WO2012126403A2 - 光收发模块、无源光网络系统、光纤检测方法和系统 - Google Patents

光收发模块、无源光网络系统、光纤检测方法和系统 Download PDF

Info

Publication number
WO2012126403A2
WO2012126403A2 PCT/CN2012/073547 CN2012073547W WO2012126403A2 WO 2012126403 A2 WO2012126403 A2 WO 2012126403A2 CN 2012073547 W CN2012073547 W CN 2012073547W WO 2012126403 A2 WO2012126403 A2 WO 2012126403A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
test
wavelength
reflected
Prior art date
Application number
PCT/CN2012/073547
Other languages
English (en)
French (fr)
Other versions
WO2012126403A3 (zh
Inventor
殷锦蓉
杨素林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12760021.1A priority Critical patent/EP2819324B1/en
Publication of WO2012126403A2 publication Critical patent/WO2012126403A2/zh
Publication of WO2012126403A3 publication Critical patent/WO2012126403A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters

Definitions

  • Optical transceiver module passive optical network system, optical fiber detection method and system
  • the present invention relates to an optical communication technology, and in particular to an optical transceiver module and a passive optical network (PON) system and device, and the present invention also relates to an optical fiber detection system.
  • PON passive optical network
  • the passive optical network system includes an optical line terminal (OLT) located at the central office, a plurality of optical network units (0NU) located on the user side, and one for An optical distribution network (OTN) that branches/couples or multiplexes/demultiplexes optical signals between optical line terminals and optical network units.
  • OTN optical distribution network
  • the optical line terminal and the optical network unit perform uplink and downlink data transmission through an optical transceiver module (or a data receiving and receiving module) disposed therein.
  • the Optical Time Doma in Ref ectrometer is a commonly used fiber optic test instrument.
  • the 0TDR obtains the state information of the optical fiber line by transmitting the test signal to the optical fiber network to be tested and detecting the back reflection and scattering signals of the test signal in the optical fiber network to be tested, thereby providing a fast analysis for the maintenance of the optical network. And fault location means.
  • the industry proposes to integrate the 0TDR test function into the optical transceiver module to realize the integrated 0TDR (also known as E0TDR).
  • the 0TDR test signal and the downlink data signal use the same wavelength, and share the same light emitting component for signal transmission.
  • the 0TDR test signal is superimposed on the downlink data signal by amplitude modulation and transmitted to the optical distribution network.
  • the 0TDR test signal is transmitted during the transmission of the optical distribution network at the event point where the fiber is bent, broken or not tightly connected.
  • the light is scattered or reflected to produce a reflected signal that returns along the original path.
  • the reflected signal is further received by the 0TDR detector inside the optical transceiver module.
  • the 0TDR processor inside the optical line terminal can further analyze the reflected signal and calculate the line attenuation of the optical distribution network and the 0TDR test indicating each fiber event point. curve.
  • an optical distribution network usually uses a passive optical splitter for branching/coupling of signals. Since the power loss of the optical splitter is large, it is difficult to use the optical transceiver module of the shared optical transmitting component described above. Direct Fault localization and demarcation of branch fibers. Therefore, when using the above scheme for fiber inspection, it is still necessary to combine other means, such as adding a light reflector on the branch fiber to perform fault location, which not only causes cost increase, but also increases construction difficulty.
  • the present application provides an optical transceiver module that can perform fault diagnosis and demarcation of branch fiber faults. Meanwhile, the present application also provides a passive optical network system and device using the optical transceiver module, and a fiber detection method and system.
  • An optical transceiver module includes an optical component and a driving component connected to the optical component, the optical component comprising: a data signal transmitter for transmitting a first data signal having a first wavelength, and in the driving a first test signal having the first wavelength is transmitted to the optical fiber network under control of the component; the test signal receiver is configured to receive the first reflected signal returned by the first test signal to be reflected by the optical fiber network; a signal transmitter, configured to transmit, by the driving component, a second test signal having a second wavelength to the optical fiber network; and a data signal receiver, configured to receive a second data signal having the second wavelength, And receiving a second reflected signal that is returned by the second test signal to be reflected by the optical fiber network.
  • a passive optical network system including an optical line terminal, a plurality of optical network units, and an optical distribution network, wherein the optical line terminal is connected to the plurality of optical network units through the optical distribution network, wherein the optical line terminal and And the optical network unit comprises an optical transceiver module integrated with a test function, and the optical transceiver module adopts the optical transceiver module as described above.
  • An optical line terminal comprising a data processing module and an optical transceiver module, wherein the optical transceiver module uses the optical transceiver module as described above, the data processing module is configured to provide the first data signal to the optical transceiver module for transmitting, and Data processing is performed on the second data signal received by the optical transceiver module, and the data processing module is further configured to: according to the first reflected signal and the second reflected signal received by the optical transceiver module, Fiber optic lines are analyzed.
  • a method for detecting a fiber of a passive optical network comprising: determining whether a fault occurs in a trunk fiber or a distribution fiber of an optical distribution network when a faulty optical network fails; if yes, transmitting a downlink wavelength to the optical distribution network a first test signal, and according to the reflected signal of the first test signal, positioning a fault of the trunk fiber or the distribution fiber; if not, transmitting a second test signal to the optical distribution network by using an uplink wavelength, And determining, according to the reflected signal of the second test signal, a faulty branch fiber or optical network unit.
  • An optical fiber detection system includes an optical line terminal, a plurality of optical network units, and an optical distribution network, and the optical line Connecting, by the optical distribution network, the terminal to the plurality of optical network units;
  • the optical distribution network includes a first-stage optical splitter and a plurality of second-stage optical splitters, wherein the first-stage optical splitter is connected to the Determining an optical line terminal, and connecting to the plurality of second-stage optical splitters through a distributed optical fiber, wherein the plurality of second-stage optical splitters are respectively connected to the optical network unit through a branch optical fiber;
  • the optical line terminal includes optical transceiver a module, the optical transceiver module is configured to send a first test signal to the optical distribution network by using a downlink wavelength, and locate a fault of the trunk fiber or the distribution fiber according to the reflected signal of the first test signal; And transmitting, by using the uplink wavelength, a second test signal to the optical distribution network, and a reflected signal of the second test signal, to determine a
  • the optical transceiver module provided by the present application uses a dual-wavelength test signal, wherein the first test signal shares a light-emitting component with the first data signal, and the second test signal and the second data signal share a light-receiving component.
  • the optical transceiver module can receive the first reflected signal and the second reflected signal corresponding to the first test signal and the second test signal. According to the first reflected signal and the second reflected signal, a first test curve and a second test curve can be obtained, thereby implementing fault location of the backbone fiber and the distributed fiber of the fiber network, and analyzing the branch fiber and the optical network unit line and Fault responsibilities and delimitation without the need for additional aid testing. Therefore, the optical transceiver module provided by the present application can perform fault detection and diagnosis analysis on the optical fiber network simply and effectively, which can effectively reduce the 0TDR test cost and reduce the construction difficulty.
  • FIG. 1 is a schematic structural diagram of a passive optical network system.
  • FIG. 2 is a schematic structural diagram of an optical transceiver module according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart diagram of a fiber detecting method according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an optical component of an optical transceiver module according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an optical component of an optical transceiver module according to still another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an optical component of an optical transceiver module according to still another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an optical component of an optical transceiver module according to still another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an optical component of an optical transceiver module according to still another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an optical component of an optical transceiver module according to still another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an optical component of an optical transceiver module according to still another embodiment of the present application. detailed description
  • optical transceiver module and the optical fiber detecting method and system provided by the present application are described in detail below with reference to specific embodiments.
  • the optical transceiver module provided by the present application can be applied to a point-to-multipoint optical network such as a passive optical network system.
  • FIG. 1 is a schematic structural diagram of a passive optical network system.
  • the passive optical network system 100 includes at least one optical line termination 110, a plurality of optical network units 120, and an optical distribution network 130.
  • the optical line terminal 110 is coupled to the plurality of optical network units 120 via the optical distribution network 130.
  • the direction from the optical line terminal 110 to the optical network unit 120 is defined as a downlink direction, and the direction from the optical network unit 120 to the optical line terminal 110 is an uplink direction.
  • the passive optical network system 100 can be a communication network that does not require any active devices to implement data distribution between the optical line terminal 110 and the optical network unit 120, for example, in a specific embodiment, Data distribution between the optical line terminal 110 and the optical network unit 120 can be implemented by passive optical devices (such as optical splitters) in the optical distribution network 130.
  • the passive optical network system 100 may be an Asynchronous Transfer Mode Passive Optical Network (ATM PON) system or a Broadband Passive Optical Network (BP0N) system defined by the ITU-T G.983 standard, ITU-T G. 984 Standard defined Gigabit Passive Optical Network (GP0N) system, Ethernet Passive Optical Network (EP0N) defined by IEEE 802. 3ah standard, or next-generation passive optical network (NGA PON, such as XGP0N or 10G EP0N, etc.).
  • ATM PON Asynchronous Transfer Mode Passive Optical Network
  • BP0N Broadband Passive Optical Network
  • G.983 ITU
  • the optical line terminations 110 are typically located at a central location (e.g., central office Centra l Off i ce , CO) that can collectively manage the one or more optical network units 120.
  • the optical line terminal 110 can serve as a medium between the optical network unit 120 and an upper layer network (not shown), and the data received from the upper layer network is used as downlink data and forwarded through the optical distribution network 130 to The optical network unit 120, and the uplink data received from the optical network unit 120 are forwarded to the upper layer network.
  • the specific configuration of the optical line terminal 110 may vary depending on the specific type of the passive optical network 100.
  • the optical line terminal 110 may include an optical transceiver module 200 and a data processing module. 201.
  • the optical transceiver module 200 can send the downlink data signal provided by the data processing module 201 to the optical network unit 120 through the optical distribution network 130, and receive the optical network unit 120 through the optical distribution network 130.
  • the transmitted uplink data signal, and the uplink data signal is provided to the data processing module 201 for data processing.
  • the optical transceiver module 200 may also be integrated with an OTDR test function.
  • the optical transceiver module 200 may further send a test signal to the optical distribution network 130, and receive the test signal.
  • the light distribution network 130 undergoes backscattered or reflected back reflected signals, and according to the reflected signal No. Obtain the test curve and further perform fiber line state analysis and fault location.
  • the test signal sent by the optical transceiver module 200 may be a single-wavelength signal.
  • the test signal may use the same wavelength (ie, downlink wavelength) as the downlink data signal, and share the light-emitting component, or
  • the uplink data signal uses the same wavelength (ie, the upstream wavelength) and shares the light receiving component.
  • the test signal may also be a dual-wavelength signal.
  • the test signal may include a first 0TDR test signal and a second OTDR test signal of different wavelengths, where the first 0TDR
  • the wavelength of the test signal may be the same as the downlink wavelength, and the first 0TDR test signal may share the light emitting component with the downlink data signal; the wavelength of the second OTDR test signal may be the same as the uplink wavelength, and The first 0TDR test signal may share a light receiving component with the uplink data signal.
  • the optical network unit 120 can be distributedly disposed at a user side location (such as a customer premises).
  • the optical network unit 120 may be a network device for communicating with the optical line terminal 110 and a user.
  • the optical network unit 120 may serve as the optical line terminal 110 and the user.
  • the optical network unit 120 may forward downlink data received from the optical line terminal 110 to the user, and pass data received from the user as uplink data through the optical distribution network 130. Forwarded to the optical line terminal 110.
  • the structure of the optical network unit 120 is similar to that of the optical network terminal (Optica Network Termina, 0NT). Therefore, in the solution provided in this application, the optical network unit and the optical network terminal can be interchanged.
  • the specific configuration of the optical network unit 120 may be different depending on the specific type of the passive optical network 100.
  • the optical network unit 120 may include an optical transceiver module 300 for Receiving the downlink data signal sent by the optical line terminal 110 through the optical distribution network 130, and transmitting the uplink data signal to the optical line terminal 110 through the optical distribution network 130.
  • the specific structure of the optical transceiver module 200 can be similar to that of the optical transceiver module 200 of the optical line terminal 110.
  • the optical transceiver module 300 can also be integrated with the 0TDR test function.
  • the optical transceiver module 200 may further send a test signal to the optical distribution network 130, and receive a reflected signal returned by the test signal after the optical distribution network 130 is backscattered or reflected, and according to The reflected signal performs fiber line state analysis and fault location.
  • the test signal may be a single-wavelength signal.
  • the test signal may also be a dual-wavelength signal.
  • the test signal may include a first 0TDR test signal and a second 0TDR test signal, where The wavelength of the first 0TDR test signal may be the same as the downlink wavelength, and the wavelength of the second OTDR test signal may be the same as the uplink wavelength.
  • the optical distribution network 130 can be a data distribution system that can include optical fibers, optical couplers, optical splitters, and/or other devices.
  • the optical fiber, optical coupler, optical splitter, and/or other device may be a passive optical device, in particular, the optical fiber, optical coupler, optical splitter, and/or other Equipment can be Distributing data signals between the optical line termination 110 and the optical network unit 120 is a device that does not require power supply support.
  • the optical distribution network 130 may also include one or more processing devices, such as optical amplifiers or relay devices.
  • the optical distribution network 130 may specifically extend from the optical line terminal 110 to the plurality of optical network units 120 by means of two-stage splitting, but may be configured as any other. Point-to-multipoint (such as single-stage split or multi-stage split) or point-to-point structure.
  • the optical distribution network 130 uses a splitter to implement data distribution.
  • the optical distribution network 130 can be deployed in a two-stage splitting manner, including the first level, for reliability and operation and maintenance considerations.
  • the beam splitter 131 and the plurality of second stage beamsplitters 132 are configured to implement data distribution.
  • the common end of the first-stage beam splitter 131 is connected to the optical transceiver module 200 of the optical line terminal 110 through a backbone fiber 133, and the branch ends thereof respectively pass through a distributed optical fiber (Di s tr ibute Fi ber) 134 is correspondingly connected to the common end of the second-stage splitter 132, and the branch ends of each second-stage splitter 132 are further connected to the optical transceiver module of the corresponding optical network unit 120 through a branch fiber 135, respectively. 300.
  • the downlink data signal sent by the optical line terminal 110 is first split by the first-stage optical splitter 131, and then split by the second-stage optical splitter 132 to form a multi-path downlink.
  • the signals are transmitted to the respective optical network unit 120.
  • the uplink data signals sent by the optical network unit 120 are sequentially combined by the second-stage optical splitter 132 and the first-stage optical splitter 131 to be transmitted to the optical line terminal 110.
  • the first-stage optical splitter 131 can be deployed on an optical distribution frame (ODF) that is closer to the central office, and the second-level optical splitter 132 can be deployed at the remote end.
  • Node Remote Node, RN).
  • the optical transceiver module 200 of the optical line terminal 110 is similar in structure to the optical transceiver module 300 of the optical network unit 120. Therefore, only the structure and function of the optical transceiver module 200 are mainly described below. A person skilled in the art can refer to the following description about the optical transceiver module 200 to learn the implementation of the optical transceiver module 300.
  • FIG. 2 is a schematic structural diagram of an optical transceiver module 200 according to an embodiment of the present application.
  • the optical transceiver module 200 can be a single-fiber bidirectional optical module with embedded 0TDR test function.
  • the optical transceiver module 200 includes a driving component 210 for driving the optical component 220, and a light component 220 for performing test signals and data signals under the driving of the driving component 210.
  • the driving component 210 can also perform signal pre-processing on the test signal and/or data signal received by the optical component 220.
  • the optical component 220 can first be connected to the trunk light of the optical distribution network 130 through the fiber optic adapter 230. And transmitting, by the optical distribution network 130, a downlink data signal to the optical network unit 120 and receiving an uplink data signal sent by the optical network unit 120.
  • the optical component 220 can include a data signal transmitter 221, a data signal receiver 222, and a filtering component 223.
  • the data signal transmitter 221 may be a laser diode (LD) for transmitting a downlink data signal having a first wavelength ⁇ 1 (hereinafter referred to as a downlink data signal ⁇ 1 ); the data signal receiver The 222 may be a photodiode (PD), such as an avalanche photodiode (APD), for receiving an uplink data signal having a second wavelength ⁇ 2 (hereinafter referred to as an uplink data signal ⁇ 2 ).
  • the filtering component 223 can couple at least a portion of the downlink data signal ⁇ ⁇ transmitted by the data transmitter 221 to the fiber optic adapter 230 and couple at least a portion of the upstream data signal ⁇ 2 input from the fiber optic adapter 230 To the data signal receiver 220.
  • the filtering component 223 can include a first wavelength division multiplexing (Wavelength Divi s ion)
  • Mul t i pl exer, WDM) filter 111 second wavelength division multiplexing filter 228 and splitter filter 229.
  • the first wavelength division multiplexing filter 227, the second wavelength division multiplexing filter 228, and the optical splitter filter 229 may be sequentially disposed inside the optical component 220 along the extending direction of the optical fiber adapter 230.
  • the main light path has a certain angle with the main light path.
  • the first wavelength division multiplexing filter 227 can transmit about 100% of the optical signal having the first wavelength ⁇ 1 and about y % to the optical signal having the second wavelength ⁇ 2 .
  • the reflection and transmission of approximately (100- y) %.
  • the second wavelength division multiplexing filter 228 can transmit about 100% of the optical signal having the first wavelength ⁇ , and about 100% of the signal having the second wavelength ⁇ 2 .
  • the beam splitter filter 229 can perform ⁇ % transmission and (100-X)% reflection of the optical signal having the first wavelength ⁇ 1 .
  • the values of x, y may both be 90, and the first wavelength ⁇ 1 and the second wavelength ⁇ 2 may be 1490 nm and 1310 nm, respectively, or 1577 nm and 1270 nm.
  • the transmitted optical paths of the first wavelength division multiplexing filter 227, the second wavelength division multiplexing filter 228, and the optical splitter filter 229 overlap with the main optical path of the optical component 220, and the The reflected optical paths of the wavelength division multiplexing filter 227, the second wavelength division multiplexing filter 228, and the optical splitter filter 229 are substantially perpendicular to the main optical path, respectively.
  • the data signal transmitter 221 is coupled to the transmitted optical path of the beam splitter filter 229, and the data signal receiver 222 is coupled to the reflected optical path of the first wavelength division multiplex filter 227.
  • the downlink data signal ⁇ 1 transmitted by the data signal transmitter 221 may be transmitted through the optical splitter filter 229 and the second wavelength division multiplexing filter 228.
  • the first wavelength division multiplexing filter 227 is output through the fiber optic adapter 230, and about y% of the uplink data signal ⁇ 2 input through the fiber optic adapter 230 can be reflected to the data signal receiver 222. Received by the data signal receiver 222 and converted into an electrical signal.
  • the data signal transmitter 221 may be further configured to transmit a first 0TDR test signal (hereinafter referred to as a first 0TDR test signal ⁇ 1 ') having the first wavelength ⁇ 1 , that is,
  • the first 0TDR test signal ⁇ ⁇ ' may share the data signal transmitter 221 with the downlink data signal ⁇ ⁇ .
  • At least a portion of the first OTT test signal ⁇ ⁇ ' may also be transmitted to the optical splitter filter 229, the second wavelength division multiplexing filter 228, and the first wavelength division multiplexing filter 227.
  • the fiber optic adapter 230 is further output to the optical distribution network 130 via the fiber optic adapter 230.
  • the sending of the first 0TDR test signal ⁇ ⁇ ' and the downlink data signal ⁇ ⁇ may be independent of each other, for example, the data signal transmitter when the first 0TDR test signal ⁇ V is transmitted. 221 suspending transmission of the downlink data signal ⁇ 1 ; alternatively, the first OTT test signal ⁇ 1 ′ may also be superimposed to the downlink data signal ⁇ ⁇ by amplitude modulation, thereby forming a superimposed signal and The fiber optic adapter 230 is output to the optical distribution network 130.
  • the optical component 220 can further include a test signal receiver 225 and a test signal transmitter 224, wherein the test signal receiver 225 can be coupled to the reflected light path of the beam splitter filter 229, The test signal transmitter 224 can be coupled to a reflected optical path of the second wavelength division multiplex filter 228.
  • the test signal receiver 225 can be configured to receive a reflected signal corresponding to the first 0TDR test signal ⁇ V (hereinafter referred to as a first reflected signal ⁇ ⁇ '' 0. Specifically, the first 0TDR test signal ⁇ ⁇ 'Reflection or scattering occurs during transmission of the optical distribution network 130 to form a first reflected signal ⁇ ⁇ ''.
  • the first reflected signal ⁇ V ' also has the first wavelength ⁇ 1 and it returns along the original path and is input to the optical component 220 through the fiber optic adapter 230.
  • the first reflected signal ⁇ V ' may be further transmitted through the first wavelength division multiplexing filter 227 and the second wavelength division multiplexing filter and transmitted to the optical splitter a filter 229, and, in the beam splitter filter 229, approximately (100 - ⁇ ) % of the first reflected signal ⁇ 1 '' will be reflected to the test signal receiver 225 and received by the test signal Received by 225.
  • the test signal receiver 225 may further convert it into an electrical signal and provide it to the 0TDR processor 211 in the driving component 210 for signal processing.
  • the test signal transmitter 224 can be configured to transmit a second OTT test signal having the second wavelength ⁇ 2 (hereinafter referred to as a second OTDR test signal ⁇ 2 ′ ), the second OTT test signal ⁇ 2 ′ About 100% can be reflected by the second wavelength division multiplexing filter 228 to the main optical path of the optical component 220, and approximately (1 00-y) % of the second OTDR test signal ⁇ 2' can be further transparent.
  • the first wavelength division multiplexer 227 is passed through and transmitted to the fiber optic adapter 230.
  • the fiber optic adapter 230 may output the second OTT test signal ⁇ V to the optical distribution network 130.
  • the second OTDR test signal ⁇ V is in the light distribution
  • the second reflection signal ⁇ 2'' is formed by reflection or scattering during transmission of the network 1 30.
  • the second reflected signal ⁇ 2'' also has the second wavelength ⁇ 2 and it returns along the original path and is input to the optical component 220 through the fiber optic adapter 230.
  • the second reflected signal ⁇ 2 ′′ may be further transmitted along the main optical path to the first wavelength division multiplexing filter 227 , wherein about 7 % of the second reflected signal ⁇ 2 '' will be reflected by the first wavelength division multiplexing filter 227 to the data signal receiver 222.
  • the data signal receiver 222 may receive the second reflected signal ⁇ 2' ' corresponding to the second OTDR test signal ⁇ 2 ′ in addition to the uplink data signal ⁇ 2 . That is, the second reflected signal ⁇ 2 ' ' may share the data signal receiver 222 with the uplink data signal ⁇ 2 .
  • the driving component 21 0 is Under the control of the data processing module 201 of the optical line terminal 110, the data signal transmitter 221 can be driven to issue an instruction to suspend uplink data transmission to the optical network unit 120.
  • the data signal receiver 222 may further convert the second reflected signal ⁇ 2′′ into an electrical signal and provide the same to the driving component 210.
  • the 0TDR processor 211 performs signal processing.
  • the first 0TDR test signal ⁇ V and/or the data signal transmitter 221 is guaranteed to be transmitted.
  • the downstream data signal ⁇ 1 is coupled into the main main optical path as much as possible and output through the optical fiber adapter 230, and the first lens 291 can be added between the data signal transmitter 221 and the optical splitter filter 229.
  • the data signal transmitter 221 is prevented from being damaged due to the return of the first reflected signal ⁇ ⁇ ' ' along the original path, in the data signal transmitter 221 and the A first optical isolator 292 can be added between the splitter filters 229 for preventing the first reflected signal ⁇ ⁇ ' ' from entering the data signal transmitter 221.
  • the optical component 220 may further include a first light absorber 293, and the first light absorber 293 may be disposed on a side of the beam splitter filter 229 facing away from the test signal receiver 225.
  • the first light absorber 293 can be configured to absorb an optical signal generated by the first OTDR test signal ⁇ V emitted by the data signal transmitter 221 to be reflected by the spectroscopic filter 229 to prevent its optical component.
  • the pedestal of 220 and/or the inner surface of the cap of the test signal transmitter 224 are twice reflected and received by the test signal receiver 225 through the beam splitter filter 229, and the first reflected signal ⁇ ⁇ ' ' Causes interference.
  • the second OTDR test signal ⁇ V transmitted by the data signal transmitter 224 is guaranteed to be as close as possible.
  • the optical path is output through the fiber optic adapter 230.
  • a second lens 294 can be added between the test signal transmitter 224 and the second wavelength division multiplexing filter 228.
  • test signal transmitter 224 is prevented from being damaged due to the return of the second reflected signal ⁇ 2' ' along the original path, optionally at the test signal transmitter 224 and the A second optical isolator 295 can be added between the second wavelength division multiplexing filters 228 for preventing the second reflected signal ⁇ 2' ' from entering the test signal transmitter 224.
  • the optical component 220 may further include a second light absorber 296, and the second light absorber 296 may be disposed at the first wavelength division multiplexing filter 227 facing away from the data signal receiver 222.
  • the second light absorber 296 can be configured to absorb the second OTT test signal ⁇ 2 emitted by the test signal transmitter, generated by the reflection of the first wavelength division multiplexing filter 227 The optical signal is prevented from being secondarily reflected by the pedestal of the beautiful component 220 and received by the data signal receiver 222 through the first wavelength division multiplex filter 227, and the second reflected signal is further ⁇ 2' ' causes interference.
  • the optical component 220 may further include a first Transimpedance Amplifier (TIA) and a second transimpedance amplifier.
  • the second transimpedance amplifier is disposed between the test signal receiver 225 and the driving component 210 for performing photoelectric conversion of the first reflected signal ⁇ 1 ' ' after the test signal receiver 225 Performing signal preamplification; the first transimpedance amplifier is disposed between the data signal receiver 222 and the driving component 21 0 for the uplink data signal ⁇ 2 at the data signal receiver 222 Alternatively, the second reflected signal ⁇ 2 ′ ′ is subjected to photoelectric conversion and then subjected to signal preamplification.
  • the first transimpedance amplifier and the second transimpedance amplifier may also be disposed inside the drive assembly 210.
  • the first 0TDR test signal ⁇ V may be mainly used to detect the optical distribution network.
  • the fiber optic events occurring in the backbone fiber 1 33 and the distribution fiber 1 34 of 130 enable fault location of the backbone fiber 133 and the distribution fiber 1 34.
  • the second OTT test signal ⁇ V is transmitted by using the dedicated test signal transmitter 224, and can be mainly used for detecting the fiber incident occurring in the branch fiber 135 of the optical distribution network 130 and the optical network unit 120. The faulty responsibilities and delimitation of the branch fiber 135 and the optical network unit 120.
  • the drive component 210 may include an OTDR processor 211, a data signal driver 212, a test signal driver 213, and a channel selection unit 214.
  • the channel selection unit 214 includes an input terminal 207, a data signal output terminal 208, and a test control terminal 209.
  • the input terminal 207 of the channel selection unit 214 is connected to the optical component 220, and the data signal output of the channel selection unit 214 is
  • the terminal 208 can be coupled to the signal output 217 of the drive component 210 by a limiting amplifier, and the test control 209 of the channel selection unit 214 is coupled to the OFDR processor 21 1 .
  • the data signal output terminal 208 of the channel selection unit 214 can also be directly connected to the The signal output 217 of the drive assembly is disposed, and the limiter amplifier is disposed between the input 207 of the channel selection unit 214 and the optical assembly 220.
  • the channel selection unit 214 may alternatively adopt the following structure.
  • the input terminal 207 of the channel selection unit 214 and the data signal output terminal 208 are directly connected, and a circuit for implementing channel selection is disposed between the input terminal 207 and the test control terminal 209, and the channel selection is performed.
  • the unit 214 can drive two optical signals supplied to the data output terminal 208 and the test control terminal 209 through its input terminal 207 under the control of the OTDR processor 21 1 .
  • the channel selection unit 214 can receive the uplink data signal ⁇ 2 or the second reflection signal ⁇ 2 ′′ output by the data signal receiver 222 of the optical component 220 through its input end 207 , and the channel The selection unit 214 can also perform selective signal forwarding under the control of the OTDR processor 211. For example, in the normal data communication mode, the channel selection unit 214 can establish a transmission channel between the input terminal 207 and the data signal output terminal 208, and disconnect the input terminal 207 and the test control terminal. a transmission channel between 209, thereby forwarding the uplink data signal ⁇ 2 received by the optical component 220 to the signal output terminal 217 to provide the uplink data signal ⁇ 2 to the data of the optical line terminal 110 Processing module 201.
  • the channel selection unit 214 may receive a corresponding channel switching command from the 0TDR processor 211 through the test control terminal 209, and disconnect the input terminal 207 and the data signal output terminal. a transmission channel between 208, and establishing a transmission channel between the input terminal 207 and the test control terminal 209, so that the second reflection signal ⁇ 2' ' output by the optical component 220 passes through the test control terminal 209 is provided to the 0TDR processor 211 for signal processing.
  • the 0TDR processor 211 is coupled to the data signal driver 212, the test signal driver 213, and the channel selection unit 214, respectively.
  • the data signal driver 212 and the test signal driver 213 are further connected to the data signal transmitter 221 and the test signal transmitter 224 of the optical component 220, respectively.
  • the data signal driver 212 is configured to drive the data signal transmitter 221 to transmit the downlink data signal ⁇ 1 and/or the first OTDR test signal ⁇ V
  • the test signal driver 213 is configured to drive the Test signal transmitter 224 transmits the second OTT test signal ⁇ V .
  • the test signal driver 21 is optional.
  • the 0TDR processor 211 can also directly drive the test signal transmitter 224 to transmit the second 0TDR test signal ⁇ V .
  • the data signal driver 212 can receive downlink data from the data processing module 201 of the optical line terminal 110 through the signal input terminal 218, and modulate the downlink data to the data.
  • the signal 221 emits a first wavelength ⁇ 1 optical signal, thereby forming and outputting the downlink data signal ⁇ 1 .
  • the data signal driver 212 may further receive the first 0TDR test data from the OTDR processor 211, and modulate the first OTDR test data to the data transmitter 221.
  • a wavelength ⁇ 1 optical signal thereby forming and outputting the first 0TDR test signal ⁇ 1 '.
  • the data signal driver 212 may suspend the downlink of the data signal transmitter 221 under the control of the data processing module 201 of the optical line terminal 110.
  • the data signal driver 21 may also maintain downlink data transmission of the data signal transmitter 221, and superimpose the first 0TDR test signal ⁇ ⁇ ' onto the downlink data signal by amplitude modulation. ⁇ ⁇ , thereby forming a superimposed signal.
  • the OTDR processor 211 may further provide second OTT test data to the test signal driver 213 under the 0TDR test mode, and the data signal driver 212 may modulate the second OTDR test data to the The second wavelength ⁇ 2 optical signal transmitted by the data signal transmitter 221 forms and outputs the second OTDR test signal ⁇ V .
  • the OTDR processor 211 may directly modulate the second OTT test data to a second wavelength ⁇ 2 optical signal transmitted by the data signal transmitter 221, thereby forming and outputting the second OTDR test signal ⁇ . 2' .
  • the 0TDR processor 21 1 may be in a standby or low power state in the normal data communication mode, and correspondingly, the transmission channel between the input terminal 207 of the channel selection unit 214 and the data signal output terminal 208 Turn on.
  • the 0TDR processor 211 receives the 0TDR test enable signal from the data processing module 201 of the optical line terminal 110 through the I 2 C interface (or other control signal line) 219, it can control the correlation of the optical transceiver module 200.
  • the functional unit enters the 0TDR test mode, including controlling the channel selection unit 214 to disconnect the transmission channel between its input terminal 207 and the data signal output terminal 208, and establishing a transmission channel between the input terminal 207 and the test control terminal 209. .
  • the OTDR processor 211 can also be connected to the test signal receiver 225 or the second transimpedance amplifier of the optical component 220 for receiving the test signal receiving of the optical component 220.
  • the first reflected signal ⁇ 1 '' output by the device 225, and the second reflected signal ⁇ 2'' output by the data signal receiver 222 of the optical component 220 is received by the channel selecting unit 214, and respectively A reflected signal ⁇ ⁇ '' and the second reflected signal ⁇ 2 '' perform signal preprocessing (including signal amplification, sampling, digital processing, etc.).
  • the 0TDR processor 21 1 may output the preprocessed reflected signals ⁇ 1 '' and ⁇ 2′′ to the data processing module 201 of the optical line terminal 110 through the I 2 C interface 219 for
  • the data processing module 201 performs signal analysis processing to obtain an OFDM test curve for the optical distribution network 130.
  • the data processing module 201 may obtain a first 0TDR test curve by analyzing the first reflected signal ⁇ ⁇ '' preprocessed by the OTDR processor 211, and perform the light according to the first 0TDR test curve.
  • the 0TDR test curve is used to perform fiber line analysis and fault characterization and demarcation of the branch fiber 135 of the optical distribution network 130 and the optical network unit 120 according to the second OTT test curve.
  • the data processing module 201 may further perform comprehensive data processing to obtain a The complete 0TDR test curve for fiber analysis and fault diagnosis of the backbone fiber, distribution fiber, and branch fiber of the optical distribution network 1 30.
  • the 0TDR processor 211 may also have fiber line analysis capabilities, i.e., the fiber analysis and fault diagnostic functions of the data analysis module 201 may be implemented within the 0TDR processor 211. Therefore, after the pre-processing of the first reflected signal ⁇ ⁇ ' ' and the second reflected signal ⁇ 2 ′′, the OTDR processor 211 may directly analyze the first reflected signal ⁇ ⁇ ' ' and The second reflected signal ⁇ 2 ′′ thus obtains the first 0TDR test curve and the second OTDR test curve, respectively, and further performs the backbone optical fiber 1 33 of the optical distribution network 1 30 according to the first 0TDR test curve. Optical fiber line analysis and fault location of distributed fiber 134, and line analysis and fault characterization and demarcation of branch fiber 1 35 and optical network unit 120 of said optical distribution network 130.
  • the 0TDR processor 211 of the driving component 210 may first initiate the transmission of the first 0TDR test signal ⁇ V to perform the trunk fiber 1 33 and the distributed fiber 1 The fault location of 34, and then the transmission of the second OTT test signal ⁇ 2' is initiated to perform fault characterization and demarcation with respect to the branch fiber 135 and the optical network unit 120.
  • the 0TDR processor 211 can select to establish a connection with the data signal driver 212 and/or the test signal receiver 225, the test signal driver 213, and/or the channel selection unit 214 in a time-sharing manner.
  • the OTDR processor 211 When the transmission of the first 0TDR test signal ⁇ 1 ' is initiated, the OTDR processor 211 establishes a connection with the data signal driver 212 and/or the OTDR test signal receiver 225, and disconnects the test signal driver 213 and/or the channel. The connection of the selection unit 214, thereby controlling the data signal driver 212 to drive the data signal transmitter 221 to transmit the first 0TDR test signal ⁇ ⁇ ', and receiving and processing the test signal receiver 225 to receive The first reflected signal ⁇ ⁇ ''.
  • the 0TDR processor 211 can establish a connection with the test signal driver 213 and/or the channel selection unit 214 and disconnect the data signal driver 212 and/or test signal reception.
  • the connection of the device 225 thereby controlling the test signal driver 213 to drive the test signal transmitter 224 to transmit the second OTDR test signal ⁇ 2', and receiving and processing the second reflection received by the data signal receiver 222 Signal ⁇ 2''.
  • the 0TDR processor 211 when the 0TDR processor 211 is When the processing of the first 0TDR test signal ⁇ , the first reflected signal ⁇ ⁇ ′′, and the second 0TDR test signal ⁇ 2′ and the second reflected signal ⁇ 2′′ are independent of each other, the 0TDR processor 211 can also be started at the same time.
  • the first 0TDR test signal ⁇ ⁇ ' and the second OTT test signal ⁇ 2 ′ are transmitted to simultaneously perform fault location with respect to the trunk fiber 133 and the distribution fiber 134 and the branch fiber 135 and the optical network unit 120 Fault responsibilities and delimitation.
  • the optical transceiver module 200 integrated with the 0TDR test function provided in this embodiment uses a dual-wavelength 0TDR test signal, wherein the first 0TDR test signal ⁇ ⁇ ' shares the light-emitting component with the downlink data signal ⁇ ,, and the second 0TDR test signal ⁇
  • the optical transceiver module 200 can receive the first 0TDR test signal ⁇ V and the second 0TDR test signal ⁇ V corresponding to the signal ⁇ 2 .
  • the first reflected signal ⁇ ⁇ ' ' and the second reflected signal ⁇ 2' ' are examples of the first reflected signal ⁇ ⁇ ' '.
  • a first 0TDR test curve and a second OTDR test curve can be obtained, thereby implementing the backbone fiber 133 of the optical distribution network 130 and Fault location of the distribution aperture 134 and line analysis and fault characterization and demarcation of the branch fiber 135 and optical network unit 120 of the optical distribution network 130 without the need for additional auxiliary testing means (eg, adding light reflections to the branch fiber) Device, etc.). Therefore, the optical transceiver module 200 provided by the present application can perform fault detection and diagnosis analysis on the optical fiber network simply and effectively, which can effectively reduce the cost of the 0TDR test and reduce the construction difficulty.
  • the present application further provides an optical fiber detection method for a passive optical network system.
  • FIG. 3 is a schematic flowchart of a fiber detecting method according to an embodiment of the present disclosure, the fiber detecting method includes:
  • Step S1 Receive a 0TDR test start command, and determine to start the 0TDR test type according to the 0TDR test start command. If the 0TDR test type is manual start or routine start and only the 0TDR test based on the first wavelength ⁇ ( (ie, the first 0TDR test) is started, step S2 is performed; if the 0TDR test type is manual start or Routinely starting and starting only the 0TDR test based on the second wavelength ⁇ 2 (ie, the second 0TDR test), performing step S3; if the 0TDR test type is manual start or routine start and simultaneously starting the first 0TDR test and the second 0TDR test, step S4 is performed; if the 0TDR test type is automatic test, step S6 is performed.
  • the manual startup may be used by the operator to input a startup test command through the command line control terminal of the optical line terminal 110 or the operation interface of the network management system.
  • the routine startup may set an activation test period for the operator in the optical line terminal 110 or the network management system, and automatically trigger the optical line terminal 110 to start the 0TDR test when the test period arrives.
  • the test may also be initiated by the optical line terminal 110 or the network management system by conditions such as alarm and/or performance statistics.
  • Step S2 The optical transceiver module 200 of the optical line terminal 110 starts the first 0TDR test, and obtains the first 0TDR test curve. After the test is completed, the step S10 is performed.
  • Step S3 The optical transceiver module of the optical line terminal 110 starts the second 0TDR test to obtain the second 0TDR test curve. After the test is completed, step S10 is performed.
  • Step S4 The optical transceiver module of the optical line terminal 110 starts the first 0TDR test, obtains the first 0TDR test curve, and performs step S5 after the test is completed.
  • Step S5 The optical transceiver module of the optical line terminal 110 starts the second 0TDR test to obtain the second 0TDR test curve. After the test is completed, step S10 is performed.
  • step S4 and step S5 can be exchanged, and the second 0TDR test can be started first, and then the first 0TDR test is started.
  • Step S6 The optical line terminal 110 or the network management system collects information such as alarms, performance statistics, and optical module parameters of the optical line terminal 110 and/or the optical network unit 120, where the alarm information may be a Transport Convergence (TC) layer.
  • Alarms and/or alarms of the ONT Management and Control Interface (OMCI) such as L0S, Los s of Signa l alarms.
  • the performance statistics may include Bit Inter-Parving (BIP) errors, etc.
  • the optical module parameters may include transmit optical power, received optical power, polarization current, operating voltage, operating temperature, and the like. .
  • Step S7 The optical line terminal 110 or the network management system determines whether the fault occurs in the trunk fiber of the optical distribution network 130.
  • step S8 if the fault occurs in the trunk fiber 133 or the distribution fiber 134, step S8 is performed; otherwise, step S9 is performed.
  • the optical line terminal 110 or the network management system may determine whether the fault occurs in the trunk fiber 133 or the distribution fiber 134 of the optical distribution network 130 according to the ratio of the occurrence of the alarm and the performance parameter degradation of each optical network unit 120. . For example, if all optical network units 120 in the system have alarms or performance degradation at the same time, It is judged that the fault occurs in the trunk fiber 133; if a plurality of optical network units 120 connected by a distribution fiber 134 simultaneously have an alarm or performance degradation, it can be judged that the fault occurs in the distributed fiber 134.
  • Step S8 The optical transceiver module of the optical line terminal 110 starts the first 0TDR test, and obtains the first 0TDR test curve. After the test is completed, step S1 0 is performed.
  • optical transceiver module 200 shown in FIG. 2 as an example, specifically, when the optical line terminal 110 can send the first to the 0TDR processor 211 of the optical transceiver module 200 through an I 2 C interface (or other control signal line) 219 0TDR test start command.
  • the 0TDR processor 211 is in a standby or low power state before receiving the 0TDR test start command, and after receiving the first wavelength 0TDR test start command, the 0TDR processor 211 may go to the data signal driver 212.
  • the data signal driver 212 further modulating the first 0TDR test data to a first wavelength ⁇ 1 (ie, downlink data wavelength ⁇ 1 ) optical signal emitted by the data signal transmitter 221, thereby The first 0TDR test signal ⁇ is formed and output.
  • the first 0TDR test signal ⁇ V transmitted by the data signal transmitter 221 is transmitted to the fiber optic adapter 230 through the filtering component 223 and output to the optical distribution network 130.
  • the first 0TDR test signal ⁇ ⁇ ' emits and/or scatters during transmission of the optical distribution network 130 and forms a first reflected signal ⁇ ⁇ ' ' that returns along the original path.
  • the first reflected signal ⁇ ⁇ ' ' is input from the fiber optic adapter 230 and transmitted to the test signal receiver 225 via the filtering component 223.
  • the test signal receiver 225 further converts it into an electrical signal and feeds it back to the 0TDR processor 211.
  • the 0TDR processor 211 performs preprocessing on the first reflected signal ⁇ ⁇ ' ', such as signal amplification, sampling, digital processing, etc., and the preprocessed signal may be further provided to other functional modules, such as the optical line.
  • the data processing module 201 of the terminal 110 performs an analysis to obtain a first OTT test curve.
  • Step S9 The optical transceiver module of the optical line terminal 1 10 starts the second 0TDR test, and obtains the second 0TDR test curve. After the test is completed, step S 1 0 is performed.
  • the optical line terminal 110 may temporarily allocate an uplink data slot to cause the optical network unit 120 to stop transmitting uplink data, through an I 2 C interface (or other control signal).
  • Line 219 sends a second 0TDR test start command to the 0TDR processor 211 of the optical transceiver module 200.
  • the OTDR processor 21 1 may control the channel selection unit 214 to establish a transmission channel between the input terminal 207 and the data signal output terminal 208.
  • the OTDR processor 211 also provides second OTT test data to the test signal driver 213, and the test signal driver 213 further modulates the second OTDR test data to the test signal transmitter 224 for transmission.
  • Second wave The optical signal of ⁇ 2 (i.e., the upstream data wavelength ⁇ 2) is formed, thereby forming and outputting the second OTDR test signal ⁇ 2'.
  • the second OTDR test signal ⁇ V transmitted by the test signal transmitter 224 is transmitted to the fiber optic adapter 230 through the filtering component 223 and output to the optical distribution network 130.
  • the second 0TDR test signal ⁇ V is reflected and/or scattered during transmission of the optical distribution network 130 and forms a second reflected signal ⁇ 2' ' returned along the original path.
  • the second reflected signal ⁇ 2' ' is input from the fiber adapter 230 and transmitted to the data signal receiver 222 via the filtering component 223.
  • the data signal receiver 222 further converts it into an electrical signal and provides it to the 0TDR processor 211 via the channel selection unit 214.
  • the OTDR processor 211 performs 'preprocessing of the second reflected signal ⁇ 2', such as signal amplification, sampling, digital processing, etc., and the preprocessed signal can be further provided to other functional modules, such as the optical line.
  • the data processing module 201 of the terminal 1 10 performs analysis to obtain a second OTDR test curve.
  • the optical line terminal 110 or the network management system can determine whether the system is faulty by using information such as alarms, performance statistics, and optical module parameters, and compare the first OTDR test curve with the first 0TDR reference 0TDR test curve. Whether the trunk fiber 1 33 and the distribution fiber 134 are deteriorated or malfunctioned.
  • the trunk fiber 1 33 and the distribution fiber 1 34 are normal.
  • the first 0TDR test curve is inconsistent with the first OTDR reference curve, it can be determined that the backbone fiber 133 and/or the distribution fiber 134 are degraded, and the first 0TDR test curve and the first OTDR reference curve are inconsistent. Determine the specific location where the degradation occurs.
  • the trunk fiber 133 and the distribution fiber 134 are normal, and the fault may occur on the branch fiber 135 or the optical network unit 120, which may be analyzed by The second OTDR test curve is further determined; otherwise, the deterioration of the trunk fiber 133 and/or the distribution fiber 134 may be determined, and the specific location of the fault may be determined according to the inconsistent position of the first OTDR test curve and the first OTDR reference curve.
  • the optical line terminal 110 or the network management system may further compare the second OTDR test curve with the second OTDR reference curve to determine whether the branch fiber 135 and the optical network unit 120 are degraded or faulty.
  • the second 0TDR test curve is compared with the reference OTDR test curve, When the reflection peaks disappear or the reflection peak height decreases, it is determined that the branch fibers 135 corresponding to the reflection peaks are deteriorated according to the reflection peaks.
  • the branch fiber 135 corresponding to the reflection peak may be determined according to the reflection peak. malfunction.
  • step S9 may be further performed to determine whether the branch fiber 135 or the optical network unit 120 is also simultaneously error occured.
  • the first 0TDR test and the second 0TDR test may be simultaneously started or timed to obtain the first 0TDR test curve and the second 0TDR test curve, respectively, and collected.
  • Information such as alarms, performance statistics, and optical block parameters, and the first 0TDR test curve, the first 0TDR reference curve, the second OTDR test curve, the second OTDR reference curve, the alarm, the performance statistics, and the optical module parameters are integrated into the optical distribution network 130. And analysis and diagnosis of the optical network unit 120.
  • optical transceiver module 200 may have other structures. The structure of other alternative implementations of the optical transceiver module 200 provided by the present application is described below with reference to FIG. 4 to FIG.
  • FIG. 4 is a schematic structural diagram of an optical component 920 of an optical transceiver module according to another embodiment of the present application.
  • the structure of the optical component 920 is similar to that of the optical component 220 of the optical transceiver module 200 shown in FIG. 2, the main difference being that in the optical component 220 shown in FIG. 2, the test signal transmitter 224 is coupled to the The second wavelength division multiplexing filter 228 reflects the optical path, and the test signal receiver 225 is coupled to the reflected optical path of the optical splitter filter 229; and in the optical component 920 shown in FIG.
  • the filter 927, 928, 929 each employ a wavelength division multiplexing filter
  • the data signal receiver 922 is coupled to the reflected optical path of the first wavelength division multiplexing filter 927
  • the test signal receiver 925 is coupled to the second wavelength division multiplexing filter 928.
  • Reflecting the optical path, and test signal transmitter 924 is coupled to the The reflected light path of the three-wavelength division multiplexing filter 929.
  • the first wavelength division multiplexing filter 927 may perform 100% transmission of the optical signal having the first wavelength ⁇ 1 and X% reflection and (1-X) of the optical signal having the second wavelength ⁇ 2 . % of the transmission; the second wavelength division multiplexing filter 928 can perform X% reflection and (1-X)% transmission on the optical signal having the first wavelength ⁇ 1 for the second wavelength
  • the optical signal of ⁇ :! is 100% transmitted; the third wavelength division multiplexing filter 929 can transmit 100% of the optical signal having the first wavelength ⁇ 1 to have the second wavelength ⁇
  • the optical signal of 2 is 100% reflected.
  • test signal transmitter 924 can be placed adjacent to the data signal transmitter 921 by the above arrangement, and the test signal receiver 925 is disposed adjacent to the data signal receiver 922.
  • the data signal receiver 922 is located on the other side (opposite side) of the main optical path, ie, the data signal receiver 922 and the test Signal transmitter 924 and test signal receiver 925 are located on different sides of the primary light path.
  • FIG. 5 is a schematic structural diagram of an optical component 1020 of an optical transceiver module according to another embodiment of the present application. Similar to the optical assembly 420 shown in FIG. 4, in the optical assembly 920, the test signal transmitter 1024 is also coupled to the reflected optical path of the third wavelength division multiplex filter 1029, and the test signal receiver 1025 is also coupled to The reflected optical path of the second wavelength division multiplexing filter 1028 is such that the test signal transmitter 1024 and the test signal receiver 1025 are disposed adjacent to the data signal transmitter 1021 and the data signal receiver 922, respectively.
  • the first wavelength division multiplexing filter 1027 and the second wavelength division multiplexing are used.
  • the tilt direction of the filter 1028 is set, the test signal transmitter 1024 and the data signal receiver 1022 are located on the same side of the main optical path of the optical component 1020, and the test signal receiver 1025 is located at the other side of the main optical path.
  • One side (opposite side), that is, the data signal receiver 1025 and the test signal transmitter 1024 and the test signal receiver 1022 are located on different sides of the main optical path.
  • FIG. 6 is a schematic structural diagram of an optical component of an optical transceiver module according to another embodiment of the present application.
  • the structure of the optical component 420 is similar to that of the optical component 220 of the optical transceiver module 200 shown in FIG. 2, the main difference being that in the optical component 220 shown in FIG. 2, the test signal transmitter 224 and the test
  • the signal receiver 225 is located on a different side of the main optical path of the optical component 220, and in the optical component 420, the test signal transmitter 424 and the test are set by setting the tilt direction of the second wavelength division multiplexing filter 428.
  • Signal receiver 425 can be located on the same side of the main optical path of optical component 420. Please refer to FIG.
  • FIG. 7 is a schematic structural diagram of an optical component 520 of an optical transceiver module according to another embodiment of the present application.
  • the structure of the optical component 520 is similar to that of the optical component 220 of the optical transceiver module 200 shown in FIG. 2, the main difference being that, in the optical component 220 shown in FIG.
  • the test signal transmitter 224 is located in the The reflected optical path of the second wavelength division multiplexing filter 228, the data signal receiver 222 is located at the reflected optical path of the first wavelength division multiplexing filter 227; and in the optical component 520, the test signal transmitter 524 is located The reflected optical path of the first wavelength division multiplexing filter 527, the data signal receiver 522 is located in the reflected optical path of the second wavelength division multiplexing filter 528.
  • the first wavelength division multiplexing filter 527 can be adjusted to be approximately 90%.
  • FIG. 8 is a schematic structural diagram of an optical component 620 of an optical transceiver module according to another embodiment of the present application.
  • the structure of the optical component 620 is similar to that of the optical component 520 shown in FIG. 7.
  • the main difference is that in the optical component 520 shown in FIG. 7, the test signal transmitter 524 and the data signal receiver 522 are located.
  • the same side of the main optical path of the optical component 520, and in the optical component 620, by setting the tilt direction of the first wavelength division multiplexing filter 627, the test signal transmitter 624 and the data signal receiver 622 can Located on different sides of the main light path of the light assembly 620.
  • the first wavelength division multiplexing filters 527 and 627 may also be replaced with splitter filters.
  • the optical splitter filter may have an optical signal having the first wavelength ⁇ 1 and have the second The optical signals of wavelength ⁇ 2 are both subjected to approximately 90% transmission and approximately 10% reflection.
  • FIG. 9 is a schematic structural diagram of an optical component 720 of an optical transceiver module according to another embodiment of the present application.
  • the structure of the optical component 720 is similar to that of the optical component 220 of the optical transceiver module 200 shown in FIG. 2, the main difference being that in the optical component 720, the wavelength division multiplexing filter 728 is located in the optical splitter filter 729 and The first wavelength division multiplexing filter 227 shown in FIG. 2 is replaced by another optical splitter filter 727, and the optical splitter filter 727 is located in the reflected optical path of the wavelength division multiplexing filter 728.
  • the beam splitter filter 727 can perform 7% transmission and (100-y)% reflection on the light of the second wavelength ⁇ 2 , where y can be 10.
  • the test signal transmitter 724 is located in the transmitted optical path of the optical splitter filter 727, and the data signal receiver 722 is located in the reflected optical path of the optical splitter filter 727.
  • the test signal transmitter 724 can also be located in the reflected optical path of the splitter filter 727, and the data signal receiver 722 is located in the transmitted optical path of the splitter filter 727.
  • the test signal transmitter 724, the data signal receiver 722, the beam splitter filter 727, and the first transimpedance amplifier may be in a TO-CAN package. , that is, forming the first The TO-CAN module; and the data signal transmitter 721, the test signal receiver 725, the beam splitter filter 729, and the second transimpedance amplifier may also be packaged in a TO-CAN, that is, a second TO-CAN module is formed.
  • FIG. 10 is a schematic structural diagram of an optical component 820 of an optical transceiver module according to another embodiment of the present application.
  • the structure of the optical component 820 is similar to that of the optical component 220 of the optical transceiver module 200 shown in FIG. 1.
  • the main difference is that: the filtering component of the optical component 820 and the position of the signal transmitter or receiver are as shown in FIG.
  • the light components 220 are different.
  • the filtering component of the optical component 820 includes a beam splitter filter 829, a first wavelength division multiplexing filter 827, and a second wavelength division multiplexing filter 828.
  • the optical splitter filter 829 is located in the main optical path of the extending direction of the optical fiber adapter 830, and the optical splitter filter 829 can transmit about x% of the optical signal of the first wavelength ⁇ ⁇ and about (100-X)%. Reflecting, and transmitting about y% of the optical signal of the second wavelength ⁇ 2 and about (100-)% of the reflection, wherein x, y may be 90.
  • the transmitted optical path of the beam splitter filter 829 Consistent with the main optical path, and its reflected optical path is perpendicular to the main optical path.
  • the first wavelength division multiplexing filter 827 is located at a reflected optical path of the beam splitter filter 829, which can reflect about 100% of the optical signal of the first wavelength ⁇ 1 and light of the second wavelength ⁇ 2 The signal is transmitted at approximately 100%.
  • the test signal receiver 825 is located in the reflected optical path of the first wavelength division multiplexing filter 827, and the test signal transmitter 824 is located in the transmitted optical path of the first wavelength division multiplexing filter 827.
  • the test signal receiver 825 may also be located in the transmitted optical path of the first wavelength division multiplexing filter 827, and the test signal transmitter 824 is located in the first wavelength division multiplexing filter 827. Reflected light path.
  • the second wavelength division multiplexing filter 828 is located in the transmitted optical path of the optical splitter filter 829, which can transmit about 100% of the optical signal of the first wavelength ⁇ 1 and the light of the second wavelength ⁇ 2 The signal is approximately 100% reflective.
  • the data signal receiver 822 is located in the reflected optical path of the second wavelength division multiplexing filter 828, and the data signal transmitter 821 is located in the transmitted optical path of the second wavelength division multiplexing filter 828.
  • the OR data signal receiver 822 may also be located in the transmitted optical path of the second wavelength division multiplexing filter 828, and the data signal transmitter 821 is located in the second wavelength division multiplexing filter 828. The reflected light path.
  • the first wavelength division multiplexing filter 827, the test signal transmitter 824, the test signal receiver 825, and the second transimpedance amplifier may be used.
  • the test signal is transmitted and received TO-CAN.
  • the second wavelength division multiplexing filter 828, the data signal transmitter 821, the data signal receiver 822, and the first transimpedance amplifier may be packaged in another TO-CAN, that is, the data signal transmission and reception TO-CAN is formed. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

光收发模块、 无源光网络系统、 光纤检测方法和系统 技术领域
本申请涉及光通信技术, 特别地, 涉及一种集成光纤检测功能的光收发模块和无源 光网络(Pass ive Opt ica l Network, PON)系统及设备, 并且, 本申请还涉及一种光纤检 测方法及系统。 背景技术
随着用户对带宽需求的不断增长, 传统的铜线宽带接入系统越来越面临带宽瓶颈; 与此同时, 带宽容量巨大的光纤通信技术日益成熟, 应用成本逐年下降, 光纤接入网成 为下一代宽带接入网的有力竟争者, 其中尤其以无源光网络更具竟争力。
通常而言, 无源光网络系统包括一个位于中心局的光线路终端(Opt ical Line Termina l, OLT)、 多个位于用户侧的光网络单元(Opt ical Network Uni t, 0NU)以及一 个用于对光线路终端和光网络单元之间的光信号进行分支 /耦合或者复用 /解复用的光 分配网络(Opt ica l Di s tr ibut ion Network, ODN)。 其中, 光线路终端和光网络单元通 过设置在其内部的光收发模块(或称为数据收发光模块)进行上下行数据 ^发。
在光纤通信领 i或, 光时戈反射计(Opt ical Time Doma in Ref lectrometer, OTDR)是 一种常用的光纤测试仪器。 0TDR通过向待测光纤网络中发射测试信号,并检测所述测试 信号在待测光纤网络发生的后向反射和散射信号, 来获知光纤线路的状态信息, 从而为 光纤网络的维护提供快速的分析和故障定位手段。
为简化网络结构并实现对光分配网络的实时监控, 业界提出将 0TDR测试功能集成 到光收发模块内部, 从而实现集成式 0TDR (又称 E0TDR)。 在一种现有的集成有 0TDR测 试功能的光收发模块中, 0TDR测试信号和下行数据信号采用同一个波长,并且共用同一 个光发射组件进行信号发射。在进行光纤检测时, 0TDR测试信号通过幅度调制叠加到下 行数据信号并向光分配网络发射, 0TDR测试信号在光分配网络的传输过程中会在光纤弯 曲、 断裂或者连接不紧密等事件点发生瑞利散射或者反射, 从而产生沿原路返回的反射 信号。 反射信号进一步被光收发模块内部的 0TDR探测器接收, 进一步地, 光线路终端 内部的 0TDR处理器可进一步分析该反射信号并计算得到光分配网络的线路衰减情况以 及指示各个光纤事件点的 0TDR测试曲线。
不过, 在无源光网絡系统中, 光分配网络通常采用无源光分路器进行信号的分支 / 耦合, 由于光分路器的功率损耗较大, 采用上述共用光发射组件的光收发模块难以直接 地进行分支光纤的故障定责和定界。 因此, 采用上述方案进行光纤检测时, 仍需要结合 其他手段, 比如在分支光纤上增加光反射器来进行故障定位, 此不但会导致成本上升, 而且会增加施工难度。 发明内容
针对上述问题, 本申请提供一种可以进行分支光纤故障定责和定界的光收发模块。 同时, 本申请还提供一种采用所述光收发模块的无源光网络系统和设备, 以及一种光纤 检测方法和系统。
一种光收发模块,包括光组件和与所述光组件相连接的驱动组件,所述光组件包括: 数据信号发射器, 用于发射具有第一波长的第一数据信号, 并在所述驱动组件的控制下 向光纤网络发射具有所述第一波长的第一测试信号; 测试信号接收器, 用于接收所述第 一测试信号在所述光纤网络发生反射而返回的第一反射信号; 测试信号发射器, 用于在 所述驱动组件的控制下向所述光纤网络发射具有第二波长的第二测试信号;数据信号接 收器, 用于接收具有所述第二波长的第二数据信号, 并接收所述第二测试信号在所述光 纤网络发生反射而返回的第二反射信号。
一种无源光网络系统, 包括光线路终端、 多个光网络单元和光分配网络, 所述光 线路终端通过所述光分配网络连接到所述多个光网络单元, 其中所述光线路终端和 /或 所述光网络单元包括集成有测试功能的光收发模块, 所述光收发模块采用如上所述的光 收发模块。
—种光线路终端, 包括数据处理模块和光收发模块, 所迷光收发模块采用如上所 述的光收发模块, 所述数据处理模块用于将第一数据信号提供给所述光收发模块进行发 射, 并对所述光收发模块结合收到的第二数据信号进行数据处理, 并且, 所述数据处理 模块还用于根据所述光收发模块接收到的第一反射信号和所述第二反射信号,对光纤线 路进行分析。
一种无源光网络的光纤检测方法, 包括: 在无源光网络出现故障时, 判断故障是否 发生在光分配网络的主干光纤或分布光纤; 如果是, 采用下行波长向所述光分配网络发 送第一测试信号, 并才艮据所述第一测试信号的反射信号, 对所述主干光纤或分布光纤的 故障进行定位; 如果否, 采用上行波长向所述光分配网络发送第二测试信号, 并根据所 述第二测试信号的反射信号, 确定出现故障的分支光纤或光网络单元。
一种光纤检测系统, 包括光线路终端、 多个光网络单元和光分配网络, 所述光线路 终端通过所述光分配网络连接到所述多个光网络单元; 所述光分配网络包括第一级分光 器和多个第二级分光器, 所述第一级分光器通过主干光纤连接到所述光线路终端, 并通 过分布光纤连接到所述多个第二级分光器, 所述多个第二级分光器分别通过分支光纤连 接到所述光网络单元; 所述光线路终端包括光收发模块, 所述光收发模块用于采用下行 波长向所述光分配网络发送第一测试信号, 并根据所述第一测试信号的反射信号, 对所 述主干光纤或分布光纤的故障进行定位; 且用于采用上行波长向所述光分配网络发送第 二测试信号, 并 居所述第二测试信号的反射信号, 确定出现故障的分支光纤或光网络 单元。
在本申请提供的光收发模块采用双波长的测试信号, 其中第一测试信号与第一数 据信号共用光发射组件,第二测试信号与第二数据信号共用光接收组件,通过上述配置, 所述光收发模块可以接收到所述第一测试信号和所述第二测试信号相对应的第一反射 信号和第二反射信号。 根据所述第一反射信号和第二反射信号, 可以获得的第一测试曲 线和第二测试曲线,从而实现对光纤网络的主干光纤和分布光纤的故障定位以及对分支 光纤和光网络单元线路分析和故障定责及定界, 而无需借助其他辅助测试手段。 因此本 申请提供的光收发模块可以简单有效地对光纤网络进行故障检测和诊断分析, 不仅可以 有效降低 0TDR测试成本, 还可以减小施工难度。 附图说明
图 1为一种无源光网络系统的结构示意图。
图 2为本申请一种实施例提供的光收发模块的结构示意图。
图 3为本申请一种实施例提供的光纤检测方法的流程示意图。
图 4为本申请另一种实施例的光收发模块的光组件的结构示意图。
图 5为本申请又一种实施例的光收发模块的光组件的结构示意图。
图 6为本申请又一种实施例的光收发模块的光组件的结构示意图。
图 7为本申请又一种实施例的光收发模块的光组件的结构示意图。
图 8为本申请又一种实施例的光收发模块的光组件的结构示意图。
图 9为本申请又一种实施例的光收发模块的光组件的结构示意图。
图 10为本申请又一种实施例的光收发模块的光组件的结构示意图。 具体实施方式
以下结合具体实施例,对本申请提供的光收发模块和光纤检测方法及系统进行详细 描述。
本申请提供的光收发模块可以适用于无源光网络系统等点到多点的光纤网络。请参 阅图 1 , 其为一种无源光网络系统的结构示意图。 所述无源光网络系统 100包括至少一个 光线路终端 110、 多个光网络单元 120和一个光分配网络 130。 所述光线路终端 110通过所 述光分配网络 130连接到所述多个光网络单元 120。 其中, 从所述光线路终端 110到所述 光网络单元 120的方向定义为下行方向, 而从所述光网络单元 120到所述光线路终端 110 的方向为上行方向。
所述无源光网络系统 100可以是不需要任何有源器件来实现所述光线路终端 110与 所述光网络单元 120之间的数据分发的通信网络, 比如, 在具体实施例中, 所述光线路 终端 110与所述光网络单元 120之间的数据分发可以通过所述光分配网络 130中的无源光 器件(比如分光器)来实现。 并且, 所述无源光网络系统 100可以为 ITU-T G. 983标准定义 的异步传输模式无源光网络(ATM PON)系统或宽带无源光网络(BP0N)系统、 ITU- T G. 984 标准定义的吉比特无源光网络(GP0N)系统、 IEEE 802. 3ah标准定义的以太网无源光网络 (EP0N)、 或者下一代无源光网络(NGA PON, 比如 XGP0N或 10G EP0N等)。 上述标准定义的 各种无源光网络系统的全部内容通过引用结合在本申请文件中。
所述光线路终端 110通常位于中心位置(例如中心局 Centra l Off i ce , CO) , 其可以 统一管理所述一个或多个光网络单元 120。所述光线路终端 110可以充当所述光网络单元 120与上层网络(图未示)之间的媒介, 将从所述上层网络接收到的数据作为下行数据并 通过所述光分配网络 130转发到所述光网络单元 120 , 以及将从所述光网络单元 120接收 到的上行数据转发到所述上层网络。
所迷光线路终端 110的具体结构配置可能会因所述无源光网络 100的具体类型而异, 比如, 在一种实施例中, 所述光线路终端 110可以包括光收发模块 200和数据处理模块 201。所述光收发模块 200可以通过所述光分配网络 130将所述数据处理模块 201提供的下 行数据信号发送给所述光网络单元 120, 并接收所述光网络单元 120通过所述光分配网络 130发送的上行数据信号, 并且将所述上行数据信号提供给所述数据处理模块 201进行数 据处理。 另外, 在具体实施例中, 所述光收发模块 200还可以集成有 0TDR测试功能, 比 如, 所述光收发模块 200还可以向所述光分配网络 130发送测试信号, 并接收所述测试信 号在所述光分配网络 130发生后向散射或反射而返回的反射信号, 并且根据所述反射信 号获得测试曲线并进一步进行光纤线路状态分析及故障定位。
其中, 所述光收发模块 200发送的测试信号可以为单波长信号, 比如, 所述测试信 号可以与所述下行数据信号采用同一个波长(即下行波长)并共用光发射组件, 或者, 与 所述上行数据信号采用同一个波长(即上行波长)并共用光接收组件。在一种较佳实施例 中, 所述测试信号还可以为双波长信号, 比如, 所述测试信号可以包括不同波长的第一 0TDR测试信号和第二 0TDR测试信号, 其中, 所述第一 0TDR测试信号的波长可以与所述下 行波长相同, 并且所述第一 0TDR测试信号可以与所述下行数据信号共用光发射组件; 所 述第二 0TDR测试信号的波长可以与所述上行波长相同, 并且所述第一 0TDR测试信号可以 与所述上行数据信号共用光接收组件。
所述光网络单元 120可以分布式地设置在用户侧位置(比如用户驻地)。 所述光网络 单元 120可以为用于与所述光线路终端 110和用户进行通信的网络设备, 具体而言, 所述 光网络单元 120可以充当所述光线路终端 110与所述用户之间的媒介, 例如, 所述光网络 单元 120可以将从所述光线路终端 110接收到的下行数据转发到所述用户, 以及将从所述 用户接收到的数据作为上行数据通过所述光分配网络 130转发到所述光线路终端 110。应 当理解, 所述光网络单元 120的结构与光网络终端(Opt ica l Network Termina l , 0NT)相 近, 因此在本申请文件提供的方案中, 光网络单元和光网络终端之间可以互换。
所述光网络单元 120的具体结构配置可能会因所述无源光网络 100的具体类型而异, 比如, 在一种实施例中, 所述光网络单元 120可以包括光收发模块 300, 用于接收所述光 线路终端 110通过所迷光分配网络 130发送的下行数据信号, 并通过所述光分配网络 130 向所述光线路终端 110发送上行数据信号。所述光收发模块 200的具体结构可以与所述光 线路终端 110的光收发模块 200相类似, 比如所述光收发模块 300也可以集成有 0TDR测试 功能。 具体而言, 所述光收发模块 200还可以向所述光分配网络 130发送测试信号, 并接 收所述测试信号在所述光分配网络 130发生后向散射或反射而返回的反射信号, 并且根 据所述反射信号进行光纤线路状态分析及故障定位。 其中, 所述测试信号可以为单波长 信号, 可替代地, 所述测试信号也可以为双波长信号, 比如, 所述测试信号可以包括第 一 0TDR测试信号和第二 0TDR测试信号, 其中, 所述第一 0TDR测试信号的波长可以与所述 下行波长相同, 所述第二 0TDR测试信号的波长可以与所述上行波长相同。
所述光分配网络 130可以是一个数据分发系统, 其可以包括光纤、 光耦合器、 光分 路器和 /或其他设备。 在一个实施例中, 所述光纤、 光耦合器、 光分路器和 /或其他设备 可以是无源光器件, 具体来说, 所述光纤、 光耦合器、 光分路器和 /或其他设备可以是 在所述光线路终端 110和所述光网络单元 120之间分发数据信号是不需要电源支持的器 件。 另外, 在其他实施例中, 该光分配网络 130还可以包括一个或多个处理设备,例如, 光放大器或者中继设备(Rel ay device)。 在如图 1所示的分支结构中, 所述光分配网络 130 具体可以采用两级分光的方式从所述光线路终端 110 延伸到所述多个光网络单元 120,但也可以配置成其他任何点到多点(如单级分光或者多级分光)或者点到点的结构。
请参阅图 1 , 所述光分配网络 130采用分光器来实现数据分发, 出于可靠性和运维 方面的考虑, 所述光分配网络 130可以采用两级分光的方式来部署, 包括第一级分光器 131 和多个第二级分光器 132。 所述第一级分光器 131 的公共端通过主干光纤(Feed Fi ber) 133连接到所述光线路终端 110的光收发模块 200, 且其分支端分别通过分布光 纤(Di s tr ibute Fi ber) 134对应地连接到所述第二级分光器 132的公共端, 每个第二级 分光器 132的分支端分别进一步通过分支光纤(Drop Fiber) 135连接到对应的光网络单 元 120的光收发模块 300。 在下行方向, 所述光线路终端 110发送的下行数据信号先经 过第一级分光器 131进行第一次分光之后,再分别经过第二级分光器 132进行第二次分 光, 从而形成多路下行信号并传输给各个光网络单元 120。 在上行方向, 各个光网络单 元 120发送的上行数据信号依次通过所述第二级分光器 132和第一级分光器 131进行合 路之后传输到所述光线路终端 110。 其中, 所述第一级分光器 131可以部署在距中心局 较近的光配线架(Opt ica l Di s t r i but ion Frame, ODF) , 而所述第二级分光器 132 可以 部署在远端节点(Remote Node, RN)。
以下结合图 2详细介绍本申请提供的光收发模块的具体实现方案。 如上所述, 所述 光线路终端 110的光收发模块 200与所述光网络单元 120的光收发模块 300结构相类似, 因此, 以下仅主要介绍所述光收发模块 200的结构及功能, 所属技术领域的技术人员可 以参照以下关于所述光收发模块 200的描述获悉所述光收发模块 300的实现方式。
请参阅图 2 , 其为本申请一种实施例提供的光收发模块 200的结构示意图。 所述光 收发模块 200可以是具有嵌入式 0TDR测试功能的单纤双向光模块。所述光收发模块 200 包括驱动组件 210和光组件 220 , 所述驱动组件 210用于驱动所述光组件 220 , 所述光 组件 220用于在所述驱动组件 210的驱动下进行测试信号和数据信号的发射和接收; 可 选地, 所述驱动组件 210还可以对所述光组件 220接收到的测试信号和 /或数据信号进 行信号预处理。
为便于理解, 以下描述以所述光收发模块 200应用在图 1所示的光线路终端 110为 例。所述光组件 220首先可以通过光纤适配器 230连接到所述光分配网络 130的主干光 纤 133, 并通过所述光分配网络 130向所述光网絡单元 120发送下行数据信号且接收所 述光网络单元 120发送的上行数据信号。 具体而言, 所述光组件 220可以包括数据信号 发射器 221、 数据信号接收器 222和滤波组件 223。 其中, 所述数据信号发射器 221可 以为激光二极管(Laser Diode , LD) , 用于发射具有第一波长 λ 1的下行数据信号(以下 记为下行数据信号 λ 1);所述数据信号接收器 222可以为光电二极管(Photo Diode, PD) , 比如雪崩光电二极管(Ava lanche Photo Diode, APD) , 用于接收具有第二波长 λ 2的上 行数据信号(以下记为上行数据信号 λ 2)。 所述滤波组件 223可将所述数据发射器 221 发射的下行数据信号 λ ΐ 中至少一部分耦合到所述光纤适配器 230, 并将从所述光纤适 配器 230输入的上行数据信号 λ 2中至少一部分耦合到所述数据信号接收器 220。
在一种实施例中, 所述滤波组件 223可以包括第一波分复用(Wavelength Divi s ion
Mul t i pl exer, WDM)滤波片 111、 第二波分复用滤波片 228和分光器滤波片 229。 所述第 一波分复用滤波片 227、 所述第二波分复用滤波片 228和所述分光器滤波片 229可以依 序设置在所述光组件 220内部沿所述光纤适配器 230延伸方向的主光路, 并与所述主光 路之间具有一定的夹角。 其中, 所述第一波分复用滤波片 227可以对具有所述第一波长 λ 1的光信号进行大约 100 %的透射, 并对具有所述第二波长 λ 2的光信号进行大约 y % 的反射和大约(100- y) %的透射。 所述第二波分复用滤波片 228可以对具有所述第一波 长 λ ΐ的光信号进行大约 100 %的透射, 并对具有所述第二波长 λ 2的信号进行大约 100 %的反射。 所述分光器滤波片 229可以对具有所述第一波长 λ 1的光信号进行 χ %的透 射以及(100-X) %的反射。 在具体实施例中, 所迷 x、 y的值可以均为 90, 且所述第一波 长 λ 1和所述第二波长 λ 2可以分别为 1490nm和 1310nm, 或者, 1577nm和 1270nm。
所述第一波分复用滤波片 227、 所述第二波分复用滤波片 228和所述分光器滤波片 229的透射光路与所述光组件 220的主光路相重叠, 而所述第一波分复用滤波片 227、 所述第二波分复用滤波片 228和所述分光器滤波片 229的反射光路分别与所述主光路基 本垂直。 所述数据信号发射器 221耦合到所述分光器滤波片 229的透射光路, 而所述数 据信号接收器 222耦合到所述第一波分复用滤波片 227的反射光路。 因此, 在所述光组 件 220中, 所述数据信号发射器 221发射的下行数据信号 λ 1大约有 χ %可以透过所述 分光器滤波片 229、 所述第二波分复用滤波片 228和所述第一波分复用滤波片 227, 并 通过所述光纤适配器 230输出, 而通过所述光纤适配器 230输入的上行数据信号 λ 2大 约有 y %可以反射到所述数据信号接收器 222, 被所述数据信号接收器 222接收并转换 成电信号。 进一步地, 在本实施例中, 所述数据信号发射器 221还可以用于发射具有所述第一 波长 λ 1的第一 0TDR测试信号(以下记为第一 0TDR测试信号 λ 1 ' ), 即所述第一 0TDR 测试信号 λ ΐ ' 可以与所述下行数据信号 λ ΐ 共用所述数据信号发射器 221。 所述第一 0TDR测试信号 λ ΐ ' 中至少一部分同样可以透过所述分光器滤波片 229、 所述第二波分 复用滤波片 228和所述第一波分复用滤波片 227传输到所述光纤适配器 230 , 并进一步 通过所述光纤适配器 230输出到所述光分配网络 1 30。 在具体实施例中, 所述第一 0TDR 测试信号 λ ΐ ' 和所述下行数据信号 λ ΐ 的发送可以相互独立, 比如, 当所述第一 0TDR 测试信号 λ V 发射时所述数据信号发射器 221暂停所述下行数据信号 λ 1的发送;可替 代地, 所述第一 0TDR测试信号 λ 1 ' 也可以通过幅度调制的方式叠加到所述下行数据信 号 λ ΐ , 从而形成一个叠加信号并从所述光纤适配器 230输出到所述光分配网络 1 30。
在一种实施例中, 所述光组件 220还可以包括测试信号接收器 225和测试信号发射 器 224 ,其中,所述测试信号接收器 225可以耦合到所述分光器滤波片 229的反射光路, 所述测试信号发射器 224可以耦合到所述第二波分复用滤波片 228的反射光路。
所述测试信号接收器 225可以用于接收所述第一 0TDR测试信号 λ V 所对应的反射 信号(以下记为第一反射信号 λ ΐ ' ' ) 0 具体地, 所述第一 0TDR测试信号 λ ΐ ' 在所述 光分配网络 1 30传输过程中会发生反射或者散射而形成第一反射信号 λ ΐ ' ' 。 所述第 一反射信号 λ V ' 同样具有所述第一波长 λ 1 ,且其沿原路返回并在通过所述光纤适配 器 230输入到所述光组件 220。在所述光组件 220中,所述第一反射信号 λ V ' 可进一 步透过所述第一波分复用滤波片 227和所述第二波分复用滤波片并传输到所述分光器滤 波片 229 , 并且, 在所述分光器滤波片 229, 大约(100- χ) %的第一反射信号 λ 1' ' 将被 反射到所述测试信号接收器 225 , 并被所述测试信号接收器 225所接收。 所述测试信号 接收器 225在接收到所述第一反射信号 λ ' 之后, 可以进一步将其转换成电信号并 提供给所述驱动组件 210中的 0TDR处理器 211进行信号处理。
所述测试信号发射器 224可以用于发射具有所述第二波长 λ 2的第二 0TDR测试信号 (以下记为第二 0TDR测试信号 λ 2' ) ,所述第二 0TDR测试信号 λ 2' 中大约 100%可以通 过所述第二波分复用滤波片 228反射到所述光组件 220的主光路, 并且第二 0TDR测试 信号 λ 2' 中大约(1 00- y) %的部分可以进一步透过所述第一波分复用器 227并传输到所 述光纤适配器 230。
与所述第一 0TDR测试信号 λ ΐ ' 相类似, 所述光纤适配器 230可将所述第二 0TDR 测试信号 λ V 输出到所述光分配网络 130。所述第二 0TDR测试信号 λ V 在所述光分配 网络 1 30传输过程中会发生反射或者散射而形成第二反射信号 λ 2' ' 。 所述第二反射 信号 λ 2' ' 同样具有所述第二波长 λ 2 , 且其沿原路返回并在通过所述光纤适配器 230 输入到所述光组件 220。在所述光组件 220中,所述第二反射信号 λ 2' ' 可进一步沿所 述主光路透射到所述第一波分复用滤波片 227 , 其中大约 7%的第二反射信号 λ 2' ' 将 被所述第一波分复用滤波片 227反射到所述数据信号接收器 222。
在本实施例中,所述数据信号接收器 222除了可以接收所述上行数据信号 λ 2以外, 还可以接收所述第二 0TDR测试信号 λ 2' 所对应的第二反射信号 λ 2' ' , 即所述第二 反射信号 λ 2 ' ' 可以与所述上行数据信号 λ 2共用所述数据信号接收器 222。 为避免所 述第二反射信号 λ 2' ' 对所述光网络单元 120发送的上行数据信号 λ 2造成冲突,在启 动第二 0TDR测试信号 λ 2' 的发射之前,所述驱动组件 21 0在所述光线路终端 110的数 据处理模块 201的控制下, 可以驱动所迷数据信号发射器 221向所述光网络单元 120下 发暂停上行数据发送的指令。 另外, 所述数据信号接收器 222在接收到所述第二反射信 号 λ 2' ' 之后, 可以进一步将所述第二反射信号 λ 2' ' 转换成电信号并提供给所述驱 动组件 210中的 0TDR处理器 211进行信号处理。
另外, 可选地, 为提高所述数据信号发射器 221与所述光纤适配器 230之间的耦合 效率, 保证所述数据信号发射器 221发射的所述第一 0TDR测试信号 λ V 和 /或所述下 行数据信号 λ 1尽可能多地耦合进主主光路并通过所述光纤适配器 230输出, 在所述数 据信号发射器 221与所述分光器滤波片 229之间可增加第一透镜 291。
可选地, 为保护所述数据信号发射器 221 , 避免所述数据信号发射器 221由于第一 反射信号 λ ΐ' ' 沿原路返回而发生损坏, 在所述数据信号发射器 221 与所述分光器滤 波片 229之间可增加第一光隔离器 292 ,用于阻止所述第一反射信号 λ ΐ ' ' 进入所述数 据信号发射器 221。
可选地, 所述光组件 220还可包括第一光吸收器 293 , 所述第一光吸收器 293可设 置在所述分光器滤波片 229背离所述测试信号接收器 225的一侧,所述第一光吸收器 293 可以用于吸收所述数据信号发射器 221发射的所述第一 0TDR测试信号 λ V 在所述分光 滤波片 229发生反射而产生的光信号, 以防止其经光组件 220的基座和 /或测试信号发 射器 224的管帽内表面发生二次反射并透过所迷分光器滤波片 229被所述测试信号接收 器 225接收, 进而对所述第一反射信号 λ ΐ ' ' 造成干扰。
相类似地,为提高所述测试信号发射器 224与所述光纤适配器 230之间的耦合效率, 保证所述数据信号发射器 224发射的所述第二 0TDR测试信号 λ V 尽可能多地辆合到主 光路并通过所述光纤适配器 230输出, 可选地, 在所述测试信号发射器 224与所述第二 波分复用滤波片 228之间可增加第二透镜 294。
为保护所述测试信号发射器 224, 避免所迷测试信号发射器 224由于第二反射信号 λ 2' ' 沿原路返回而发生损坏, 可选地, 在所述测试信号发射器 224与所述第二波分 复用滤波片 228之间可增加第二光隔离器 295 ,用于阻止所述第二反射信号 λ 2' ' 进入 所述测试信号发射器 224。
可选地, 所述光组件 220还可包括第二光吸收器 296 , 所述第二光吸收器 296可设 置在所述第一波分复用滤波片 227背离所述数据信号接收器 222的一侧, 所述第二光吸 收器 296可以用于吸收所述测试信号发射器发射的所述第二 0TDR测试信号 λ 2, 在所述 第一波分复用滤波片 227发生反射而产生的光信号, 以防止其经所迷光组件 220的基座 发生二次反射并透过所述第一波分复用滤波片 227被所述数据信号接收器 222接收,进 而对所述第二反射信号 λ 2' ' 造成干扰。
可选地, 所述光组件 220 还可以进一步包括第一跨阻放大器(Trans- Impedance Amp l i f i er, TIA)和第二跨阻放大器。 所述第二跨阻放大器设置在所述测试信号接收器 225和所述驱动组件 210之间,用于在所述测试信号接收器 225对所述第一反射信号 λ 1 ' ' 进行光电转换之后进行信号前置放大; 所述第一跨阻放大器设置在所述数据信号接 收器 222和所述驱动组件 21 0之间, 用于在所述数据信号接收器 222对所述上行数据信 号 λ 2或者所述第二反射信号 λ 2' ' 进行光电转换之后进行信号前置放大。 可替代地, 所述第一跨阻放大器和所述第二跨阻放大器也可以设置在所述驱动组件 210内部。
在本实施例中, 所述第一 0TDR测试信号 λ V 可以主要用于检测在所述光分配网络
130的主干光纤 1 33和分布光纤 1 34发生的光纤事件, 实现所述主干光纤 133和分布光 纤 1 34的故障定位。 所述第二 0TDR测试信号 λ V 采用专用的测试信号发射器 224进行 发射,可以主要用于检测在所述光分配网络 1 30的分支光纤 135以及所述光网络单元 120 发生的光纤事件, 实现所述分支光纤 135和光网络单元 120的故障定责和定界。
所述驱动组件 21 0可以包括 0TDR处理器 211、 数据信号驱动器 212、 测试信号驱动 器 213和通道选择单元 214。 所述通道选择单元 214包括输入端 207、 数据信号输出端 208和测试控制端 209 ,所述通道选择单元 214的输入端 207连接到所述光组件 220,所 述通道选择单元 214 的数据信号输出端 208 可以通过限幅放大器连接到所述驱动组件 21 0的信号输出端 217 , 所述通道选择单元 214的测试控制端 209连接到所述 0TDR处理 器 21 1。 可替代地, 所述通道选择单元 214的数据信号输出端 208也可以直接连接到所 述驱动组件的信号输出端 217 , 而所述限幅放大器设置在所述通道选择单元 214的输入 端 207和所述光组件 220之间。
在具体实施例中, 为减小所述通道选择单元 214的测试控制端 209对数据接收的影 响, 可选地, 所述通道选择单元 214可以采用如下的结构。 所述通道选择单元 214的输 入端 207和数据信号输出端 208之间直接连接, 并在所述输入端 207和测试控制端 209 之间设置用于实现通道选择的电路, 并且, 所述通道选择单元 214在所述 0TDR处理器 21 1的控制下, 可以通过其输入端 207驱动提供到所述数据输出端 208和所述测试控制 端 209的两路光信号。
具体而言, 所述通道选择单元 214可以通过其输入端 207接收所述光组件 220的数 据信号接收器 222输出的上行数据信号 λ 2或者第二反射信号 λ 2' ' ,并且,所述通道 选择单元 214还可以在所述 0TDR处理器 211的控制下进行选择性地信号转发。 比如, 在正常数据通信模式下, 所述通道选择单元 214可以建立所述输入端 207与所述数据信 号输出端 208之间的传输通道, 而断开所述输入端 207与所述测试控制端 209之间的传 输通道,从而将所述光组件 220接收到的上行数据信号 λ 2转发到所述信号输出端 217 , 以将所述上行数据信号 λ 2提供到所述光线路终端 110的数据处理模块 201。在 0TDR测 试模式下,所述通道选择单元 214可以通过所述测试控制端 209从所述 0TDR处理器 211 接收到相应的通道切换命令, 并断开所述输入端 207与所述数据信号输出端 208之间的 传输通道, 且建立所述输入端 207与所述测试控制端 209之间的传输通道, 从而将所述 光组件 220输出的第二反射信号 λ 2' ' 通过所述测试控制端 209提供到所述 0TDR处理 器 211进行信号处理。
所述 0TDR处理器 211分别连接到所述数据信号驱动器 212、 所述测试信号驱动器 21 3和所述通道选择单元 214。 所述数据信号驱动器 212和所述测试信号驱动器 213分 别进一步连接到所述光组件 220的数据信号发射器 221和测试信号发射器 224。 其中, 所述数据信号驱动器 212用于驱动所述数据信号发射器 221发射所述下行数据信号 λ 1 和 /或所述第一 0TDR测试信号 λ V , 所述测试信号驱动器 213用于驱动所述测试信号 发射器 224发射所述第二 0TDR测试信号 λ V 。 应当理解, 所述测试信号驱动器 21 3是 可选的, 在其他替代实施例中, 所 0TDR处理器 211也可以直接驱动所述测试信号发射 器 224发射所述第二 0TDR测试信号 λ V 。
在正常数据通信模式下, 所述数据信号驱动器 212可以通过信号输入端 218从所述 光线路终端 1 1 0的数据处理模块 201接收下行数据, 并将所述下行数据调制到所述数据 信号发射器 221发射的第一波长 λ 1光信号,从而形成并输出所述下行数据信号 λ 1。而 在 0TDR测试模式下, 所述数据信号驱动器 212还可以从所述 0TDR处理器 211接收第一 0TDR测试数据, 并将所述第一 0TDR测试数据调制到所述数据信号发射器 221发射的第 一波长 λ 1光信号, 从而形成并输出所述第一 0TDR测试信号 λ 1 ' 。 在具体实施例中, 当所述光收发模块 200启动 0TDR测试之后, 所述数据信号驱动器 212可以在所述光线 路终端 110的数据处理模块 201的控制下暂停所述数据信号发射器 221的下行数据发送, 可替代地, 所述数据信号驱动器 21也可以维持所述数据信号发射器 221的下行数据发 送, 并通过幅度调制将所述第一 0TDR测试信号 λ ΐ ' 叠加到所述下行数据信号 λ ΐ , 从 而形成叠加信号。
另外,在 0TDR测试莫式下,所述 0TDR处理器 211还可以向所述测试信号驱动器 213 提供第二 0TDR测试数据, 所述数据信号驱动器 212可以将所述第二 0TDR测试数据调制 到所述数据信号发射器 221发射的第二波长 λ 2光信号,从而形成并输出所述第二 0TDR 测试信号 λ V 。 或者, 所述 0TDR处理器 211还可以直接将所述第二 0TDR测试数据调 制到所述数据信号发射器 221 发射的第二波长 λ 2 光信号, 从而形成并输出所述第二 0TDR测试信号 λ 2' 。
所述 0TDR处理器 21 1在正常数据通信模式下可以处于待机或者低功耗状态, 且此 时相对应地, 所述通道选择单元 214的输入端 207与数据信号输出端 208之间的传输通 道导通。当所述 0TDR处理器 211通过 I 2C接口(或者其他控制信号线) 219从所述光线路 终端 110的数据处理模块 201接收到 0TDR测试启动信号时, 其可以控制所述光收发模 块 200的相关功能单元进入 0TDR测试模式, 包括控制所述通道选择单元 214断开其输 入端 207与数据信号输出端 208之间的传输通道, 并建立所述输入端 207与测试控制端 209之间的传输通道。
在所述 0TDR测试模;式下, 所述 0TDR处理器 211还可以连接到所述光组件 220的测 试信号接收器 225或者第二跨阻放大器,用于接收所述光组件 220的测试信号接收器 225 输出的第一反射信号 λ 1 ' ' , 并通过所述通道选择单元 214接收所述光组件 220的数 据信号接收器 222输出的第二反射信号 λ 2' ' , 并且分别对所述第一反射信号 λ ΐ ' ' 和所述第二反射信号 λ 2' ' 进行信号预处理(包括信号放大、 采样及数字处理等)。 进 一步地, 所述 0TDR处理器 21 1可以通过所述 I 2C接口 219将经过预处理的反射信号 λ 1 ' ' 和 λ 2' ' 输出到所述光线路终端 110的数据处理模块 201 ,以供所述数据处理模块 201进行信号分析处理, 从而得到关于所述光分配网络 130的 0TDR测试曲线。 具体地, 所述数据处理模块 201可以通过分析经过所述 0TDR处理器 211预处理的 第一反射信号 λ ΐ ' ' 获得第一 0TDR测试曲线, 并根据所述第一 0TDR测试曲线进行所 述光分配网络 1 30的主干光纤 133和分布光纤 1 34的光纤线路分析和故障定位; 所述数 据处理模块 201可以通过分析经过所述 0TDR处理器 211预处理的第二反射信号 λ V ' 获得第二 0TDR测试曲线, 并才艮据所述第二 0TDR测试曲线进行所述光分配网络 130的分 支光纤 1 35和所述光网络单元 120的光纤线路分析和故障定责和定界。
当然, 在其他替代实施例中, 所述数据处理模块 201在获得所述第一 0TDR测试曲 线和所述第二 0TDR测试曲线后, 也可对其进行进一步数据综合处理, 得到一条能够对 所述光分配网络 1 30的主干光纤、分布光纤以及分支光纤进行光纤分析和故障诊断的完 整 0TDR测试曲线。
可替代地, 所述 0TDR处理器 211也可以具有光纤线路分析能力, 即所述数据分析 模块 201的光纤分析和故障诊断功能可以在所述 0TDR处理器 211 内部实现。 因此, 所 述 0TDR处理器 211在对所述第一反射信号 λ ΐ ' ' 和第二反射信号 λ 2' ' 进行预处理 之后, 可以直接对分析所述第一反射信号 λ ΐ ' ' 和第二反射信号 λ 2' ' 从而分别获得 所述第一 0TDR测试曲线和所述第二 0TDR测试曲线, 并进一步根据所述第一 0TDR测试 曲线进行所述光分配网络 1 30的主干光纤 1 33和分布光纤 134的光纤线路分析和故障定 位, 以及所述光分配网络. 130的分支光纤 1 35和所述光网络单元 120的线路分析和故障 定责及定界。
在具体实现上, 在 0TDR测试模式下, 所迷驱动组件 210的 0TDR处理器 211可以先 启动所述第一 0TDR测试信号 λ V 的发射来进行关于所述主干光纤 1 33和所述分布光纤 1 34的故障定位, 此后再启动所述第二 0TDR测试信号 λ 2' 的发射来进行关于所述分支 光纤 135和所述光网络单元 120的故障定责和定界。
例如, 如果 0TDR处理器 211 中采用同一处理模块处理所述第一 0TDR测试信号 λ 1 ' 、 第一反射信号 λ ' 和第二 0TDR 测试信号 λ 2 ' 和第二反射信号 λ 2' ' , 所述 0TDR处理器 211可以分时地选择与所述数据信号驱动器 212和 /或所述测试信号接收器 225、 所述测试信号驱动器 213和 /或通道选择单元 214建立连接。
当启动第一 0TDR测试信号 λ 1 ' 的发射时, 所述 0TDR处理器 211与数据信号驱动 器 212和 /或 0TDR测试信号接收器 225建立连接, 并断开与测试信号驱动器 21 3和 /或 通道选择单元 214的连接,从而控制所述数据信号驱动器 212驱动所述数据信号发射器 221发射所述第一 0TDR测试信号 λ ΐ ' , 并接收和处理所述测试信号接收器 225接收到 的第一反射信号 λ ΐ' ' 。 当启动第二 0TDR测试信号 λ2' 的发射时, 所述 0TDR处理器 211可以与测试信号驱动器 213和 /或通道选择单元 214建立连接,并断开与数据信号驱 动器 212和 /或测试信号接收器 225的连接, 从而控制所述测试信号驱动器 213驱动所 述测试信号发射器 224发射所述第二 0TDR测试信号 λ 2' , 并接收和处理所述数据信号 接收器 222接收到的第二反射信号 λ 2' ' 。
当然, 由于所述第一 0TDR测试信号 λ ΐ' 和所述第二 0TDR测试信号 λ2' 的波长不 同, 二者之间并不会相互干扰, 在其他替代实施例中, 当 0TDR处理器 211 中对所述第 一 0TDR测试信号 λ 、 第一反射信号 λ ΐ' ' 和第二 0TDR测试信号 λ2' 、 第二反射 信号 λ2' ' 的处理相互独立时, 所述 0TDR处理器 211也可以同时启动所述第一 0TDR 测试信号 λ ΐ' 和所述第二 0TDR测试信号 λ2' 的发射, 来同时进行关于所述主干光纤 133和分布光纤 134的故障定位以及所述分支光纤 135和光网络单元 120的故障定责和 定界。
在本实施例提供的集成有 0TDR测试功能的光收发模块 200采用双波长的 0TDR测试 信号, 其中第一 0TDR测试信号 λ ΐ' 与下行数据信号 λ ΐ 共用光发射组件, 第二 0TDR 测试信号 λ 2' 与上行数.据信号 λ 2 共用光接收组件, 通过上述配置, 所述光收发模块 200可以接收到所述第一 0TDR测试信号 λ V 和所述第二 0TDR测试信号 λ V 相对应的 第一反射信号 λ ΐ' ' 和第二反射信号 λ 2' ' 。 根据所述第一反射信号 λ ΐ' ' 和第二 反射信号 λ 2' ' , 可以获得的第一 0TDR测试曲线和第二 0TDR测试曲线, 从而实现对 所述光分配网络 130的主干光纤 133和分布光歼 134的故障定位以及对所述光分配网络 130的分支光纤 135和光网络单元 120的线路分析和故障定责及定界, 而无需借助其他 辅助测试手段 (如在分支光纤上增加光反射器等)。 因此本申请提供的光收发模块 200可 以简单有效地对光纤网络进行故障检测和诊断分析, 不仅可以有效降低 0TDR测试成本, 还可以减小施工难度。 基于上述光收发模块 200, 本申请还进一步提供一种无源光网络系统的光纤检测方 法。 请参阅图 3, 其为本申请一种实施例提供的光纤检测方法的流程示意图, 所述光纤 检测方法包括:
步骤 S1: 接收 0TDR测试启动命令, 根据所述 0TDR测试启动命令, 判断启动 0TDR 测试类型。 如果所述 0TDR 测试类型为人工启动或例行启动且只启动基于第一波长 λ ΐ 的 0TDR测试(即第一 0TDR测试), 执行步骤 S2; 如果所述 0TDR测试类型为人工启动或 例行启动且只启动基于第二波长 λ 2的 0TDR测试(即第二 0TDR测试), 执行步骤 S3; 如 果所述 0TDR测试类型为人工启动或例行启动且同时启动第一 0TDR测试和第二 0TDR测 试, 执行步骤 S4 ; 如果所述 0TDR测试类型为自动测试, 执行步骤 S6。
其中, 所述人工启动可以为操作人员通过光线路终端 110的命令行控制终端或网管 系统操作界面上输入启动测试命令。所述例行启动可以为操作人员在光线路终端 110或 网管系统中设置启动测试周期, 当测试周期到达时自动触发光线路终端 110启动 0TDR 测试。 所述测试也可以为光线路终端 110或网管系统由告警和 /或性能统计等条件触发 启动测试。
步骤 S2 : 光线路终端 110的光收发模块 200启动第一 0TDR测试, 获得第一 0TDR 测试曲线, 测试完成后 ^丸行步骤 S10。
步骤 S3: 光线路终端 110的光收发模块启动第二 0TDR测试,获得第二 0TDR测试曲 线, 测试完成后执行步骤 S10。
步骤 S4 : 光线路终端 110的光收发模块启动第一 0TDR测试,获得第一 0TDR测试曲 线, 测试完成后执行步骤 S5。
步骤 S5 : 光线路终端 110的光收发模块启动第二 0TDR测试,获得第二 0TDR测试曲 线, 测试完成后执行步骤 S10。
在具体实施例中, 步骤 S4和步骤 S5可交换执行, 即可先启动第二 0TDR测试, 再 启动第一 0TDR测试。
步骤 S6: 光线路终端 110或网管系统收集光线路终端 110和 /或光网络单元 120的 告警、 性能统计和光模块参数等信息, 其中所述告警信息可以为传输汇聚 (Transpor t Convergence, TC)层告警和 /或光网络终端管理控制接口(ONT Management and Control Interface, OMCI)告警, 如信号丢失(L0S, Los s of Signa l)告警等。 所述性能统计可 以包括位交叉奇偶校验(Bi t Inter l eaved Par i ty, BIP)错误等, 所述光模块参数可以 包括发射光功率、 接收光功率、 偏振电流、 工作电压、 工作温度等。
步骤 S7: 光线路终端 110或网管系统判断故障是否发生在光分配网络 130的主干光纤
133或分布光纤 134, 如果故障发生在主干光纤 133或分布光纤 134, 执行步骤 S8; 否则, 执行步骤 S 9。
具体而言, 在步骤 S7中, 光线路终端 110或网管系统可以根据各个光网络单元 120发 生告警和性能参数劣化的比例来进行判断故障是否发生在光分配网络 130的主干光纤 133或分布光纤 134。 例如, 若系统中所有光网络单元 120同时发生告警或性能劣化, 可 判断故障发生在所述主干光纤 133 ; 若某个分布光纤 134连接的多个光网络单元 120同时 发生了告警或性能劣化, 可判断故障发生在所迷分布光纤 134。
步骤 S8 : 光线路终端 110的光收发模块启动第一 0TDR测试, 获得第一 0TDR测试曲线, 测试完成后执行步骤 S 1 0。
以图 2所示的光收发模块 200为例, 具体而言, 当光线路终端 110可通过 I 2C接口(或 者其他控制信号线) 219向所述光收发模块 200的 0TDR处理器 211发送第一 0TDR测试启动 命令。
所述 0TDR处理器 211在收到 0TDR测试启动命令之前处于待机或者低功耗状态, 在接 收到所述第一波长 0TDR测试启动命令之后, 所述 0TDR处理器 211可以向所述数据信号驱 动器 212提供第一 0TDR测试数据, 所述数据信号驱动器 212进一步将所述第一 0TDR测试数 据调制到所述数据信号发射器 221发射的第一波长 λ 1 (即下行数据波长 λ 1)光信号, 从 而形成并输出所述第一 0TDR测试信号 λ 。 所述数据信号发射器 221发射的第一 0TDR测 试信号 λ V 通过所述滤波组件 223传输到所述光纤适配器 230, 并输出到所述光分配网 络 1 30。
所述第一 0TDR测试信号 λ ΐ ' 在所述光分配网络 1 30传输过程中发生发射和 /或散射 并形成沿原路返回的第一反射信号 λ ΐ ' ' 。 所述第一反射信号 λ ΐ ' ' 从所述光纤适配 器 230输入, 并经过所述滤波组件 223传输到所述测试信号接收器 225。 所述测试信号接 收器 225进一步将其转换成电信号并反馈给所述 0TDR处理器 211。 所述 0TDR处理器 211对 所述第一反射信号 λ ΐ ' ' 进行预处理, 比如信号放大、 采样及数字处理等, 经过预处 理之后的信号可以进一步提供给其他功能模块, 比如所述光线路终端 110的数据处理模 块 201进行分析以获得第一 0TDR测试曲线。
步骤 S9 : 光线路终端 1 1 0的光收发模块启动第二 0TDR测试,获得第二 0TDR测试曲 线, 测试完成后执行步骤 S 1 0。
以图 2所示的光收发模块 200为例, 具体而言, 所述光线路终端 110可暂停分配上 行数据时隙以使得光网络单元 120停止发送上行数据, 通过 I 2C接口(或者其他控制信 号线) 219向所述光收发模块 200的 0TDR处理器 211发送第二 0TDR测试启动命令。所述 0TDR处理器 21 1在接收到所述第二 0TDR测试启动命令之后, 其可以控制所述通道选择 单元 214建立所述输入端 207与数据信号输出端 208之间的传输通道。并且,所述 0TDR 处理器 211还向所述测试信号驱动器 21 3提供第二 0TDR测试数据, 所述测试信号驱动 器 21 3进一步将所述第二 0TDR测试数据调制到所述测试信号发射器 224发射的第二波 长 λ 2 (即上行数据波长 λ 2)光信号, 从而形成并输出所述第二 0TDR测试信号 λ 2' 。 所 述测试信号发射器 224发射的第二 OTDR测试信号 λ V 通过所述滤波组件 223传输到所 述光纤适配器 230 , 并输出到所述光分配网络 130。
所述第二 0TDR测试信号 λ V 在所述光分配网络 130传输过程中发生反射和 /或散 射并形成沿原路返回的第二反射信号 λ 2' ' 。 所述第二反射信号 λ 2' ' 从所述光纤适 配器 230输入, 并经过所述滤波组件 223传输到所述数据信号接收器 222。 所述数据信 号接收器 222进一步将其转换成电信号并通过所述通道选择单元 214提供给所述 0TDR 处理器 211。 所述 OTDR处理器 211对所述第二反射信号 λ 2' 进行' 预处理, 比如信号 放大、 采样及数字处理等, 经过预处理之后的信号可以进一步提供给其他功能模块, 比 如所述光线路终端 1 1 0的数据处理模块 201进行分析以获得第二 OTDR测试曲线。
S10: 综合 OTDR测试曲线、 0TDR参考曲线、 告警、 性能统计和光模块参数等信息进 行光分配网络和光网络单元分析和故障诊断。
具体地, 所述光线路终端 110或网管系统可通过告警、 性能统计、 光模块参数等信 息判断系统是否发生故障, 并将所述第一 OTDR测试曲线与第一 0TDR参考 0TDR测试曲 线进行比较判断主干光纤 1 33和分布光纤 134是否发生劣化或故障。
如果系统运行正常且第一 0TDR测试曲线和第一 OTDR参考曲线一致,可判断主干光 纤 1 33和分布光纤 1 34正常。
如果系统运行正常, 但第一 0TDR测试曲线和第一 OTDR参考曲线不一致, 可判断主 干光纤 133和 /或分布光纤 1 34发生劣化, 并可 据第一 0TDR测试曲线和第一 OTDR参 考曲线不一致位置判断劣化发生的具体位置。
如果系统运行异常但第一 0TDR测试曲线和第一 OTDR参考曲线一致, 可判断主干光 纤 133和分布光纤 1 34正常, 故障可能发生在分支光纤 1 35或光网络单元 120上, 具体 可通过分析第二 OTDR测试曲线进一步判断; 否则, 可判断主干光纤 133和 /或分布光纤 1 34发生劣化故障, 并可 据第一 0TDR测试曲线和第一 OTDR参考曲线不一致位置判断 故障发生的具体位置。
所述光线路终端 110或网管系统还可以将所述第二 OTDR测试曲线与第二 OTDR参考 曲线进行比较判断分支光纤 1 35和光网络单元 120是否发生劣化或故障。
如果系统运行正常且测试获得的第二 OTDR测试曲线和第二 0TDR参考 0TDR测试曲 线一致, 可判断分支光纤 1 35和光网络单元 120正常。
如果系统运行正常, 但所述第二 0TDR测试曲线与所述参考 OTDR测试曲线相比, 某 个反射峰消失或反射峰高度降低, 则可根据所述反射峰判断所述反射峰对应的分支光纤 135发生劣化。
如果系统运行异常且所述第二 0TDR测试曲线与所述参考 0TDR测试曲线相比某个反 射峰消失或反射峰高度降低, 则可根据所述反射峰判断所述反射峰对应的分支光纤 135 发生故障。
如果系统运行异常但第二 OTDR测试曲线和第二 0TDR参考曲线一致,可判断某个光 网络单元 120发生故障。
当然, 在具体实施例中, 当所述光收发模块 200完成步骤 S8关于主干光纤 133或 分布光纤 134的故障定位之后,还可以进一步执行步骤 S9 ,判断分支光纤 135或光网络 单元 120是否也同时出现故障。
可选地, 当人工启动或例行启动或自动测试条件满足时, 可同时启动或分时启动第 一 0TDR测试、 第二 0TDR测试分别获得第一 0TDR测试曲线和第二 0TDR测试曲线, 并收 集告警、性能统计和光莫块参数等信息,综合第一 0TDR测试曲线、第一 0TDR参考曲线、 第二 OTDR测试曲线、 第二 OTDR参考曲线、 告警、 性能统计和光模块参数等信息进行光 分配网络 130以及光网络单元 120的分析与诊断。
可选地, 在具体实施例中, 基于获得第一 0TDR测试曲线和第二 OTDR测试曲线后, 可对其进行进一步数据综合处理, 得到一条能够对所述光分配网络 130的主干光纤、 分 布光纤以及分支光纤进行光纤分析和故障诊断的完整 OTDR测试曲线, 并结合所述完整 OTDR测试曲线、 OTDR参考曲线、 告警、 性能统计和光模块参数等信息进行光分配网絡 130以及光网络单元 120的分析与诊断。 除了图 2所示的结构以外, 本申请提供的光收发模块 200还可以具有其他结构。 以下结合图 4至图 10, 介绍本申请提供的光收发模块 200的其他替代实现方式的结构。
请参阅图 4 ,其为本申请另一个实施例提供的光收发模块的光组件 920的结构示意 图。 所述光组件 920的结构与图 2所示的光收发模块 200的光组件 220相类似, 主要区 别在于, 在图 2所示的光组件 220中, 所述测试信号发射器 224耦合到所述第二波分复 用滤波片 228的反射光路, 而所述测试信号接收器 225耦合到所述分光器滤波片 229的 反射光路; 而在图 4所示的光组件 920中, 滤波片 927、 928、 929均采用波分复用滤波 片, 并且数据信号接收器 922耦合到第一波分复用滤波片 927的反射光路, 测试信号接 收器 925耦合到第二波分复用滤波片 928的反射光路,而测试信号发射器 924耦合到第 三波分复用滤波片 929的反射光路。
其中, 所述第一波分复用滤波片 927可以具有第一波长 λ 1的光信号进行 100 %的 透射, 对具有第二波长 λ 2的光信号进行 X %的反射和(1- X) %的透射; 所述第二波分复 用滤波片 928可以对具有所述第一波长 λ 1的光信号进行 X %的反射和(1-X) %的透射, 对具有所述第二波长 λ :!的光信号进行 100 %的透射; 所述第三波分复用滤波片 929可 以对具有所述第一波长 λ 1的光信号进行 100 %的透射,对具有所述第二波长 λ 2的光信 号进行 100 %的反射。
通过上述设置可以使得所述测试信号发射器 924邻近于数据信号发射器 921设置, 而所述测试信号接收器 925近邻于数据信号接收器 922设置。
另外, 在图 4所示的光组件 920中, 所述测试信号发射器 924和测试信号接收器
925位于所述光组件 92[1的主光路的同一側, 而所述数据信号接收器 922位于所述主光 路的另一侧(相对侧), 即所述数据信号接收器 922与所述测试信号发射器 924和测试信 号接收器 925位于所述主光路的不同侧。
请参阅图 5 , 其为本申请另一个实施例提供的光收发模块的光组件 1020的结构示 意图。 与图 4所示的光组件 420相类似, 在所述光组件 920中, 测试信号发射器 1024 同样耦合到第三波分复用滤波片 1029的反射光路,而测试信号接收器 1025同样耦合到 第二波分复用滤波片 1028的反射光路, 以使得所述测试信号发射器 1024和所述测试信 号接收器 1025分别邻近于数据信号发射器 1021和数据信号接收器 922设置。 不过, 图 5所示的光组件 1020与图 4所示的光组件 920的主要区别在于, 在所述光组件 420中, 通过对第一波分复用滤波片 1027和第二波分复用滤波片 1028的倾斜方向进行设置,所 述测试信号发射器 1024和数据信号接收器 1022位于所述光组件 1020的主光路的同一 侧, 而所述测试信号接收器 1025位于所述主光路的另一侧(相对侧), 即所述数据信号 接收器 1025与所述测试信号发射器 1024和测试信号接收器 1022位于所述主光路的不 同側。
请参阅图 6,其为本申请另一个实施例提供的光收发模块的光组件 的结构示意 图。 所述光组件 420的结构与图 2所示的光收发模块 200的光组件 220相类似, 主要区 别在于, 在图 2所示的光组件 220中, 所述测试信号发射器 224和所述测试信号接收器 225位于所述光组件 220的主光路的不同侧, 而在所述光组件 420中, 通过对第二波分 复用滤波片 428的倾斜方向进行设置, 测试信号发射器 424和测试信号接收器 425可以 位于所述光组件 420的主光路的同一侧。 请参阅图 7 ,其为本申请另一个实施例提供的光收发模块的光组件 520的结构示意 图。 所述光组件 520的结构与图 2所示的光收发模块 200的光组件 220相类似, 主要区 别在于, 在图 2所示的光组件 220中, 所迷测试信号发射器 224位于所述第二波分复用 滤波片 228的反射光路, 所述数据信号接收器 222位于所述第一波分复用滤波片 227的 反射光路; 而在所述光组件 520中, 测试信号发射器 524位于第一波分复用滤波片 527 的反射光路, 数据信号接收器 522位于第二波分复用滤波片 528的反射光路。 并且, 本 实施例中, 为保证所述光组件 520的性能, 所述第一波分复用滤波片 527可以相应调整 为大约 90 %。
请参阅图 8 ,其为本申请另一个实施例提供的光收发模块的光组件 620的结构示意 图。 所述光组件 620的结构与图 7所示的光组件 520相类似, 主要区别在于, 在图 7所 示的光组件 520中, 所述测试信号发射器 524和所迷数据信号接收器 522位于所述光组 件 520的主光路的同一侧, 而在所述光组件 620中, 通过对第一波分复用滤波片 627的 倾斜方向进行设置,测试信号发射器 624和数据信号接收器 622可以位于所述光组件 620 的主光路的不同侧。
可替代地, 在图 7和图 8所示的光收发组件 520和 620中, 所述第一波分复用滤 波片 527和 627也可以采用分光器滤波片代替。具体地,当所述第一波分复用滤波片 527 和 627采用分光器滤波片代替时, 所述分光器滤波片可以对具有所述第一波长 λ 1的光 信号和具有所述第二波长 λ 2的光信号均进行大约 90 %的透射和大约 10 %的反射。
请参阅图 9,其为本申请另一个实施例提供的光收发模块的光组件 720的结构示意 图。 所述光组件 720的结构与图 2所示的光收发模块 200的光组件 220相类似, 主要区 别在于, 在所述光组件 720中, 波分复用滤波片 728位于分光器滤波片 729和光纤适配 器 730之间,且图 2所示的第一波分复用滤波片 227采用另一个分光器滤波片 727代替, 所述分光器滤波片 727位于波分复用滤波片 728的反射光路, 且所述分光器滤波片 727 可以对第二波长 λ 2的光^ ~号进行 7 %的透射和(100- y) %的反射,其中 y可以为 10。另 外,在所述光组件 720中,测试信号发射器 724位于所述分光器滤波片 727的透射光路, 而数据信号接收器 722位于所述分光器滤波片 727的反射光路。 可替代地, 所述测试信 号发射器 724也可以位于所述分光器滤波片 727的反射光路,且数据信号接收器 722位 于所述分光器滤波片 727的透射光路。
可选地, 在图 9所示的光组件 720中, 所述测试信号发射器 724、 所述数据信号接 收器 722、所述分光器滤波片 727和第一跨阻放大器可以采用 TO- CAN封装, 即形成第一 TO- CAN模块; 而数据信号发射器 721、 测试信号接收器 725、 所述分光器滤波片 729和 第二跨阻放大器也可以采用 TO- CAN封装, 即形成第二 TO- CAN模块。
请参阅图 10 , 其为本申请另一个实施例提供的光收发模块的光组件 820的结构示 意图。 所述光组件 820的结构与图 1所示的光收发模块 200的光组件 220相类似, 主要 区别在于: 所述光组件 820的滤波组件以及信号发射器或接收器的位置与图 2所示的光 组件 220不同。
具体而言, 所述光组件 820的滤波组件包括分光器滤波片 829、 第一波分复用滤波 片 827和第二波分复用滤波片 828。 其中, 分光器滤波片 829位于光纤适配器 830的延 伸方向的主光路, 所述分光器滤波片 829可以对第一波长 λ ΐ的光信号进行大约 x %的 透射以及大约(100-X) %的反射, 并对第二波长 λ 2 的光信号进^ "大约 y %的透射以及大 约(100- ) %的反射, 其中 x、 y可以为 90。 并且, 所述分光器滤波片 829的透射光路与 所述主光路一致, 而其反射光路与所述主光路相垂直。
所述第一波分复用滤波片 827位于所述分光器滤波片 829 的反射光路, 其可以对 第一波长 λ 1的光信号进行大约 100 %的反射, 而对第二波长 λ 2的光信号进行大约 100 %的透射。 并且, 测试信号接收器 825位于所述第一波分复用滤波片 827的反射光路, 而测试信号发射器 824位于所述第一波分复用滤波片 827的透射光路。 可替代地, 所述 测试信号接收器 825也可以位于所述第一波分复用滤波片 827的透射光路, 而所述测试 信号发射器 824位于所述第一波分复用滤波片 827的反射光路。
所述第二波分复用滤波片 828位于所述分光器滤波片 829的透射光路, 其可以对 第一波长 λ 1的光信号进行大约 100 %的透射, 而对第二波长 λ 2的光信号进行大约 100 %的反射。 并且, 数据信号接收器 822位于所述第二波分复用滤波片 828的反射光路, 而数据信号发射器 821位于所述第二波分复用滤波片 828的透射光路。 可替代地, 所述 或数据信号接收器 822也可以位于所述第二波分复用滤波片 828的透射光路, 而所述数 据信号发射器 821位于所述第二波分复用滤波片 828的反射光路。
可选地, 在图 10所示的光组件 820中, 所述第一波分复用滤波片 827、 所述测试 信号发射器 824、 所述测试信号接收器 825 和第二跨阻放大器可以采用同一个 TO- CAN 封装, 即形成测试信号收发 TO- CAN。 所述第二波分复用滤波片 828、 所述数据信号发射 器 821、所述数据信号接收器 822和第一跨阻放大器可以采用另一个 TO- CAN封装, 即形 成数据信号收发 TO- CAN。
在图 4-图 10的光组件 420-1020内部各个功能单元的功能及其应用到图 1所示的 无源光网络系统 100时进行数据收发和 0TDR测试的过程可以参照图 2和图 3中关于光 收发模块 200的相关描述, 以下不再赘述。
以上所述, 仅为本申请较佳的具体实施方式, 但本申请的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本申请披露的技术范围内, 可轻易想到的变 化或替换, 都应涵盖在本申请的保护范围之内。 因此, 本申请的保护范围应该以权 利要求的保护范围为准。

Claims

权利 要 求
1、 一种光收发模块, 其特征在于, 包括: 光组件和与所述光组件相连接的驱动组 件, 所述光组件包括:
数据信号发射器, 用于发射具有第一波长的第一数据信号, 并在所述驱动组件的控 制下向光纤网络发射具有所述第一波长的第一测试信号;
测试信号接收器, 用于接收所述第一测试信号在所述光纤网络发生反射而产生的第 一反射信号;
测试信号发射器, 用于在所述驱动组件的控制下向所述光纤网络发射具有第二波长 的第二测试信号;
数据信号接收器, 用于接收具有所述第二波长的第二数据信号, 并接收所述第二测 试信号在所述光纤网络发生反射而产生的第二反射信号。
2、 如权利要求 1所述的光收发模块, 其特征在于, 所述驱动组件包括测试处理器、 数据信号驱动器和测试信号驱动器;
所述测试处理器用于启动测试模式, 并对所述测试信号接收器和所述数据信号接收 器返回的第一反射信号和第二反射信号进行预处理;
所述测试信号驱动器和所述数据信号驱动器用于在所述测试处理器的控制下分别 驱动所述数据信号发射器和所述测试信号发射器发射所述第一测试信号和所述第二测 试信号。
3、 如权利要求 1 所述的光收发模块, 其特征在于, 所述驱动组件包括测试处理器 和数据信号驱动器;
所述测试处理器用于启动测试模式, 并对所述测试信号接收器和所述数据信号接收 器返回的第一反射信号和第二反射信号进行预处理;
所述数据信号驱动器用于在所述测试处理器的控制下驱动所述数据信号发射器发 射所述第一测试信号, 并且所述测试处理器还用于驱动所述测试信号发射器发射所述第 一测试信号。
4、 如权利要求 2或 3所述的光收发模块, 其特征在于, 所述数据信号驱动器还用 于在所述光收发模块进入测试模式之前, 在所述测试处理器的控制下, 驱动所述数据信 号发射器向对端设备发射暂停发送所述第二数据信号的指令。
5、 如权利要求 4所述的光收发模块, 其特征在于, 所述驱动组件还包括通道选择 单元, 所述通道选择单元用于在正常通信模式下将所述数据信号接收器接收到第二输出 信号转发给光线路终端的数据处理模块, 并在测试模式下将所述数据信号接收器接收到 第二反射信号提供给所述测试处理器。
6、 如权利要求 1 所述的光收发模块, 其特征在于, 所述光组件还包括光纤适配器 和滤波组件, 所述数据信号发射器、 所述数据信号接收器、 所述测试信号发射器和所述 测试信号接收器通过所述滤波组件耦合到所述光纤适配器;
所述滤波组件用于将所述数据信号发射器发射的第一数据信号与第一测试信号以 及所述测试信号发射器发射的所述第二测试信号提供到所述光纤适配器并输出到所述 光纤网络; 还用于将从所述光纤适配器输入的第二数据信号和第二反射信号提供到所述 数据信号接收器, 并将从所述光纤适配器输入的第一反射信号提供到所述测试信号接收 器。
7、 如权利要求 6所述的光收发模块, 其特征在于, 所述滤波组件包括沿所述光纤 适配器延伸的主光路方向依序设置的第一波分复用滤波片、第二波分复用滤波片和分光 器滤波片;
所述第一波分复用滤波片用于透射具有所述第一波长的光信号, 并部分反射部分透 射具有所述第二波长的光信号;
所述第二波分复用滤波片用于透射具有所述第一波长的光信号并反射具有所述第 二波长的光信号;
所述分光器滤波片用于部分反射部分透射具有所迷第一波长的光信号。
8、 如权利要求 7所述的光收发模块, 其特征在于, 所述数据信号接收器耦合到所 述第一波分复用滤波片的反射光路, 所述测试信号发射器耦合到所述第二波分复用滤波 片的反射光路, 所述数据信号发射器耦合到所述分光器滤波片的透射光路, 所述测试信 号接收器耦合到所述分光器滤波片的反射光路。
9、 如权利要求 7所述的光收发模块, 其特征在于, 所述测试信号发射器耦合到所 述第一波分复用滤波片的反射光路, 所述数据信号接收器耦合到所述第二波分复用滤波 片的反射光路, 所述数据信号发射器耦合到所述分光器滤波片的透射光路, 所述测试信 号接收器耦合到所述分光器滤波片的反射光路。
10、 如权利要求 6所述的光收发模块, 其特征在于, 所述滤波组件包括沿所述光纤 适配器延伸的主光路方向依序设置的第一波分复用滤波片、第二波分复用滤波片和第三 波分复用滤波片;
所述第一波分复用滤波片用于透射具有所述第一波长的光信号, 并部分反射部分透 射具有所述第二波长的光信号;
所述第二波分复用滤波片用于部分反射部分透射具有所述第一波长的光信号, 并透 射具有所述第二波长的光信号;
所述第三波分复用滤波片用于透射具有所述第一波长的光信号,反射具有所述第二 波长的光信号。
11、 如权利要求 1 (1所述的光收发模块, 其特征在于, 所述数据信号接收器耦合到 所述第一波分复用滤波片的反射光路, 所述测试信号接收器耦合到所述第二波分复用滤 波片的反射光路, 所述数据信号发射器耦合到所述第三波分复用滤波片的透射光路, 所 述测试信号发射器耦合到所述第三波分复用滤波片的反射光路。
12、 如权利要求 6所述的光收发模块, 其特征在于, 所述滤波组件包括第一分光器 滤波片、 第二分光器滤波片和波分复用滤波片;
所述波分复用滤波片设置在沿所述光纤适配器延伸的主光路, 用于透射具有所述第 一波长的光信号, 并反射具有所述第二波长的光信号;
所述第一分光器滤波片设置在所述波分复用滤波片的反射光路, 用于部分反射部分 透射具有所述第一波长的光信号;
所述第二分光器滤波片设置在所述波分复用滤波片的透射光路, 用于将部分反射部 分透射具有所述第二波长的光信号。
1 3、 如权利要求 12所述的光收发模块, 其特征在于, 所述测试信号发射器和所述 数据信号接收器分别耦合到所述第一分光器滤波片的透射光路和反射光路, 并与所述第 一分光器滤波片封装到第一 TO- CAN模块;
所述数据信号发射器和所述测试信号接收器分别耦合到所述第二分光器滤波片的 透射光路和反射光路, 并与所述第二分光器滤波片封装到第二 T0-CAN模块。
14、 如权利要求 6所述的光收发模块, 其特征在于, 所述滤波组件包括分光器滤波 片、 第一波分复用滤波片和第二波分复用滤波片;
所述分光器滤波片设置在沿所述光纤适配器延伸的主光路, 用于部分透射部分反射 具有所述第一波长的光信号, 并部分透射部分反射具有所述第二波长的光信号;
所述第一波分复用滤波片设置在所述分光器滤波片的反射光路, 用于透射具有所述 第二波长的光信号, 并反射具有所述第一波长的光信号;
所述第二波分复用滤波片设置在所述分光器滤波片的透射光路, 用于透射具有所述 第一波长的光信号, 并^^射具有所述第二波长的光信号。
15、 如权利要求 14所述的光收发模块, 其特征在于, 所述测试信号发射器和所述 测试信号接收器分别耦合到所述第一波分复用滤波片的透射光路和反射光路,并与所述 第一波分复用滤波片封装到第一 TO- CAN模块;
所述数据信号发射器和所述数据信号接收器分别耦合到所述第二波分复用滤波片 的透射光路和反射光路, 并与所述第二波分复用滤波片封装到第二 TO- CAN模块。
16、一种无源光网络系统, 其特征在于, 包括光线路终端、 多个光网络单元和光分 配网络, 所述光线路终端通过所述光分配网络连接到所述多个光网络单元, 其中所述光 线路终端和 /或所述光网络单元包括集成有测试功能的光收发模块, 所述光收发模块采 用如权利要求 1至 15中任一项所述的光收发模块。
17、 一种光线路终端, 其特征在于, 包括数据处理模块和光收发模块, 所述光收发 模块采用如权利要求 1至 15中任一项所述的光收发模块, 所述数据处理模块用于将第 一数据信号提供给所述光收发模块进行发射,并对所述光收发模块结合收到的第二数据 信号进行数据处理, 并且, 所述数据处理模块还用于根据所述光收发模块接收到的第一 反射信号和所述第二反射信号, 对光纤线路进行分析。
18、 一种无源光网络的光纤检测方法, 其特征在于, 包括:
在无源光网络出现故障时, 判断故障是否发生在光分配网络的主干光纤或分布光 纤;
如果是, 采用下行波长向所述光分配网络发送第一测试信号, 并根据所述第一测试 信号的反射信号, 对所述主干光纤或分布光纤的故障进行定位;
如果否, 釆用上行波长向所述光分配网络发送第二测试信号, 并根据所述第二测试 信号的反射信号, 确定出现故障的分支光纤或光网络单元。
19、 如权利要求 18所述的方法, 其特征在于, 所述第一测试信号和下行数据信号 采用光收发模块的同一个发射器进行发射,且所述第二测试信号的反射信号和上行数据 信号采用所述光收发模块的同一个接收器进行接收。
20、 一种光纤检测系统, 其特征在于, 包括光线路终端、 多个光网络单元和光分配 网络, 所述光线路终端通过所述光分配网络连接到所述多个光网络单元;
所述光分配网络包括第一级分光器和多个第二级分光器, 所述第一级分光器通过主 干光纤连接到所述光线路终端, 并通过分布光纤连接到所述多个第二级分光器, 所述多 个第二级分光器分别通过分支光纤连接到所述光网络单元;
所述光线路终端包括光收发模块, 所述光收发模块用于采用下行波长向所述光分配 网络发送第一测试信号, 并 t所述第一测试信号的反射信号, 对所述主干光纤或分布 光纤的故障进行定位; 且用于采用上行波长向所述光分配网络发送第二测试信号, 并才艮 据所述第二测试信号的反射信号, 确定出现故障的分支光纤或光网络单元。
PCT/CN2012/073547 2012-02-21 2012-04-05 光收发模块、无源光网络系统、光纤检测方法和系统 WO2012126403A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12760021.1A EP2819324B1 (en) 2012-02-21 2012-04-05 Optical transceiving module, passive optical network system, optical fibre detection method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2012/071400 2012-02-21
PCT/CN2012/071400 WO2012095044A2 (zh) 2012-02-21 2012-02-21 光收发模块、无源光网络系统、光纤检测方法和系统

Publications (2)

Publication Number Publication Date
WO2012126403A2 true WO2012126403A2 (zh) 2012-09-27
WO2012126403A3 WO2012126403A3 (zh) 2013-01-24

Family

ID=46507491

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2012/071400 WO2012095044A2 (zh) 2012-02-21 2012-02-21 光收发模块、无源光网络系统、光纤检测方法和系统
PCT/CN2012/073547 WO2012126403A2 (zh) 2012-02-21 2012-04-05 光收发模块、无源光网络系统、光纤检测方法和系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071400 WO2012095044A2 (zh) 2012-02-21 2012-02-21 光收发模块、无源光网络系统、光纤检测方法和系统

Country Status (3)

Country Link
EP (1) EP2819324B1 (zh)
CN (1) CN102714545B (zh)
WO (2) WO2012095044A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109639348A (zh) * 2018-12-20 2019-04-16 常州太平通讯科技有限公司 快速检测光缆通断及定位的方法
US10469040B2 (en) 2016-12-28 2019-11-05 Advantest Corporation Control device using GaN semiconductor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014082268A1 (zh) * 2012-11-29 2014-06-05 华为技术有限公司 一种光线路终端、光时域反射计及光信号收发方法和系统
CN102983915A (zh) * 2012-12-13 2013-03-20 深圳新飞通光电子技术有限公司 平面光波导型单纤双向四端口光组件与光收发一体模块
WO2014100939A1 (zh) * 2012-12-24 2014-07-03 华为技术有限公司 光纤特性测量方法和光模块
CN105577458B (zh) * 2016-03-10 2018-10-09 武汉邮电科学研究院 一种无源光接入网络中支路故障定位的装置和方法
WO2019056204A1 (zh) * 2017-09-20 2019-03-28 华为技术有限公司 光模块、onu、pon系统及信号处理方法
WO2020019327A1 (zh) * 2018-07-27 2020-01-30 华为技术有限公司 一种光时域反射仪及具有光时域反射功能的光组件
JP7389888B2 (ja) * 2019-08-26 2023-11-30 華為技術有限公司 光ネットワーク終端装置接続を決定する方法、装置及びシステム
CN112583476B (zh) * 2019-09-27 2022-05-17 华为技术有限公司 光网络终端以及光纤测试方法
CN110769334B (zh) * 2019-11-05 2022-05-20 珠海迈科智能科技股份有限公司 一种无源光纤设备的合并测试方法及系统
CN112866832B (zh) * 2019-11-12 2022-04-22 华为技术有限公司 一种测试系统、测试方法、测试模块以及光网络单元onu
CN111397848A (zh) * 2020-03-26 2020-07-10 吉林大学第一医院 一种消毒供应中心医用光导纤维检测方法
CN111669221B (zh) * 2020-04-29 2021-09-21 华为技术有限公司 故障定位的方法、装置和系统
CN116458093A (zh) * 2021-03-09 2023-07-18 华为技术有限公司 光通信系统和方法、光模块和应用于光模块的装置
CN114257315B (zh) * 2021-12-16 2024-04-23 成都瑞通视讯科技股份有限公司 一种光通信模块、器件及系统
CN115314105B (zh) * 2022-07-06 2023-07-21 江苏信而泰智能装备有限公司 Bob测试系统
CN116054936A (zh) * 2022-12-29 2023-05-02 中国铁建电气化局集团有限公司 光纤的故障实时监测装置、监测方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043272A (zh) * 2006-06-08 2007-09-26 华为技术有限公司 光纤线路故障的检测系统和方法
CN101079668B (zh) * 2007-07-05 2011-07-20 华为技术有限公司 光纤故障定位设备、方法及装置
KR100971676B1 (ko) * 2008-10-09 2010-07-22 한국과학기술원 수동형 광 가입자 망에서 장애 검출 방법 및 검출 장치, 및그 검출 장치를 구비한 수동형 광 가입자 망
EP2356760B1 (en) * 2008-10-17 2018-06-27 Exfo Inc. Method and apparatus for deriving parameters of optical paths in optical networks using a two-wavelength otdr and a wavelength-dependent reflective element
CN101790111B (zh) * 2009-01-23 2014-09-17 华为技术有限公司 一种光分布网检测方法、装置及系统
EP2337240B1 (en) * 2009-12-15 2015-11-11 Alcatel Lucent Multichannel WDM-PON module with integrated OTDR function
CN102244538B (zh) * 2010-05-10 2015-06-17 华为技术有限公司 分支光纤检测系统及方法、光分配网络和分光器
CN102244541A (zh) * 2010-05-13 2011-11-16 华为技术有限公司 点到多点光纤网络的检测方法、系统和装置
CN102281100B (zh) * 2010-06-12 2016-02-24 中兴通讯股份有限公司 长距无源光网络中实现光程检测的方法及装置
CN101924590B (zh) * 2010-08-25 2016-04-13 中兴通讯股份有限公司 无源光网络光纤故障的检测系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2819324A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10469040B2 (en) 2016-12-28 2019-11-05 Advantest Corporation Control device using GaN semiconductor
CN109639348A (zh) * 2018-12-20 2019-04-16 常州太平通讯科技有限公司 快速检测光缆通断及定位的方法

Also Published As

Publication number Publication date
CN102714545B (zh) 2015-04-08
EP2819324B1 (en) 2018-03-28
WO2012095044A2 (zh) 2012-07-19
CN102714545A (zh) 2012-10-03
EP2819324A4 (en) 2015-10-21
EP2819324A2 (en) 2014-12-31
WO2012126403A3 (zh) 2013-01-24
WO2012095044A3 (zh) 2013-01-24

Similar Documents

Publication Publication Date Title
WO2012126403A2 (zh) 光收发模块、无源光网络系统、光纤检测方法和系统
EP2602946B1 (en) Single-fiber bi-directional optical module and passive optical network system
TWI406526B (zh) 用於光網路監控及錯誤檢測之光信號切換模組
US8306417B2 (en) Bidirectional multi-wavelength optical signal routing and amplification module
US8750703B2 (en) Tunable coherent optical time division reflectometry
CN105451840B (zh) 一种光时域反射仪实现装置及系统
US8543001B2 (en) Cascaded injection locking of fabry-perot laser for wave division multiplexing passive optical networks
WO2012097554A1 (zh) 光线路终端、无源光网络系统及光信号的传输方法
WO2013097785A1 (zh) 一种光纤故障检测方法及装置
WO2011140953A1 (zh) 点到多点光纤网络的检测方法、系统和装置
CN106506069B (zh) 光线路终端、光收发模块、系统以及光纤检测方法
WO2014067094A1 (zh) 分支光纤的故障检测方法、装置及系统
WO2014100939A1 (zh) 光纤特性测量方法和光模块
US20240014896A1 (en) Optical splitting apparatus, optical splitting system, passive optical network, and optical fiber fault detection method
CN107078793B (zh) 一种光纤故障诊断方法、装置及系统
WO2021035487A1 (zh) 确定光网络终端连接的方法、设备及系统
WO2011153840A1 (zh) 长距无源光网络中实现光线路检测的方法及装置
Wong et al. Automatic protection, restoration, and survivability of long-reach passive optical networks
CN202050416U (zh) Olt模块用单光纤双向光收发一体组件
KR100707244B1 (ko) 파장 분할 다중화 수동형 광 가입자 망의 보호 복구 장치및 그 방법
CN102811097A (zh) Olt模块用单光纤双向光收发一体组件
US20080166122A1 (en) Optical network backup channel switching control device
Wong Survivable architectures of time and wavelength division multiplexed networks: A comparison of reliability, cost, and energy efficiency
Wong Resilience in next generation access networks: Assessment of survivable TWDM-PONs
KR20110041835A (ko) 무반사 필터를 이용한 광선로 감시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760021

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012760021

Country of ref document: EP