KR101531406B1 - 컬러리스 초 광대역 pon에 대한 비―냉각 자가―튜닝 캐비티를 위한 편광 안정화 방식 - Google Patents

컬러리스 초 광대역 pon에 대한 비―냉각 자가―튜닝 캐비티를 위한 편광 안정화 방식 Download PDF

Info

Publication number
KR101531406B1
KR101531406B1 KR1020137029920A KR20137029920A KR101531406B1 KR 101531406 B1 KR101531406 B1 KR 101531406B1 KR 1020137029920 A KR1020137029920 A KR 1020137029920A KR 20137029920 A KR20137029920 A KR 20137029920A KR 101531406 B1 KR101531406 B1 KR 101531406B1
Authority
KR
South Korea
Prior art keywords
optical
polarization
mirror
light
optical amplifier
Prior art date
Application number
KR1020137029920A
Other languages
English (en)
Other versions
KR20130138335A (ko
Inventor
마리오 마르티넬리
지안카를로 가비올리
파올라 갈리
도메니코 디 몰라
파올라 파롤라리
루시아 마라찌
루카 라쩨띠
루카 수베리니
도메니코 캄피
Original Assignee
알까뗄 루슨트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알까뗄 루슨트 filed Critical 알까뗄 루슨트
Publication of KR20130138335A publication Critical patent/KR20130138335A/ko
Application granted granted Critical
Publication of KR101531406B1 publication Critical patent/KR101531406B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computing Systems (AREA)
  • Plasma & Fusion (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

본 문서는 광 액세스 네트워크들의 분야에 관한 것이다. 특히, 본 문서는 특히(그러나, 배타적이지 않게), 파장 분할 다중화(Wavelength Division Multiplexing; WDM) 수동 광 네트워크를 위한 광 송신기에 관한 것이고, 이러한 송신기를 포함하는 WDM PON에 관한 것이다. 광 송신가 장치(7)가 설명된다. 장치(7)는 각각 캐비티의 제 1 종단 및 제 2 종단에서의 제 1 거울(64) 및 제 2 거울(41); 제 1 편광 면에서 편광된 광을 증폭하도록 구성된 광 증폭기(63)로서, 제 1 거울(64)의 업스트림의 캐비티 내에 위치되는, 상기 광 증폭기(63); 광 증폭기(63)로부터 제 2 거울(41)로 및 그 반대로 광을 송신하도록 구성된 광 도파로(5-2); 광 증폭기(63)의 업스트림 및 광 도파로(5-2)의 다운스트림의 캐비티 내에 위치된 제 1 비-상호 편광 회전기(82); 및 광 도파로(5-2)의 업스트림 및 제 1 거울(64)의 다운스트림의 캐비티 내에 위치된 제 2 비-상호 편광 회전기(81)를 포함하고, 제 1(82) 및 제 2(81) 비-상호 편광 회전기들은 제 2 거울(41)에 의해 반사된 후에 광 증폭기(63)에 재-진입하는 광이 필수적으로 제 1 편광 면에서 편광되도록 광의 편광을 회전시키도록 구성된다.

Description

컬러리스 초 광대역 PON에 대한 비―냉각 자가―튜닝 캐비티를 위한 편광 안정화 방식{POLARIZATION STABILIZATION SCHEME FOR UN-COOLED SELF-TUNING CAVITY FOR COLORLESS ULTRA BROADBAND PON}
본 문서는 광 액세스 네트워크들의 분야에 관한 것이다. 특히, 본 문서는 특히(그러나, 배타적이지 않게), 파장 분할 다중화(Wavelength Division Multiplexing; WDM) 수동 광 네트워크를 위한 광 송신기에 관한 것이고, 이러한 송신기를 포함하는 WDM PON에 관한 것이다.
수동 광 네트워크(passive optical network; 간략하게 PON)는 액세스 네트워크 즉, 복수의 이용자들이 코어 네트워크(예를 들면, 대도시 통신망)의 노드에 접속되도록 허용하는 네트워크의 일 유형이다. PON는 전형적으로 광 라인 종단(optical line termination; OLT) 및 광 분배 네트워크(optical distribution network; ODN)를 포함한다. ODN는 결과적으로 복수의 광 링크들(전형적으로 실리카-기반 단일-모드 광 섬유들을 포함하는) 및 루트(root)가 OLT에 접속되는 포인트-다중포인트 구조를 형성하기 위해 정렬된 또 다른 수동 광 구성요소들을 포함한다. OLT은 전형적으로 서비스 제공자의 중앙국(CO)에 위치된다. OLT의 각각의 광 링크는 각각의 광 네트워크 유닛(ONU)에 의해 그것의 원단(far end)에서 종단될 수 있다. 애플리케이션들에 의존하여, ONU은 이용자의 홈(홈 내의 광케이블(Fiber To The Home; FTTH)) 내에, 빌딩의 지하실(빌딩 내의 광케이블(Fiber To The Building; FTTB))에 또는 하나 이상의 빌딩들 근처의 커브(curb)(이동인구 밀집지역의 광케이블(Fiber To The Curb; FTTC))에 위치될 수 있다.
WDM PON에서, 각각의 ONU은 (ONU이 OLT으로의 송신을 위해 이용하는) 업스트림 파장 및 (OLT이 ONU으로의 송신을 위해 이용하는) 다운스트림 파장을 포함하는 각각의 쌍의 파장들을 이용함으로써 OLT과 통신할 수 있다. 업스트림 파장들은 예를 들면, 소위 C 대역(1530nm 내지 1565nm)에 위치될 수 있는 반면에, 다운스트림 파장들은 예를 들면, 소위 L 대역(>1565nm)에 위치될 수 있다.
WDM PON에서, ODN는 전형적으로 소위 "원격 노드", 원격 노드를 OLT에 접속시키는 피더 광 섬유(feeder optical fiber)(피더 섬유) 및 원격 노드로부터 방사하는 복수의 분배 광 섬유들(분배 섬유들)을 포함한다. 각각의 분배 섬유는 ONU에 의하거나 다수의 드롭 광 섬유들(드롭 섬유들)을 통해 분배 섬유를 다수의 ONU들과 접속시키는 파워 스플리터(power splitter)에 의해 그것의 원단에서 종단될 수 있다. 피더 섬유는 전형적으로 약 5km로부터 약 40km 범위의 길이를 갖는다. 분배 섬유들은 환경(대도시 또는 시골) 및 애플리케이션(FTTH, FTTB 또는 FTTC)에 의존하여, 전형적으로 수십 미터로부터 몇 킬로미터 범위의 길이를 갖는다. 원격 노드는 전형적으로 수동 노드이고 즉, 그것은 단지 전원이 필요하지 않은 수동 구성요소들(전형적으로 배열된 도파로 격자들, 결합기들, 등)들을 포함한다.
다운스트림 방향으로, OLT은 ONU들에 연관된 다운스트림 파장들에서 다운스트림 광 신호들(다운스트림 신호들)을 생성하고, 그들을 공지된 WDM 기술에 따라 다중화하고, 피더 섬유를 따라 원격 노드에 그들을 송신한다. 원격 노드에서, 다운스트림 신호들은 역다중화되고, 그들 각각은 각각의 분배 섬유에 따라 각각의 ONU에 포워딩(forwarding)된다.
업스트림 방향으로, 각각의 ONU은 그에 연관된 업스트림 파장에서 각각의 업스트림 신호를 생성하고 각각의 분배 섬유를 따라 원격 노드에 그것을 송신한다. 원격 노드는 공지된 WDM 기술에 따라 다양한 ONU들로부터 수신된 모든 업스트림 신호들을 다중화하고, 피더 섬유를 통해 그들을 OLT에 포워딩한다. OLT에서, 업스트림 신호들은 역다중화되고 후속 처리를 겪는다. 따라서, 각각의 ONU은 그에 할당된 업스트림 파장에서 송신할 수 있는 송신기를 포함해야 한다. ONU들의 제조 및 재고 비용 둘 모두를 최소화하기 위해, "컬러리스(colorless)" 즉, 원칙적으로 넓은 범위의 파장들에 걸쳐 광 신호들을 송신할 수 있고, ONU이 분배 섬유의 원단에 접속될 때, ONU에 할당된 적당한 업스트림 파장에 대해서 WDM PON 그 자신에 의해 광학적으로 튜닝될 수 있는 동일한 유형의 송신기를 모든 ONU들에 제공하는 것이 바람직하다.
본 문서에서, 자가-튜닝 직접 변조된 레이저들(STML)을 이용함으로써 컬러리스 ONU들을 구현하도록 제안되고, 자가-튜닝은, 레이저가 원격 노드 내의 파장 선택 수단 예를 들면, 배열 도파로 격자(AWG)에 의존하는 파장들의 한 세트에 대해 튜닝하도록 구성됨을 나타낸다. 또한, STML는 레이징(lasing) 및 데이터 변조를 가능하게 하도록 이득 및 변조 유닛(GMU)을 호스팅(hosting)한다. 이러한 STML들에서, 레이저 캐비티는 2개의 반사 수단들 예를 들면, 2개의 거울들에 의해 규정되고, 상기 2개의 거울들은 (ONU에서의) 이득 매체 다음에 위치될 수 있는 뒤쪽 거울 및 (원격 노드에서) 파장 선택 수단들 다음에 위치될 수 있는 원격 거울이다. 상기 나타낸 바와 같이, ONU 및 원격 노드는 분배 섬유에 의해 연결된다. 이와 같이, 원격 거울은 몇 킬로미터까지의 길이를 갖는 분배 섬유에 의해 GMU에 연결될 수 있다.
레이저 캐비티는 GMU과 같은 능동 구성요소들 뿐만 아니라, AWG와 같은 수동 구성요소들, 분배 섬유, 신호 탭핑(signal tapping)을 위한 광 결합기들 및 파워 모니터들, 스플라이스들(splices)과 섬유 피그테일들(fiber pigtails)을 포함할 수있다. 레이저 캐비티에서의 모든 수동 구성요소들의 그룹은 임바디 디바이스들(Embody Devices; ED)로서 언급될 수 있다.
멀리 미치고 높은 주파수 동작을 승인하는 동안, XFP들(10G의 스몰 폼 팩터가 접속가능한) 또는 SFP들(스몰 폼 팩터가 접속가능한)와 같은 작은 폰트-팩터 유닛들에서의 통합을 허용하는 비용-경쟁력 있는 ONU 해결책을 성취하기 위해, 처프 팩터(chirp factor)를 최소화하는 동안 및 비-냉각 모드에서 동작하는 동안, GMU의 이득, 출력 파워 및/또는 변조 대역폭을 최대화하는 것이 바람직하다. 예로서, 반도체 기반 GMU들의 경우에, 상기 언급된 타겟 파라미터들은 일반적으로 GMU의 물리적 구조를 엔지니어링(engineering)함으로써 제어될 수 있는 트레이드-오프들(trade-offs)로 결합된다. 상기 언급된 타겟 파라미터들에 관한 GMU의 엔지니어링은 일반적으로 GMU의 편광 감응 동작을 허용할 때, 유용할 수 있다. 일례는 비-냉각 동작 하에서, 그러나 상대적으로 높은 편광 의존 이득(PDG)을 희생하여 높은 출력 파워, 이득 및 변조 대역폭을 설명하는 다중-양자 우물(MQW) 구조들에 기초한 반도체 디바이스들이다.
본 문서는 컬러리스, 비용 효율적인 ONU들을 제공하는 상기 언급된 기술적 문제점을 다룬다. 높은 출력 파워, 이득 및 변조 대역폭을 갖는 비-냉각 GMU들을 이용하여 STML들을 이용하도록 제안된다. 이 문맥에서, ED의 복굴절에 의해 야기된 효과들과 관계없이 STML 동작시키기 위한 수단들이 설명된다. 편광 독립 레이저 캐비티를 제공하는 결과로서, 임의적인 PDG를 갖는 편광 감응 GMU이 즉, 높은 출력 파워, 이득 및 변조 대역폭을 성취하고 잠재적으로 GMU들의 비-냉각 동작을 가능하게 하기 위해 이용될 수 있다.
일 양태에 따라, 예를 들면, WDM PON를 위한 광 송신기 장치가 설명된다. 장치는 각각 캐비티의 제 1 종단 및 제 2 종단에서의 제 1 거울(또한 뒤쪽 거울로서 언급되는) 및 제 2 거울(또한 원격 거울로서 언급되는)을 포함할 수 있다. 제 1 및 제 2 거울은 캐비티에서 전후로 전파하는 광 방사를 생성하는 레이저 캐비티의 종단들을 생성할 수 있다.
이 목적을 위해, 장치는 캐비티 내에서 전파하는 광을 (또한) 증폭하도록 구성된 광 증폭기를 포함할 수 있다. 광 증폭기는 제 1 거울의 업스트림의 캐비티 내에 위치될 수 있다. 광 증폭기는 제 1 편광 즉, 제 1 편광 면 내에서 편광되는 광을 가지는 광을 생성하고/생성하거나 증폭하도록 구성될 수 있다. 특히, 광 증폭기는 편광 의존 증폭기일 수 있는데, 이는 광 증폭기의 이득 및/또는 출력 파워가 입력 광의 편광에 의존할 수 있음을 의미한다. 이와 같이, 광 증폭기는 제 1 편광 면 내에서 편광되는 광에 대한 최대 이득 및/또는 출력 파워를 제공하도록 구성될 수 있다. 즉, 증폭기는 제 1 편광 면에서의 광에 대한 특별히 강한 증폭 이득을 나타낼 수 있다. 또한, 광 증폭기는 컬러리스 광 증폭기 즉, 넓은 광 스펙트럼의 광을 생성하는 광 증폭기일 수 있다.
용어 "업스트림"이 WDM PON 네트워크들에서 이용된 규정과 비슷하게 이용되며, OLT으로부터 ONU으로 이동하는 광의 전파 방향은 다운스트림 방향으로서 언급되고, OLU으로부터 ONT로 이동하는 광의 전파 방향은 업스트림 방향으로서 언급됨을 유의해야 한다.
광 송신기 장치는 광 증폭기로부터 제 2 거울로 및 그 반대로 광을 송신하도록 구성된 광 도파로를 포함할 수 있다. 광 도파로는 복굴절 및 편광의 주축의 변화를 나타낼 수 있다. 이와 같이, 광 도파로는 광이 광 증폭기로부터 제 2 거울을 향해(및 그 반대로) 송신되기 때문에, 광의 편광에 영향을 줄 수 있거나 상기 광의 편광을 변경시킬 수 있다. 광 도파로는 단일-모드 섬유 예를 들면, 원격 노드를 ONU과 접속시키는 PON의 분배 섬유일 수 있다.
광 송신기 장치는 광 증폭기의 업스트림 및 광 도파로의 다운스트림의 캐비티 내에 위치된, ±45도의 회전 파워(여기서 용어 "±"는 "플러스" 또는 "마이너스"를 언급한다)를 갖는 제 1 비-상호 편광 회전기 또는 패러데이 회전기(Faraday Rotator; FR)를 포함할 수 있다. 즉, 제 1 비-상호 편광 회전기(또는 FR)는 광 증폭기와 광 도파로 사이에 위치될 수 있다. 제 1 비-상호 편광 회전기(또는 FR)는 광의 편광을 회전시키도록 구성될 수 있다. 이와 같이, 회전기에 진입하는 광의 편광은 회전기의 입력부에 대한 출력부에서 변경될 수 있다. 제 1 비-상호 편광 회전기(또는 FR)는 전체적인 회전(즉, 전파 방향들 양쪽 모두로의 회전의 합)이 실질적으로 ±90도가 되도록, 업스트림 방향으로 광을 회전하고 다운스트림 방향으로 광을 회전시키도록 구성될 수 있다. 특히, 제 1 비-상호 편광 회전기(또는 FR)는 광의 편광을 실질적으로 ±45도(180도의 플러스 또는 마이너스 배수)만큼 회전시키도록 구성될 수 있다.
광 송신기 장치는 광 도파로의 업스트림 및 제 2 거울의 다운스트림의 캐비티 내에 위치된 ±45도의 회전 파워를 갖는 제 2 비-상호 편광 회전기(또는 FR)를 포함할 수 있다. 즉, 제 2 비-상호 편광 회전기(또는 FR)는 광 도파로와 제 2 거울(또한 원격 거울로서 언급되는) 사이에 위치될 수 있다. 제 2 비-상호 편광 회전기(또는 FR)는 소위 패러데이 회전기 거울(Faraday Rotator Mirror; FRM)을 만들기 위해 광 도파로와 제 2 거울의 바로 앞 사이에 위치될 수 있다.
전체적으로, 제 1 및 제 2 비-상호 편광 회전기(또는 FR)는 제 2 거울에 의해 반사된 후에 광 증폭기에 재-진입하는 광이 필수적으로 제 1 편광 면과 정렬되도록 광의 편광을 회전시키도록 구성될 수 있고 즉, 광은 광의 SOP가 증폭기의 편광 의존 이득의 특성들에 대응하도록 편광된다. 즉, 리턴(return)된 광의 편광 상태는 증폭기의 편광 의존 특성들에 대응하는 미리 결정된 경계들 내에 있다. 상기 개요된 바와 같이, 이것은 제 1 비-상호 편광 회전기(또는 FR)가 각각 실질적으로 ±45도(180도의 플러스 또는 마이너스 배수)만큼 업스트림 방향으로의 광의 회전 및 리트레이싱(retracing) 다운스트림 방향으로의 광의 회전을 수행함을 보장함으로써 성취될 수 있다. 또한, 이것은 제 2 비-상호 편광 회전기(또는 FR)가 각각 실질적으로 ±45도(180도의 플러스 또는 마이너스 배수)만큼 업스트림 방향으로의 광의 회전 및 리트레이싱 다운스트림 방향으로의 광의 회전을 수행함을 보장함으로써 성취될 수 있다. 전체적으로, 재-진입하는 광의 적절한 편광은 캐비티를 통해 왕복(round-trip)(예를 들면, 단일 왕복)을 하는 광의 총 편광 회전이 실질적으로 0 또는 360도, 또는 그의 배수의 총 편광 회전을 발생시킴을 보장함으로써 성취될 수 있다.
광 송신기 장치는 광 도파로의 캐비티 업스트림 및 제 2 비-상호 편광 회전기(또는 FR)의 다운스트림 내의 파장 선택 유닛을 포함할 수 있다. 특히, 파장 선택 유닛은 WDM PON의 원격 노드 내에 위치될 수 있다. 파장 선택 유닛은 광 증폭기로부터 인입하는 광으로부터의 제 1 파장에서의 광을 필터링 아웃(filtering out)하도록 구성될 수 있다. 제 1 파장에서 광을 필터링하기 위해, 파장 선택 유닛은 광 다중화기/역다중화기 예를 들면, 배열된 도파로 격자, 박막 필터, 회절 격자 및/또는 에첼 격자(echelle grating)를 포함할 수 있다.
제 1 파장에서의 필터링된 광의 일부는 파장 선택 유닛의 반사 포트를 통해 제 2 거울에 결합될 수 있다. 이 목적을 위해, 파장 선택 유닛은 파워 스플리터 또는 결합기를 포함할 수 있다. 이와 같이, 광 선택 유닛은 광 증폭기에 의해 생성된 (컬러리스) 광으로부터 제 1 파장에서의 광을 분리시킬 수 있다. 이와 같이, 단지 제 1 파장에서의 광이 광 증폭기에 다시 전달됨이 보장될 수 있다. 이것을 행함으로써, 캐비티에서 전후로 전파하는 제 1 파장에서의 광 방사가 생성될 수 있다.
파장 선택 유닛은 또한 파장 선택 유닛의 출력 포트로 제 1 파장에서의 필터링된 광의 또 다른 일부를 지향시키도록 구성될 수 있다. 이것을 행함으로써, 제 1 파장에서의 광 신호는 파장 선택 유닛의 출력 포트에서 제공될 수 있다. 이 출력 포트는 업스트림에 대한 광 신호를 PON의 OLT을 향해 송신하는 피더 섬유에 접속될 수 있다.
상기 표시된 바와 같이, 파장 선택 유닛은 PON의 원격 노드의 일부일 수 있다. 특히, 제 2 비-상호 편광 회전기(또는 FR), 제 2 거울 및/또는 파장 선택 유닛은 광 도파로(예를 들면, 분배 섬유)를 통해 광 증폭기에 광학적으로 접속될 수 있는 원격 유닛과 함께 포함될 수 있다.
즉, 제 1 파장에서 광 업링크 신호를 제공하도록 구성된 원격 노드가 설명된다. 원격 노드는 본 문서에서 설명된 바와 같은 파장 선택 유닛을 포함할 수 있다. 파장 선택 유닛은 복수의 파장들을 포함하는 광 신호로부터 제 1 파장에서의 광 신호를 분리하도록 구성된 다중화기/역다중화기(예를 들면, AWG)를 포함할 수 있다. 또한, 원격 노드는 제 1 파장에서 광 신호의 적어도 2개의 부분들을 추출하도록 구성된 광 파워 스플리터를 포함할 수 있다. 광 신호의 제 1 부분은 상기 개요된 제 2 비-상호 편광 회전기(또는 FR)로서 구성될 수 있는 비-상호 편광 회전기(또는 FR), 및 본 문서에서 개요된 제 2 거울 또는 뒤쪽 거울로서 구성될 수 있는 후속 거울로 지향될 수 있다. 2개의 구성요소들은 함께(즉, 거울 및 FR) 조인트(joint) 구성요소에서 FR 및 거울의 기능성을 제공할 수 있는 패러데이 회전기 거울(FRM)을 형성할 수 있다. 광 신호의 제 2 부분은 원격 노드의 업링크 포트로 지향되어, 광 업링크 신호를 생성할 수 있다. 업링크 포트는 OLT에 이르는 피더 섬유에 접속되도록 구성될 수 있다. 또한, 원격 노드는 예를 들면, 분배 섬유를 접속시키도록 구성된 다운링크 포트를 구성할 수 있다. 전형적으로, 원격 노드는 복수의 다운링크 포트들을 포함한다. 원격 노드는 다운링크 포트를 통해 복수의 파장들을 포함하는 광 신호를 수신하도록 구성될 수 있다. 복수의 파장들을 포함하는 광 신호는 예를 들면, 분배 섬유에 접속된 ONU으로부터 수신될 수 있다.
광 송신기 장치는 광 증폭기의 편광기 업스트림 및 제 1 비-상호 편광 회전기(또는 FR)의 다운스트림을 포함할 수 있다. 즉, 광 송신기 장치는 편광 필터를 포함할 수 있다. 이러한 편광기 또는 편광 필터들은 단지 미리-결정된 편광 면에 광을 통과시키도록 구성될 수 있다. 특히, 편광기는 단지 제 1 편광 면에서의 편광을 가지는 광이 광 증폭기로부터 송신됨을 보장하도록 구성될 수 있다. 광 증폭기들(예를 들면, 이득 및 변조 유닛)은 상이한 편광들에서 즉, 제 1 편광 면과 상이한 편광들에서 광을 생성할 수 있다(예를 들면, 자발적 방출의 결과로서). 이것은 특히 편광 독립 광 증폭기들의 경우일 수 있다. 편광기를 이용함으로써, 상이한 편광들에서의 이러한 광은 캐비티를 통해 이동하지 못하게 할 수 있다.
광 송신기 장치는 제 1 파장에서 광 방사를 변조하도록 구성된 변조기를 포함할 수 있다. 이 목적을 위해, 변조기는 전형적으로 캐비티 내에 위치된다. 예로서, 광 증폭기 및 변조기는 반도체 광 증폭기를 이용하여 예를 들면, 다중-양자 우물 반도체 광 증폭기를 이용하여 구현될 수 있다. 광 증폭기는 대안적으로 벌크 증폭기들(bulk amplifiers)을 이용하여 구현될 수 있다. 제 1 비-상호 편광 회전기(또는 FR), 광 증폭기, 제 1 거울 및/또는 변조기들이 스몰 폼 팩터 접속가능한 유닛(예를 들면, XFP 또는 SFP) 내에 통합될 수 있음을 유의해야 한다.
또 다른 양태에 따라, 예를 들면, WDM PON에 대한 광 구성요소가 설명된다. 특히, 광 구성요소는 WDM PON의 ONU의 일부일 수 있다. 광 구성요소는 변조된 광 신호를 생성하도록 구성될 수 있다. 이 목적을 위해, 광 구성요소는 제 1 편광에서 변조된 광을 생성하도록 구성된 반도체 광 증폭기를 포함할 수 있다. 또한, 광 구성요소는 구성요소의 후면(즉, 다운스트림 방향으로)에서의 반사 섹션을 포함할 수 있다. 반사 섹션 예를 들면, 거울은 변조된 광을 반사하도록 구성될 수 있다. 일 실시예에서, 광 구성요소는 광 구성요소의 전면, 특히 광 증폭기의 전면에서의 편광기를 포함할 수 있다. 특히, 편광기는 광 증폭기에 직접적으로 인접할 수 있거나 FR에 인접할 수 있다.
게다가, 광 구성요소는 구성요소의 전면에서의(즉, 업스트림 방향을 향해) 비-상호 편광 회전기(또는 FR)를 포함할 수 있다. 비-상호 편광 회전기(또는 FR)는 상기 개요된 제 1 비-상호 편광 회전기(또는 FR)로서 구성될 수 있다. 특히, 비-상호 편광 회전기(또는 FR)는 변조된 광의 편광을 회전하여, 변조된 광 신호를 생성하도록 구성될 수 있다. 또한, 광 구성요소는 구성요소의 전면에서의, 구성요소 외부의 광 도파로 예를 들면, PON의 분배 섬유에 변조된 광 신호를 제공하도록 구성된 출력 포트를 포함할 수 있다. 광 구성요소는 스몰 폼 팩터 접속가능한 유닛(예를 들면, XFP 또는 SFP) 내에 통합될 수 있다.
또 다른 양태에 따라, 파장 분할 다중화 수동 광 네트워크(WDM PON)가 설명된다. WDM PON는 광 업링크 신호를 송신하도록 구성된 광 네트워크 유닛(ONU)을 포함할 수 있다. 전형적으로, WDM PON는 복수의 광 업링크 신호들을 각각 송신하도록 구성된 복수의 ONU들을 포함한다. 복수의 광 업링크 신호들은 상이한 파장들을 갖는다. 또한, WDM PON는 피더 섬유 상에 광 업링크 신호(또는 복수의 광 업링크 신호들)를 다중화하도록 구성된 원격 노드를 포함할 수 있다. 피더 섬유는 원격 노드를 예를 들면, 네트워크의 CO에 위치된, 광 라인 종단(OLT)에 접속시킬 수 있다. 광 라인 종단은 광 업링크 신호(또는 복수의 광 업링크 신호들)를 수신하도록 구성될 수 있다. WDM PON의 광 네트워크 유닛 및 원격 노드는 본 문서에서 개요된 특징들 중 임의의 특징을 가지는 광 송신기 장치를 포함할 수 있다.
또 다른 양태에 따라, 제 1 및 제 2 거울을 포함하는 캐비티 내에 광 신호를 생성하기 위한 방법이 설명된다. 방법은 제 1 편광 면 내에서 편광되는 광 신호를 생성하고/생성하거나 증폭하는 단계를 포함할 수 있다. 이것은 광 증폭기(본 문서에서 설명된 바와 같은 컬러리스 광 증폭기)를 이용함으로써 성취될 수 있다. 방법은 제 1 거울을 이용하여 광 증폭기의 후면(광 증폭기의 다운스트림)에서 광 신호를 반사시키는 단계를 포함할 수 있다. 광 증폭기의 전면에서(즉, 광 증폭기의 업스트림 방향으로), 업스트림 전파에 대한 광 신호의 편광(즉, 편광 면)은 초기 회전에 의해 회전될 수 있다. 예로서, 초기 회전은 실질적으로 ±45도(180도의 플러스 또는 마이너스 배수)일 수 있다. 초기 회전은 상기 개요된 바와 같이, 제 1 비-상호 편광 회전기(또는 FR)에 의해 수행될 수 있다. 초기 회전 이전에, 광 신호는 광 신호가 단지 제 1 편광 면 내에서 편광됨을 보장하기 위해 광 증폭기의 출력부에서 편광될 수 있다.
회전 다음에, 광 신호는 광 도파로를 통해 제 2 거울로 송신될 수 있다. 방법은 송신 다음에, 제 2 거울에 의한 반사 이전에 제 2 거울에서 실질적으로 ±45도(180도의 플러스 또는 마이너스 배수) 만큼 광 신호의 편광을 회전시키는 단계를 포함할 수 있다. 회전은 상기 개요된 바와 같이, 제 2 비-상호 편광 회전기(또는 FR)에 의해 수행될 수 있다. 후속적으로, 광 신호는 제 2 거울에 의해 반사된다.
광 증폭기를 향한 다운스트림 전파에 대해, 방법은 제 2 거울에서 실질적으로 ±45도(180도의 플러스 또는 마이너스 배수) 만큼 광 신호의 편광의 회전을 진행할 수 있다. 회전은 상기 개요된 바와 같이, 제 2 비-상호 편광 회전기(또는 FR)에 의해 수행될 수 있다. 회전 다음에, 광 신호는 광 도파로를 통해 광 증폭기로 송신될 수 있다. 또한, 방법은 광 증폭기에 진입하기 이전에 최종 회전에 의해 광 신호의 편광을 회전시키는 단계를 포함할 수 있다. 예로서, 최종 회전은 실질적으로 ±45도(180도의 플러스 또는 마이너스 배수)일 수 있다. 초기 회전은 상기 개요된 바와 같이, 제 1 비-상호 편광 회전기(또는 FR)에 의해 수행될 수 있다. 초기 및 최종 회전은, 광 증폭기에 재-진입하는 광 신호가 제 1 편광 면 내에서 편광을 갖도록 선택될 수 있다.
본 문서에서 개요된 바와 같은 그것의 바람직한 실시예들을 포함하는 방법들 및 시스템들은 독자적으로 또는 이 문서에서 개시된 다른 방법들 및 시스템들과 조합하여 이용될 수 있다. 또한, 본 특허 출원에서 개요된 방법들 및 시스템들의 모든 양태들은 임의적으로 조합될 수 있다. 특히, 청구항들의 특징들은 임의적인 방식으로 서로 조합될 수 있다.
본 발명은 첨부된 도면들에 대하여 일 예시적인 방식으로 아래에 설명된다.
도 1은 일 예시적인 WDM PON를 도시한 도면.
도 2a 및 도 2b는 WDM PON의 일 예시적인 부분 및 그것의 ONU들에 할당된 업스트림 및 다운스트림 파장들을 도시한 도면들.
도 3의 a)는 WDM PON의 일 예시적인 부분의 또 다른 표현을 도시한 도면.
도 3의 b) 및 도 3의 c)는 편광 연산자들(polarization operators)을 이용하는 도 3의 a)의 WDM PON의 일 예시적인 표현을 도시한 도면들.
도 4는 패러데이 회전기들을 포함하는 WDM PON의 일 예시적인 부분 및 편광 연산자들을 이용하는 WDM PON의 표현을 도시한 도면들.
도 5는 패러데이 회전기들을 포함하는 WDM PON의 또 다른 예시적인 부분 및 편광 연산자들을 이용하는 WDM PON의 표현을 도시한 도면들.
도 6a 및 도 6b는 이득 및 변조 유닛에 진입하는 광의 편광 상태에 관련되는 캐비티 출력에서의 광의 예시적인 편광 상태들을 도시한 도면들.
도 7a 및 도 7b는 도 6a 및 도 6b의 편광 상태들을 결정하기 위한 예시적인 실험적 설정들을 도시한 도면들.
도 8은 패러데이 회전기들 및 편광기를 포함하는 WDM PON의 또 다른 예시적인 부분을 도시한 도면.
도 1은 OLT(2), 피더 섬유(3), 원격 노드(4), 복수(n)의 분배 섬유들(5-1, 5-2,..., 5-n) 및 복수(n)의 ONU들(6-1, 6-2,...,6-n)을 포함하는 일 예시적인 WDM PON(1)를 개략적으로 도시한다. 수(n)는 2와 동일하거나 예를 들면, 8, 16, 32등과 같은, 2보다 큰 정수이다. OLT(2)은 바람직하게 피더 섬유(3)에 의해 원격 노드(4)에 접속된다. 결과적으로, 원격 노드(4)는 각각의 분배 섬유(5-1, 5-2,..., 5-n)에 의해 각각의 ONU(6-1, 6-2,..., 6-n)에 접속된다.
피더 섬유(3)는 예를 들면, 40km까지의 길이를 가질 수 있다. 바람직하게, 각각의 분배 섬유(5-1, 5-2,..., 5-n)는 수십 미터로부터 몇 킬로미터 사이에 포함된 길이를 갖는다. 피더 섬유(3) 및 분배 섬유들(5-1, 5-2,..., 5-n)은 표준 단일-모드 ITU-T G.652-순응 광 섬유들일 수 있다. 모든 ONU들(6-1, 6-2,..., 6-n)은 바람직하게 실질적으로 동일한 구조를 갖는다.
또한, 도 1에서, 일 예시적인 ONU(6-2)의 구조가 상세하게 도시된다. ONU(6-2)은 바람직하게 다이플렉서(diplexer)(60), 수신기(61), 변조기(62), 광 증폭기(63) 및 제 1 거울(64)을 포함한다. 다이플렉서(60)는 바람직하게 분배 섬유(5-2)에 접속된 제 1 포트, 수신기(61)에 접속된 제 2 포트 및 변조기(62)에 접속된 제 3 포트를 갖는다. 수신기(61)는 예를 들면, PiN 다이오드 또는 아발란체 포토-다이오드(Avalanche Photo-Diode; APD)와 같은, 임의의 공지된 광 수신기일 수 있다. 변조기(62)는 바람직하게 진폭 변조기이다. 광 증폭기(63)는 그를 통해 전파하는 광 신호를 증폭하기 위해 적합한 임의의 광 구성요소를 포함할 수 있다. 바람직하게, 광 증폭기(63)는 높은 포화 이득 특히, 낮은 입력 포화 파워 및 높은 출력 포화 파워를 나타낸다.
변조기(62) 및 광 증폭기(63)는 분리된 구성요소들일 수 있다. 이 경우에, 광 증폭기(63)는 예를 들면, 에르븀-도핑된 섬유 증폭기(erbium-doped fiber amplifier; EDFA)를 포함할 수 있는 반면에, 변조기(62)는 예를 들면, 전기-광 변조기(예를 들면, 마하-젠더 변조기 또는 전기-흡수 변조기) 또는 음향-광 변조기를 포함할 수 있다. 대안적으로, 변조기(62) 또는 광 증폭기(63)는 구동 신호(예를 들면, 전기 신호)에 따라 그것의 이득을 변동시키기 위해 적합한 이득 매체를 포함하는 동일한 구성요소에 통합되어, 그것의 출력부에서 진폭-변조된 광 신호를 제공할 수 있다. 이 유형의 일 예시적인 구성요소는 반도체 광 증폭기(Semiconductor Optical Amplifier; SOA)이다. 또한, ONU 6-2는 또한 변조기(62)/광 증폭기(63)에 구동 신호를 제공하기 위해 적합한 전자 회로(도 1에서 도시되지 않음)를 포함할 수 있다.
제 1 거울(64)은 바람직하게 OLT(2)과 ONU(6-2) 사이의 통신들을 위해 이용된 파장 범위에서 광 신호들을 반사시키기 위해 적합하다. 특히, 제 1 거울(64)은 단일 구성요소를 형성하기 위해, 광 증폭기(63) 및/또는 변조기(62)와 일체될 수 있다. 예로서, 변조기(62), 광 증폭기(63) 및 제 1 거울(64)은 반사 SOA(또는, 간략하게 RSOA)와 같은, 단일 구성요소에서 구현될 수 있다. RSOA는 예를 들면, C-대역 RSOA일 수 있다.
바람직하게, 각각의 ONU(6-1, 6-2,..., 6-n)은 OLT(2)과 통신하기 위해 각각의 업스트림 파장(λu1, λu2,...λun) 및 각각의 다운스트림 파장(λd1, λd2,...λdn)을 할당했다. 업스트림 파장들(λu1, λu2,...λun) 및 다운스트림 파장들(λd1, λd2,...λdn)은 바람직하게 WDM PON(1)를 통해 이용자들에 FTTH, FFTB 또는 FTTC 서비스들을 제공하는 서비스 제공자에 의해 할당된다.
도 2b에 도시된 바와 같이, 업스트림 파장들(λu1, λu2,...λun)은 제 1 파대역(B1)에 포함될 수 있는 반면에, 다운스트림 파장들(λd1, λd2,...λdn)은 제 2 파대역(B2)에 포함될 수 있다. 제 1 파대역(B1) 및 제 2 파대역(B2)은 전형적으로 중첩하지 않는다. 특히, 제 1 파대역(B1)은 C 대역에 있을 수 있는 반면에, 제 2 파대역은 L 대역에 있을 수 있다. 인접한 다운스트림 파장들(λd1, λd2,...λdn) 및 인접한 업스트림 파장들(λu1, λu2,...λun)은 바람직하게 동일한 채널 간격(예를 들면, 약 100GHz)에 의해 이격된다.
ONU(6-2)에서(및 또한 WDM PON(1)의 다른 ONU들에서) 제공된 다이플렉서(60)는 피더 섬유(3)에 접속된 그것의 제 1 포트를 통해 광 신호들을 수신하고, 수신기(61)에 접속된 그것의 제 2 포트를 통해 제 2 파대역(B2)에 포함된 파장들을 포워딩하고 변조기(62)에 접속된 그것의 제 3 포트를 통해 제 1 파대역(B1)에 포함된 파장들을 포워딩하기 위해 적합한 1×2 WDM 결합기일 수 있다. 이 제 1 실시예에 따른 다이플렉서(60)의 제 1 포트와 제 2 포트 사이 및 제 1 포트와 제 3 포트 사이의 전달 함수들(PB60-1(실선) 및 PB60-2(파선))은 도 2b에서 개략적으로 도시된다.
도 2a에 대하여, 원격 노드(4)는 파장 다중화기/역다중화기(mux/demux)(40) 및 제 2 거울(41)을 포함할 수 있다. 파장 다중화기/역다중화기(40)는 바람직하게 제 1 네트워크-측 포트(NP0), 제 2 네트워크-측 포트(NP1) 및 n개의 이용자-측 포트들(UP1, UP2,...UPn)을 가지는 배열된 도파로 격자(AWG)를 포함한다. AWG는 바람직하게 무열 AWG이다. 파장 다중화기/역다중화기(40)는 바람직하게 주기적 AWG이고, 즉 각각의 이용자-측 포트(UP1, UP2,...UPn)는 AWG의 자유 스펙트럼 범위의 정수 배만큼 이격된 2개의 상이한 파장들에서의 2개의 별개의 통과대역들을 갖는다. AWG는, 이러한 2개의 상이한 파장들이 동일한 ONU 6-i(i=1, 2,...n)에 할당된 업스트림 파장(λui)(i-1, 2,...n) 및 다운스트림 파장(λdi)(i-1, 2,...n)에 대응하도록 바람직하게 설계된다. 예로서, 도 2b에서 이용자-측 포트(UP2)의 2개의 통과대역들(PBu2 및 PBd2)이 도시된다. 각각의 이용자-측 포트(UP1, UP2,...UPn)는 바람직하게 각각의 분배 섬유(5-1, 5-2...,5-n)에 접속된다.
제 1 네트워크-측 포트(NP0)는 바람직하게 이용자-측 포트들(UP1, UP2,...UPn)을 통해 파장 다중화기/역다중화기(40)에 진입하고 업스트림 파장들(λu1, λu2,...λun)과 같은 파장들을 가지는 광 신호들의 m번째 회절 순서(m은 0, 1, 2, 등과 같다)가 포커스(focus)되는 포트이다. 게다가, 제 2 네트워크-측 포트(NP1)는 바람직하게 이용자-측 포트들(UP1, UP2,...UPn)을 통해 파장 다중화기/역다중화기(40)에 진입하고 업스트림 파장들(λu1, λu2,...λun)과 같은 파장들을 가지는 광 신호들의 (m+k)번째 또는 (m-k)번째 회절 순서(k는 1과 같거나 1보다 큰 정수이고, 바람직하게 1과 같다)가 포커스되는 포트이다. 제 1 네트워크-측 포트(NP0)는 바람직하게 피더 섬유(3)에 접속되고, 제 2 네트워크-측 포트(NP1)는 바람직하게 제 2 거울(41)에 접속된다.
제 2 거울(41)은 전체적인 파대역들(B1 및 B2)에 걸쳐 실질적으로 일정한 반사율을 가질 수 있다. 예를 들면, 제 2 거울(41)은 금속 코팅을 포함할 수 있다. 대안적으로, 제 2 거울(41)의 반사율은 파장에 비해 변동될 수 있고, 바람직하게 제 2 파대역(B2)(다운스트림 파장들)에서 보다 제 1 파대역(B1)(업스트림 파장들)에서 더 높다. 이 파장-의존 거동(behavior)은 예를 들면, 제 2 거울(41)에 통합된 박막 필터에 의해 얻어질 수 있다. 이것은 이롭게 ONU들(6-1, 6-2,...6-n)에서 더 저렴한 다이플렉서들을 제공하는 것을 허용하고, 이는 그들의 대역폭 요구조건들이 완화될 수 있기 때문이다.
상기 내용을 고려하여, 도 1의 WDM PON에서, n개의 캐비티들이 이롭게 형성되고, 각각의 ONU(6-1, 6-2,...6-n) 당 하나의 캐비티가 형성됨이 유의될 것이다. 특히 예를 들면, 단지 ONU(6-2)과 관련시킴으로써, 그것의 연관된 캐비티는 제 1 거울(64) 및 제 2 거울(41)에 의해 그것의 종단에서 범위가 정해지고: 광 증폭기(63), 변조기(62), 다이플렉서(60), 분배 섬유(5-2) 및 파장 다중화기/역다중화기(40)를 포함한다(특히, 이용자-측 포트(UP2) 및 제 2 네트워크-측 포트(NP1)에 조인하는 회절 경로).
제 1 거울(64)의 굴절률, 광 증폭기(63)의 이득, 제 2 거울(41)의 반사률 및 다이플렉서(60)의 제 1 포트와 제 3 포트 사이의 전달 함수(BP60-2)가 선택되어, 제 1 파대역(B1)에서, 캐비티는 바람직하게 1보다 큰 루프 이득을 갖는다. 이 목적을 위해, 광 증폭기(63)는 바람직하게 제 1 파대역(B1)과 일치하는 스펙트럼 대역폭을 갖는다. 이것은 이롭게 캐비티에서 포지티브 피드백 메커니즘(positive feedback mechanism)을 트리거링(triggering)하고, 캐비티가 그것의 출력부에서(즉, 제 1 네트워크-측 포트(NP0)에서) 업스트림 방향으로 레이징 광 방사를 방출하도록 유도한다. 캐비티 정상 상태에서, 캐비티의 방출 파장은 (캐비티의 필터링 요소들로서 동작하는) 파장 다중화기/역다중화기(40) 및 다이플렉서(60)에 의해 선택되고, 업스트림 파장(λu2)이다. 즉, 캐비티는 그것의 출력부가 파장 다중화기/역다중화기(40)의 제 1 네트워크-측 포트(NP0)인, 업스트림 파장(λu2)에서의 업스트림 레이저 송신기로서 동작한다. 이 송신기는 자가-튜닝 직접 변조된 레이저(STML)(7)로서 구현된다. 이러한 STML(7) 특히, 도 2a 및 도 2b에서 설명된 바와 같은 STML(7)는 참조로서 통합되는 유사한 특허 출원 EP10168889.3에서 설명된다. 특히, STML(7)의 구성요소들에 관한 개시는 참조로서 통합된다.
상기 개요된 바와 같이, STML(7)의 수동 구성요소들의 복굴절이 레이저 캐비티에서 편광 모드 분산(PMD) 및/또는 편광 의존 손실(PDL)에 이를 수 있음이 관측된다. 양쪽 효과들 모두는 섬유의 기온 및 기하학적 위치결정에서의 변화들로 인해, 그리고 구성요소들의 물리적 속성들에 대한 변동들로 인해 네트워크 동작 동안 시간에 따라 변동할 수 있다. 전형적으로 광 증폭기(63) 및 변조기(62)를 포함하는 이득 및 변조 유닛(GMU)의 동작이 들어오는 광의 편광 상태에 상관 없으면, 이러한 PMD 및 PDL 변동들은 STML에 영향을 미치지 않는다. 그러나, GMU이 편광 의존 동작을 나타내면, STML(7)의 성능은 전형적으로 높이 타협되고, STML는 전혀 동작하지 않을 수 있다.
상대적으로 높은 이득, 출력 파워 및 변조 대역폭을 가지는 비-냉각 GMU들을 제공하는 것이 가능함이 보여진다. 한편, 비-냉각 편광 비반응 GMU들은 아직 설명되지 않는다. 따라서, 비-냉각 모드에서 동작하는 높은 변조 대역폭, 이득 및 출력 파워 STML들의 설계를 허용하기 위해, 레이저 캐비티의 편광 비반응 동작을 보전하는 동안, 편광 감응 GMU 구성요소들의 이용을 가능하게 하는 것이 바람직하다. 결과적으로, 비용 효율적인 컬러리스 ONU들이 제공될 수 있다.
도 3의 a)는 WDM PON의 일부의 또 다른 예시적인 다이어그램을 도시한다. 도 2a와 유사한 방식으로, 피더 섬유(3), 원격 노드(4) 및 일 예시적인 ONU(6-2)이 도시된다. 원격 노드(4)는 원격 거울(41) 및 AWG(40)를 포함한다. 또한, AWG(40)와 함께 원격 거울(41)에 섬유 또는 도파로(43) 접속시키기 위한 섬유 피그테일 및 결합기(42)가 도시된다. 원격 노드(4)는 분배 섬유(5-2)를 통해 ONU(6-2)에 연결된다. ONU(6-2)은 도 2a의 문맥에서 개요된 구성요소들을 포함할 수 있다. 특히, ONU(6-2)은 분배 섬유(5-2)와 접속하기 위한 섬유 피그테일(66)을 포함할 수 있다. 또한, ONU(6-2)은 반도체 광 증폭기(SOA)를 이용하여 구현될 수 있는 이득 및 변조 유닛(GMU)(65)을 포함할 수 있다. 특히, GMU(65)은 도 2a의 문맥에서 개요된 바와 같이(도 3의 a)에서 별개의 구성요소들로서 도시되지 않음), 변조기(62) 및 광 증폭기(63)를 포함할 수 있다. 게다가, ONU(6-2)은 RSOA를 형성하기 위해 SOA와 통합될 수 있는 뒤쪽 거울(64)을 포함할 수 있다.
상기 개요된 바와 같이, 도 2a 및 도 3의 a)의 문맥에서 설명된 STML(7) 셋업은 컬러리스 ONU들(6-2)을 제공하기 위해 이용될 수 있다. 멀리 미치고/미치거나 높은 주파수 동작을 허용하기 위해, GMU(65)의 이득, 출력 파워 및/또는 변조 대역폭이 증가되어야 한다. 동시에, STML(7)는 전형적으로 수동 구성요소들 즉, STML(7)의 성능에 상당히 영향을 줄 수 있는, 레이저 캐비티의 임바디 디바이스(ED)의 복굴절에 의해 영향받는다.
편광 감응 GMU(65)을 포함하는 STML(7)에 대한 ED 복굴절의 영향은 레이저 캐비티에서의 구성요소들 및 편광 유지 섬유들(PMF)에 의해 대응될 수 있다. 특히, 분배 섬유(5-2)는 PMF로서 구현될 수 있다. 그러나, 이 해결책은 액세스 네트워크에서 설치된 섬유들이 전형적으로 표준 단일-모드 섬유들(SMF)이고 PMF가 아닌 단점을 갖는다. 또한, PMF들의 비용은 표준 SMF들의 비용보다 훨씬 비싸서, 액세스 네트워크들에서의 미래의 섬유 설치들을 위한 비용을 증가시킨다.
ED 복굴절의 영항은 레이저 캐비티에서 편광 비반응 GMU(65)을 이용함으로써 대응될 수 있다. 그러나, 낮은 편광 의존 이득(PDG)을 갖는 비-냉각 동작을 위해 GMU(65)을 설계하는 것은 성취하기 어렵다. 당분간, SOA에 기초한 GMU들(65)은 상대적으로 낮은 PDG(1dB 미만의)을 설명한다. 이 상대적으로 낮은 PDG은 ONU 애플리케이션들에 대한 충분히 높은 이득 및 출력 파워를 보장하기 위해 전형적으로 냉각 동작을 요구하는 벌크 SOA 구조들을 이용함으로써 성취된다. 한편, 비-냉각 높은 파워 및 높은 변조 대역폭 GMU들(65)이 다중-양자 우물(MQW) 디바이스들 예를 들면, MQW-SOA들을 이용하여 성취될 수 있음이 발견되었다. 그러나, 이러한 비-냉각 높은 파워 및 높은 변조 대역폭 GMU들(65)은 전형적으로 높은 편광 의존 이득(PDG)을 나타낸다. 편광 독립 이득의 제약을 제거함으로써, 또한 벌크 SOA 구조들이 비-냉각 동작을 위해 설계될 수 있음을 기대할 수 있다는 것을 유의해야 한다. GMU에 대해 편광 비반응 동작을 하기 위한 요구조건들을 제거함으로써, 더 많은 자유도들이 높은 출력 파워, 이득, 전자-광 대역폭을 갖는 GMU을 설계하고 비-냉각 동작을 가능하게 하기 위해 이용가능하다. 이것은 벌크 및 MQW 구성요소들 둘 모두에 적용된다.
상기 분석을 고려하여, 높은 편광 의존 이득을 나타내는 GMU들(65)의 이용을 가능하게 하기 위해 도 2a 및 도 3의 a)의 STML(7)를 적응시키는 것이 제안된다. 이 목적을 위해, 도 2a 및 도 2b에서 도시된 STML(7) 구성요소들은 도 3의 b)에서 도시된 "등가 회로"에 의해 표현된다. 도 3의 b)에서, 레이저 캐비티의 각각의 구성요소는 레이저 캐비티에서 이동하는 광의 편광 상태(SOP)에 대해 동작하는 "편광 연산자들"에 관하여 설명된다. 각각의 편광 연산자는 존스 행렬(Jones Matrix), 뮬러 행렬(Muller Matrix) 또는 뽀앙까레 구면(Poincare sphere) 상의 움직임들에 의해 수학적으로 설명될 수 있다.
뒤쪽 거울(64) 및 원격 거울(41)이 행렬에 의해 주어지는 "거울" 연산자 [M]에 의해 표현될 수 있다.
Figure 112013102755750-pct00001
피그테일 스플라이스들 및 파워 결합기들(42, 66)을 포함하는 섬유들(43, 5-2)은 PMD 및 PDL 속성들에 의해 설명된 "리타더 파장 판(Retarder Wave Plate)"[RWP] 연산자에 의해 표현될 수 있다. GMU(65) 속성들은 편광 연산자 "분석기"[A]에 의해 표현될 수 있다. 사실, GMU은 일반적으로 제로와 상이한 모든 항들을 가짐으로써 특징화된 다이크로익 타원 분석기(dichroic elleptical analyzer)(2×2 행렬)에 의해 표현될 수 있다. 높은 PDG SOA를 고려하는 특정 문맥에서, 2개의 비-대각 항들은 무시할 수 있고, 2개의 대각 항들 사이의 비는 이상적인 "분석기"[A]의 비들과 유사함이 가정될 수 있다. 상기 가정들을 고려하면, 모든 ED를 포함하는 레이저 캐비티는 단일의 [RWP] 연산자에 의해 설명될 수 있는 것으로 결론지을 수 있다. 이것은 도 3의 b) 및 도 3의 c)에서 도시된다. 원격 및 뒤쪽 거울들이 [M] 연산자에 의해 설명될 수 있음이 보여진다. 레이저 캐비티의 남아있는 수동 구성요소들은 복수의 [RWP] 연산자들에 의해 설명될 수 있다. 이 복수의 [RWP] 연산자들은 도 3c에 도시된 바와 같이 단일 [RWP] 연산자로 조합될 수 있다. GMU(65)은 [A] 연산자에 의해 설명될 수 있다.
레이저 캐비티의 상기 모델을 이용하여, 레이저 캐비티에서의 단일 RWP 연산자에 의해 도입된 광의 SOP의 변동들을 대응시키기 위한 조치들이 결정될 수 있다. 보상되지 않으면, SOP의 변동들은 [A] 연산자에 의해 진폭 변동들로 변환될 수 있어서, 레이징 및 변조의 캐비티 동작을 손상시킨다. 도 3의 c)에서 도시된 모델을 이용하여, 원격 거울(41)을 향해 GMU(65)을 떠나는 광의 SOP에 대한 영향 및 그 역은 다음 동작에 의해 설명될 수 있고,
Figure 112013102755750-pct00002
여기서, 연산자(
Figure 112013102755750-pct00003
)는 원격 또는 제 2 거울(41)을 향한 제 1 전파 방향의 편광 동작을 나타내고, 연산자(
Figure 112013102755750-pct00004
)는 뒤쪽 또는 제 1 거울(64)을 향한 리트레이싱 제 2 전파 방향의 편광 동작을 나타낸다. 레이저 캐비티의 적절한 동작을 보장하기 위해, 레이저 캐비티에서의 광의 SOP는 변동이 없어야 한다. 즉, GMU(65)으로부터의 및 상기 GMU(65)으로 다시 돌아오는 광 경로 즉, [A] 연산자로부터의 및 상기 [A] 연산자로 다시 돌아오는 광 경로는 거울 연산자[M]를 야기해야 한다.
본 문서에서 STML(7)의 캐비티 내에 패러데이 회전기들(FR)로서 공지된 2개의 수동 구성요소들을 도입하도록 제안된다. 이들 패러데이 회전기들은 도 4에서 설명된 바와 같이, 편광 연산자들[FR]로서 동작한다. 패러데이 회전기는 결과적으로 자기-광 효과에 기초하는 패러데이 효과로 인해 광의 편광을 회전시키는 광 디바이스이다. 패러데이 회전기의 기본 원리는 입력 광의 하나의 편광이 FR의 재료와의 강자성 공진 상태에 있고, 이는 그것의 위상 속도로 하여금 입력 광의 다른 편광의 위상 속도보다 더 높게 되도록 한다는 것이다. 결과적으로, 광의 편광은 회전된다.
도 4의 a)의 셋업에서, 각각의 FR는 ±45도 또는 π/4와 같은 편광 회전을 도입한다. 특히, 원격 캐비티 거울(41)과 연관된 FR(81)는 리트레이싱 광섬유 회로에서 발생하는 임의의 복굴절 (상호) 변화를 완전하게 보상하도록 구성되는 패러데이 회전기 거울(FRM)을 형성한다. 이것은 FRM이 GMU(65)으로부터 원격 거울(41)까지 및 그 반대로 리트레이싱 캐비티에서 수행된 [RWP] 동작을 취소하도록 구성됨을 의미하고 즉,
Figure 112013102755750-pct00005
이다.
즉, STML(7)의 레이저 캐비티는 [A] 연산자(즉, GMU(65))로부터 이동하고 상기 [A] 연산자로 다시 돌아오는 광 빔에 대한 리트레이싱 광섬유 회로의 일례이다. 따라서, FRM은 STML(7)의 레이저 캐비티를 통해 [A] 연산자로 다시 돌아오는 그것의 경로를 트레이싱하는 광 빔의 편광 상태가 ED의 복굴절의 모든 상세들과 관련 없음을 보장한다. 이것은 광 빔의 왕복 시간이 캐비티에서 발생하는 편광 변동들(즉, 복굴절에서의 변동들)의 속도보다 더 낮은 한, 보장될 수 있다. 이 조건은 전형적으로 몇 킬로미터의 캐비티 길이에 대해 즉, 전형적인 분배 섬유들(5-2)을 포함하는 STML(7)에 대해 만족된다.
FR(81)은 독자적으로 GMU(65)에서의 광의 고유한 편광 상태를 보장하지 않는다. 사실, FRM 즉, FR(81) 및 원격 거울(41)의 기능성을 포함하는 구성요소가 단지, 리트레이싱 이동(즉, STML 캐비티에서의 왕복)의 끝에서의 광이 임의적인 초기 상태와 수직임을 보장함이 발견되었다. 이와 같이, GMU(65)에 진입하는 광의 SOP는 여전히 도 6a에서 도시된 바와 같이 변동하고, 캐비티의 입력부에서의 광의 SOP(21)는 뽀앙까레 구면 상에서 시각화된다. GMU(65)에 진입하는 광의 SOP(21)가 STML 캐비티에서의 왕복 후에 하나의 상태로부터 또 다른 직교 상태로 이동함이 보여질 수 있다.
따라서, 분배 섬유(5-2)로부터의 광의 SOP가 항상 분석기 [A]의 주요 편광 면에 정렬됨을 보장하는 ONU(6-2) 측에서 또 다른 FR(82)를 이용하도록 제안된다. 따라서, SOA는 단지 하나의 편광 면에 대한 이득을 나타내도록 엔지니어링될 수 있어서, 높은 편광 의존 이득을 가지는 GMU들(65)의 이용을 가능하게 한다.
FR들(81, 82)의 이용은 도 4의 a)에서 도시된다. 특히, 원격 거울(41)에서의 원격 FR(81)가 도시되고, 이는 원격 거울(41)과 조합하여 [FRM] 연산자를 제공한다. FR의 편광 연산자들은 다음과 같이 설명될 수 있고:
Figure 112013102755750-pct00006
여기서, 패러데이 회전기 거울의 동작은,
Figure 112013102755750-pct00007
로서 얻어진다.
원격 거울(41)에서의 FR(81)를 이용하는 결과로서 즉, FRM을 이용하는 결과로서, 레이저 캐비티의 복굴절이 보상될 수 있다. 그러나, 레이저 캐비티 내의 복굴절의 보상은 반드시 GMU(65)에서의 광의 편광 상태가 GMU(65)의 바람직한 편광 즉, GMU(65)이 최적의 이득, 변조 대역폭 및/또는 출력 파워 성능을 제공하는 편광에 대응함을 보장하지 않는다. FRM이 단지 복굴절 보상을 보장하고, FRM로부터의 광의 리트레이싱이 2개의 수직 편광 상태들(도 6a의 SOP 다이어그램(21)에 의해 도시된 바와 같은) 사이를 번갈아 오가는 것이 보여질 수 있다.
GMU(65)에서의 부가적인 FR(82)를 이용함으로써, GMU(65)에서의 광의 SOP는 단일 편광 상태로 고정될 수 있다. 이것은, FR(82)의 입력부로부터 원격 거울(41)로 및 그 반대로의 광 경로의 편광 연산자들을 고려할 때, 보여질 수 있다. 상기 개요된 바와 같이, 레이저 캐비티는 FRM의 연산자에 의해 설명될 수 있다. 부가적인 FR(82)를 이용할 때, 전체적인 편광 동작은:
Figure 112013102755750-pct00008
이 된다.
이것은 GMU(65)에서의 부가적인 FR(82)를 포함하는 레이저 캐비티가 거울처럼 거동하여, 레이저 캐비티 내에서 이동하는 광의 SOP가 리트레이스됨을 보장함을 의미한다. 이것은 도 6b에서 도시된 바와 같이 실험적으로 확인된다. 캐비티에서의 출력부에서의 광의 SOP(22)가 뽀앙까레 구면 상의 특정 상태에서 고정됨이 보여질 수 있다. 이것의 결과로서, 높은 편광 의존 GMU들(65) 즉, 높은 이득, 높은 변조 대역폭 및 높은 광 출력 파워를 가지는 비-냉각 GMU들(65)이 이용될 수 있다.
도 4의 a)는 FR(82)가 섬유를 이용하는 GMU(65)에 접속되는 일 예시적인 STML(7)를 도시한다. 특히, 부가적인 FR(82)는 출력 섬유 피그테일(66)에 걸린 GMU 패키지 외부의 광 경로에 삽입될 수 있다. 이 경우에, 섬유 피그테일(66)은 광 SOP(예를 들면, 편광 유지(PM) 섬유)를 유지하기 위해 엔지니어링되어야 한다. 편광기가 단지 선형 편광된 광이 PM 섬유를 통해 이동할 것을 확실하게 하기 위해, GMU 출력부에서의 GMU 패키지 내에 통합될 수 있음을 유의해야 한다. 한편, 도 5의 a)는 FR(82)가 GMU(65)의 출력부에서, 가능하면 GMU 패키지 내에서 직접적으로 통합되는 일 대안적인 구현을 도시한다. 도 5의 b) 및 도 5의 c)에서 도시된 바와 같이, 이것은 섬유 피그테일(66)에서 발생하는 편광 회전을 회피할 것이다.
편광기(90)를 포함하는 일 예시적인 STML(7)는 도 8에서 도시된다. 상기 개요된 바와 같이, 이러한 편광기(90)는 GMU 패키지 내에서 통합될 수 있다. 전형적으로, 편광기(90)는 GMU(65)의 업스트림 및 FR(82)의 다운스트림 위치된다. 편광기 또는 편광 필터(90)는 GMU(65)에 의해 생성된 광으로부터 단지 단일 편광의 광을 분리하도록 적응될 수 있다. 이와 같이, 상이한 편광들에서의 광의 자발적 방출이 억제될 수 있다. 편광기(90)을 이용함으로써, 단지 단일 편광의 광이 캐비티에 진입하여, 레이저 출력 방사의 편광을 안정화함이 보장될 수 있다. (단일) 편광기(90) 및 FR(82)는 단일 광 구성요소에 통합될 수 있다.
패러데이 회전기들(81 및 82)의 이용이 STML들(7)의 다양한 실시예들에 적용가능함을 유의해야 한다. 특히, 도 2a의 STML(7)는 원격 거울(41)에 인접하는 예를 들면, 원격 거울(41)과 함께 FR(81)를 제공함으로써 적응될 수 있다. 이와 같이, FR(81)는 다중화기/역다중화기(40)와 원격 거울(41) 사이의 포트(NP1)에서 제공될 수 있다. 특히, FR(81)는 FR(81), 다중화기/역다중화기(40) 및 원격 거울(41)을 포함하는 조인트 패키지 내에 제공될 수 있다. 유사한 방식으로, FR(82)는 도 2a의 ONU(6-2) 내에 제공될 수 있다. 특히, FR(82)는 다이플렉서(60)와 변조기(62) 사이에 제공될 수 있다. 특히, FR(82)는 FR(82), 변조기(62), 광 증폭기(63) 및/또는 뒤쪽 거울(64)을 포함하는 조인트 패키지 내에 제공될 수 있다.
상기에서 이미 표현된 바와 같이, STML(7)의 성능은 실험적으로 분석된다. 실험적 셋업들은 도 7a 및 도 7b에서 도시된다. 제 1 구성(도 7a)에서, 원격 거울(41)에서의 단지 제 2 FR(81)를 포함하는 STML(7) 셋업이 분석된다. 도 4의 a) 및 도 5의 a)에서 도시된 STML 구성요소들에 더하여, 도 7a의 실험적 셋업은 그것의 출력(예를 들면, 20% 출력)이 편광계(71)에 의해 측정되는 섬유 결합기(80/20 결합기)(72)를 포함한다. 측정된 SOP(21)는 도 6a의 뽀앙까레 구면 상에 도시된다. SOP(21)가 편광의 2개의 수직 상태들 사이에서 진동함이 보여질 수 있다. 단지 단일 FR(81)를 이용할 때(즉, GMU(65)에서 FR(81)를 이용하지 않을 때), 낮은-PDG RSOA는 GMU(65)으로서 이용되어야 하는데, 이는 높은 PDG RSOA가 STML(7)의 캐비티에서 레이징 액티비티(lasing activity)를 지속하지 않기 때문이다.
제 2 구성(도 7b)에서, 제 1(82) 및 제 2(81) FR를 포함하는 STML(7) 셋업이 분석된다. 이 경우에, 높은 PDG R-SOA(예를 들면, 20dB의 PDG)는 GMU(65)으로서 이용될 수 있다. 캐비티는 FR(81) 및 거울(41)을 포함하는 패러데이 거울(FRM)에 의해 폐쇄된다. 출력 방사는 그것의 출력이 편광계(71)에 의해 측정되는 섬유 결합기(72)에 의해 추출된다. 측정된 SOP(22)는 적은 분산을 갖고 높은 편광도를 갖는 안정적인 점으로서, 도 6b에서 뽀앙까레 구면 상에 도시된다.
본 문서에서, WDM PON에 대해 직접 변조된 레이저를 자가-튜닝하기 위한 셋업이 설명되고, 상기 셋업은 높은 편광 의존 이득 및 MQW-SOA들과 같은 변조 유닛들을 이용할 수 있다. 편광 비반응 동작의 요구조건을 제거함으로써, GMU의 설계는 높은 출력 파워 및 이득(즉, 더 길게 미치는) 및 변조 대역폭(즉, ONU 당 더 높은 비트 레이트들)을 위해 최적화될 수 있다. 결과적으로, 비-냉각 동작이 인에이블(enable)되어, 어떠한 열전 냉각(thermoelectric cooling; TEC)도 요구되지 않기 때문에 이득 및 변조 유닛의 더 적은 통합 팩터를 허용한다. 게다가, 레이저 캐비티가 거울로서 수행함을 보장함으로써, 시간에 따라 레이지 캐비티의 안정적인 동작이 보장될 수 있다.
설명 또는 도면들은 단지 제안된 방법들 및 시스템들의 원리들을 예시한다. 따라서, 당업자들이 비록 여기에 명백하게 설명되거나 도시되지 않을지라도, 본 발명의 원리들을 구현하고 그의 사상 및 범위 내에 포함되는 다양한 장치들을 고안할 수 있을 것임이 인식될 것이다. 또한, 여기에서 언급된 모든 예들은 원리적으로 독자가 제안된 방법들과 시스템들의 원리들 및 해당 분야의 발전을 위해 발명자들에 의해 기여된 콘셉트들을 이해하는데 도움이 되기 위해 단지 교육적인 목적을 위한 것이 될 수 있도록 분명하게 의도되고, 이러한 특정하게 언급된 예들 및 조건들에 대해 제한이 없는 것으로서 해석되어야 한다. 또한, 본 발명의 원리들, 양태들, 및 실시예들 뿐만 아니라, 그의 특정 예들을 언급하는 여기에서의 모든 진술들은 그의 등가물들을 포함하도록 의도된다. 마지막으로, 여기에서의 임의의 블록도들은 본 발명의 원리들을 구현하는 예시적인 회로의 개념도들을 표현함을 유의해야 한다.
2: 광 라인 종단 3: 피더 섬유
4: 원격 노드
40: 파장 다중화기/역다중화기 41: 제 2 거울
60: 다이플렉서 61: 수신기
62: 변조기 63: 광 증폭기
64: 제 1 거울 65: 이득 및 변조 유닛
66: 섬유 피그테일 71: 편광계
72: 섬유 결합기 81, 82: 패러데이 회전기
90: 편광기

Claims (15)

  1. 파장 분할 다중화 수동 광 네트워크(WDM PON)를 위한 광 송신기 장치(7)에 있어서, 상기 광 송신기 장치는,
    - 각각 캐비티의 제 1 종단 및 제 2 종단에서의 제 1 거울(64) 및 제 2 거울(41);
    - 제 1 편광 면에서의 편광을 갖는 광을 증폭하도록 구성된 광 증폭기(63)로서, 상기 제 1 거울(64)의 업스트림의 캐비티 내에 위치되는, 상기 광 증폭기(63);
    - 상기 광 증폭기(63)로부터 상기 제 2 거울(41)로 및 그 반대로 광을 송신하도록 구성된 광 도파로(5-2);
    - 상기 광 증폭기(63)의 업스트림 및 상기 광 도파로(5-2)의 다운스트림의 캐비티 내에 위치된 제 1 비-상호 편광 회전기(82); 및
    - 상기 광 도파로(5-2)의 업스트림 및 상기 제 2 거울(41)의 다운스트림의 캐비티 내에 위치된 제 2 비-상호 편광 회전기(81)를 포함하고;
    제 1(82) 및 제 2(81) 비-상호 편광 회전기들은 상기 제 2 거울(41)에 의해 반사된 후에 상기 광 증폭기(63)에 재-진입하는 광이 필수적으로 제 1 편광 면에 있는 편광을 갖도록 광의 편광을 회전시키도록 구성되는, 광 송신기 장치(7).
  2. 제 1 항에 있어서,
    - 상기 광 도파로(5-2)는 광의 편광에 영향을 주고;
    - 상기 제 1(82) 및 제 2(81) 비-상호 편광 회전기들은 패러데이 회전기(Faraday Rotator)들이고/들이거나;
    - 상기 제 1(82) 및 제 2(81) 비-상호 편광 회전기들은 각각의 패스(pass)에서, 상기 광의 편광을 실질적으로 ±45도만큼 회전시키도록 구성되는, 광 송신기 장치(7).
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 제 1 비-상호 편광 회전기(82) 및 상기 광 증폭기(63)는 스몰 폼 팩터 접속가능한 유닛 내에 통합되는, 광 송신기 장치(7).
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 광 도파로(5-2)의 캐비티 업스트림 및 상기 제 2 비-상호 편광 회전기(81)의 다운스트림 내의 파장 선택 유닛(40, 42)을 추가로 포함하고, 상기 파장 선택 유닛(40, 42)은,
    - 상기 광 증폭기(63)로부터 인입하는 광으로부터의 제 1 파장(λu2)에서의 광을 필터링 아웃(filtering out)하고;
    - 상기 파장 선택 유닛(40, 42)의 반사 포트(NP1)를 통해 상기 제 1 파장(λu2)의 필터링된 광의 일부를 상기 제 2 거울(41)에 결합시키도록 구성되어, 상기 캐비티에서 전후로 전파하는 상기 제 1 파장(λu2)에서의 광 방사를 생성하는, 광 송신기 장치(7).
  5. 제 4 항에 있어서,
    상기 파장 선택 유닛(40, 42)은,
    - 상기 파장 선택 유닛(40, 42)의 출력 포트(NP0)로 상기 제 1 파장(λu2)에서의 필터링된 광의 또 다른 일부를 지향시키도록 또한 구성되어, 상기 제 1 파장(λu2)에서의 광 신호를 상기 출력 포트(NP0)에서 제공하는, 광 송신기 장치(7).
  6. 제 4 항에 있어서,
    상기 파장 선택 유닛(40, 42)은 광 다중화기/역다중화기(40) 및/또는 광 파워 스플리터(42)를 포함하는, 광 송신기 장치(7).
  7. 제 4 항에 있어서,
    상기 제 2 비-상호 편광 회전기(81) 및 상기 제 2 거울(41), 뿐만 아니라 상기 파장 선택 유닛(40, 42)의 기능성을 제공하도록 구성된 상기 제 2 비-상호 편광 회전기(81) 및 상기 제 2 거울(41) 또는 조합된 패러데이 회전기 거울(Faraday Rotator Mirror)은 광 도파로(5-2)를 통해 상기 광 증폭기(63)에 광학적으로 접속되는 원격 유닛(4)을 형성하는, 광 송신기 장치(7).
  8. 제 4 항에 있어서,
    - 상기 제 1 파장(λu2)에서 상기 광 방사를 변조하도록 구성된 변조기(62)를 추가로 포함하고; 상기 변조기(62)는 전형적으로 상기 캐비티 내에 위치되는, 광 송신기 장치(7).
  9. 제 8 항에 있어서,
    상기 광 증폭기(63) 및 상기 변조기(62)는 비-냉각 반도체 광 증폭기를 이용하여 구현되는, 광 송신기 장치(7).
  10. 제 9 항에 있어서,
    상기 광 증폭기(63) 및 상기 변조기(62)는 다중-양자 우물(Multi-Quantum Well) 반도체 광 증폭기를 이용하여 구현되는, 광 송신기 장치(7).
  11. 제 1 항 또는 제 2 항에 있어서,
    - 상기 광 증폭기(63)의 업스트림 및 상기 제 1 비-상호 편광 회전기(82)의 다운스트림의 편광기(90)를 추가로 포함하고, 상기 편광기(90)는 단지 상기 제 1 편광 면에서의 편광을 가지는 광이 상기 광 증폭기(63)로부터 송신됨을 보장하도록 구성되는, 광 송신기 장치(7).
  12. 삭제
  13. 파장 분할 다중화 수동 광 네트워크(1)에 있어서:
    - 광 업링크 신호(U2)를 송신하도록 구성된 광 네트워크 유닛(6-2);
    - 피더 섬유(feeder fiber)(3) 상에 상기 광 업링크 신호(U2)를 다중화하도록 구성된 원격 노드(4);
    - 상기 원격 노드(4)를 광 라인 종단(2)에 접속시키는 상기 피더 섬유(3); 및
    - 상기 광 업링크 신호(U2)를 수신하도록 구성된 상기 광 라인 종단(2)을 포함하고;
    상기 광 네트워크 유닛(6-2) 및 상기 원격 노드(4)는 제 1 항 또는 제 2 항에 따른 광 송신기 장치(7)를 포함하는, 파장 분할 다중화 수동 광 네트워크(1).
  14. 제 13 항에 있어서,
    광 도파로(5-2)는 상기 원격 노드(4) 및 상기 광 네트워크 유닛(6-2)을 접속시키는 분배 섬유인, 파장 분할 다중화 수동 광 네트워크(1).
  15. 제 1(64) 및 제 2 거울(41)을 포함하는 캐비티 내에 광 신호를 생성하기 위한 방법에 있어서,
    - 광 증폭기(63)를 이용하여 제 1 편광 면에서의 편광을 가지는 광 신호를 생성하고 증폭하는 단계;
    - 상기 제 1 거울(64)을 이용하여 상기 광 증폭기의 후면에서 상기 광 신호를 반사시키는 단계;
    - 상기 광 증폭기의, 후면의 반대인 전면에서 초기 회전에 의해 상기 광 신호의 편광을 회전시키는 단계;
    - 회전 다음에, 광 도파로(5-2)를 통해 상기 제 2 거울(41)로 상기 광 신호를 송신하는 단계;
    - 송신 다음에, 상기 제 2 거울(41)에 의한 반사 이전에 실질적으로 ±45도 플러스 또는 마이너스 실질적으로 180도의 배수 만큼 상기 광 신호의 편광을 회전시키는 단계;
    - 상기 제 2 거울(41)에서 상기 광 신호를 반사시키는 단계;
    - 상기 제 2 거울(41)에 의한 반사 다음에 실질적으로 ±45도 플러스 또는 마이너스 실질적으로 180도의 배수 만큼 상기 광 신호의 편광을 회전시키는 단계;
    - 회전 다음에, 상기 광 도파로(5-2)를 통해 상기 광 증폭기(5-2)로 상기 광 신호를 송신하는 단계; 및
    - 상기 광 증폭기(5-2)에 진입하기 이전에 최종 회전에 의해 상기 광 신호의 편광을 회전시키는 단계를 포함하고, 상기 초기 회전 및 상기 최종 회전은 상기 광 증폭기(5-2)에 진입하는 상기 광 신호가 상기 제 1 편광 면을 따라 편광되는 것인, 캐비티 내에 광 신호를 생성하기 위한 방법.
KR1020137029920A 2011-04-14 2012-04-13 컬러리스 초 광대역 pon에 대한 비―냉각 자가―튜닝 캐비티를 위한 편광 안정화 방식 KR101531406B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11162510.9A EP2512043B1 (en) 2011-04-14 2011-04-14 Polarization stabilization scheme for un-cooled self-tuning cavity for colorless ultra broadband PON
EP11162510.9 2011-04-14
PCT/EP2012/056753 WO2012140186A1 (en) 2011-04-14 2012-04-13 Polarization stabilization scheme for un-cooled self-tuning cavity for colorless ultra broadband pon

Publications (2)

Publication Number Publication Date
KR20130138335A KR20130138335A (ko) 2013-12-18
KR101531406B1 true KR101531406B1 (ko) 2015-06-23

Family

ID=44645343

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137029920A KR101531406B1 (ko) 2011-04-14 2012-04-13 컬러리스 초 광대역 pon에 대한 비―냉각 자가―튜닝 캐비티를 위한 편광 안정화 방식

Country Status (6)

Country Link
US (1) US20140029945A1 (ko)
EP (1) EP2512043B1 (ko)
JP (1) JP5789712B2 (ko)
KR (1) KR101531406B1 (ko)
CN (1) CN103477514A (ko)
WO (1) WO2012140186A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992482A1 (fr) 2012-06-22 2013-12-27 France Telecom Dispositif lumineux reflechissant destine a un reseau d'acces optique wdm pon comprenant une source lumineuse avec un milieu de gain optique
US8970945B2 (en) 2012-07-24 2015-03-03 University of Zagreb, Faculty of Electrical Engineering and Computing Modulation averaging reflectors
US9640943B2 (en) * 2012-07-30 2017-05-02 Oplink Communications, Llc External cavity fabry-perot laser
FR3000855A1 (fr) * 2013-01-10 2014-07-11 France Telecom Procede et dispositif reflechissant pour realiser la fonction receptrice d'un reseau d'acces optique utilisant un multiplexage en longueur d'onde
JP6531314B2 (ja) * 2014-06-25 2019-06-19 国立大学法人 東京大学 光送受信装置及び通信システム
US10693555B2 (en) * 2014-09-03 2020-06-23 British Telecommunications Public Limited Company Optical network faulted identification
CN107636988B (zh) * 2015-03-26 2020-06-19 亚琛工业大学 具有改进的光放大的、基于wdm梳状源的光链路
EP3402093B1 (en) * 2016-01-28 2021-09-29 Huawei Technologies Co., Ltd. Light emission device with tunable wavelength
US11611192B2 (en) 2019-10-04 2023-03-21 Accelsius, Llc Embedded microfluidic distribution apparatus for passively cooling optoelectronic devices
CN112865913B (zh) * 2021-01-20 2023-03-28 重庆邮电大学 一种基于移动前传的放大饱和rsoa光源装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009007973A1 (en) * 2007-07-11 2009-01-15 Technion - Research & Development Foundation Ltd Enhanced smf passive optical networks using polarization beamforming
WO2011018054A1 (en) * 2009-08-14 2011-02-17 Huawei Technologies Co.,Ltd. Colorless dense wavelength division multiplexing transmitters

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016888A1 (en) 1998-12-31 2000-07-05 Daewoo Telecom Ltd. Folding groove and multi-core optical cable composed of the same
US6525872B1 (en) * 1999-02-11 2003-02-25 Jds Uniphase Corporation Fiber grating-stabilized, semiconductor pump source
US6061369A (en) * 1999-06-01 2000-05-09 Corning Incorporated Wavelength selectable fiber laser system
CN1815338A (zh) * 2005-02-04 2006-08-09 华为技术有限公司 一种宽带光纤放大器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009007973A1 (en) * 2007-07-11 2009-01-15 Technion - Research & Development Foundation Ltd Enhanced smf passive optical networks using polarization beamforming
WO2011018054A1 (en) * 2009-08-14 2011-02-17 Huawei Technologies Co.,Ltd. Colorless dense wavelength division multiplexing transmitters

Also Published As

Publication number Publication date
US20140029945A1 (en) 2014-01-30
WO2012140186A1 (en) 2012-10-18
CN103477514A (zh) 2013-12-25
EP2512043A1 (en) 2012-10-17
JP2014515229A (ja) 2014-06-26
JP5789712B2 (ja) 2015-10-07
KR20130138335A (ko) 2013-12-18
EP2512043B1 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
KR101531406B1 (ko) 컬러리스 초 광대역 pon에 대한 비―냉각 자가―튜닝 캐비티를 위한 편광 안정화 방식
Fujiwara et al. Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks
EP1695466B1 (en) Integration of laser sources and detectors for a passive optical network
US8606107B2 (en) Colorless dense wavelength division multiplexing transmitters
US10009136B2 (en) External cavity FP laser
JP6244672B2 (ja) 光源モジュール、および光送受信装置
WO2008045141A1 (en) Mutual wavelength locking in wdm-pons
KR20150032758A (ko) 멀티-코어 광 파이버를 위한 광 증폭기
Talli et al. Feasibility demonstration of 100km reach DWDM SuperPON with upstream bit rates of 2.5 Gb/s and 10Gb/s
JP6044311B2 (ja) 増幅装置および通信システム
US20040253001A1 (en) Optical transmission systems including optical amplifiers and methods
EP2840728B1 (en) Optical transmitter arrangement for a passive optical network
JP2004523162A (ja) Wdm光通信システム
EP2408125B1 (en) Optical transmitter for wdm passive optical network
WO2020238279A1 (zh) 一种plc芯片、tosa、bosa、光模块、以及光网络设备
KR101453948B1 (ko) 간섭형 잡음억제장치를 포함하는 파장무관 광송신기
JP2005051760A (ja) 多波長レージング光源及び反射型光増幅手段を用いた波長分割多重方式受動型光加入者網
Boiyo et al. An integrated OADM based on Bragg trans-reflectance in 1550 nm VCSEL optical fibre access networks
de Laat Wavelength Routing Enables Dynamic Bandwidth Reconfiguration in Flexible Passive Optical Networks
JPWO2002047217A1 (ja) 波長多重化光源及び波長多重化装置
JP2004133272A (ja) 光変調器

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant