S101A and S101B does not have to be completed in one subframe, and may be performed using several subframes.
  • the mobile station apparatus that has been notified of the setting related to the SRS transmits the aperiodic SRS using the assigned resource according to the setting.
  • resources represent time, frequency, and code resources. However, since aperiodic SRS and periodic SRS do not affect each other, the timing at which periodic SRS is transmitted is not specified here.
  • the base station device transmits an uplink assignment signal (UL Grant) to the mobile station device A and the mobile station device B (step S102A, step S102B).
  • UL Grant transmitted to the mobile station apparatus A does not instruct to transmit SRS, but to instruct to transmit a data signal and DMRS, and the allocated resource block position, modulation scheme, The coding rate, DMRS orthogonal code sequence (cyclic shift applied to CAZAC sequence), and the like are described.
  • the mobile station apparatus A generates a data signal according to UL Grant (step S103A), and also generates a DMRS signal (step S104A). Then, these data signals and DMRS are transmitted to the base station apparatus in the allocated time and frequency resource (step S105A).
  • FIG. 4 is a diagram specifically showing the SRS transmission method according to the first embodiment of the present invention.
  • DMRS is assumed to be mapped to the third SC-FDMA symbol.
  • step S102B information specifying that an aperiodic SRS is transmitted is described in UL Grant transmitted to mobile station apparatus B (step S102B). Subsequently, the mobile station apparatus B generates a sounding signal (step S103B).
  • the difference from UL Grant transmitted to mobile station apparatus A is that mobile station apparatus B does not transmit data, but transmits signals only with SC-FDMA symbols to which DMRS is mapped.
  • the identification bit is included in the UL Grant, or the exclusive OR of a specific sequence is added to the CRC (Cyclic Redundancy Check) bit string for error detection used for UL Grant detection. Applying is mentioned.
  • CRC Cyclic Redundancy Check
  • an aperiodic SRS orthogonal code sequence cyclic shift applied to a CAZAC sequence
  • This orthogonal code sequence may be notified as many as the number of antennas transmitted here, or one cyclic shift and the number of antennas are notified and determined in advance so that the cyclic shift is uniquely determined. May be.
  • a sequence orthogonal to the DMRS of the mobile station device A is selected as the orthogonal code sequence of the aperiodic SRS. Specifically, a sequence obtained by cyclically shifting a CAZAC sequence used for DMRS of mobile station apparatus A is used.
  • mobile station apparatus B transmits the SRS only with the third SC-FDMA symbol in each slot, that is, the SC-FDMA symbol from which mobile station apparatus A transmits the DMRS as shown in FIG. 4 (step S105B). ).
  • SRSs corresponding to the plurality of transmission antennas can be code-multiplexed with the SC-FDMA symbols and transmitted. Further, SRS may be transmitted from different antennas in slot # 0 and slot # 1.
  • information indicating that the frequency is changed for each slot (frequency hopping) may be included in the UL Grant. Accordingly, a wider frequency band can be supported by a single SRS transmission instruction.
  • the base station apparatus that has received signals transmitted from mobile station apparatus A and mobile station apparatus B (step S106) performs despreading processing on the third SC-FDMA symbol transmitted with DMRS and aperiodic SRS (step S106). Step S107). Thereby, the base station apparatus can know the channel corresponding to each antenna of the mobile station apparatus B. With the above procedure, it is possible to transmit a new SRS corresponding to the physical structure of the existing system.
  • FIG. 5 is a sequence chart showing a process and a signal flow between the base station apparatus and the mobile station apparatus according to the second embodiment of the present invention.
  • the base station apparatus and the mobile station apparatus As the configurations of the base station apparatus and the mobile station apparatus, the same configurations as those shown in FIGS. 1 and 2 can be used.
  • the difference from the first embodiment is that the aperiodic SRS is transmitted using the PUSCH data transmission area (that is, the 0th, 1, 2, 4, 5, 6SC-FDMA symbols in FIG. 4). That is.
  • the a procedure focusing on only one mobile station apparatus will be described. However, the same procedure can be extended to a plurality of mobile station apparatuses by applying TDMA, FDMA, and CDMA. .
  • the base station apparatus notifies the mobile station apparatus of the setting regarding SRS (step S201).
  • notification of SRS subframes and notification of information regarding allocation information of periodic SRS are performed.
  • the process corresponding to step S201 need not be completed in one subframe, and may be performed using several subframes.
  • the mobile station apparatus that is notified of the setting related to SRS transmits the aperiodic SRS according to the setting using the assigned resource.
  • resources represent time, frequency, and code resources.
  • the timing at which periodic SRS is transmitted is not specified here.
  • the base station apparatus transmits an uplink assignment signal (UL Grant) to the mobile station apparatus (step S202).
  • the UL Grant received here describes information specifying that an aperiodic SRS is transmitted.
  • the difference from UL Grant for aperiodic SRS transmission shown in the first embodiment is the relationship between SC-FDMA symbols, orthogonal code sequences, and corresponding transmission antennas that transmit aperiodic SRS. Is included.
  • an allocated resource block position, usable SC-FDMA symbol position information, and an aperiodic SRS orthogonal code sequence (cyclic shift) are described.
  • the usable SC-FDMA symbol position information is composed of, for example, 7 bits, and the SRS may be transmitted in order from the antenna 1 in the order of the allocated SC-FDMA positions.
  • any sequence may be used as the SRS sequence, but a CAZAC sequence, which is an orthogonal sequence having a constant amplitude in the frequency domain, may be used.
  • a CAZAC sequence which is an orthogonal sequence having a constant amplitude in the frequency domain.
  • a plurality of mobile station apparatuses can be multiplexed simultaneously.
  • the mobile station apparatus generates an SRS signal (step S203), and uses the allocated time (subframe, slot, SC-FDMA symbol), frequency, and code to transmit the aperiodic SRS to the base station apparatus. Transmit (step S204).
  • FIG. 6 is a diagram specifically showing the SRS transmission method according to the second embodiment of the present invention.
  • the SRS is mapped to, for example, the 0th, 1, 4, 5SC-FDMA symbols other than the third SC-FDMA symbol.
  • the base station apparatus that has received the signal transmitted from the mobile station apparatus (step S205) performs despreading processing on the SC-FDMA symbol to which the aperiodic SRS is transmitted (step S206). Thereby, the base station apparatus can know the channel corresponding to each antenna of the mobile station apparatus. With the above procedure, it is possible to transmit a new SRS corresponding to the physical structure of the existing system.
  • FIG. 7 is a sequence chart showing a process and a signal flow between the base station apparatus and the mobile station apparatus according to the third embodiment of the present invention.
  • the same configurations as those shown in FIGS. 1 and 2 can be used.
  • the difference from the first and second embodiments is that an aperiodic SRS is made using the data transmission area of PUSCH (that is, the 0th, 1, 2, 4, 5, 6SC-FDMA symbols in FIG. 4). Is transmitted at the same time as a signal other than the SRS such as a data signal in the SC-FDMA symbol that is not used.
  • the base station apparatus notifies the mobile station apparatus of the setting related to SRS (step S301).
  • notification of SRS subframes and notification of information regarding allocation information of periodic SRS are performed.
  • the process corresponding to step S301 need not be completed in one subframe, and may be performed using several subframes.
  • the mobile station apparatus that is notified of the setting related to SRS transmits the aperiodic SRS according to the setting using the assigned resource.
  • resources represent time, frequency, and code resources.
  • the timing at which periodic SRS is transmitted is not specified here.
  • the base station apparatus transmits an uplink assignment signal (UL Grant) to the mobile station apparatus (step S302).
  • UL Grant received here describes information specifying that an aperiodic SRS and other information are transmitted simultaneously.
  • an aperiodic SRS and CQI may be transmitted simultaneously.
  • UL Grant includes information notifying that aperiodic SRS and CQI are transmitted simultaneously.
  • FIG. 8A is a diagram specifically showing a method of transmitting SRS according to the third embodiment of the present invention (simultaneous transmission with CQI).
  • the mobile station apparatus arranges CQI and aperiodic SRS as shown in FIG. 8A. That is, the aperiodic SRS is arranged in the 0th, 1st, 5th, 6th SC-FDMA symbols in the slots # 0, # 1, the DMRS for data signal demodulation is transmitted in the third SC-FDMA symbol in each slot, and Data signals are transmitted in other SC-FDMA symbols. Yet another example is a case where aperiodic SRS and data are transmitted simultaneously.
  • FIG. 8B is a diagram specifically showing a method of transmitting an SRS according to the third embodiment of the present invention (simultaneous transmission with data).
  • a method of notifying that UL Grant is transmitted including an aperiodic SRS it is possible to provide 1 bit indicating the presence or absence of an aperiodic SRS, or an error detection CRC used for UL Grant detection.
  • the exclusive OR of a specific sequence may be applied to the (Cyclic Redundancy Check) bit string.
  • the mobile station apparatus generates a sounding signal (step S303).
  • a CQI or data signal to be transmitted simultaneously with the aperiodic SRS is generated (step S304).
  • the mobile station device arranges the data signal and the aperiodic SRS as shown in FIG. 8B. That is, an aperiodic SRS corresponding to the number of antennas is code-multiplexed with the sixth SC-FDMA symbol of slot # 1, DMRS for data signal demodulation is transmitted with the third SC-FDMA symbol of each slot, and other A data signal is transmitted in the SC-FDMA symbol (step S305).
  • the base station apparatus that has received the signal transmitted from the mobile station apparatus (step S306) performs despreading processing on the SC-FDMA symbol to which the aperiodic SRS is transmitted (step S307). Thereby, the base station apparatus can know the channel corresponding to each antenna of the mobile station apparatus. With the above procedure, it is possible to transmit a new SRS corresponding to the physical structure of the existing system.
  • each function in the base station apparatus and a program for realizing each function in the mobile station apparatus are recorded on a computer-readable recording medium, and the recording medium is recorded on this recording medium.
  • the base station apparatus and mobile station apparatus may be controlled by causing the computer system to read and execute the recorded program.
  • the “computer system” here includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” means that a program is dynamically held for a short time, like a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In this case, it is intended to include those that hold a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client in that case.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system. .

Abstract

 アピリオディックSRSの送信において、リソースオーバーヘッドを低減し、かつ、LTEの仕様から大きな変更を伴わない無線通信システム、移動局装置および基地局装置を提供する。基地局装置と、SC-FDMA(Single Carrier Frequency Division Multiple Access)方式でデータ信号を前記基地局装置に対して送信する移動局装置とから構成され、前記移動局装置から前記基地局装置に対してチャネル測定用の参照信号を送信する無線通信システムであって、前記チャネル測定用の参照信号は、前記基地局装置から前記移動局装置毎に割り当てられるデータ送信用チャネルを用いて送信される。

Description

無線通信システム、移動局装置および基地局装置
 本発明は、通信技術に関し、より詳細には、送信および受信する基地局装置、移動局装置を有する移動通信システムにおいて、MIMOに対応したサウンディング参照信号を効率よく送信する技術および、その受信技術に関する。
 LTE上りリンクのMIMO適用に伴うSRSのオーバーヘッドを削減するために、非特許文献1および非特許文献2のような方法が提案されている。非特許文献1では、SRSにプレコーディングを行なうことにより、論理的な送信ポート数を削減することを提案している。具体的に、移動局装置のもつアンテナ数が4であったとき、これに3x4の行列を乗算することでSRSに要するアンテナポート数、つまり直交するリソースの利用を3に削減することができる。予め最適なランクやプレコーダを基地局装置が分かっている場合には、この手法によってSRS系列の送信数を削減することができる。
 非特許文献2では、SRSが足りない場合に、下りリンク制御チャネルで各移動局装置に送信される上りリンクリソース割り当て情報の中に、一度きりのSRS送信を指令する情報を含めることを提案している。ここで、1回の設定で2回(2サブフレーム)以上の周期的なSRS送信をピリオディックSRSと呼称し、1回の設定で1度(1サブフレーム)だけのSRS送信をアピリオディックSRSと呼称する。非特許文献2で提案するアピリオディックSRSの方法により、基地局装置がMIMO通信を行ないたいタイミングをトリガにしてSRSを送信することが可能であり、必要以上に周期的SRSリソースを移動局装置に割り当てることによるオーバーヘッドを削減することができる。
R1-091738, "Precoded SRS for LTE-Advanced", 3GPP TSG RAN WG1 Meeting #57, San Francisco, USA, 4-8 May, 2009 R1-091879, "SRS Transmission Issues in LTE-A", 3GPP TSG RAN WG1 Meeting #57, San Francisco, USA, 4-8 May, 2009
 しかしながら、非特許文献1では、SRSの用途の一つである変調方式、符号化率を決定することを主眼に置いた方法であり、プレコーディングを行なって論理アンテナポート数を削減したSRSでは、ランクとプレコーダを算出することができない。よって、ランクとプレコーダを算出するためのSRSと、変調方式、符号化率を決定するためのSRSの2通りの設定が必要になるという問題があった。
 非特許文献2の方法は、SRSサブフレームの空きを有効利用して、1個のサブフレームで1度SRSを送信するが、SRSを利用しない場合にもそのリソースは確保されることになる。SRSを状況に応じていつでも送信できるようにするには、利用されていないSRS領域を多く確保しておく必要があり、柔軟性を高くするとオーバーヘッドが大きくなり、結果として当初目的としていたオーバーヘッド削減効果が小さくなるという問題があった。
 本発明は、このような事情に鑑みてなされたものであり、上記のアピリオディックSRSの送信において、リソースオーバーヘッドを低減し、かつ、LTEの仕様から大きな変更を伴わない無線通信システム、移動局装置および基地局装置を提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の無線通信システムは、基地局装置と、SC-FDMA(Single Carrier Frequency Division Multiple Access)方式でデータ信号を前記基地局装置に対して送信する移動局装置とから構成され、前記移動局装置から前記基地局装置に対してチャネル測定用の参照信号を送信する無線通信システムであって、前記チャネル測定用の参照信号は、前記基地局装置から前記移動局装置毎に割り当てられるデータ送信用チャネルを用いて送信されることを特徴とする。
 このように、チャネル測定用の参照信号は、基地局装置から移動局装置毎に割り当てられるデータ送信用チャネルを用いて送信されるので、SRS(チャネル測定用の参照信号)を送信するためのリソース確保に関わるオーバーヘッドを低減することができる。かつ、LTEの仕様から大きな変更を伴わず、既存のLTEに対応した移動局装置との後方互換性も保たれ、LTEの無線物理構造をそのまま利用できることから、仕様に対するインパクトも軽減することができる。
 (2)また、本発明の無線通信システムにおいて、前記基地局装置は、複数の移動局装置のそれぞれに対して、データ送信用チャネルを割り当て、第1の移動局装置は、データ復調に用いられるチャネル推定用の参照信号を前記基地局装置に対して送信し、第2の移動局装置は、前記第1の移動局装置が前記チャネル推定用の参照信号を送信する時刻と同時刻で、前記チャネル測定用の参照信号を送信し、前記チャネル推定用の参照信号と、前記チャネル測定用の参照信号とは、相互に直交する系列であることを特徴とする。
 このように、第2の移動局装置は、第1の移動局装置がチャネル推定用の参照信号を送信する時刻と同時刻で、チャネル測定用の参照信号を送信し、チャネル推定用の参照信号と、チャネル測定用の参照信号とは、相互に直交する系列であるので、SRSを送信するためのリソース確保に関わるオーバーヘッドを低減することができる。かつ、LTEの仕様から大きな変更を伴わず、既存のLTEに対応した移動局装置との後方互換性も保たれ、LTEの無線物理構造をそのまま利用できることから、仕様に対するインパクトも軽減することができる。
 (3)また、本発明の無線通信システムにおいて、前記チャネル推定用の参照信号と、前記チャネル測定用の参照信号とは、CAZAC(Constant Amplitude and Zero-AutoCorrelation)系列に対して異なるサイクリックシフトを適用することにより生成されることを特徴とする。
 このように、チャネル推定用の参照信号と、チャネル測定用の参照信号とは、CAZAC(Constant Amplitude and Zero-AutoCorrelation)系列に対して異なるサイクリックシフトを適用するので、DMRSを送信するSC-FDMAシンボルのみでSRSを送信することができる。
 (4)また、本発明の無線通信システムにおいて、前記基地局装置は、上りリンク割り当て情報に付与した誤り検出用CRCビットに対して、予め決められたビット系列の排他的論理和を適用することによって、下りリンク制御チャネルで、前記第2の移動局装置に対して、前記第1の移動局装置が前記チャネル推定用の参照信号を送信する時刻と同時刻で、前記チャネル測定用の参照信号を送信するよう通知することを特徴とする。
 このように、基地局装置が、上りリンク割り当て情報に付与した誤り検出用CRCビットに対して、予め決められたビット系列の排他的論理和を適用するので、移動局装置A(第1の移動局装置)と移動局装置B(第2の移動局装置)のそれぞれに送信されるUL Grantの識別をすることができる。
 (5)また、本発明の無線通信システムにおいて、前記移動局装置は、チャネル測定用の参照信号として、チャネル測定用の参照信号の直交符号系列をいずれかのSC-FDMAシンボルにマッピングし、送信アンテナに対して、チャネル測定用の参照信号の直交符号系列とSC-FDMAシンボルとを対応させて基地局装置に対して送信することを特徴とする。
 このように、チャネル測定用の参照信号の直交符号系列とSC-FDMAシンボルとを対応させて基地局装置に対して送信するので、一つの移動局装置にのみ着目した手順で、SRSを送信するためのリソース確保に関わるオーバーヘッドを低減することができる。かつ、LTEの仕様から大きな変更を伴わず、既存のLTEに対応した移動局装置との後方互換性も保たれ、LTEの無線物理構造をそのまま利用できることから、仕様に対するインパクトも軽減することができる。
 (6)また、本発明の無線通信システムにおいて、前記基地局装置は、複数の移動局装置のそれぞれに対して、データ送信用チャネルを割り当てると共に、前記移動局装置毎に、前記チャネル測定用の参照信号を送信するSC-FDMAシンボルと、前記チャネル測定用の参照信号の直交符号系列との組合せが異なるように割り当てることを特徴とする。
 このように、移動局装置毎に、チャネル測定用の参照信号を送信するSC-FDMAシンボルと、チャネル測定用の参照信号の直交符号系列との組合せが異なるように割り当てるので、複数の移動局装置のSRSを同時に多重することができる。
 (7)また、本発明の無線通信システムにおいて、前記チャネル測定用の参照信号の直交符号系列がマッピングされなかったSC-FDMAシンボルに、データ信号またはCQI(Channel Quality Indicator)をマッピングして、前記基地局装置へ送信することを特徴とする。
 このように、チャネル測定用の参照信号の直交符号系列がマッピングされなかったSC-FDMAシンボルに、データ信号またはCQI(Channel Quality Indicator)をマッピングするので、SRS送信に割り当てられていないSC-FDMAシンボルを有効に活用することができる。
 (8)また、本発明の移動局装置は、SC-FDMA(Single Carrier Frequency Division Multiple Access)方式でデータ信号を基地局装置に対して送信する移動局装置であって、前記基地局装置から割り当てられるデータ送信用チャネルを用いて、前記基地局装置に対して、チャネル測定用の参照信号を送信することを特徴とする。
 このように、基地局装置から割り当てられるデータ送信用チャネルを用いて、基地局装置に対して、チャネル測定用の参照信号を送信するので、移動局装置は、SRS(チャネル測定用の参照信号)を送信するためのリソース確保に関わるオーバーヘッドを低減することができる。かつ、LTEの仕様から大きな変更を伴わず、既存のLTEに対応した移動局装置との後方互換性も保たれ、LTEの無線物理構造をそのまま利用できることから、仕様に対するインパクトも軽減することができる。
 (9)また、本発明の移動局装置において、他の移動局装置が前記チャネル推定用の参照信号を送信する時刻と同時刻で、前記チャネル測定用の参照信号を送信し、前記チャネル推定用の参照信号と、前記チャネル測定用の参照信号とは、相互に直交する系列であることを特徴とする。
 このように、他の移動局装置がチャネル推定用の参照信号を送信する時刻と同時刻で、チャネル測定用の参照信号を送信し、チャネル推定用の参照信号と、チャネル測定用の参照信号とは、相互に直交する系列であるので、移動局装置は、SRSを送信するためのリソース確保に関わるオーバーヘッドを低減することができる。かつ、LTEの仕様から大きな変更を伴わず、既存のLTEに対応した移動局装置との後方互換性も保たれ、LTEの無線物理構造をそのまま利用できることから、仕様に対するインパクトも軽減することができる。
 (10)また、本発明の基地局装置は、(9)記載の移動局装置と無線通信を行なう基地局装置であって、上りリンク割り当て情報に付与した誤り検出用CRCビットに対して、予め決められたビット系列の排他的論理和を適用することによって、下りリンク制御チャネルで、前記移動局装置に対して、前記他の移動局装置が前記チャネル推定用の参照信号を送信する時刻と同時刻で、前記チャネル測定用の参照信号を送信するよう通知することを特徴とする。
 このように、基地局装置が、上りリンク割り当て情報に付与した誤り検出用CRCビットに対して、予め決められたビット系列の排他的論理和を適用するので、移動局装置は、移動局装置A(第1の移動局装置)と移動局装置B(第2の移動局装置)のそれぞれに送信されるUL Grantの識別をすることができる。
 本発明に記載されたアピリオディックSRSの送信によると、SRSを送信するためのリソース確保に関わるオーバーヘッドを低減することができる。かつ、LTEの仕様から大きな変更を伴わず、既存のLTEに対応した移動局装置との後方互換性も保たれ、LTEの無線物理構造をそのまま利用できることから、仕様に対するインパクトも軽減することができる。
本発明の実施形態に係る基地局装置の一構成例を示す機能ブロック図である。 本発明の実施形態に係る移動局装置の一構成例を示す機能ブロック図である。 本発明の第1の実施形態に係る基地局装置から移動局装置A、移動局装置BへSRSの設定が行なわれ、アピリオディックSRSが送信されることを想定したシーケンスチャートである。 本発明の第1の実施形態に係るSRSの送信の方法について具体的に示した図である。 本発明の第2の実施形態に係る基地局装置と移動局装置との間の処理および信号の流れを示すシーケンスチャートである。 本発明の第2の実施形態に係るSRSの送信の方法について具体的に示した図である。 本発明の第3の実施形態に係る基地局装置と移動局装置との間の処理および信号の流れを示すシーケンスチャートである。 本発明の第3の実施形態に係るSRSの送信の方法について具体的に示した図である(CQIと同時送信)。 本発明の第3の実施形態に係るSRSの送信の方法について具体的に示した図である(データと同時送信)。 LTEにおけるSRSの送信の方法について具体的に示した図である。 LTEにおけるサウンディングサブフレームの詳細な構成を示す図である。 LTEにおけるSRSの送信方法を示す図である。
 次世代セルラー移動通信の一方式として、国際的な標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、W-CDMA(Wideband-Code Division Multiple Access)とGSM(Global System for Mobile Communications)を発展させたネットワークの仕様に関して検討が行なわれている。
 3GPPでは、以前からセルラー移動通信方式について検討されており、第3世代セルラー移動通信方式として、W-CDMA方式が標準化された。また、通信速度を更に向上したHSDPA(High-Speed Downlink Packet Access)も標準化され、サービスが運用されている。現在、3GPPでは、第3世代無線アクセス技術の進化(Long Term Evolution:以下、「LTE」と呼ぶ)や、更なる通信速度の高速化へ向けたLTE Advanced(以下、「LTE-A」と呼ぶ)についても検討が行なわれている。
 LTEにおける上りリンクデータの送信では、基地局装置から割り当てられたリソースに基づくSC-FDMA(Single Carrier Frequency Division Multiple Access)をベースにした通信方式が採用されている。具体的には変調された送信信号はDFT(Discrete Fourier Transformation)により周波数領域の信号へと変換され、基地局装置により割り当てられた周波数リソースにマッピングされた後、IDFT(Inverse DFT)により時間領域の信号へと変換され基地局装置へと送信される。ここでは、上りリンクデータとは上位レイヤから渡され、物理層では各ビットの意味を解釈しないデータに対応し、トランスポートチャネルで定義されたUL-SCH(Uplink Shared Channel)と呼称することとする。実際に送信されるデータはUL-SCHに対して符号化などの処理が施されたものであり、基地局装置によって割り当てられたPUSCH(Physical Uplink Shared Channel)と呼ばれるデータ送信チャネルでこれが送信される。
 LTEの上りリンクでは2本の送信アンテナから適応的に1本の送信アンテナを選択するアンテナスイッチングをサポートするだけであったが、LTE-Aでは、上りリンク方式の拡張として、MIMO(Multiple Input Multiple Output)による空間多重の適用が検討されており、UL-SCHのデータは空間多重されて複数の系列が送信される。ここで、UL-SCHに適用する符号化率、変調方式は、移動局装置から基地局装置に送信されるサウンディング参照信号(SRS: Sounding Reference Signal、チャネル測定用の参照信号)を元に算出される。SRSはこの用途のほかに、周波数スケジューリングの用途にも利用される。
 図9は、LTEにおけるSRSの送信の方法について具体的に示した図である。基地局装置は、それと通信をする移動局装置全体との間にサウンディングサブフレームを設定し、具体的にはサウンディングサブフレームは基準サブフレームからのオフセットと周期が与えられる。サウンディングサブフレームは全移動局装置に対して共通であり、このサブフレームにおいてSRSが送信されることを意味する。
 図10は、LTEにおけるサウンディングサブフレームの詳細な構成を示す図である。ただし、図10にはPUSCHの割り当てに利用できる帯域のみ記載しており、制御情報を送信するチャネルについては省略している。図10における縦軸は周波数軸であり、一つのブロックはサブキャリアを表す。LTEでは連続する12サブキャリアをまとめてリソース割り当て単位としており、これをリソースブロック(RB:Resource Block)と呼称している。一方横軸は時間軸であり、周波数領域を時間領域に変換し、サイクリックプレフィックスを付与する単位によって時間を分割している。これを1SC-FDMAシンボルと呼称する。
 LTEでは連続する7SC-FDMAシンボルにより1スロットを構成し、2スロットをまとめて1サブフレームを構成する。サブフレームはLTEおよびLTE-Aにおける時間領域でのリソースの割り当て単位となっている。図10に示されるように、それぞれのSC-FDMAシンボルは異なる用途に利用することができ、SC-FDMAシンボル3番はデータ復調用の参照信号(DMRS: Demodulation Reference Signal(データ復調に用いられるチャネル推定用の参照信号))の送信のために利用される。スロット1番におけるSC-FDMAシンボル6番はSRSの送信のために利用される。それ以外のSC-FDMAシンボルはデータ送信用に利用される。ここで、DMRSおよびSRSは、他のユーザとの多重や、アンテナ識別のために直交符号が利用されており、LTEではCAZAC(Constant Amplitude and Zero-AutoCorrelation)系列を時間軸上でサイクリックシフトさせた系列が利用されている。
 図11は、LTEにおけるSRSの送信方法を示す図である。基地局装置は、移動局装置ごとにSRSの送信に関する設定を行なう。ここで、設定とは、SRSサブフレームのうち、移動局装置が利用できるサブフレームの位置をオフセットと周期により設定することを表すと共に、SRSがサポートする帯域、1サブフレームにて送信されるSRS帯域幅、およびどのアンテナから送信されるかを表す。
 具体的に図11を用いて説明すると、ここでは偶数サブフレームがSRSサブフレームとして設定されており、そのうち{4、8、12、16、20、24}サブフレームがこの移動局装置に割り当てられている。また、この移動局装置のSRSがサポートする帯域はシステム帯域幅の一部であるAであり、1回のSRS送信で帯域Aの幅の三分の一つまり帯域A1、A2、A3が予め決められた順序で送信される。また、この移動局装置は2本の送信アンテナを具備していることを想定しており、1サブフレームで一つのアンテナに対応したSRSを送信する。具体的にこの例においては、アンテナ#0、#1をそれぞれの送信タイミングで交互に送信するように設定される。
 LTEでは以上のような手順によりSRSが送信されるが、LTE-AではMIMO空間多重をサポートするため、これにあわせたSRSの送信方式の変更が必要となる。具体的に、LTEでは基地局装置が知るべきであった送信アンテナに対応するチャネル情報は2であったが、LTE-Aでは最大4本の送信アンテナによる空間多重がサポートされるため、LTE-AにおいてSRSに要するオーバーヘッドは単純にLTEの2倍となり得る。さらに、LTE-AではSRSを利用してチャネルの状況に応じた空間多重数(ランク)を計算し、それに合わせた上りリンク通信を行なうことが望ましい。さらに上りリンク通信の品質を高めるためには送信信号をあらかじめ前処理して送信することが有効であるが、最適な前処理系列(プレコーダ)の算出もSRSを利用して行なう必要がある。つまり、LTE-AではLTEと比較して、さらに高頻度かつ高精度なSRSの送信を実現しなければならない。以下、本発明の実施形態について図面を参照して説明する。
 (第1の実施形態)
 本発明の第1の実施形態による移動通信システムは、基地局装置と移動局装置とを有している。
 図1は、本発明の実施形態に係る基地局装置の一構成例を示す機能ブロック図である。本実施形態による基地局装置は、送信部110、スケジューリング部120、受信部130、およびアンテナ140を備えている。送信部110は、符号化部111、変調部112、マッピング部113、無線送信部114を備えている。また、スケジューリング部120は、下りリンク送信リソース情報制御部121、上りリンク送信リソース情報制御部122、ピリオディックSRS送信スケジュール制御部123、アピリオディックSRS送信スケジュール制御部124を備えており、受信部130は無線受信部131、SRS分離・算出部132、逆マッピング・復調処理部133を備えている。アンテナ140は、下りリンク信号の送信および上りリンク信号の受信に必要な数だけ備えられている。
 基地局装置において生成された、各移動局装置に送信する下りリンクデータと、スケジューリング部120から出力される制御情報送信のためのスケジューリング情報は、符号化部111に入力され、それぞれがスケジューリング部120からの制御信号に従った符号化が施され符号化ビット列が出力される。スケジューリング部120からの制御信号とは符号化率を表す情報や、たとえばターボ符号、テイルバイティング畳み込み符号などの符号化方式を表すものである。また、複数の情報を組み合わせて符号化されてもよく、それぞれの情報が個別に符号化されてもよい。ここで、スケジューリング部120から提供される情報とは、アピリオディックSRSの送信に関する制御情報を含むことが特徴であり、たとえばPUSCHの割り当て情報、アピリオディックSRSの系列、送信するSC-FDMAシンボルの情報などが含まれた上りリンクリソース割り当て情報(UL Grant)のことを表す。
 符号化部111の複数の出力ビット列は変調部112に入力され、それぞれがスケジューリング部120からの制御信号に従った変調、たとえばBPSK、QPSK、16QAM、64QAMのシンボルに変換され出力される。変調部112の出力はスケジューリング部120から提供される下りスケジューリングの情報とともにマッピング部113へ入力され、送信データが生成される。ここで送信データとは、例えばOFDM信号のことを指しており、マッピング動作とは移動局装置ごとに指定された周波数、時間リソースに対応させる動作に相当する。また、MIMOによる空間多重が採用されていれば、この処理がこのブロックにおいて行なわれる。ここで制御情報とは、上りリンクもしくは下りリンクのリソース割り当て情報、つまり送信タイミングと周波数リソースの情報、上りリンクもしくは下りリンク信号の変調方式および符号化率、および、移動局装置に対するCQI、PMI、RIの送信要求などのことである。
 マッピング部113により生成された信号は無線送信部114へと出力される。無線送信部114では、送信方式にあった形態に変換され、具体的にOFDMAに準じた通信方式であれば、周波数領域の信号に対してIFFT(Inverse Fast Fourier Transformation)が施されることにより、時間領域の信号が生成される。無線送信部114の出力信号はアンテナ140に供給され、ここから各移動局装置へ送信される。
 スケジューリング部120は、上位レイヤからの制御情報および移動局装置から送信された情報を管理および制御し、各移動局装置へのリソース割り振りや変調方式、符号化率の決定およびこれらの動作の制御やその制御情報の出力などを行なっている。また、スケジューリング部120がアピリオディックSRSの送信タイミング(時間リソース)、リソースブロック(周波数リソース)そして符号リソースを管理することが本発明の特徴である。
 下りリンク送信リソース情報制御部121は、各移動局装置が利用する下りリンクリソースをスケジューリング・管理するとともに、その制御信号の生成を行なう。上りリンク送信リソース情報制御部122は、各移動局装置が利用する上りリンクリソースを管理するとともに、その制御信号の生成を行なう。ピリオディックSRS送信スケジュール制御部123は、それぞれの移動局装置に対して適用するピリオディックSRSの送信リソース(時間リソース、周波数リソース、符号リソース)を管理するとともに、SRSサブフレームに関する設定と管理も行なう。アピリオディックSRS送信スケジュール制御部124は、それぞれの移動局装置に対して適用するアピリオディックSRSの送信リソース(時間リソース、周波数リソース、符号リソース)を管理するとともに、それを通知するためのUL Grant生成と管理も行なう。
 一方、移動局装置から送信された信号は、アンテナ140で受信された後、無線受信部131に入力される。無線受信部131はデータや制御信号を受け取り、送信方式に応じたディジタル信号を生成して出力する。具体的にOFDM方式やSC-FDMA方式が採用されているのであれば、受信信号をアナログ・ディジタル変換した後、処理時間単位でFFT処理を施した信号が出力される。ここで、無線受信部131には、上りリンクの伝搬路の状況を計測するための信号と、例えば上位レイヤで処理されるデータ信号や制御情報として管理されるべき情報を含む信号などの信号の2種類に分けられ、それぞれ第一の信号および第二の信号として出力される。
 無線受信部131の第一の出力はSRS分離・算出部132へ出力される。ここでは、上りリンク信号に含められたアピリオディックSRSもしくはピリオディックSRSが抽出され、そこから得られる各移動局装置のチャネル情報をスケジューリング部120へ出力する。特に、SRSは時間、周波数、符号リソースによってユーザごと、もしくは他の情報と多重されている可能性があり、ピリオディックSRS送信スケジュール制御部123もしくはアピリオディックSRS送信スケジュール制御部124で管理するリソース割り当て情報に従って、これらの分離が行なわれる。
 無線受信部131の第二の出力は逆マッピング・復調処理部133へと出力される。逆マッピング・復調処理部133にはスケジューリング部120が管理するマッピングパターン、変調方式および符号化率を利用して、移動局装置から送信された複数種類の情報をそれぞれ復調、抽出する。ここで、上りリンク信号に空間多重が適用されており、2種類以上の通信品質の異なる情報が同時に送信されていれば、それぞれの信号が含まれている時間、周波数位置をあらかじめ分離し、スケジューリング部120から入力される制御情報に従って、それぞれ異なる変調方式、符号化率、空間多重数を適用した逆マッピング、復調処理が行なわれる。このような処理により得られた信号のうち、上位レイヤで処理されるものについては上位レイヤへと出力され、スケジューリング部120で管理される制御情報、たとえばCQIやRIなどについては、スケジューリング部120に出力される。
 図2は、本発明の実施形態に係る移動局装置の一構成例を示す機能ブロック図である。各移動局装置は、図2に示すように、受信部210、スケジューリング情報管理部220、送信部230、および、アンテナ240を備えている。受信部210は無線受信部211、復調処理部212、下りリンク伝搬路算出部213を備えている。また、スケジューリング情報管理部220は下りリンク送信リソース情報管理部221、上りリンク送信リソース情報管理部222、ピリオディックSRS送信スケジュール管理部223、そしてアピリオディックSRS送信スケジュール管理部224を備えている。アンテナ240は上りリンク信号の送信および下りリンク信号の受信に必要な数だけ備えられている。送信部230は符号化部231、変調部232、マッピング部233、無線送信部234を備えている。
 基地局装置から送信される下りリンク信号をアンテナ240で受信すると、この受信信号は無線受信部211へ入力される。無線受信部211では、アナログ・ディジタル(A/D)変換などの他に、通信方式に応じた処理が施され、出力される。具体的にOFDMAであれば、A/D変換後の時系列の信号はFFT処理され、時間・周波数領域の信号に変換されて出力される。
 無線受信部211の出力信号は復調処理部212へ入力される。これとともに復調処理部212にはスケジューリング情報管理部220から出力される下りリンク信号のスケジューリング情報(つまり自局宛の信号がどこに割り当てられているかという情報)、空間多重の系列数、変調方式、符号化率といった制御情報も入力され、復調処理が行なわれる。復調された信号は信号の種類によって分類され、上位レイヤにて処理される情報は上位レイヤへと渡され、スケジューリング情報管理部220にて管理される情報についてはスケジューリング情報管理部220に入力される。ここでスケジューリング情報管理部220にて管理される情報とは、アピリオディックSRSを送信するリソース(時間、周波数、符号リソース)に関するものを含むことが本発明の特徴である。下りリンク伝搬路算出部213は無線受信部211から提供される伝搬路算出用の信号を入力信号として、下りリンクに適用できる空間多重の系列数、変調方式、符号化率といった管理情報を計算する。この管理情報はスケジューリング情報管理部220へと入力される。
 スケジューリング情報管理部220は基地局装置から送信された制御情報を管理し、また、移動局装置で算出された制御情報を基地局装置へ送信するための管理も行なう。下りリンク送信リソース情報管理部221は、基地局装置から送信された自局の下りリンクリソース情報を管理するとともに、下りリンク信号の送信制御を行なう。上りリンク送信リソース情報管理部222は、基地局装置から送信された自局の上りリンクリソース情報を管理するとともに、上りリンク信号の送信制御を行なう。さらに、ピリオディックSRS送信スケジュール管理部223は、基地局装置から送信されたピリオディックSRSの送信リソース(時間リソース、周波数リソース、符号リソース)を管理するとともに、それらのリソースを用いたSRS送信の制御を行なう。また、SRSサブフレームに関する管理も行なう。アピリオディックSRS送信スケジュール管理部224は、基地局装置から送信されたアピリオディックSRSの送信リソース(時間リソース、周波数リソース、符号リソース)を管理するとともに、そのリソースを用いたアピリオディックSRSの生成も制御する。
 送信部230は、上りリンクデータやアピリオディックSRSなどの情報を割り当てられた上りリンクリソースにおいて送信する。下りリンクデータおよびスケジューリング情報管理部220で管理される信号は、その送信タイミングにおいて符号化部231へ供給され、入力された信号はそれぞれの種類によって異なる符号化率の符号化が行なわれる。この複数系列の出力信号は変調部232へと入力され、それぞれの種類によって異なる変調方式により変調される。この出力はマッピング部233へと出力され、送信情報ごとの空間多重数、およびマッピング位置情報に応じて信号のマッピングを行なう。具体的に、送信方式にSC-FDMAが適用される場合には割り当てられた周波数領域に信号をマッピングする。
 マッピング部233によりマッピングされた信号は、無線送信部234へ入力される。無線送信部234ではこれらの信号が送信する信号形態に変換される。具体的には、周波数領域の信号をIFFTにより時間領域の信号へ変換し、ガードインターバルを付与する動作などがこれに相当する。無線送信部234の出力はアンテナ240に供給される。
 図3は、本発明の第1の実施形態に係る基地局装置から移動局装置A、移動局装置BへSRSの設定が行なわれ、アピリオディックSRSが送信されることを想定したシーケンスチャートである。ここでは、ピリオディックSRSが送信される手順については詳細を割愛しているが、アピリオディックSRSと共存することも可能であり、その送信時刻のタイミングに関わらず本実施形態と同様の手順を適用することが可能である。
 基地局装置は移動局装置Aおよび移動局装置Bに対して、SRSに関する設定を通知する(ステップS101A、ステップS101B)。ここでは、SRSサブフレームの通知や、ピリオディックSRSの割り当て情報に関する情報の通知が行なわれる。ここで、ステップS101A、ステップS101Bに対応する処理は1サブフレームで完結する必要はなく、数サブフレームを利用して行なってもよい。SRSに関する設定を通知された移動局装置は、その設定に従ってアピリオディックSRSを割り当てられたリソースで送信することとなる。ここでリソースとは、時間、周波数、符号リソースのことを表す。ただし、アピリオディックSRSとピリオディックSRSは互いに影響を及ぼさないため、ピリオディックSRSが送信されるタイミングについてはここでは明記しない。
 次に基地局装置は移動局装置Aおよび移動局装置Bに対して上りリンク割り当て信号(UL Grant)を送信する(ステップS102A、ステップS102B)。ここで、移動局装置Aに送信されるUL GrantはSRSを送信することを指示せず、データ信号とDMRSを送信することを指示するものであり、割り当てられたリソースブロックの位置、変調方式、符号化率、DMRSの直交符号系列(CAZAC系列に適用するサイクリックシフト)などが記載されている。これを受信した移動局装置Aは、UL Grantに従ってデータ信号を生成し(ステップS103A)、また、DMRS信号も生成する(ステップS104A)。そして、割り当てられた時間、周波数リソースにおいてこれらのデータ信号およびDMRSを基地局装置へ送信する(ステップS105A)。
 図4は、本発明の第1の実施形態に係るSRSの送信の方法について具体的に示した図である。ここで、図4に示すとおり、DMRSは第3SC-FDMAシンボルにマッピングされるものとする。
 一方、移動局装置Bに送信されるUL GrantにはアピリオディックSRSを送信することを指定する情報が記載されている(ステップS102B)。続いて、移動局装置Bはサウンディング信号を生成する(ステップS103B)。ここで、移動局装置Aに送信されたUL Grantとの違いは、移動局装置Bではデータ送信を行なわず、DMRSがマッピングされるSC-FDMAシンボルでのみ信号送信を行なう点である。
 これらのUL Grantを識別する方法として、識別ビットをUL Grantに含めることや、UL Grantの検出に利用される誤り検出用のCRC(Cyclic Redundancy Check)のビット列に特定の系列の排他的論理和を適用することなどが挙げられる。具体的なUL Grantの構成として、割り当てられたリソースブロックの位置、アピリオディックSRSの直交符号系列(CAZAC系列に適用するサイクリックシフト)が記載されている。この直交符号系列はここで送信されるアンテナの本数分だけ通知されてもよいし、一つのサイクリックシフトとアンテナ本数が通知され、サイクリックシフトが一意に決定するようにあらかじめ仕様にて決定してもよい。ここでアピリオディックSRSの直交符号系列は、移動局装置AのDMRSと直交する系列が選ばれているものとする。具体的には移動局装置AのDMRSに利用されたCAZAC系列をサイクリックシフトした系列が利用される。
 UL Grantを受信した移動局装置Bは、図4に示すとおり各スロットの3番目のSC-FDMAシンボル、つまり移動局装置AがDMRSを送信するSC-FDMAシンボルのみでSRSを送信する(ステップS105B)。なお、直交系列が複数割り当てられている場合には、この複数の送信アンテナに対応したSRSをこのSC-FDMAシンボルで符号多重して送信することもできる。また、スロット#0とスロット#1で異なるアンテナからSRSを送信してもよい。また、このUL Grantの中にはスロットごとに周波数を変える(周波数ホッピングする)ことを示す情報を含めてもよい。これにより、一度のSRS送信指示でより広い範囲の周波数帯域をサポートすることができる。
 移動局装置Aおよび移動局装置Bから送信される信号を受信した基地局装置は(ステップS106)、DMRS、アピリオディックSRSが送信された第3SC-FDMAシンボルに対して逆拡散処理を行なう(ステップS107)。これにより、基地局装置は移動局装置Bの各アンテナに対応したチャネルを知ることができる。以上の手順により、既存のシステムの物理構造に対応した、新たなSRSの送信が可能になる。
 (第2の実施形態)
 図5は、本発明の第2の実施形態に係る基地局装置と移動局装置との間の処理および信号の流れを示すシーケンスチャートである。基地局装置と移動局装置の構成は、図1および図2に示した構成と同様のものを利用することができる。ここで、第1の実施形態と異なる点は、PUSCHのデータ送信領域(つまり図4の第0、1、2、4、5、6SC-FDMAシンボル)を利用してアピリオディックSRSを送信することである。なお、本実施形態においては、一つの移動局装置にのみ着目した手順について説明するが、TDMA、FDMA、CDMAを適用することで同様の手順を複数の移動局装置に拡張することも可能である。
 基地局装置は移動局装置に対して、SRSに関する設定を通知する(ステップS201)。ここでは、SRSサブフレームの通知や、ピリオディックSRSの割り当て情報に関する情報の通知が行なわれる。ここで、ステップS201に対応する処理は1サブフレームで完結する必要はなく、数サブフレームを利用して行なってもよい。SRSに関する設定を通知された移動局装置は、その設定に従ってアピリオディックSRSを割り当てられたリソースで送信する。ここでリソースとは、時間、周波数、符号リソースのことを表す。ただし、アピリオディックSRSとピリオディックSRSは互いに影響を及ぼさないため、ピリオディックSRSが送信されるタイミングについてはここでは明記しない。
 次に基地局装置は移動局装置に対して上りリンク割り当て信号(UL Grant)を送信する(ステップS202)。ここで受信したUL GrantにはアピリオディックSRSを送信することを指定する情報が記載されている。ここで、第一の実施形態で示したアピリオディックSRS送信のためのUL Grantとの違いは、アピリオディックSRSを送信するSC-FDMAシンボル、直交符号系列、そしてそれに対応する送信アンテナの関係を示す情報が含まれていることである。具体的なUL Grantの構成として、割り当てられたリソースブロックの位置、利用可能なSC-FDMAシンボルの位置情報、アピリオディックSRSの直交符号系列(サイクリックシフト)が記載されている。利用可能なSC-FDMAシンボルの位置情報は例えば7bitで構成されていて、割り当てられたSC-FDMAの位置の順序でアンテナ1から順にSRSを送信するようにしてもよい。
 SRSの系列にはどのような系列を利用してもよいが、周波数領域で振幅が一定となる直交系列であるCAZAC系列などを用いることができる。これに対してサイクリックシフトを適用すれば、複数の移動局装置を同時に多重することもできる。上記の処理により、移動局装置はSRS信号を生成し(ステップS203)、割り当てられた時間(サブフレーム、スロット、SC-FDMAシンボル)、周波数、符号を用いて基地局装置にアピリオディックSRSを送信する(ステップS204)。
 図6は、本発明の第2の実施形態に係るSRSの送信の方法について具体的に示した図である。ここで、図6に示すとおり、SRSは第3SC-FDMAシンボル以外の、例えば第0、1、4、5SC-FDMAシンボルマッピングされるものとする。
 移動局装置から送信される信号を受信した基地局装置は(ステップS205)、アピリオディックSRSが送信されたSC-FDMAシンボルに対して逆拡散処理を行なう(ステップS206)。これにより、基地局装置は移動局装置の各アンテナに対応したチャネルを知ることができる。以上の手順により、既存のシステムの物理構造に対応した、新たなSRSの送信が可能になる。
 (第3の実施形態)
 図7は、本発明の第3の実施形態に係る基地局装置と移動局装置との間の処理および信号の流れを示すシーケンスチャートである。基地局装置と移動局装置の構成は、図1および図2に示した構成と同様のものを利用することができる。ここで、第1および第2の実施形態と異なる点は、PUSCHのデータ送信領域(つまり図4の第0、1、2、4、5、6SC-FDMAシンボル)を利用してアピリオディックSRSを送信することと同時に、利用されなかったSC-FDMAシンボルではデータ信号などSRS以外の信号を送信することである。
 基地局装置は移動局装置に対して、SRSに関する設定を通知する(ステップS301)。ここでは、SRSサブフレームの通知や、ピリオディックSRSの割り当て情報に関する情報の通知が行なわれる。ここで、ステップS301に対応する処理は1サブフレームで完結する必要はなく、数サブフレームを利用して行なってもよい。SRSに関する設定を通知された移動局装置は、その設定に従ってアピリオディックSRSを割り当てられたリソースで送信する。ここでリソースとは、時間、周波数、符号リソースのことを表す。ただし、アピリオディックSRSとピリオディックSRSは互いに影響を及ぼさないため、ピリオディックSRSが送信されるタイミングについてはここでは明記しない。
 次に基地局装置は移動局装置に対して上りリンク割り当て信号(UL Grant)を送信する(ステップS302)。ここで受信したUL GrantにはアピリオディックSRSとその他の情報を同時に送信することを指定する情報が記載されている。例えば、アピリオディックSRSとCQI(Channel Quality Information)を同時に送信する場合が挙げられる。この場合、UL GrantにはアピリオディックSRSとCQIを同時に送信することを通知する情報が含まれる。
 図8Aは、本発明の第3の実施形態に係るSRSの送信の方法について具体的に示した図である(CQIと同時送信)。移動局装置はCQIとアピリオディックSRSを図8Aに示されるとおりに配置する。つまり、スロット#0、#1の第0、1、5、6SC-FDMAシンボルでアピリオディックSRSが配置され、データ信号復調のためのDMRSは各スロットの第3SC-FDMAシンボルで送信され、そしてそれ以外のSC-FDMAシンボルではデータ信号が送信される。さらに別の例として、アピリオディックSRSとデータを同時に送信する場合が挙げられる。
 図8Bは、本発明の第3の実施形態に係るSRSの送信の方法について具体的に示した図である(データと同時送信)。この場合においてUL GrantにアピリオディックSRSを含めて送信することを通知する方法として、アピリオディックSRSの有無を表す1ビットを設けることや、UL Grantの検出に利用される誤り検出用のCRC(Cyclic Redundancy Check)のビット列に特定の系列の排他的論理和を適用することなどが挙げられる。続いて、移動局装置はサウンディング信号を生成する(ステップS303)。次に、アピリオディックSRSと同時送信する、CQIもしくはデータ信号を生成する(ステップS304)。
 移動局装置はデータ信号とアピリオディックSRSを図8Bに示されるとおりに配置する。つまり、スロット#1の第6SC-FDMAシンボルでアンテナ本数に対応したアピリオディックSRSが符号多重され、データ信号復調のためのDMRSは各スロットの第3SC-FDMAシンボルで送信され、そしてそれ以外のSC-FDMAシンボルではデータ信号が送信される(ステップS305)。
 移動局装置から送信される信号を受信した基地局装置は(ステップS306)、アピリオディックSRSが送信されたSC-FDMAシンボルに対して逆拡散処理を行なう(ステップS307)。これにより、基地局装置は移動局装置の各アンテナに対応したチャネルを知ることができる。以上の手順により、既存のシステムの物理構造に対応した、新たなSRSの送信が可能になる。
 また、以上に説明したそれぞれの実施形態において、基地局装置内の各機能や、移動局装置内の各機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより基地局装置や移動局装置の制御を行なっても良い。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに、「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに、前述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるものであっても良い。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
110 送信部
120 スケジューリング部
121 下りリンク送信リソース情報制御部
122 上りリンク送信リソース情報制御部
123 ピリオディックSRS送信スケジュール制御部
124 アピリオディックSRS送信スケジュール制御部
130 受信部
210 受信部
220 スケジューリング情報管理部
221 下りリンク送信リソース情報管理部
222 上りリンク送信リソース情報管理部
223 ピリオディックSRS送信スケジュール管理部
224 アピリオディックSRS送信スケジュール管理部
230 送信部

Claims (10)

  1.  基地局装置と、SC-FDMA(Single Carrier Frequency Division Multiple Access)方式でデータ信号を前記基地局装置に対して送信する移動局装置とから構成され、前記移動局装置から前記基地局装置に対してチャネル測定用の参照信号を送信する無線通信システムであって、
     前記チャネル測定用の参照信号は、前記基地局装置から前記移動局装置毎に割り当てられるデータ送信用チャネルを用いて送信されることを特徴とする無線通信システム。
  2.  前記基地局装置は、複数の移動局装置のそれぞれに対して、データ送信用チャネルを割り当て、
     第1の移動局装置は、データ復調に用いられるチャネル推定用の参照信号を前記基地局装置に対して送信し、
     第2の移動局装置は、前記第1の移動局装置が前記チャネル推定用の参照信号を送信する時刻と同時刻で、前記チャネル測定用の参照信号を送信し、前記チャネル推定用の参照信号と、前記チャネル測定用の参照信号とは、相互に直交する系列であることを特徴とする請求項1記載の無線通信システム。
  3.  前記チャネル推定用の参照信号と、前記チャネル測定用の参照信号とは、CAZAC(Constant Amplitude and Zero-AutoCorrelation)系列に対して異なるサイクリックシフトを適用することにより生成されることを特徴とする請求項2記載の無線通信システム。
  4.  前記基地局装置は、上りリンク割り当て情報に付与した誤り検出用CRCビットに対して、予め決められたビット系列の排他的論理和を適用することによって、下りリンク制御チャネルで、前記第2の移動局装置に対して、前記第1の移動局装置が前記チャネル推定用の参照信号を送信する時刻と同時刻で、前記チャネル測定用の参照信号を送信するよう通知することを特徴とする請求項2記載の無線通信システム。
  5.  前記移動局装置は、前記チャネル測定用の参照信号として、前記チャネル測定用の参照信号の直交符号系列をいずれかのSC-FDMAシンボルにマッピングし、送信アンテナに対して、前記チャネル測定用の参照信号の直交符号系列と前記SC-FDMAシンボルとを対応させて前記基地局装置に対して送信することを特徴とする請求項1記載の無線通信システム。
  6.  前記基地局装置は、複数の移動局装置のそれぞれに対して、データ送信用チャネルを割り当てると共に、前記移動局装置毎に、前記チャネル測定用の参照信号を送信するSC-FDMAシンボルと、前記チャネル測定用の参照信号の直交符号系列との組合せが異なるように割り当てることを特徴とする請求項5記載の無線通信システム。
  7.  前記チャネル測定用の参照信号の直交符号系列がマッピングされなかったSC-FDMAシンボルに、データ信号またはCQI(Channel Quality Indicator)をマッピングして、前記基地局装置へ送信することを特徴とする請求項5記載の無線通信システム。
  8.  SC-FDMA(Single Carrier Frequency Division Multiple Access)方式でデータ信号を基地局装置に対して送信する移動局装置であって、
     前記基地局装置から割り当てられるデータ送信用チャネルを用いて、前記基地局装置に対して、チャネル測定用の参照信号を送信することを特徴とする移動局装置。
  9.  他の移動局装置が前記チャネル推定用の参照信号を送信する時刻と同時刻で、前記チャネル測定用の参照信号を送信し、前記チャネル推定用の参照信号と、前記チャネル測定用の参照信号とは、相互に直交する系列であることを特徴とする請求項8記載の移動局装置。
  10.  請求項9記載の移動局装置と無線通信を行なう基地局装置であって、上りリンク割り当て情報に付与した誤り検出用CRCビットに対して、予め決められたビット系列の排他的論理和を適用することによって、下りリンク制御チャネルで、前記移動局装置に対して、前記他の移動局装置が前記チャネル推定用の参照信号を送信する時刻と同時刻で、前記チャネル測定用の参照信号を送信するよう通知することを特徴とする基地局装置。
PCT/JP2010/062849 2009-08-04 2010-07-29 無線通信システム、移動局装置および基地局装置 WO2011016390A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10806389A EP2464184A1 (en) 2009-08-04 2010-07-29 Wireless communication system, mobile station device, and base station device
CN2010800339805A CN102474857A (zh) 2009-08-04 2010-07-29 无线通信系统、移动台装置以及基站装置
US13/388,821 US20120163320A1 (en) 2009-08-04 2010-07-29 Wireless communication system, mobile station apparatus and base station apparatus
BR112012002644A BR112012002644A2 (pt) 2009-08-04 2010-07-29 sistema de comunicações sem fio, aparelho de estação móvel e aparelho de estação de base

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-181766 2009-08-04
JP2009181766A JP2011035785A (ja) 2009-08-04 2009-08-04 無線通信システム、移動局装置および基地局装置

Publications (1)

Publication Number Publication Date
WO2011016390A1 true WO2011016390A1 (ja) 2011-02-10

Family

ID=43544285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062849 WO2011016390A1 (ja) 2009-08-04 2010-07-29 無線通信システム、移動局装置および基地局装置

Country Status (6)

Country Link
US (1) US20120163320A1 (ja)
EP (1) EP2464184A1 (ja)
JP (1) JP2011035785A (ja)
CN (1) CN102474857A (ja)
BR (1) BR112012002644A2 (ja)
WO (1) WO2011016390A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012110688A1 (en) * 2011-02-18 2012-08-23 Nokia Corporation Method and apparatus to provide a-periodic sounding reference signal
CN103138906A (zh) * 2011-12-05 2013-06-05 上海贝尔股份有限公司 一种用于改进上行链路探询质量的方法与设备
WO2013140044A1 (en) * 2012-03-21 2013-09-26 Nokia Corporation Cyclic channel state information reference signal configuration for new carrier type with backward compatible segment

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848520B2 (en) * 2010-02-10 2014-09-30 Qualcomm Incorporated Aperiodic sounding reference signal transmission method and apparatus
EP2584810A1 (en) * 2010-06-21 2013-04-24 Fujitsu Limited Method for reference signal transmission, method for channel quality estimation, mobile station, base station, and wireless communication system
CN103210694B (zh) * 2010-11-16 2016-05-25 松下电器(美国)知识产权公司 通信装置和探测参考信号发送控制方法
CN102685707A (zh) * 2011-03-09 2012-09-19 华为技术有限公司 一种解决非周期srs和上行控制信令碰撞的方法及装置
US9392599B2 (en) * 2011-04-01 2016-07-12 Mitsubishi Electric Corporation Communication system
EP2837229A2 (en) * 2012-04-09 2015-02-18 Telefonaktiebolaget LM Ericsson (Publ) Methods and apparatus for enhancing network positioning measurement performance by managing uncertain measurement occasions
US9325444B2 (en) * 2012-07-18 2016-04-26 Telefonaktiebolaget L M Ericsson (Publ) Scrambling code resolution
EP2876952B1 (en) 2012-08-15 2018-12-05 Huawei Technologies Co., Ltd. Detection signal sending and receiving method, base station, and user equipment
US9167451B2 (en) * 2013-01-02 2015-10-20 Lg Electronics Inc. Method and apparatus for measuring interference in wireless communication system
KR102004544B1 (ko) * 2013-02-06 2019-07-26 노키아 테크놀로지스 오와이 무선 통신 시스템에서 채널측정 기준신호 전송 방법 및 장치
US9319957B1 (en) * 2013-07-31 2016-04-19 Sprint Spectrum L.P. Dynamic swapping of uplink and downlink base stations
JP6376757B2 (ja) * 2014-01-14 2018-08-22 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN106922207B (zh) * 2014-12-16 2020-08-11 富士通株式会社 基于探测参考信号的下行信道估计方法、装置以及通信系统
US10531512B2 (en) 2015-04-01 2020-01-07 Huawei Technologies Co., Ltd. System and method for a tracking channel
CN107710655B (zh) * 2015-08-07 2019-06-28 三菱电机株式会社 发送装置、接收装置、发送方法以及接收方法
CN106685621A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 测量参考信号srs处理方法和装置
JP2019033304A (ja) * 2015-12-25 2019-02-28 シャープ株式会社 基地局装置、端末装置および通信方法
WO2017166208A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 一种上行传输方法、基站及ue
US10652851B2 (en) * 2016-11-03 2020-05-12 Huawei Technologies Co., Ltd. Uplink-based user equipment tracking for connected inactive state
WO2020061975A1 (zh) * 2018-09-27 2020-04-02 华为技术有限公司 信号传输的方法和装置
JP2019201403A (ja) * 2019-04-17 2019-11-21 三菱電機株式会社 無線通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011247A1 (ja) * 2007-07-13 2009-01-22 Sharp Kabushiki Kaisha 無線通信システム、移動局および無線通信方法
WO2009022474A1 (ja) * 2007-08-14 2009-02-19 Panasonic Corporation 無線通信装置及び無線通信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1953349B (zh) * 2005-10-17 2011-10-26 华为技术有限公司 一种上行资源分配方法
CN101325739A (zh) * 2007-06-14 2008-12-17 北京三星通信技术研究有限公司 传输上行数据和上行控制信令的方法
JP5127588B2 (ja) * 2008-06-23 2013-01-23 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおけるユーザ装置、基地局装置及び通信方法
KR101603108B1 (ko) * 2008-11-07 2016-03-14 엘지전자 주식회사 참조 신호 전송 방법
US8938247B2 (en) * 2009-04-23 2015-01-20 Qualcomm Incorporated Sounding reference signal for coordinated multi-point operation
WO2010134773A2 (ko) * 2009-05-21 2010-11-25 엘지전자 주식회사 다중 안테나 시스템에서 참조 신호 전송 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011247A1 (ja) * 2007-07-13 2009-01-22 Sharp Kabushiki Kaisha 無線通信システム、移動局および無線通信方法
WO2009022474A1 (ja) * 2007-08-14 2009-02-19 Panasonic Corporation 無線通信装置及び無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Precoded SRS for LTE-Advanced", 3GPP TSG RAN WG1 MEETING #57, 4 May 2009 (2009-05-04)
"SRS Transmission Issues in LTE-A", 3GPP TSG RAN WG1 MEETING #57, 4 May 2009 (2009-05-04)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012110688A1 (en) * 2011-02-18 2012-08-23 Nokia Corporation Method and apparatus to provide a-periodic sounding reference signal
CN103138906A (zh) * 2011-12-05 2013-06-05 上海贝尔股份有限公司 一种用于改进上行链路探询质量的方法与设备
WO2013140044A1 (en) * 2012-03-21 2013-09-26 Nokia Corporation Cyclic channel state information reference signal configuration for new carrier type with backward compatible segment
US9509470B2 (en) 2012-03-21 2016-11-29 Nokia Technologies Oy Cyclic channel state information reference signal configuration for new carrier type with backward compatible segment

Also Published As

Publication number Publication date
US20120163320A1 (en) 2012-06-28
JP2011035785A (ja) 2011-02-17
BR112012002644A2 (pt) 2016-03-22
CN102474857A (zh) 2012-05-23
EP2464184A1 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2011016390A1 (ja) 無線通信システム、移動局装置および基地局装置
JP6745841B2 (ja) 肯定応答信号及びサウンディングレファレンス信号を多重化するための方法及びシステム
JP5087061B2 (ja) 無線通信システム、基地局装置、移動局装置および無線通信方法
JP5993063B2 (ja) 無線通信システムでユーザに特定のdmrsアンテナポートを指示する方法
JP6385421B2 (ja) 端末及びdmrs生成方法
JP6307434B2 (ja) 無線通信システムで制御情報送信のための方法及び装置
JP4728301B2 (ja) ユーザ装置、送信方法、及び通信システム
US20140036850A1 (en) Wireless communication system, mobile station apparatus and base station apparatus
CN106411486B (zh) 一种上行解调导频的发送接收方法及装置
JP6133863B2 (ja) 複数の送信アンテナを伴う無線通信システムにおけるメッセージの柔軟な送信
JP5574872B2 (ja) 基地局装置、移動局装置、および、通信方法
JP5969609B2 (ja) 無線通信システムにおけるメッセージの柔軟な送信
JP5415197B2 (ja) 無線通信システム、基地局装置および移動局装置
WO2010122910A1 (ja) 無線通信システム、基地局装置および移動局装置
JP6856726B2 (ja) 通信装置、通信方法及び集積回路
JP2011040841A (ja) 無線通信システム、基地局装置および移動局装置
JP2011097387A (ja) 無線通信システム、移動局装置、基地局装置および通信方法
JP5570567B2 (ja) 基地局装置、移動局装置、無線通信方法および集積回路
JP2010200077A (ja) 移動通信システム、基地局装置、移動局装置および移動通信方法
WO2011040125A1 (ja) 無線通信システム、移動局装置、基地局装置および通信方法
JP5226099B2 (ja) ユーザ装置、送信方法、通信システム
JP2011142494A (ja) 基地局装置、移動局装置、無線通信システム、基地局装置の制御プログラム、集積回路および基地局装置の通信方法
WO2010084821A1 (ja) 移動通信システム、基地局装置、移動局装置および移動通信方法
JP2010068223A (ja) 移動通信システム、基地局装置、移動局装置および移動通信方法
WO2010146924A1 (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および無線通信プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033980.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010806389

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13388821

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012002644

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012002644

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120206