WO2011015143A1 - 光设备及其光组件 - Google Patents
光设备及其光组件 Download PDFInfo
- Publication number
- WO2011015143A1 WO2011015143A1 PCT/CN2010/075731 CN2010075731W WO2011015143A1 WO 2011015143 A1 WO2011015143 A1 WO 2011015143A1 CN 2010075731 W CN2010075731 W CN 2010075731W WO 2011015143 A1 WO2011015143 A1 WO 2011015143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- port
- signal
- ports
- optical signal
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/31—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
- G01M11/3181—Reflectometers dealing with polarisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/31—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
- G01M11/3109—Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
Definitions
- the present invention relates to optical communication technologies, and in particular, to an optical component and an optical device. Background technique
- a passive optical network consists of an optical line terminal (OLT) on the central office, an optical network unit (ONU) on the user side, or an optical network terminal (ONT). And an Optical Distribution Network (ODN).
- OLT optical line terminal
- ONT optical network terminal
- ONT optical network terminal
- the ONU and the ONT are collectively referred to as an ONU.
- multiple ONUs are connected to one OLT.
- the direction from the OLT to the ONU is called the downlink direction.
- the wavelength of 1490 nm is used, and the OLT broadcasts the downlink data stream to all ONUs according to the Time Division Multiplexing (TDM) method.
- TDM Time Division Multiplexing
- the ONU only receives data with its own identity; the direction from the ONU to the OLT is called the uplink direction.
- the wavelength of 1310 nm is used, and the data is transmitted by Time Division Multiple Access (TDMA).
- TDMA Time Division Multiple Access
- the OLT allocates time slots for each ONU, and each ONU transmits data according to the time slot allocated by the OLT.
- An Optical Time Domain Reflectometer is a device for measuring the characteristics of a fiber.
- the existing OTDR has two types of external and embedded. It is ideal to use the embedded OTDR.
- the embedded OTDR embeds the OTDR function into the transceiver module.
- the general process is as follows: The OTDR transmitting device generates the test optical signal, and then The test optical signal is sent to the optical fiber through the optical splitter; When the optical fiber is transmitted, the backscattered signal is formed due to the characteristics of the optical fiber itself (such as the medium is uneven). Since the incident of the optical fiber link (such as connection, break, and fiber tail) forms a reflected signal, the backscattered signal or the reflected signal is collectively referred to below. It is a backward optical signal; the backward optical signal passes through the optical splitter and enters the receiving module of the OTDR.
- the embedded OTDR includes an OTDR signal processing and control function entity, and the entity controls the transmitting device to generate a test optical signal, which is generated by a test signal excitation laser (Laser Diode, LD), and the entity is obtained from the receiving module.
- the related information of the optical signal is subjected to subsequent processing and analysis to obtain a loss curve or other information reflecting the optical fiber link.
- the test signal used is obtained by performing amplitude modulation of the data signal by 5% to 10%; in order to distinguish the transmitted optical signal from the backward optical signal, the split spectrum is used.
- the device is a 90%/10% splitter, that is, 90% of the test optical signal is output after the test optical signal passes through the splitter, and 10% of the backward optical signal is output when the backward optical signal passes through the splitter.
- the strength of the received backward optical signal is too small, which reduces the dynamic range of the embedded OTDR; the amplitude modulation of the data signal is used to test The optical signal makes the intensity of the test optical signal smaller. Since the backward optical signal is proportional to the intensity of the test optical signal, the intensity of the test optical signal is small, further reducing the intensity of the backward optical signal and reducing the dynamics of the embedded OTDR. range. Summary of the invention
- the present invention provides an optical component and an optical device to solve the problem of a small dynamic range of the embedded OTDR in the prior art.
- the invention provides an optical component, comprising:
- a first polarization splitter comprising a first common port and two first optical ports, one of the two first optical ports being connected to an external transmitting device for generating a test optical signal
- a polarization direction adjustment module for making a polarization direction of a test optical signal incident from the first port perpendicular to a polarization direction of the backward optical signal emitted from the first port, including a first port and a second port, the first a port is connected to the first public port;
- a second polarizing beam splitter comprising: a second common port and two second optical ports, wherein the second common port is connected to an external optical fiber, and one of the two second optical ports is connected to the second port Connecting, the other one of the two second optical ports is connected to an external first receiving device for receiving a backward optical signal corresponding to the test optical signal;
- the optical propagation direction adjustment module is connected to another optical port of the two first optical ports and the first receiving device.
- the invention provides an optical device, comprising:
- the first polarization splitter includes a first common port and two first optical ports, and one of the two first optical ports is connected to the transmitting device;
- a polarization direction adjustment module for making a polarization direction of a test optical signal incident from the first port perpendicular to a polarization direction of the backward optical signal emitted from the first port, including a first port and a second port, the first a port is connected to the first public port;
- a second polarization beam splitter comprising: a second common port and two second optical ports, wherein the second common port is connected to a wavelength division multiplexer, and one of the two second optical ports is connected to the first a two-port connection, the other one of the two second optical ports being connected to the first receiving device;
- a transmitting device for receiving a data signal and a test signal, wherein the data signal is the same as the test signal, and the detecting device generates a test optical signal, and is connected to one of the two first optical ports;
- a first receiving device for receiving a backward optical signal corresponding to the test optical signal, and connecting to another optical port of the two second optical ports; a wavelength division multiplexer, connected to the external optical fiber and the second common port, so that the second common port is connected to the external optical fiber through the wavelength division multiplexer;
- a second receiving device for receiving the remaining optical signals is coupled to the wavelength division multiplexer, the remaining optical signals being optical signals having different wavelengths from the backward optical signals.
- the present invention provides two polarization beam splitters (PBS), a polarization direction adjustment module, and a light propagation direction adjustment module, and the optical signal incident on the first port and the optical signal emitted from the first port.
- the polarization directions are perpendicular to each other, so that the transmitted optical signal and the backward optical signal can pass through different paths to realize the distinction between the test optical signal and the backward optical signal, and since the backward optical signal of any polarization state can be regarded as unusual
- the above scheme finally sends both ordinary light and extraordinary light to the first receiving module, so that the backward optical signal is substantially not attenuated, increasing the dynamic range of the OTDR; further, the test signal in the present invention As with the data signal, the intensity of the backward optical signal can be further increased to further increase the dynamic range of the OTDR.
- Figure 1 is a schematic view of a polarizing beam splitter used in the present invention
- Figure 2 is a schematic view of a wave plate for use in the present invention.
- Figure 3 is a schematic view of the optical rotating sheet used in the present invention.
- FIG. 4 is a schematic structural view of a first embodiment of an optical component provided by the present invention.
- FIG. 5 is a schematic structural view of a second embodiment of an optical component according to the present invention.
- FIG. 6 is a schematic diagram of a path for testing an optical signal in FIG. 5;
- FIG. 7 is a schematic diagram showing a change in polarization direction of the test optical signal in FIG. 5;
- Figure 8 is a schematic diagram of the path of the backward optical signal in Figure 5;
- Figure 9 is a schematic diagram showing the change of the polarization direction of the backward optical signal in Figure 5;
- FIG. 10 is a schematic structural view of a third embodiment of an optical component provided by the present invention.
- Figure 11 is a schematic diagram of the path of the backward optical signal in Figure 10.
- FIG. 12 is a schematic structural diagram of an optical module according to the present invention
- FIG. 13 is a schematic structural diagram of an optical device according to the present invention. detailed description
- FIG. 1 is a schematic illustration of a polarizing beam splitter for use in the present invention.
- the PBS includes three ports, a common port, an ordinary optical port, and an unusual optical port.
- the specific working mode is as follows: When the optical signal is input from the common port, it will output the polarized light signal of the vertical principal plane of the polarization direction from the ordinary optical port, that is, 0 light (also known as ordinary light), which will be output from the extraordinary optical port.
- the polarized light signal whose polarization direction is parallel to the principal plane, that is, E light (that is, extraordinary light).
- an optical signal whose polarization direction is perpendicular to the main plane is input from the ordinary optical port, it will be outputted from the common port without loss, and if the optical signal whose polarization direction is parallel to the main plane is input from the extraordinary optical port, it will also be outputted from the common port without loss.
- FIG 2 is a schematic view of a wave plate for use in the present invention.
- the wave plate is a uniaxial crystal whose surfaces are parallel to each other and whose optical axis is parallel to the crystal surface, and can be classified into various types, for example, ⁇ /2 wave plates, ⁇ /4 wave plates, and the like.
- the ⁇ /2 wave plate is still linearly polarized, but the polarization direction has been rotated by 2 ⁇ compared with the original polarization direction.
- Fig. 3 is a schematic view of an optical rotating sheet used in the present invention.
- the medium When linearly polarized light passes through a medium, the medium can rotate the plane of polarization of the polarized light.
- the property of the plane of polarization of the polarized light can be called optical rotation.
- a device made of a medium having such a property is called an optical rotator. .
- FIG. 4 is a schematic structural diagram of a first embodiment of an optical component according to the present invention, including a first PBS 41, a polarization direction adjustment module 42, a second PBS 43, and a light propagation direction adjustment module 44.
- the transmitting device other than the optical component of the embodiment is also shown in the figure, the first Receiving equipment and fiber optics.
- the first PBS 41 includes a first common port and two first optical ports, and one of the two first optical ports is connected to an external transmitting device for generating a test optical signal;
- the polarization direction adjusting module 42 includes a port and a second port, the first port being coupled to the first common port for causing a polarization direction of a test optical signal incident from the first port and a polarization direction of a backward optical signal emitted from the first port
- the second PBS 43 includes a second common port and two second optical ports, the second common port is connected to an external optical fiber, and one of the two second optical ports is connected to the second port Connecting, the other one of the two second optical ports is connected to an external first receiving device for receiving a backward optical signal corresponding to the test optical signal;
- the light propagation direction adjusting module 44 is The other one of the two first optical ports is connected to the first receiving device, and is configured to adjust a propagation direction of an optical signal that is emitted by the other one of the two first optical ports And
- the test optical signal and the backward direction can be made.
- the optical signal is transmitted through different paths to distinguish the test light signal from the backward light signal, and since the backward light signal of any polarization state can be regarded as a superposition of extraordinary light and ordinary light, the above scheme will eventually be ordinary light.
- the extraordinary light is sent to the first receiving module, so that the backward optical signal is substantially not attenuated, and the dynamic range of the OTDR is increased.
- the polarization adjustment module includes a wave plate and an optical rotator, and the light propagation direction adjustment module is a diamond prism, or the light propagation direction adjustment module includes a triangular prism and a PBS as an example, and is described in detail.
- the two first optical ports are respectively a first ordinary optical port and a first extraordinary optical port, and the two second optical ports are a second ordinary optical port and a second extraordinary optical port respectively, and the common port in the figure is C. Indicates that the ordinary optical port is represented by 0, and the unusual optical port is represented by E.
- the first ordinary optical port is connected to the transmitting device; the wave plate is connected to the first common port; the optical rotating sheet and the wave plate and the second extraordinary light Port connection
- the second ordinary optical port is connected to the first receiving device; the first extraordinary optical port is connected to the light propagation direction adjusting module.
- the first extraordinary optical port is connected to the transmitting device; the wave plate is connected to the first common port; the optical rotating sheet and the wave plate and the second ordinary light a port connection; the second extraordinary optical port is connected to the first receiving device; and the first ordinary optical port is connected to the light propagation direction adjusting module.
- Fig. 5 is a schematic view showing the structure of a second embodiment of the optical module according to the present invention, comprising a first PBS 51, a wave plate 52, an optical rotator 53, a second PBS 54, and a rhombic prism 55.
- the main plane of the first PBS 51 is perpendicular to the polarization direction of the test optical signal, so that the first ordinary optical port of the first PBS 51 can introduce a test optical signal;
- the first common port of the first PBS 51 is connected to the wave plate 52.
- the wave plate 52 is a ⁇ /2 wave plate, and the optical axis direction of the wave plate is at an angle of 22.5 degrees with respect to the polarization direction of the test optical signal;
- the optical rotation plate 53 is a 45-degree optical rotation plate, and the wave plate 52 and the An unusual optical port connection of the two PBSs 54; an incident port of the rhombic prism 55 is coupled to the first extraordinary optical port of the first PBS 51.
- FIG. 6 is a schematic diagram of the path of testing the optical signal in FIG. 5
- FIG. 7 is a schematic diagram showing the change of the polarization direction of the test optical signal in FIG.
- a test optical signal having a first wavelength is incident from a first ordinary optical port of the first PBS.
- the test optical signal is output from the first common port of the first PBS, and then enters the wave plate.
- the polarization direction of the optical signal entering the wave plate at this time is as shown by 71 in FIG.
- the wave plate is a /2 wave plate, and the optical axis direction of the wave plate is at an angle of 22.5 degrees with the polarization direction of the test optical signal, the wave plate is rotated by 45 degrees in the polarization direction of the test optical signal.
- the polarization direction of the optical signal entering the optical rotator at this time is as shown by 72 in FIG.
- the optical rotating sheet is a 45-degree optical rotating sheet, the optical rotating sheet rotates the incident optical signal by 45 degrees in a polarization direction.
- the polarization direction of the optical signal processed by the optical rotating sheet is as shown in FIG. 73 shows.
- the E light is from the second extraordinary light of the second PBS.
- the port enters, after which it is output from the second common port of the second PBS.
- the second common port is coupled to an external fiber such that the optical signal can be input to the fiber.
- Figure 8 is a schematic diagram of the path of the backward optical signal in Figure 5
- Figure 9 is a schematic diagram showing the change of the polarization direction of the backward optical signal in Figure 5.
- the backward optical signal enters the second common port of the second PBS from the optical fiber.
- an optical signal of an arbitrary polarization state such as linearly polarized light, circularly polarized light, elliptically polarized light, partially polarized light, or even natural light
- the backward light signal can be divided. It is an ordinary light part and an unusual light part.
- the ordinary light portion of the backward optical signal is output from the second ordinary optical port of the second PBS.
- the extraordinary light portion of the backward optical signal is output from the second extraordinary optical port of the second PBS to the optical rotator.
- the polarization direction of the optical signal incident on the optical rotator is as shown by 91 in Fig. 9.
- the optical rotating sheet is a 45-degree optical rotating sheet
- the optical rotating sheet rotates the incident optical signal by 45 degrees in a polarization direction and outputs the same to the wave plate.
- the polarization direction of the optical signal incident on the wave plate is as shown by 92 in Fig. 9.
- the angle between the polarization direction of the optical signal incident on the wave plate and the optical axis of the wave plate is 67.5 degrees, and since the wave plate is a ⁇ /2 wave plate, the wave plate rotates the incident light signal by 135 degrees in the polarization direction and outputs it to the first common port of the first PBS.
- the polarization direction of the optical signal outputted by the wave plate is as shown by 93 in Fig. 9. It should be noted that 91 and 93 in Fig. 9 are separately displayed for better understanding, in fact, 91 in Fig. 9. And 93 should be the same.
- the polarization direction of the optical signal outputted by the wave plate is perpendicular to the polarization direction of the test optical signal.
- the optical signal is E light, after which it is output from the first extraordinary optical port of the first PBS to the rhombic prism.
- the diamond prism reflects the incident light signal twice and outputs it, and then is sent to the receiving device together with the optical signal outputted by the second ordinary optical port of the second PBS for subsequent processing analysis.
- the test optical signal and the backward optical signal are transmitted through different paths, and the test optical signal and the backward optical signal can be distinguished to implement the application in the bidirectional optical fiber. Since the optical signal is input from the ordinary optical port or the unusual optical port of the PBS and output from the common port, the optical signal is lossless, and the test optical signal in this embodiment is an ordinary optical port from two PBSs or unusual. The optical port is input and outputted from the common port, so the test optical signal is substantially lossless in this embodiment, and since the backward optical signal is proportional to the intensity of the test optical signal, the backward optical signal can be increased. Strength, increasing the dynamic range of the OTDR.
- the backward optical signal is divided into an ordinary light portion and an extraordinary light portion, and both portions are received, and the backward optical signal can also be substantially lossless in the embodiment, and the receiving is increased.
- the intensity of the optical signal further increases the dynamic range of the OTDR.
- FIG. 10 is a schematic structural diagram of a third embodiment of an optical module according to the present invention, including a first PBS 101, a wave plate 102, an optical rotator 103, a second PBS 104, and a triangular prism 105 and a third PBS 106.
- the third PBS 106 includes a third common Port, third ordinary light port and third unusual light port. When assembled, the main plane of the first PBS 101 is perpendicular to the polarization direction of the test optical signal, so that the first ordinary optical port of the first PBS 101 can introduce a test optical signal; the first common port of the first PBS 101 is connected to the wave plate 102.
- the wave plate 102 is a ⁇ /2 wave plate, and the optical axis direction of the wave plate is at an angle of 22.5 degrees with the polarization direction of the test optical signal; the optical rotation plate 103 is a 45-degree optical rotation plate, and the wave plate 102 and the An unusual optical port connection of the PBS 104; an incident port of the triangular prism 105 is connected to the first extraordinary optical port of the first PBS 101, and an exit port of the triangular prism 105 is connected to the third extraordinary optical port of the third PBS 106; the third PBS 106 The third ordinary optical port is connected to the second ordinary optical port of the second PBS 104, and the third common port of the third PBS 106 is connected to the receiving device.
- the third extraordinary optical port is connected to the second extraordinary optical port, and the third common port is connected to the first receiving device to enable the second extraordinary light
- the port is connected to the first receiving device by using the third PBS,
- the third ordinary optical port is coupled to an exit port of the triangular prism.
- the path of the test optical signal is the same as that in the second embodiment.
- FIG. 6 For details, refer to FIG. 6, and FIG.
- FIG. 11 is a schematic diagram of a path of the backward optical signal in FIG. 10.
- the path of the backward optical signal is the same as the path from the second PBS to the output from the first PBS in the second embodiment, so A schematic diagram of the change of polarization direction can be seen in FIG. 9.
- the difference from the second embodiment is to replace the sixth and seventh steps in the second embodiment with the sixth to eighth steps as follows:
- the polarization direction of the optical signal outputted by the wave plate is perpendicular to the polarization direction of the test optical signal, that is, the optical signal is E light, and then the first extraordinary optical port of the first PBS is output to the triangle. Prism.
- the triangular prism reflects the incident light signal and outputs it to the third extraordinary optical port of the third PBS.
- the third ordinary optical port of the third PBS is connected to the ordinary light portion of the backward optical signal from the second ordinary optical port of the second PBS, and the optical signal input by the third extraordinary optical port of the third PBS.
- the third public port of the third PBS is outputted together to the subsequent receiving device for subsequent processing analysis.
- the test optical signal and the backward optical signal are transmitted through different paths, and the test optical signal and the backward optical signal can be distinguished to implement the application in the bidirectional optical fiber. Since the optical signal is input from the ordinary optical port or the unusual optical port of the PBS and output from the common port, the optical signal is lossless, and the test optical signal in this embodiment is an ordinary optical port from two PBSs or unusual. The optical port is input and outputted from the common port, so the test optical signal is substantially lossless in this embodiment, and since the backward optical signal is proportional to the intensity of the test optical signal, the backward optical signal can be increased. Strength, increasing the dynamic range of the OTDR.
- the backward optical signal is divided into an ordinary light portion and an extraordinary light portion, and both portions are received, and the backward optical signal can also be substantially lossless in the embodiment, and the receiving is increased.
- the intensity of the optical signal further increases the dynamic range of the OTDR.
- the backward optical signals can be aggregated into one optical signal by the triangular prism and the third PBS, and then output to the receiving device, which can improve the receiving efficiency of the receiving device.
- the foregoing embodiment describes the test optical signal and the corresponding backward optical signal.
- the foregoing solution can be applied to the detection of the optical fiber link. In order to enable the detection to not interrupt the service, the foregoing solution can be performed simultaneously with the normal service.
- the wavelength of the normal service is different from the wavelengths of the test optical signal and the backward optical signal, and can be distinguished by using a Wavelength Division Multiplexing (WDM). Specifically, it can be:
- FIG. 12 is a schematic structural diagram of an optical module according to the present invention, including an optical component 121, a transmitting device 122, a first receiving device 123, a WDM 124, and a second receiving device 125.
- the optical component 121 can be the optical component shown in FIG.
- the transmitting device 122 is connected to the first ordinary optical port (in the second connection relationship, the transmitting device is connected to the first extraordinary optical port), Receiving a data signal and a test excitation signal, the data signal being the same as the test excitation signal, the test excitation signal being used to stimulate the transmitting device to generate a test optical signal, the data signal being used to stimulate the transmitting device to generate data light
- a first receiving device 123 is connected to the second ordinary optical port and the exit port of the rhombic prism or the third common port of the third PBS, for receiving a backward optical signal corresponding to the test optical signal;
- WDM124 and The external optical fiber and the second common port are connected, so that the second common port is connected to the external optical fiber through the WDM, and the WDM 124 is configured to separate or couple the received optical signal, for example, multiple The optical signals of the wavelengths are coupled together and sent to the optical fiber, and the optical signals received from the optical fibers are separated according to the wavelength;
- the second receiving device 125 is coupled to the WDM 124 for receiving a data signal from the opposite end having a different wavelength from the backward optical signal.
- this embodiment may also include other devices in the fiber optic system, such as a collimator or the like.
- the first receiving device 123 and the second receiving device 125 include a photodiode (PD), and the PD may be a PIN photodiode or an Avalanche Photo Diode (APD), and may also include a preamplifier.
- a preamplifier For example, Trans-Impedance Amplifier (TIA), Limit Amplifier (LA), and the like.
- the transmitting device 122 includes an LD, and the LD may be an FP (Fabry-Perot) laser or a distributed feedback (DFB) laser.
- the optical module in this embodiment can be applied to the OLT side or the ONU side. When applied to the OLT side, the LD in the sending device is used to generate an optical signal with a wavelength of 1490 nm and transmitted in the downlink direction.
- the first receiving device The PD in the medium is used to receive the optical signal of the wavelength of 1490 nm, the second receiving device is configured to receive the transmitted optical signal of the wavelength of 1310 nm on the ONU side; when applied to the ONU side, the LD in the transmitting device is used to generate the optical signal of the wavelength of 1310 nm. And transmitting in the downlink direction, the PD in the first receiving device is used to receive the optical signal of the wavelength of 1310 nm, and the second receiving device is configured to receive the transmitted optical signal of the wavelength of 1490 nm on the ONU side.
- the dynamic range of the OTDR can be improved, and the data signal can be used as a test signal instead of amplitude-modulating the data signal and then used as a test signal, thereby improving the service without interruption.
- Test the strength of the optical signal to further improve the dynamic range of the OTDR.
- FIG. 13 is a schematic structural diagram of an optical device according to the present invention, including an optical module 131, a first processing module 132, and a second processing module 133.
- the optical module 131 may be the optical module shown in FIG. 12, that is, the optical module 131 includes an optical component 1311, a transmitting device 1312, a first receiving device 1313, a second receiving device 1314, and a WDM 1315.
- the first processing module 132 and the transmitting device a 1312 connection for generating a test excitation signal and a data signal, the test excitation signal being the same as the data signal, the test excitation signal for exciting the transmitting device 1312 to generate the test optical signal, the data signal being used for excitation
- the transmitting device generates a data optical signal, and the data is not interrupted during the test because the data optical signal and the test optical signal are simultaneously generated.
- the first processing module 132 can be connected to the second receiving device 1314, and the data from the opposite end is connected.
- the signal is subjected to subsequent processing; the second processing module 133 is coupled to the first processing module 132 and the first receiving device 1313, and configured to determine the backward optical signal according to the data signal generated by the first processing module, and Subsequent processing of the backward optical signal.
- the first processing module 132 may be a Media Access Control (MAC) entity, and the second processing module 133 is an OTDR signal processing and control function entity located outside the MAC entity; or, the first processing Module 132 and second processing module 133 are both integrated in the MAC Physically.
- MAC Media Access Control
- the optical device of this embodiment may be an OLT, an ONU, or an ONT.
- the dynamic range of the OTDR can be improved by using the optical component described above; the MAC entity is controlled by the OTDR signal processing and control function entity instead of the transmitting device to generate the same test signal as the data signal, which can be ensured when the service is not interrupted.
- the data signal can increase the intensity of the test optical signal, thereby improving the intensity of the backward optical signal and further improving the dynamic range of the OTDR.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optical Communication System (AREA)
Description
光设备及其光组件
本申请要求于 2009年 08月 05日提交中国专利局、 申请号为 200920110666.7、 发明名称为 "光组件和光设备" 的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。 技术领域
本发明本涉及光通信技术, 特别涉及一种光组件和光设备。 背景技术
无源光网络(Passive Optical Network, PON )由局侧的光线路终端(Optical Line Terminal , OLT )、 用户侧的光网络单元( Optical Network Unit , ONU )或者 光网络终端 (Optical Network Terminal , ONT ) 以及光分配网络 ( Optical Distribution Network, ODN )组成, 下文将 ONU和 ONT统称为 ONU。 通常情 况下, 是多个 ONU连接一个 OLT。 在 PON系统中, 从 OLT到 ONU的方向称 为下行方向, 现有技术中釆用 1490nm 的波长, 由 OLT按照时分复用 (Time Division Multiplexing, TDM )方式将下行数据流广播到所有 ONU, 各个 ONU 只接收带有自身标识的数据; 从 ONU到 OLT的方向称为上行方向, 现有技术 中釆用 1310nm的波长, 釆用时分多址( Time Division Multiple Access, TDMA ) 方式进行数据传输, 即 OLT为每个 ONU分配时隙, 各个 ONU按照 OLT分配 的时隙发送数据。 为了保证 PON系统中数据的正常传输等功能, 需要检测单根 光纤或者整个系统光纤的特征属性, 光时域反射计 (Optical Time Domain Reflectometer, OTDR )是测量光纤特性的一种设备。
现有 OTDR有外置式和嵌入式两种, 较为理想的是釆用嵌入式 OTDR, 嵌 入式 OTDR是将 OTDR功能嵌入到收发模块中, 大致流程如下: OTDR的发送 设备产生测试光信号, 之后, 测试光信号通过分光器发送到光纤中; 光信号经
光纤传输时会由于光纤本身的特性(如介质不均匀)形成后向散射信号, 由于 光纤链路的事件 (如连接、 断裂、 光纤尾部)形成反射信号, 下文将后向散射 信号或反射信号统称为后向光信号; 后向光信号会再经过分光器进入 OTDR的 接收模块。 其中, 嵌入式 OTDR中包括 OTDR信号处理和控制功能实体, 该实 体控制发送设备产生测试光信号, 测试光信号是由测试信号激励激光器(Laser Diode, LD )产生的, 该实体从接收模块获取后向光信号的相关信息, 进行后续 的处理分析, 得到反映光纤链路的损耗曲线或其他信息。 现有 OTDR技术中, 为了避免业务中断, 釆用的测试信号是对数据信号进行 5%~10%的幅度调制后 得到的; 为了将发送光信号和后向光信号进行区分, 釆用的分光器是 90%/10% 的分光器, 即测试光信号通过分光器后有 90%的测试光信号输出, 当后向光信 号通过分光器后有 10%的后向光信号输出。
不过, 由于后向光信号在经过分光器时只有 10%通过分光器, 使得接收到 的后向光信号的强度太小, 降低了嵌入式 OTDR的动态范围; 由数据信号进行 幅度调制后得到测试光信号, 使得测试光信号的强度较小, 由于后向光信号与 测试光信号的强度成正比, 测试光信号的强度较小, 进一步降低了后向光信号 的强度降低了嵌入式 OTDR的动态范围。 发明内容
鉴于以上问题, 本发明提供一种光组件和光设备, 以解决现有技术中嵌入 式 OTDR动态范围较小的问题。
本发明提供了一种光组件, 包括:
第一偏振分光器, 包括第一公共端口和两个第一光端口, 所述两个第一光 端口中的一个光端口与外部的用于产生测试光信号的发送设备连接;
用于使从第一端口入射的测试光信号的偏振方向与从第一端口出射的后向 光信号的偏振方向相互垂直的偏振方向调整模块, 包括第一端口和第二端口, 所述第一端口与所述第一公共端口连接;
第二偏振分光器, 包括第二公共端口和两个第二光端口, 所述第二公共端 口与外部的光纤连接, 所述两个第二光端口中的一个光端口与所述第二端口连 接, 所述两个第二光端口中的另一个光端口与外部的用于接收与所述测试光信 号对应的后向光信号的第一接收设备连接;
用于将所述两个第一光端口中的另一个光端口出射的光信号的传播方向调 整为与所述两个第二光端口中的另一个光端口出射的光信号的传输方向相同的 光传播方向调整模块, 与所述两个第一光端口中的另一个光端口及所述第一接 收设备连接。
本发明提供了一种光设备, 包括:
第一偏振分光器, 包括第一公共端口和两个第一光端口, 所述两个第一光 端口中的一个光端口与发送设备连接;
用于使从第一端口入射的测试光信号的偏振方向与从第一端口出射的后向 光信号的偏振方向相互垂直的偏振方向调整模块, 包括第一端口和第二端口, 所述第一端口与所述第一公共端口连接;
第二偏振分光器, 包括第二公共端口和两个第二光端口, 所述第二公共端 口与波分复用器连接, 所述两个第二光端口中的一个光端口与所述第二端口连 接, 所述两个第二光端口中的另一个光端口与第一接收设备连接;
用于将所述两个第一光端口中的另一个光端口出射的光信号的传播方向调 整为与所述两个第二光端口中的另一个光端口出射的光信号的传输方向相同的 光传播方向调整模块, 与所述两个第一光端口中的另一个光端口及所述第一接 收设备连接;
用于接收数据信号和测试信号, 所述数据信号和测试信号相同, 由所述测 试信号产生测试光信号的发送设备, 与所述两个第一光端口中的一个光端口连 接;
用于接收与所述测试光信号对应的后向光信号的第一接收设备, 与所述两 个第二光端口中的另一个光端口连接;
波分复用器, 与外部的光纤及所述第二公共端口连接, 使所述第二公共端 口通过所述波分复用器与外部的光纤连接;
用于接收其余光信号的第二接收设备, 与所述波分复用器连接, 所述其余 光信号为与所述后向光信号具有不同波长的光信号。
由上述技术方案可知, 本发明通过设置两个偏振分光器 ( Polarization Beam Splitter, PBS )和偏振方向调整模块及光传播方向调整模块, 并且第一端口入射 的光信号和第一端口出射的光信号的偏振方向相互垂直, 可以使发送光信号和 后向光信号通过不同的路径, 实现测试光信号和后向光信号的区分, 并且, 由 于任意偏振态的后向光信号都可以看作非寻常光和寻常光的叠加, 上述方案最 终将寻常光和非寻常光都发送给第一接收模块, 使得后向光信号基本没有衰减, 增大 OTDR的动态范围; 进一步地, 本发明中的测试信号与数据信号相同, 可 以进一步提高后向光信号的强度, 进一步增大 OTDR的动态范围。 附图说明
图 1为本发明釆用的偏振分光器的示意图;
图 2为本发明釆用的波片的示意图;
图 3为本发明釆用的旋光片的示意图;
图 4为本发明提供的光组件的第一实施例的结构示意图;
图 5为本发明提供的光组件的第二实施例的结构示意图;
图 6为图 5中测试光信号的途径示意图;
图 7为图 5中的测试光信号偏振方向改变的示意图;
图 8为图 5中后向光信号的途径示意图;
图 9为图 5中的后向光信号偏振方向改变的示意图;
图 10为本发明提供的光组件的第三实施例的结构示意图;
图 11为图 10中后向光信号的途径示意图;
图 12为本发明提供的光模块的结构示意图;
图 13为本发明提供的光设备的结构示意图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。
为了更好地理解本发明, 首先对本发明釆用的一些光学设备进行描述。 图 1为本发明釆用的偏振分光器的示意图。参见图 1 , PBS包括三个端口, 分别为公共端口、 寻常光端口和非寻常光端口。 其具体工作方式为: 当光信号 从公共端口输入后, 将会从寻常光端口输出偏振方向垂直主平面的偏振光信号, 即 0光(也即寻常光), 将会从非寻常光端口输出偏振方向平行于主平面的偏振 光信号, 即 E光(也即非寻常光)。 如果偏振方向垂直于主平面的光信号从寻常 光端口输入, 将无损地从公共端口输出, 如果偏振方向平行于主平面的光信号 从非寻常光端口输入, 也将无损地从公共端口输出。
图 2 为本发明釆用的波片的示意图。 波片是表面互相平行、 光轴与晶体表 面平行的单轴晶体, 可以分为多种类型, 例如, λ/2波片、 λ/4波片等。 参见图 2 , λ/2波片后仍为线偏振光, 但偏振方向与原偏振方向相比转过了 2Θ。
图 3 为本发明釆用的旋光片的示意图。 当线偏振光通过某种介质时, 介质 能使偏振光的偏振面发生旋转, 这种能旋转偏振光的偏振面的性质叫做旋光性 , 用具有这种性质的介质做的器件, 叫做旋光片。 参见图 3 , 用竖线填充的表示入 射光的偏振方向、 用网格填充的表示出射光的偏振方向。 光经过旋光片后, 入 光片称为 45度旋光片。
在上述基本概念的基础上, 本发明提供了如下方案:
图 4为本发明提供的光组件的第一实施例的结构示意图, 包括第一 PBS41、 偏振方向调整模块 42、 第二 PBS43和光传播方向调整模块 44。 为了更好地表明 各模块之间的关系, 在图中还示出了本实施例的光组件之外的发送设备、 第一
接收设备和光纤。 第一 PBS41 包括第一公共端口和两个第一光端口, 所述两个 第一光端口中的一个光端口与外部的用于产生测试光信号的发送设备连接; 偏 振方向调整模块 42包括第一端口和第二端口, 所述第一端口与所述第一公共端 口连接, 用于使从第一端口入射的测试光信号的偏振方向与从第一端口出射的 后向光信号的偏振方向相互垂直; 第二 PBS43包括第二公共端口和两个第二光 端口, 所述第二公共端口与外部的光纤连接, 所述两个第二光端口中的一个光 端口与所述第二端口连接, 所述两个第二光端口中的另一个光端口与外部的用 于接收与所述测试光信号对应的后向光信号的第一接收设备连接; 光传播方向 调整模块 44 与所述两个第一光端口中的另一个光端口及所述第一接收设备连 接, 用于将所述两个第一光端口中的另一个光端口出射的光信号的传播方向调 整为与所述两个第二光端口中的另一个光端口出射的光信号的传输方向相同 的, 并且, 优选的, 使两个光端口出射的光信号之间的距离尽量小。
本实施例通过设置两个 PBS和偏振方向调整模块及光传播方向调整模块, 并且第一端口入射的光信号和第一端口出射的光信号的偏振方向相互垂直, 可 以使测试光信号和后向光信号通过不同的路径传输, 实现测试光信号和后向光 信号的区分, 并且, 由于任意偏振态的后向光信号都可以看作非寻常光和寻常 光的叠加, 上述方案最终将寻常光和非寻常光都发送给第一接收模块, 使得后 向光信号基本没有衰减, 增大 OTDR的动态范围。
下面以偏振方向调整模块包括波片和旋光片, 光传播方向调整模块为菱形 棱镜, 或者光传播方向调整模块包括三角棱镜和 PBS为例, 分别进行较为详细 的描述。 其中, 两个第一光端口分别为第一寻常光端口和第一非寻常光端口, 两个第二光端口分别为第二寻常光端口和第二非寻常光端口,图中公共端口用 C 表示, 寻常光端口用 0表示, 非寻常光端口用 E表示。
具体地, 可以是如下两种连接关系:
第一种连接关系: 所述第一寻常光端口与所述发送设备连接; 所述波片与 所述第一公共端口连接; 所述旋光片与所述波片及所述第二非寻常光端口连接;
所述第二寻常光端口与所述第一接收设备连接; 所述第一非寻常光端口与所述 光传播方向调整模块连接。
第二种连接关系: 所述第一非寻常光端口与所述发送设备连接; 所述波片 与所述第一公共端口连接; 所述旋光片与所述波片及所述第二寻常光端口连接; 所述第二非寻常光端口与所述第一接收设备连接; 所述第一寻常光端口与所述 光传播方向调整模块连接。
下面以上述的第一种连接关系为例, 可以理解的是, 第二种连接关系同样 适用于下述的各实施例。
图 5为本发明提供的光组件的第二实施例的结构示意图, 包括第一 PBS51、 波片 52、 旋光片 53、 第二 PBS54和菱形棱镜 55。
在组装时, 使第一 PBS51的主平面与测试光信号的偏振方向垂直, 以使第 — PBS51的第一寻常光端口可以引入测试光信号; 第一 PBS51的第一公共端口 与波片 52连接, 该波片 52为 λ/2波片, 且该波片的光轴方向与测试光信号的偏 振方向成 22.5度角; 旋光片 53釆用的是 45度旋光片, 与波片 52及第二 PBS54 的非寻常光端口连接;菱形棱镜 55的入射端口与第一 PBS51的第一非寻常光端 口连接。
下面分别描述测试光信号及后向光信号的经过途径:
测试光信号:
图 6为图 5中测试光信号的途径示意图, 图 7为图 5中的测试光信号偏振 方向改变的示意图。
第一步, 具有第一波长的测试光信号从第一 PBS的第一寻常光端口入射。 第二步, 该测试光信号从第一 PBS的第一公共端口输出, 之后, 进入波片。 此时进入波片中的光信号的偏振方向如图 7中的 71所示。
第三步, 由于该波片为 /2波片, 且该波片的光轴方向与测试光信号的偏振 方向成 22.5度角,则波片对该测试光信号进行偏振方向旋转 45度后输出给旋光 片。 此时进入旋光片中的光信号的偏振方向如图 7中的 72所示。
第四步, 由于该旋光片为 45度旋光片, 则该旋光片对该入射的光信号再进 行偏振方向 45度的旋转, 此时, 旋光片处理后的光信号的偏振方向如图 7中的 73所示。
第五步, 由于旋光片处理后的光信号与初始的测试光信号的偏振方向的夹 角为 90度, 即由 0光变为了 E光, 该 E光从第二 PBS的第二非寻常光端口进 入, 之后, 从第二 PBS的第二公共端口输出。 该第二公共端口与外部的光纤连 接, 使该光信号可以输入到光纤中。
后向光信号:
图 8为图 5中后向光信号的途径示意图, 图 9为图 5中的后向光信号偏振 方向改变的示意图。
第一步, 后向光信号从光纤进入第二 PBS的第二公共端口。
由于任意偏振状态的光信号, 例如线偏振光、 圓偏振光、 椭圓偏振光、 部 分偏振光甚至自然光, 都可以看作是 0光和 E光的叠加, 因此, 可以将后向光 信号分为寻常光部分和非寻常光部分。
第二步, 后向光信号中的寻常光部分从第二 PBS的第二寻常光端口输出。 第三步, 后向光信号中的非寻常光部分从第二 PBS的第二非寻常光端口输 出给旋光片。 此时, 入射到旋光片的光信号的偏振方向如图 9中的 91所示。
第四步, 由于该旋光片为 45度旋光片, 则该旋光片对该入射的光信号进行 偏振方向 45度的旋转后输出给波片。 此时, 入射到波片的光信号的偏振方向如 图 9中的 92所示。
第五步, 从图 7 可以看出, 此时入射到波片的光信号的偏振方向与波片的 光轴之间的夹角为 67.5度, 又由于该波片为 λ/2波片, 则波片对该入射光信号 进行偏振方向旋转 135度后输出给第一 PBS的第一公共端口。 此时, 波片输出 的光信号的偏振方向如图 9中的 93所示, 需要注意的是, 图 9中的 91和 93分 开显示是为了更好地理解, 事实上, 图 9中的 91和 93应该是相同的。
第六步, 由于波片输出的光信号的偏振方向与测试光信号的偏振方向是垂
直的, 即该光信号为 E光, 之后, 将从第一 PBS的第一非寻常光端口输出给菱 形棱镜。
第七步, 菱形棱镜对该入射光信号进行两次反射后输出,之后, 与第二 PBS 的第二寻常光端口输出的光信号一起被送入接收设备, 以供进行后续处理分析。
本实施例中, 测试光信号和后向光信号通过不同的途径进行传输, 可以将 测试光信号和后向光信号区分, 实现在双向光纤中的应用。 由于光信号从 PBS 的寻常光端口或非寻常光端口输入、 从公共端口输出时, 光信号是无损的, 而 本实施例中的测试光信号便是从两个 PBS的寻常光端口或非寻常光端口输入、 从公共端口输出, 因此测试光信号在本实施例中基本上是无损的, 又由于后向 光信号与测试光信号的强度是成正比的, 因此, 可以增加后向光信号的强度, 提高 OTDR的动态范围。 本实施例中将后向光信号分为寻常光部分和非寻常光 部分, 对这两部分都进行接收, 也可以使后向光信号在本实施例中基本上是无 损的, 增加接收的后向光信号的强度, 进一步提高 OTDR的动态范围。
图 10 为本发明提供的光组件的第三实施例的结构示意图, 包括第一 PBS101、 波片 102、 旋光片 103、 第二 PBS104和三角棱镜 105和第三 PBS106 , 第三 PBS106包括第三公共端口、 第三寻常光端口和第三非寻常光端口。在组装 时, 使第一 PBS101的主平面与测试光信号的偏振方向垂直, 以使第一 PBS101 的第一寻常光端口可以引入测试光信号; 第一 PBS101 的第一公共端口与波片 102连接, 该波片 102为 λ/2波片, 且该波片的光轴方向与测试光信号的偏振方 向成 22.5度角; 旋光片 103釆用的是 45度旋光片, 与波片 102及第二 PBS104 的非寻常光端口连接;三角棱镜 105的入射端口与第一 PBS101的第一非寻常光 端口连接, 三角棱镜 105的出射端口与第三 PBS106的第三非寻常光端口连接; 第三 PBS106 的第三寻常光端口与第二 PBS104 的第二寻常光端口连接, 第三 PBS106的第三公共端口与接收设备连接。 在第二种连接关系下, 所述第三非寻 常光端口与所述第二非寻常光端口连接, 所述第三公共端口与所述第一接收设 备连接,使所述第二非寻常光端口通过所述第三 PBS与所述第一接收设备连接,
所述第三寻常光端口与所述三角棱镜的出射端口连接。
本实施例中, 测试光信号的途径路径与第二实施例中的相同, 具体可以参 见图 6、 7, 不再赘述。
图 11为图 10中后向光信号的途径示意图, 本实施例中, 后向光信号的途 径路径与第二实施例中的从第二 PBS进入直至从第一 PBS输出的路径一致, 因 此具体的偏振方向改变的示意图可参见图 9,与第二实施例不同的是用如下的第 六 -八步替代第二实施例中的第六、 七步:
第六步, 由于波片输出的光信号的偏振方向与测试光信号的偏振方向是垂 直的, 即该光信号为 E光, 之后, 将从第一 PBS的第一非寻常光端口输出给三 角棱镜。
第七步, 三角棱镜对该入射光信号进行一次反射后输出给第三 PBS的第三 非寻常光端口。
第八步, 第三 PBS的第三寻常光端口从第二 PBS的第二寻常光端口接入后 向光信号中的寻常光部分, 与第三 PBS的第三非寻常光端口输入的光信号一起 从第三 PBS的第三公共端口输出给后续的接收设备, 以供进行后续处理分析。
本实施例中, 测试光信号和后向光信号通过不同的途径进行传输, 可以将 测试光信号和后向光信号区分, 实现在双向光纤中的应用。 由于光信号从 PBS 的寻常光端口或非寻常光端口输入、 从公共端口输出时, 光信号是无损的, 而 本实施例中的测试光信号便是从两个 PBS的寻常光端口或非寻常光端口输入、 从公共端口输出, 因此测试光信号在本实施例中基本上是无损的, 又由于后向 光信号与测试光信号的强度是成正比的, 因此, 可以增加后向光信号的强度, 提高 OTDR的动态范围。 本实施例中将后向光信号分为寻常光部分和非寻常光 部分, 对这两部分都进行接收, 也可以使后向光信号在本实施例中基本上是无 损的, 增加接收的后向光信号的强度, 进一步提高 OTDR的动态范围。 另外, 本实施例通过三角棱镜和第三 PBS可以将后向光信号汇聚成一个光信号后输出 给接收设备, 可以提高接收设备的接收效率。
上述实施例对测试光信号及对应的后向光信号进行了描述, 釆用上述方案 可以应用在光纤链路的检测中, 为了使检测不中断业务, 可以将上述方案与正 常的业务同时进行。 正常的业务的波长与上述测试光信号及后向光信号的波长 不同, 可以釆用波分复用器(Wavelength Division Multiplexing, WDM )进行区 分。 具体可以为:
图 12为本发明提供的光模块的结构示意图,包括光组件 121、发送设备 122、 第一接收设备 123、 WDM124和第二接收设备 125。 光组件 121可以为图 4、 5 或 10所示的光组件, 发送设备 122与所述第一寻常光端口连接(第二种连接关 系时,发送设备与第一非寻常光端口连接),用于接收数据信号和测试激励信号, 所述数据信号和测试激励信号相同, 所述测试激励信号用于激励所述发送设备 产生测试光信号, 所述数据信号用于激励所述发送设备产生数据光信号; 第一 接收设备 123与所述第二寻常光端口及菱形棱镜的出射端口或者第三 PBS的第 三公共端口连接, 用于接收与所述测试光信号对应的后向光信号; WDM124与 外部的光纤及所述第二公共端口连接, 使所述第二公共端口通过所述 WDM与 外部的光纤连接, WDM124用于对经过的光信号进行分离或耦合处理, 例如, 将发送的多个波长的光信号耦合在一起发送给光纤, 将从光纤中接收的光信号 按照波长进行分离;
第二接收设备 125与所述 WDM124连接, 用于接收与所述后向光信号具有不同 波长的来自对端的数据信号。 当然, 可以理解的是, 本实施例还可以包括光纤 系统中其他一些设备, 例如, 准直器等。
其中, 第一接收设备 123和第二接收设备 125包括光接收器( Photo Diode, PD ), PD可以为 PIN光电二极管或者雪崩光电二极管 ( Avalanche Photo Diode , APD )等,还可以包括前置放大器,例如,跨阻放大器( Trans-Impedance Amplifier, TIA )、 限幅放大器 (Limited Amplifier, LA )等。 发送设备 122 包括 LD, LD 可以为 FP ( Fabry-Perot )激光器, 也可以为分布式反馈 ( Distributed Feedback, DFB )激光器等。
本实施例中的光模块可以应用于 OLT侧, 也可以应用于 ONU侧, 应用于 OLT侧时, 发送设备中的 LD用于产生 1490nm波长的光信号, 并向下行方向发 送, 第一接收设备中的 PD用于接收 1490nm波长的光信号, 第二接收设备用于 接收 ONU侧的发送的 1310nm波长的光信号; 应用于 ONU侧时, 发送设备中 的 LD用于产生 1310nm波长的光信号, 并向下行方向发送, 第一接收设备中的 PD用于接收 1310nm波长的光信号, 第二接收设备用于接收 ONU侧的发送的 1490nm波长的光信号。
本实施例通过釆用上述的光组件, 可以提高 OTDR的动态范围, 通过将数 据信号作为测试信号, 而不是对数据信号进行幅度调制后再作为测试信号, 可 以在保证业务不中断的情况下提高测试光信号的强度, 进一步提高 OTDR的动 态范围; 通过釆用 WDM, 可以使业务和检测同时进行, 实现检测的时候业务不 中断。
图 13为本发明提供的光设备的结构示意图, 包括光模块 131、 第一处理模 块 132, 还可以包括第二处理模块 133。 光模块 131可以为图 12所示的光模块, 即光模块 131包括光组件 1311、 发送设备 1312、 第一接收设备 1313、 第二接收 设备 1314和 WDM1315; 第一处理模块 132与所述发送设备 1312连接, 用于产 生测试激励信号和数据信号, 所述测试激励信号与数据信号相同, 所述测试激 励信号用于激励所述发送设备 1312产生所述测试光信号, 所述数据信号用于激 励所述发送设备产生数据光信号, 由于同时产生数据光信号和测试光信号可以 保证测试时业务不中断, 之后, 第一处理模块 132可以于第二接收设备 1314连 接, 对所述来自对端的数据信号进行后续处理; 第二处理模块 133 与所述第一 处理模块 132和所述第一接收设备 1313连接, 用于根据所述第一处理模块产生 的数据信号确定所述后向光信号, 并对所述后向光信号进行后续处理。
其中, 第一处理模块 132可以为媒体接入控制层 (Media Access Control, MAC ) 实体, 第二处理模块 133为位于所述 MAC实体之外的 OTDR信号处理 和控制功能实体; 或者, 第一处理模块 132和第二处理模块 133均集成在 MAC
实体上。
本实施例的光设备可以为 OLT、 ONU或者 ONT。
本实施例通过釆用上述的光组件,可以提高 OTDR的动态范围;通过 OTDR 信号处理和控制功能实体控制 MAC 实体而不是发送设备产生与数据信号相同 的测试信号, 可以在保证业务不中断时将数据信号作为测试信号, 可以提高测 试光信号的强度, 进而实现提高后向光信号的强度, 进一步提高 OTDR的动态 范围。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非对其进行 限制, 尽管参照较佳实施例对本发明进行了详细的说明, 本领域的普通技术人 员应当理解: 其依然可以对本发明的技术方案进行修改或者等同替换, 而这些 修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范 围。
Claims
1、 一种光组件, 其特征在于, 包括:
第一偏振分光器, 包括第一公共端口和两个第一光端口, 所述两个第一光 端口中的一个光端口与外部的用于产生测试光信号的发送设备连接;
偏振方向调整模块, 用于使从第一端口入射的测试光信号的偏振方向与从 第一端口出射的后向光信号的偏振方向相互垂直, 包括第一端口和第二端口, 所述第一端口与所述第一公共端口连接;
第二偏振分光器, 包括第二公共端口和两个第二光端口, 所述第二公共端 口与外部的光纤连接, 所述两个第二光端口中的一个光端口与所述第二端口连 接, 所述两个第二光端口中的另一个光端口与外部的用于接收与所述测试光信 号对应的后向光信号的第一接收设备连接;
光传播方向调整模块, 用于将所述两个第一光端口中的另一个光端口出射 的光信号的传播方向调整为与所述两个第二光端口中的另一个光端口出射的 光信号的传输方向相同, 与所述两个第一光端口中的另一个光端口及所述第一 接收设备连接。
2、 根据权利要求 1所述的光组件, 其特征在于,
所述两个第一光端口为第一寻常光端口和第一非寻常光端口;
所述两个第二光端口为第二寻常光端口和第二非寻常光端口;
所述偏振方向调整模块包括波片和旋光片;
所述第一寻常光端口与所述发送设备连接; 所述波片与所述第一公共端口 连接; 所述旋光片与所述波片及所述第二非寻常光端口连接; 所述第二寻常光 端口与所述第一接收设备连接; 所述第一非寻常光端口与所述光传播方向调整 模块连接。
3、 根据权利要求 1所述的光组件, 其特征在于,
所述两个第一光端口为第一寻常光端口和第一非寻常光端口;
所述两个第二光端口为第二寻常光端口和第二非寻常光端口;
所述偏振方向调整模块包括波片和旋光片;
所述第一非寻常光端口与所述发送设备连接; 所述波片与所述第一公共端 口连接; 所述旋光片与所述波片及所述第二寻常光端口连接; 所述第二非寻常 光端口与所述第一接收设备连接; 所述第一寻常光端口与所述光传播方向调整 模块连接。
4、 根据权利要求 2或 3所述的光组件, 其特征在于, 所述波片的光轴与 所述测试光信号的偏振方向之间的夹角为 22.5度, 所述波片为 λ/2波片, 所述 旋光片为 45度旋光片。
5、 根据权利要求 2所述的光组件, 其特征在于,
所述光传播方向调整模块为菱形棱镜, 所述菱形棱镜的入射端口与所述第 一非寻常光端口连接, 所述菱形棱镜的出射端口与所述第一接收设备连接; 或 者,
所述光传播方向调整模块包括:
三角棱镜, 所述三角棱镜的入射端口与所述第一非寻常光端口连接; 第三偏振分光器, 包括第三公共端口、 第三寻常光端口和第三非寻常光端 口, 所述第三寻常光端口与所述第二寻常光端口连接, 所述第三公共端口与所 述第一接收设备连接,使所述第二寻常光端口通过所述第三偏振分光器与所述 第一接收设备连接, 所述第三非寻常光端口与所述三角棱镜的出射端口连接。
6、 根据权利要求 3所述的光组件, 其特征在于,
所述光传播方向调整模块为菱形棱镜, 所述菱形棱镜的入射端口与所述第 一寻常光端口连接,所述菱形棱镜的出射端口与所述第一接收设备连接;或者, 所述光传播方向调整模块包括:
三角棱镜, 所述三角棱镜的入射端口与所述第一寻常光端口连接; 第三偏振分光器, 包括第三公共端口、 第三寻常光端口和第三非寻常光端 口, 所述第三非寻常光端口与所述第二非寻常光端口连接, 所述第三公共端口 与所述第一接收设备连接,使所述第二非寻常光端口通过所述第三偏振分光器
与所述第一接收设备连接, 所述第三寻常光端口与所述三角棱镜的出射端口连 接。
7、 一种光设备, 其特征在于, 包括:
第一偏振分光器, 包括第一公共端口和两个第一光端口, 所述两个第一光 端口中的一个光端口与发送设备连接;
偏振方向调整模块, 用于使从第一端口入射的测试光信号的偏振方向与从 第一端口出射的后向光信号的偏振方向相互垂直, 包括第一端口和第二端口, 所述第一端口与所述第一公共端口连接;
第二偏振分光器, 包括第二公共端口和两个第二光端口, 所述第二公共端 口与波分复用器连接, 所述两个第二光端口中的一个光端口与所述第二端口连 接, 所述两个第二光端口中的另一个光端口与第一接收设备连接;
光传播方向调整模块, 用于将所述两个第一光端口中的另一个光端口出射 的光信号的传播方向调整为与所述两个第二光端口中的另一个光端口出射的 光信号的传输方向相同, 与所述两个第一光端口中的另一个光端口及所述第一 接收设备连接;
发送设备, 用于接收数据信号和测试激励信号, 并根据所述数据信号和测 试激励信号产生并发送数据光信号和测试光信号, 所述发送设备与所述两个第 一光端口中的一个光端口连接;
第一接收设备, 用于接收与所述测试光信号对应的后向光信号, 与所述两 个第二光端口中的另一个光端口连接;
波分复用器, 与外部的光纤及所述第二公共端口连接, 使所述第二公共端 口通过所述波分复用器与外部的光纤连接;
第二接收设备, 用于接收来自对端设备的数据信号, 与所述波分复用器连 接, 所述来自对端的数据信号为与所述后向光信号具有不同波长的光信号。
8、 根据权利要求 7所述的光设备, 其特征在于, 所述第一接收设备和第 二接收设备包括光接收器, 所述发送设备包括激光器。
9、 根据权利要求 7或 8所述的光设备, 其特征在于, 还包括: 第一处理模块, 用于产生并发送所述数据信号和测试激励信号及对所述来 自对端的数据信号进行后续处理, 与所述发送设备和所述第二接收设备连接, 所述测试激励信号用于激励所述发送模块产生所述测试光信号。
10、 根据权利要求 9所述的光设备, 其特征在于, 还包括:
第二处理模块,用于根据所述第一处理模块产生的数据信号确定所述后向 光信号, 并对所述后向光信号进行后续处理, 与所述第一处理模块和所述第一 接收模块连接。
11、 根据权利要求 10所述的光设备, 其特征在于,
所述第一处理模块为媒体接入控制层实体,所述第二处理模块为位于所述 媒体接入控制层实体之外的光时域反射计信号处理和控制功能实体; 或者, 所述第一处理模块和第二处理模块均集成在媒体接入控制层实体上。
12、 根据权利要求 10所述的光设备, 其特征在于, 所述光设备为光线路 终端、 光网络单元或者光网络终端。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201106667U CN201440176U (zh) | 2009-08-05 | 2009-08-05 | 光组件和光设备 |
CN200920110666.7 | 2009-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011015143A1 true WO2011015143A1 (zh) | 2011-02-10 |
Family
ID=42544839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/075731 WO2011015143A1 (zh) | 2009-08-05 | 2010-08-05 | 光设备及其光组件 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN201440176U (zh) |
WO (1) | WO2011015143A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11959822B2 (en) | 2020-04-23 | 2024-04-16 | Molex, Llc | Optical integrated device and optical time domain reflectometer |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106533571A (zh) * | 2016-10-27 | 2017-03-22 | 中航海信光电技术有限公司 | 单光口多路集成wdm收发一体光模块和光纤网络系统 |
CN111162834B (zh) * | 2018-11-07 | 2021-11-02 | 中国移动通信集团湖南有限公司 | 光时域反射仪测试方法及光时域反射仪 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966235A (ja) * | 1982-10-07 | 1984-04-14 | Toshiba Corp | 光フアイバ式多重on/off状態検出装置 |
JPH0651242A (ja) * | 1992-07-31 | 1994-02-25 | Fujitsu Ltd | 光アイソレータ及び該光アイソレータを備えた光増幅器 |
US6396609B1 (en) * | 1999-12-20 | 2002-05-28 | Chorum Technologies, Lp | Dispersion compensation for optical systems |
US20020131142A1 (en) * | 2001-01-31 | 2002-09-19 | Chi-Hao Cheng | System and method for tailoring dispersion within an optical communication system |
CN1439111A (zh) * | 2000-02-16 | 2003-08-27 | Adc电信股份公司 | 用于多波长光学信号的光纤光学隔离器 |
JP2004145136A (ja) * | 2002-10-25 | 2004-05-20 | Optohub:Kk | 光分離器およびotdr装置 |
-
2009
- 2009-08-05 CN CN2009201106667U patent/CN201440176U/zh not_active Expired - Lifetime
-
2010
- 2010-08-05 WO PCT/CN2010/075731 patent/WO2011015143A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966235A (ja) * | 1982-10-07 | 1984-04-14 | Toshiba Corp | 光フアイバ式多重on/off状態検出装置 |
JPH0651242A (ja) * | 1992-07-31 | 1994-02-25 | Fujitsu Ltd | 光アイソレータ及び該光アイソレータを備えた光増幅器 |
US6396609B1 (en) * | 1999-12-20 | 2002-05-28 | Chorum Technologies, Lp | Dispersion compensation for optical systems |
CN1439111A (zh) * | 2000-02-16 | 2003-08-27 | Adc电信股份公司 | 用于多波长光学信号的光纤光学隔离器 |
US20020131142A1 (en) * | 2001-01-31 | 2002-09-19 | Chi-Hao Cheng | System and method for tailoring dispersion within an optical communication system |
JP2004145136A (ja) * | 2002-10-25 | 2004-05-20 | Optohub:Kk | 光分離器およびotdr装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11959822B2 (en) | 2020-04-23 | 2024-04-16 | Molex, Llc | Optical integrated device and optical time domain reflectometer |
Also Published As
Publication number | Publication date |
---|---|
CN201440176U (zh) | 2010-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11929826B2 (en) | Optical modules having an improved optical signal to noise ratio | |
US10313113B2 (en) | Quantum communication system and a quantum communication method | |
US9215032B2 (en) | Multi-channel optical transmitter assembly and methods of making and using the same | |
EP2602946B1 (en) | Single-fiber bi-directional optical module and passive optical network system | |
US9998214B2 (en) | Optical time domain reflectometer implementation apparatus and system | |
KR101531406B1 (ko) | 컬러리스 초 광대역 pon에 대한 비―냉각 자가―튜닝 캐비티를 위한 편광 안정화 방식 | |
US20080138070A1 (en) | Optical Polarization Division Multiplexing In Optical Communication | |
US20050265728A1 (en) | Optical communications based on optical polarization multiplexing and demultiplexing | |
CN201414130Y (zh) | 一种光电集成组件和无源光网络网元 | |
WO2012126403A2 (zh) | 光收发模块、无源光网络系统、光纤检测方法和系统 | |
JP2022500970A (ja) | 単芯双方向光送受信アセンブリ | |
WO2006063510A1 (fr) | Pon et procede de communication de donnees associe | |
WO2014067047A1 (zh) | 波长可调激光器、无源光网络系统和设备 | |
US8364041B2 (en) | Method and arrangement for receiving an optical input signal and transmitting an optical output signal | |
WO2011015143A1 (zh) | 光设备及其光组件 | |
JP6884867B2 (ja) | 送信器光学サブアセンブリ、光学コンポーネント、光学モジュールおよび受動光学ネットワークシステム | |
WO2014063302A1 (zh) | 外腔激光器、光发射机及无源光网络系统 | |
US20220229238A1 (en) | Wavelength converter, optical transmission system and wavelength conversion method | |
WO2015135171A1 (zh) | Wdm-pon中调整激光器发射参数的方法、装置及系统 | |
CN110531469B (zh) | 单纤双向光模块 | |
TWI497136B (zh) | 放大光纖網路中不同波長的光之方法、設備及光纖網路 | |
US20240106543A1 (en) | Transmission control techniques in quantum cryptographic communication system | |
EP2367306A1 (en) | Optical network unit | |
US20090154938A1 (en) | In-channel residual chromatic dispersion measurement | |
US20240106635A1 (en) | Communication control techniques in quantum cryptographic communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10806047 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10806047 Country of ref document: EP Kind code of ref document: A1 |