WO2011014992A1 - 一种用于减小切换VoIP通话时的中断时间的方法和装置 - Google Patents

一种用于减小切换VoIP通话时的中断时间的方法和装置 Download PDF

Info

Publication number
WO2011014992A1
WO2011014992A1 PCT/CN2009/073143 CN2009073143W WO2011014992A1 WO 2011014992 A1 WO2011014992 A1 WO 2011014992A1 CN 2009073143 W CN2009073143 W CN 2009073143W WO 2011014992 A1 WO2011014992 A1 WO 2011014992A1
Authority
WO
WIPO (PCT)
Prior art keywords
duration
switched domain
control device
time
handover request
Prior art date
Application number
PCT/CN2009/073143
Other languages
English (en)
French (fr)
Inventor
雷正雄
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯公司 filed Critical 上海贝尔股份有限公司
Priority to EP09847970.2A priority Critical patent/EP2464169B1/en
Priority to KR1020127004587A priority patent/KR101368708B1/ko
Priority to US13/389,379 priority patent/US8644258B2/en
Priority to CN2009801599883A priority patent/CN102474783B/zh
Priority to JP2012523177A priority patent/JP5314192B2/ja
Priority to PCT/CN2009/073143 priority patent/WO2011014992A1/zh
Publication of WO2011014992A1 publication Critical patent/WO2011014992A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1063Application servers providing network services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1083In-session procedures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1083In-session procedures
    • H04L65/1095Inter-network session transfer or sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • H04W36/00224Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB]
    • H04W36/00226Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB] wherein the core network technologies comprise IP multimedia system [IMS], e.g. single radio voice call continuity [SRVCC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1443Reselecting a network or an air interface over a different radio air interface technology between licensed networks

Definitions

  • the present invention relates to communication networks, and more particularly to a method and apparatus for reducing the time of interruption when a VoIP call is handed over from a packet switched domain to a circuit switched domain in a communication network.
  • IMS IP Multimedia Subsytem, IP Multimedia Subsystem
  • IMS is a global, access independent and standards-based IP channel and service control system that enables end users based on common Internet protocols to use different types of multimedia services.
  • the IMS system not only provides multiple access methods, but also provides interoperability with circuit switched domains.
  • For a multi-mode mobile terminal that is in the packet switched domain when it moves to or outside the edge of the network covered by the packet switched domain, or when the network covered by the current packet switched domain becomes unavailable, it is in the circuit switched domain coverage In the network, it can switch calls from the packet switched domain to the circuit switched domain to ensure call quality.
  • the handover is usually completed before the current connection is disconnected. That is, the user terminal creates a call or session in the telephone switching domain while maintaining an existing voice call in the packet switched domain, and then switching the voice media to the call in the telephone switching domain after the call or session establishment of the telephone switching domain is completed. Or in the session, then release the network resources in the packet switched domain before the switch.
  • This approach usually has minimal interruption time.
  • the above method cannot be used for a terminal that cannot receive and transmit information through two domains at the same time.
  • 3GPP TS 23.216 specifies that calls anchored in the IMS system are accessed via EPS (Evolved Packet System) PS (Packet Switch) and through UTRAN/GERAN (Universal Terrestrial Radio Access Network / GSM EDGE) Radio Access Network, Universal Terrestrial Radio Access Network / GSM SRVCC (Single Radio Voice Call Continuity) solution between CS (Circuit Switch) access for maintaining the continuity of voice calls.
  • EPS Evolved Packet System
  • PS Packet Switch
  • UTRAN/GERAN Universal Terrestrial Radio Access Network / GSM EDGE Radio Access Network
  • Universal Terrestrial Radio Access Network / GSM SRVCC Single Radio Voice Call Continuity
  • the SRVCC scheme specified in 3GPP TS 23.216 also has some drawbacks, such as undeterminable voice interruption time, complex signaling procedures, and the like. The following section will analyze in detail why there is an uncertain voice interruption time.
  • FIG. 1 exemplarily shows a network architecture diagram of a VoIP call specified by 3GPP TS 23.216 from an E-UTRAN (Evolved UTRAN, Evolved UTRAN) to an SRVCC of UTRAN/GERAN.
  • E-UTRAN Evolved UTRAN, Evolved UTRAN
  • SRVCC SRVCC of UTRAN/GERAN.
  • the UE accesses the IMS through the E-UTRAN, S-GW/PDN GW.
  • E-UTRAN also known as LTE (Long Term Evolution)
  • LTE Long Term Evolution
  • E-Node Bs which are responsible for the radio access network part.
  • the EPS is simplified into two network elements, eNodeB and EPC.
  • the EPC includes: an MME (Mobility Management Entity) for acting as a control node, responsible for signaling processing of the core network; S-GW (Serving GateWay, Serving Gateway) / PDN-GW (Packet Data Network GateWay, grouping) Data network gateway), responsible for data processing of the core network.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • PDN-GW Packet Data Network GateWay, grouping
  • Data network gateway responsible for data processing of the core network.
  • the non-3GPP radio access network can access the EPC through the PDN-GW, and the 3GPP radio access network can access the EPC through the S-GW.
  • Figure 1 also shows the interface between the network elements suggested by the specification.
  • E-UTRAN and EPC are connected through S1 (similar to Iu) interface
  • E-UTRAN can pass X2 (similar to Iur port (not shown)
  • UE and E-UTRAN are connected through LTE-Uu interface .
  • UTRAN is a new access network for UMTS. It has become an important access method for UMTS. It can include NodeB (Node B) and RNC (Radio Network Controller).
  • NodeB Node B
  • RNC Radio Network Controller
  • GERAN is a key part of GSM developed and maintained by 3GPP, also included in the UMTS/GSM network, which includes the base station BS and the base station controller BSC (base station controller) And their interfaces (such as Ater interface, Abis interface, A interface, etc.).
  • the mobile operator's network consists of multiple GERANs, which in combination with the UTRAN in the UMTS/GSM network.
  • Mode/Pack Switch HandOver dual transmission mode/packet handover
  • the relevant call flow diagram of the SRVCC is switched from E-UTRAN to UTRAN/GERAN.
  • the voice call needs to be anchored in the IMS, such as SCC AS (Service Centralization and Continuity Application Server).
  • SCC AS Service Centralization and Continuity Application Server
  • the source E-UTRAN decides to perform handover from the packet domain to the circuit domain for the VoIP call that is being performed by the local UE according to the measurement report received from the local/source UE
  • the handover request is sent to the local MME, and then
  • the source MME divides the bearer (for subsequent transfer of the voice service), and sends a corresponding handover request from the packet domain to the circuit domain to the MSC server or the media gateway that can currently cover the local UE.
  • the corresponding MSC/Media Gateway performs handover preparation and establishes a circuit, a session transfer is initiated.
  • steps 6, 8, and 9 of the dotted line portion may be omitted (steps 20, 21 are also in this way) .
  • the SRVCC includes a session handover procedure at the IMS layer and a cell handover procedure for layer 2 handover to the target cell. That is, it includes two user-level switches:
  • Steps 10 to 12 the session switching process is performed by the SCC AS in the IMS, and the remote UE is updated with the SDP of the target CS access leg (ie, establishing VoIP with the local UE) Session each other), and release the source EPC PS access leg.
  • the above steps will cause the voice portion of the ongoing session to be transformed from the EPC to the MGW at the user level.
  • Step 15-21 handover from E-UTRAN to UTRAN/GERAN performed on the local UE and the access network, which is a RAT (Radio Access Type) performed at the local UE and the access network The handover between the two will cause the local UE to handover from the current E-UTRAN cell to the target UTRAN/GERAN cell.
  • RAT Radio Access Type
  • the interruption of the VoIP call that is, the interruption of the voice stream
  • steps are numbered in consecutive numbers in Figure 2, this is not indicative of the time relationship between steps 10 through 12 and steps 15 through 21.
  • steps 10 through 12 may well start after step 15 or both. That is to say, there is no synchronization mechanism between the two switching processes, which makes the time of voice interruption uncontrollable and uncertain. In the worst case, the time of voice interruption can be very long, making the user feel very bad.
  • Fig. 3 exemplarily shows the length of time in which the VoIP call is interrupted in the above SRVCC scheme.
  • T1 is the interruption time of the cell handover process of layer 2, and also shows the start time and the end time of the interruption.
  • T2 is the interruption time of the session switching process of the IMS layer, and also shows the start time and end time of the interrupt.
  • Case 1 The interruption caused by the ⁇ handover procedure of the IMS layer occurs earlier than the interruption caused by the cell handover procedure.
  • the SRVCC will generate an interrupt time greater than the maximum of T1 and T2, not greater than T1+T2, and in the worst case, equal to Tl+T2.
  • Case 2 The interruption caused by the ⁇ ⁇ switching process of the IMS layer coincides with the interruption caused by the cell handover process.
  • the SRVCC generates an interrupt time equal to the maximum of T1 and T2.
  • Case 3 The interruption caused by the cell handover process occurs earlier than the interruption caused by the session switching process of the IMS layer.
  • the SRVCC will generate an interrupt time greater than the maximum of both T1 and T2, no greater than T1+T2, and worst case equal to Tl+T2.
  • the present invention proposes a method for reducing switching.
  • a method for reducing an interruption time when a VoIP call is switched when a control device of a circuit switched domain receives a handover request from a control device of a packet switched domain, indicating that the current call is to be made
  • the method includes: a calculating step of calculating a first duration, that is, a time required for the control device of the circuit switched domain to send a message to the remote communication terminal; comparing steps, comparing the calculated a time length and a preset second duration, wherein the second duration is a time required for the control device of the circuit switched domain to send a message to the local communication terminal; and the synchronizing step, according to the comparison result of the first duration and the second duration, the circuit
  • the control device of the switching domain determines a sequence and a time for sending a session handover request to the VoIP call anchoring device and a cell handover request to the control device of the packet switched domain, and sends the two requests
  • the calculating step further comprises: the control device of the circuit switched domain sends a request message of the non-session handover request to the VoIP call anchoring device; after receiving the request message, the VoIP call anchoring device interacts with the remote communication terminal The VoIP call anchoring device sends a reply message to the control device of the circuit switched domain after interacting with the remote communication terminal; the control device of the circuit switched domain calculates the first duration according to the time at which the request message is sent and the time when the reply message is received .
  • the calculating step further comprises: the control device of the circuit switched domain calculates a certain ratio of the first duration to the length of time between the two moments according to the time at which the request message is sent and the time at which the reply message is received.
  • the step of synchronizing further comprises: if the first duration is greater than the second duration, the control device of the circuit switched domain sends a session handover request to the VoIP call anchoring device; the control device startup interval of the circuit switched domain is the first duration a timer that is different from the second duration; after the timer expires, the control device of the circuit switched domain sends a cell handover request to the control device of the packet switched domain.
  • the step of synchronizing further comprises: if the first duration is less than the second duration, the control device of the circuit switched domain sends a cell handover request to the control device of the packet switched domain; and the control device startup interval of the circuit switched domain is the second The timer of the difference between the duration and the first duration; after the timer expires, the control device of the circuit switched domain sends a session switch request to the VoIP call anchoring device.
  • the step of synchronizing further comprises: if the first duration is equal to the second duration, the control device of the circuit switched domain simultaneously sends a cell handover request and a direction to the control device of the packet switched domain
  • the VoIP call anchoring device sends a session switch request.
  • apparatus in a control device of a circuit switched domain, for reducing an interruption time when a VoIP call is switched, comprising: receiving means for receiving a control device from a packet switched domain a handover request, the request indicating to switch the current call from the packet switched domain to the circuit switched domain; the computing device, configured to calculate the first duration, that is, the time required by the control device of the circuit switched domain to send the message to the remote communication terminal; For comparing the calculated first duration with a preset second duration, the second duration being a time required for the control device of the circuit switched domain to send a message to the local communication terminal; and a synchronization device for using the comparison device The result of the comparison determines the sequence and time at which the session handover request is sent to the VoIP call anchoring device and the cell handover request is sent to the control device of the packet switched domain, and is used to ensure that the session handover request arrives at the remote communication terminal and the cell handover request The time to arrive at the local communication terminal is simultaneous
  • the sending device is further configured to send a request message for non-session switching request to the VoIP call anchoring device; the receiving device is further configured to receive the VoIP call anchoring device after interacting with the remote communication terminal to the circuit switched domain
  • the control device sends a reply message; the computing device calculates the first duration according to the time at which the request message is sent and the time when the reply message is received.
  • the computing device calculates, according to the time when the request message is sent and the time when the reply message is received, the first duration to be a certain ratio of the length of time between the two moments.
  • the synchronization device triggers the sending device to send a session switching request to the VoIP call anchoring device; the synchronization device starts a timer whose interval time is the difference between the first duration and the second duration; the synchronization device triggers after the timer expires
  • the transmitting device transmits a cell handover request to a control device of the packet switched domain.
  • the synchronization device triggers the sending device to send a cell handover request to the control device of the packet switched domain; the synchronization device startup interval is the second a timer of a difference between the duration and the first duration; the synchronization device triggers the transmitting device to send a session switching request to the VoIP call anchoring device after the timer expires.
  • the synchronization device triggers the transmitting device to simultaneously send a cell handover request to the control device of the packet switched domain and send a session switch to the VoIP call anchor device. request.
  • a synchronization mechanism is introduced between the two main handover procedures causing voice interruption in the SRVCC scheme, that is, the session handover procedure of the IMS layer and the cell handover procedure of layer 2, so that the two handover procedures are Interrupts occur simultaneously or almost simultaneously, which makes the interruption of the entire SRVCC process controllable and constant, and reduces to a minimum, improves system performance, and significantly improves the user's service shield.
  • the solution of the present invention has substantially no impact on the existing network environment, and thus has high compatibility.
  • Figure 1 shows the network architecture for SRVCC specified in 3GPP TS 23.216;
  • FIG. 2 is a schematic diagram of related SRVCC processes in the prior art for switching from E-UTRAN to destination GERAN without DTM/PSHO support;
  • FIG. 3 is a schematic diagram of a length of an SRVCC interrupt time in the prior art
  • FIG. 4 is a schematic diagram of an optimized SRVCC process according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an optimized SRVCC process according to an embodiment of the present invention
  • 6 is a schematic diagram of an optimized SRVCC flow according to an embodiment of the present invention.
  • FIG. 7 is a diagram of an apparatus for reducing an interruption time when a VoIP call is switched in an MSC server according to an embodiment of the present invention.
  • the voice interruption in the SRVCC scheme given by the 3GPP TS 23.216 specification is mainly caused by the session switching process of the IMS layer and the process to the target cell in layer 2, and there is no synchronization mechanism between the two processes. This makes the time of voice interruption uncontrollable and uncertain. In the worst case, as mentioned above, the time of voice interruption can be very long, making the user feel very bad. This is caused by the lack of synchronization between the two switching processes described above. If a synchronization mechanism can be introduced, the time of the speech interruption will be shortened to a fixed value.
  • the basic idea of the present invention is to introduce a synchronization mechanism between the session switching process of the IMS layer and the cell handover process of layer 2, so that the two handover processes start simultaneously or almost simultaneously, so that the interruption time of the entire SRVCC is As described in Case 2 mentioned above, it is a constant value and is the smallest.
  • a value P2 needs to be preset in the MSC server to indicate the average time required to send a PS to CS Response message from the MSC server to the MME until the last local UE receives the HO from EUTRAN Command.
  • This averaging time consists mainly of two parts: the sum of the processing time of the communication node through which the message passes, and the time it takes for the message to travel in the network. Since the number of nodes through which the message arrives at the UE is fixed, the time required for these nodes to process the message can be measured.
  • the MSC server and the local UE are both in the same local network, the distance traveled by the MSC server to the UE in the local network does not change much, so the time required for the message to be transmitted in the network does not change much.
  • the experience is estimated. It can be seen that the time required for the message to be sent from the MSC server to the last arrival to the local UE can be estimated and estimated based on experience, so P2 can be presupposed.
  • the INVITE message sent by the MSC server to the SCC AS in the IMS does not contain the SDP information of the MGW, and the MSC server records the time at which the INVITE message is sent. Recorded as T4.
  • the SCC AS interacts with the remote UE (not shown), and then sends a 200 OK reply message to the MSC server, which includes the SDP information of the remote UE. Since the remote UE does not obtain the SDP information of the MGW, the handover process of the remote UE cannot be started. At this point, the media stream of the current session remains connected.
  • the MSC server records the time when it received the 200 OK message, which is recorded as T5.
  • the MSC server calculates the time P1 required for the sending message to reach the remote UE according to the round trip of the above message, for example, calculating P1 as a certain ratio of the length of time between the time ⁇ 4 and the time ⁇ 5, which can be based on experience. And network status settings, such as 50% or 45%.
  • the purpose of step 10 to step 11 is to calculate P1, but the calculation P1 is not limited to the above INVITE-200OK message pair, and other messages such as INVITE-183 temporary response message may be used.
  • the INVITE message in step 10 in FIG. 2 is a live handover request, because it contains the SDP information of the MGW, and the remote UE receives the INVITE message through the SCC AS to start the session handover process.
  • the INVITE message in the step 10 of FIG. 4, FIG. 5 and FIG. 6 is a request message of the non-session switching request. Because it does not contain the SDP information of the MGW, the remote UE cannot start the session switching after receiving the INVITE message via the SCC AS. The process, the INVITE message is mainly to calculate the value of P1.
  • the MSC server After calculating P1, the MSC server compares P1 with the pre-set P2 size. According to different comparison results, the MSC server performs different actions.
  • the next process is as shown in FIG. 4.
  • the MSC server first sends a session switch request to the SCC AS, such as the ACK message shown in step 12 in FIG. 4, in which the SDP information of the MGW is carried.
  • the MSC server will start one Timers, the time interval of the timer is Pl-P2.
  • the SCC AS After receiving the ACK message of the SDP with the MGW, the SCC AS will immediately send an ACK message to the remote UE based on the ACK message to initiate the session handover procedure and update the remote UE, and the subsequent process and the existing 3GPP TS 23.216 specification define similar.
  • the MSC server After the timer expires, the MSC server sends a cell handover request to the source MME, such as the PS to CS Response message shown in step 14 in FIG. 4, and then performs steps 15 and 16, thereby starting the local UE side handover to the target cell.
  • the cell handover process, the subsequent process is the same as the prior art.
  • the next process is as shown in FIG. 5.
  • the MSC server first sends a cell handover request to the source MME, for example, the PS to CS Response message shown in step 14 in FIG. 5, and starts the cell handover process on the local UE side.
  • the subsequent procedure is the same as that defined in the existing 3GPP TS 23.216 specification.
  • the MSC server starts a timer with a timer interval of P2-P1.
  • the MSC server sends a session switch request to the SCC AS in the IMS, such as the ACK message shown in step 12 in FIG. 5, in which the SDP information of the MGW is received, and the SCC AS receives the MGW.
  • a session switch request to the SCC AS in the IMS, such as the ACK message shown in step 12 in FIG. 5, in which the SDP information of the MGW is received, and the SCC AS receives the MGW.
  • an ACK message will be sent to the remote UE based on this ACK message to initiate the session handover procedure and update the remote UE.
  • the subsequent procedure is similar to that defined by the existing 3GPP TS 23.216 specification.
  • the time required for the MSC server to send a message to the local UE is the same as the time it takes for the message to reach the remote UE.
  • the MSC server simultaneously sends a session handover request to the SCC AS and sends a cell handover request to the source MME, that is, the ACK message (SDP information with the MGW) shown in step 12 in FIG. 6 and step 14 is shown.
  • the PS to CS Response message is sent at the same time.
  • the SCC AS Upon receiving the above ACK message, the SCC AS will immediately send an ACK message to the remote UE based on the ACK message to initiate the session handover procedure and update the remote UE.
  • the subsequent procedure is similar to that defined by the existing 3GPP TS 23.216 specification.
  • the source MME After receiving the PS to CS Response message, the source MME further starts the cell handover process on the local UE side.
  • the session handover request finally arrives at the remote UE and the cell handover request ends up.
  • the moments up to the local UE are simultaneous or nearly simultaneous.
  • the remote UE updates the SDP information of the peer communication entity (that is, the local UE) to the SDP information of the MGW, thereby causing the interruption caused by the handover of the IMS layer to start.
  • the cell handover request finally arrives at the local UE, the interruption caused by the cell handover of layer 2 starts. Therefore, the interruption caused by the ⁇ switching of the IMS layer and the interruption caused by the cell switching of the layer 2 occur simultaneously or almost simultaneously, that is, the case 2 in FIG. In this case, as described earlier, the interruption time of the entire SRVCC process is minimal.
  • step 10 can be performed immediately after step 5.
  • the MSC must satisfy the following two conditions: 1. Receive the 200 OK message of step 11; 2.
  • step 7 If 6, 8, 9, do not need to execute When the MSC Server and the target MSC are the same, the message of step 7 is received; if 6, 8, 9, need to be executed, that is, when the MSC Server and the target MSC are not the same, the step 9 is received. Message.
  • Figure 7 illustrates an apparatus for reducing SRVCC outage time in an MSC server in accordance with an embodiment of the present invention.
  • the receiving device 701 receives the handover request from the source MME, such as the PS to CS Req message of step 5 in FIG. 4-6
  • the handover request indicates that the current call is switched from the packet switched domain to the circuit switched domain, and the receiving device 701 will trigger computing device 703 to calculate a first duration P1, which is the average time required for the MSC server to send a message to the remote UE.
  • a first duration P1 which is the average time required for the MSC server to send a message to the remote UE.
  • steps 6, 8, and 9 it will be executed, but there is no necessary relationship between the execution of steps 6, 8, and 9 and the computing device 703 calculating the first duration P1, that is, the computing device 703 calculates that the first duration P1 can be executed simultaneously with the step 6. .
  • steps 6, 8, and 9 in FIGS. 4-6 will be omitted, that is, when the receiving device 701 receives the PS to CS Req message from the source MME. Will trigger the calculation immediately
  • the device 703 calculates the first duration P1.
  • the computing device 703 notifies the sending device 702 to send a request message for non-session switching request to the SCC AS in the IMS, such as the INVITE message in step 10 in FIG. 4-6, which is different from the INVITE message in step 10 in FIG.
  • the INVITE message does not contain the SDP information of the MGW.
  • the computing device 703 records the time at which the INVITE message is sent as T4. Since the SDP message of the MGW is not obtained, the SCC AS cannot start the session switching process on the remote UE side after receiving the INVITE message. After interacting with the remote UE, the SCC AS sends a 200 OK reply message to the MSC server.
  • the MSC server receives the message via the receiving device 701, the receiving device 701 notifies the computing device 703 of the event, and the receiving device 701 records the time at which the 200 OK message is received as T5.
  • the computing device 703 calculates P1 based on the time ⁇ 4 and the time ⁇ 5, for example, calculating P1 as a certain ratio of the length of time between the time ⁇ 4 and the time ⁇ 5, which can be set according to experience and network conditions, such as 50% or 45%. .
  • the computing device 703 notifies the comparison device 704 of the calculated value of P1.
  • the comparing means 704 compares P1 with the size of the preset ⁇ 2, and notifies the synchronizing means 705 of the result of the comparison.
  • the synchronization device 705 determines a sequence and a time for transmitting a session handover request to the SCC AS and a cell handover request to the source MME according to the comparison result, and is used to ensure that the session handover request arrives at the remote communication terminal and the cell handover request arrives at the local communication terminal.
  • the moments are simultaneous or almost simultaneous.
  • the actions performed by the sync device 705 are as follows.
  • the synchronization device 705 first triggers the sending device 702 to send a handover request to the SCC AS, such as FIG.
  • the ACK message shown in step 12 carries the SDP information of the MGW in the message.
  • the synchronization device 705 starts a timer with a time interval of P1-P2.
  • the SCC AS After receiving the ACK message of the SDP with the MGW, the SCC AS will immediately send an ACK message to the remote UE based on the ACK message to initiate the session handover procedure and update the remote UE.
  • the subsequent procedure is similar to that defined by the existing 3GPP TS 23.216 specification. .
  • the synchronization device 705 triggers the sending device 702 to send a cell handover request to the source MME, such as the PS to CS Response message shown in step 14 in FIG.
  • Steps 15 and 16 are performed to initiate the handover of the local UE side to the cell handover process of the target cell, and the subsequent process is the same as the prior art.
  • the synchronization device 705 first triggers the sending device 702 to send a cell handover request to the source MME, such as FIG. 5.
  • the PS to CS Response message shown in step 14 starts the cell handover procedure on the local UE side, and the subsequent procedure is the same as that defined in the existing 3GPP TS 23.216 specification.
  • the synchronization device 705 starts a timer with a time interval of P2-P1.
  • the synchronization device 705 triggers the sending device 702 to send a session switching request to the SCC AS in the IMS, such as the ACK message shown in step 12 in FIG. 5, in which the SDP information of the MGW is included, SCC AS Upon receipt of the ACK message with the SDP of the MGW, an ACK message will be sent to the remote UE based on this ACK message to initiate the session handover procedure and update the remote UE, the subsequent procedure being similar to that defined by the existing 3GPP TS 23.216 specification.
  • the synchronization device 705 triggers the transmitting device 702 to simultaneously send the session handover request to the SCC AS and to the source MME.
  • the cell handover request is transmitted, that is, the ACK message (SDP information with the MGW) shown in step 12 in FIG. 6 and the PS to CS Response message shown in step 14 are simultaneously transmitted.
  • the SCC AS Upon receiving the above ACK message, the SCC AS will immediately send an ACK message to the remote UE based on the ACK message to initiate the session handover procedure and update the remote UE, and the subsequent procedure is similar to that defined by the existing 3GPP TS 23.216 specification.
  • the source MME After receiving the PS to CS Response message, the source MME further starts the cell handover process on the local UE side, and the subsequent process is the same as the existing technology.
  • 3GPP TS 23.216 is used as an application environment, the basic idea of the present invention is explained by entities such as MME, MSC server, MGW, and the like.
  • the application of the present invention is not limited to this.
  • the present invention is also applicable to 3GPP TS 23.237, 23.292, and the like.
  • MME an entity capable of providing corresponding management/control of VoIP calls in the packet switched domain
  • it can act as the MME in the above
  • it is an entity capable of providing corresponding management/control of VoIP calls in the circuit switched domain, for example , MGW, MSC server, etc. that manage/process the media
  • It can act as a corresponding control unit in the circuit switched domain.
  • Any entity that is capable of anchoring a user's call can act as the SCC AS above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种用于减小切换 VoIP通话时的中断时间的方法和装置
技术领域
本发明涉及通信网络, 尤其涉及通信网络中的减小 VoIP通话从分组 交换域切换到电路交换域时的中断时间的方法和装置。 背景技术
当前, 我们正在经历着固定和移动网络的快速融合, IMS ( IP Multimedia Subsytem, IP多媒体子系统)就是在这种环境下应运而生的。
IMS是一个全球性的, 接入独立并且基于标准的 IP通道和业务控制体系, 它使得基于普通因特网协议的终端用户使用不同类型多媒体业务成为可 能。 IMS系统不仅提供了多种接入方式, 也提供了与电路交换域之间的互 操作。 对于正处于分组交换域的多模式移动终端而言, 当其移动到分组交 换域覆盖的网络边缘或之外,或当前分组交换域覆盖的网络变得不可用时, 而其处于电路交换域覆盖的网络中时, 其可以把通话从分组交换域切换到 电路交换域以保证通话质量。
在现有技术中, 如果用户终端能够同时经由分组交换域和电路交换域 来进行信息的接收和发送, 则通常在断开当前连接之前完成切换。 也就是 说, 用户终端在电话交换域创建呼叫或会话, 同时在分组交换域维持现有 的语音呼叫, 当电话交换域的呼叫或会话建立完成后, 才将语音媒体切换 到电话交换域的呼叫或会话中, 然后释放切换前的分组交换域中的网络资 源。 这种方式通常具有最小的中断时间。 但是, 对于不能同时通过两个域 进行信息的接收和发送的终端而言, 无法使用上述的方法。
因此, 3GPP TS 23.216规定了锚定在 IMS 系统中的呼叫通过 EPS ( Evolved Packet System,演进分组系统) PS ( Packet Switch,分组交换) 接入和通过 UTRAN/GERAN ( Universal Terrestrial Radio Access Network / GSM EDGE Radio Access Network, 通用陆地无线接入网 /GSM EDGE无线接入网络)CS( Circuit Switch,电路交换 )接入之间的 SRVCC ( Single Radio Voice Call Continuity, 单无线频率语音呼叫连续性)解决 方案, 用于保持语音呼叫的连续性, 这种情况下, UE ( User Equipment, 用户设备)在给定的某一时刻, 只能通过前述的两种接入网中的一种来发 送或接收数据。
然而, 3GPP TS 23.216规定的 SRVCC方案也存在着一些缺陷, 如不 可确定的语音中断时间、 复杂的信令流程等。 下面将详细分析其为什么会 存在不确定的语音中断时间。
图 1示例性示出了 3GPP TS 23.216规定的 VoIP通话从 E-UTRAN ( Evolved UTRAN, 演进通用陆地无线接入网)切换到 UTRAN/GERAN 的 SRVCC的网络构架图。
如图 1 所示, UE 通过 E-UTRAN、 S-GW/PDN GW接入 IMS。 E-UTRAN也被称为 LTE ( Long Term Evolution, 长期演进技术), 包含 若干个 E-Node B, 负责无线接入网部分。 EPS通过对现有的 WCDMA和 TD-SCDMA系统的 NodeB、 RNC、 CN进行功能上的整合,简化为 eNodeB 和 EPC两种网元。 EPC包括: MME (Mobility Management Entity, 移动 性管理实体),用于充当控制节点, 负责核心网的信令处理; S-GW( Serving GateWay, 服务网关) / PDN-GW ( Packet Data Network GateWay, 分组 数据网络网关) , 负责核心网的数据处理。 其中, 非 3GPP无线接入网可 通过 PDN-GW接入 EPC, 3GPP无线接入网可通过 S-GW接入 EPC。
此外, 图 1 还示出了该规范建议的网络元件之间的接口。 例如, E-UTRAN与 EPC通过 S1 (类似于 Iu )接口连接, E-UTRAN之间则可 通过 X2(类似于 Iur 口连 (未示出), UE与 E-UTRAN则通过 LTE-Uu 接口连接。
在图 1所示的环境中, 当 UE处于 E-UTRAN的覆盖边缘或覆盖区域 外时, 可以决定切换到 UTRAN/GERAN 提供的电路交换域。 在 UTRAN/GERAN中, UE经由基站、 MSC ( Mobile Switch Center, 移动 交换中心)服务器接入到 IMS网络。 其中, UTRAN是一种较新的用于 UMTS的接入网,目前已成为 UMTS 较重要的一种接入方式,其可包括 NodeB(节点 B )、 RNC( Radio Network Controller, 无线网络控制器) 、 CN ( Core Network, 核心网络)等; 而 GERAN则是由 3GPP制定和维护的 GSM 的一个关键部分, 也包括在 UMTS/GSM 网络中, 它包括基站 BS和基站控制器 BSC ( base station controller ) 以及它们的接口 (例如 Ater接口、 Abis接口、 A接口等) 。 通常, 移动运营商的网络由多个 GERAN组成, 在 UMTS/GSM的网络中 则与 UTRAN组合。
关于图 1中的其他网络元件以及各网元之间通信方式等详细信息, 可 以参考 TS 23.216。
Mode/Pack Switch HandOver, 双重传输模式 /分组切换) 的情况下从 E-UTRAN切换到 UTRAN/GERAN的 SRVCC的相关呼叫流程图。 为了 完成语音会话的切换, 需要预先在 IMS 中, 例如 SCC AS ( Service Centralization and Continuity Application Server, 务集中和连续性应用 服务器)上, 锚定该语音呼叫。
如图 2所示, 当源 E-UTRAN根据接收自本地 /源 UE的测量报告, 决 定对本地 UE正在进行的 VoIP呼叫进行从分组域到电路域的切换时, 向 本地 MME发送切换请求, 随后源 MME对承载进行划分(用于后续对语 音服务的转移) , 并向目前能够覆盖本地 UE的 MSC服务器或媒体网关 发送相应的从分组域到电路域的切换请求。 相应的 MSC/媒体网关进行切 换准备并建立电路后, 发起会话转移。 这里, 需要注意的是, 如果该本地 UE将要切换到的目标 MSC与收到来自 MME的切换请求的 MSC为同一 个时, 则虚线部分的步骤 6、 8、 9可以省略(步骤 20、 21也是如此) 。
接下来, SRVCC包括位于 IMS层的会话切换过程和层 2的切换到目 标小区的小区切换过程。 也就是说, 其包括两个用户层面的切换:
1 )步骤 10至 12, 由 IMS中的 SCC AS执行会话切换过程, 用目标 CS接入腿( access le )的 SDP更新远程 UE (也就是与本地 UE建立 VoIP 会话的对方) , 并释放源 EPC PS接入腿。 上述步骤将导致正在进行的会 话的语音部分在用户层面从 EPC变换到 MGW。
2 ) 步骤 15-21, 在本地 UE 和接入网上执行的从 E-UTRAN 到 UTRAN/GERAN 的切换, 这是在本地 UE 和接入网络处执行的 RAT ( Radio Access Type, 无线接入类型)之间的切换, 将导致本地 UE从当 前的 E-UTRAN小区切换到目标 UTRAN/GERAN小区。
在上述两个切换过程中, 都会产生 VoIP呼叫的中断, 即语音流的中 断。 尽管图 2中以连续的数字对各步骤进行了编号, 但是, 这不是表明步 骤 10至 12以及步骤 15至 21两部分之间的时间关系。 事实上恰恰相反, 步骤 10至 12完全可能在步骤 15之后才开始执行,也可能同时执行。也就 是说, 这两个切换过程之间没有同步机制, 这样就使得语音中断的时间变 得不可控制, 具有不确定性。 最坏的情况下, 语音中断的时间会非常长, 使用户的感觉非常差。
图 3示例性示出了上述 SRVCC方案中的 VoIP通话中断的时间长度。 其中, T1为层 2的小区切换过程的中断时间, 同时也示出了中断的开始时 刻和结束时刻。 T2为 IMS层的会话切换过程的中断时间, 同时也示出了 中断的开始时刻和结束时刻。
情况 1: IMS层的^ ^切换过程所引起的中断比小区切换过程所引起 的中断早发生。 这种情况下, SRVCC产生的中断时间将大于 T1和 T2两 者中的最大值, 不大于 T1+T2, 最坏的情况下, 等于 Tl+T2。
情况 2: IMS层的^ ^切换过程所引起的中断和小区切换过程所引起 的中断同时发生。 这种情况下, SRVCC产生的中断时间等于 T1和 T2两 者中的最大值。
情况 3: 小区切换过程所引起的中断比 IMS层的会话切换过程所引起 的中断早发生。 这种情况下, 同情况 1类似, SRVCC产生的中断时间将 大于 T1和 T2两者中的最大值,不大于 T1+T2,最坏的情况下,等于 Tl+T2。
由此可见, 对于 3GPP TS 23.216规范给出的 SRVCC方案, 其产生的 中断时间是不恒定、 不可控的。 发明内容
本发明为了解决现有技术中的上述缺陷, 提出了一种用于减小切换
VoIP通话时的中断时间的方法和装置。
根据本发明的第一方面, 提供了一种用于减小切换 VoIP通话时的中 断时间的方法, 当电路交换域的控制设备接收到来自分组交换域的控制设 备的切换请求, 指示将当前通话从分组交换域切换到电路交换域时, 该方 法包括: 计算步骤, 计算第一时长, 即电路交换域的控制设备发送消息到 达远端通信终端所需的时间; 比较步骤, 比较计算出的第一时长和预先设 定的第二时长, 所述第二时长为电路交换域的控制设备发送消息到达本地 通信终端所需的时间; 同步步骤, 根据第一时长和第二时长的比较结果, 电路交换域的控制设备确定向 VoIP通话锚定设备发送会话切换请求和向 分组交换域的控制设备发送小区切换请求的先后次序和时刻, 并根据该先 后次序和时刻发送上述两条请求, 用于保证会话切换请求到达远端通信终 端的时刻与小区切换请求到达本地通信终端的时刻是同时或几乎同时的。
优选地, 所述计算步骤进一步包括: 电路交换域的控制设备向 VoIP 通话锚定设备发送非会话切换请求的请求消息; VoIP通话锚定设备收到上 述请求消息后, 与远端通信终端进行交互; VoIP通话锚定设备在与远端通 信终端交互后向电路交换域的控制设备发送回复消息; 电路交换域的控制 设备根据发送请求消息的时刻和收到回复消息的时刻, 计算出第一时长。
优选地, 所述计算步骤进一步包括: 电路交换域的控制设备根据发送 请求消息的时刻和收到回复消息的时刻, 计算第一时长为上述两个时刻之 间时间长度的某一比例。
优选地, 所述同步步骤进一步包括: 如果第一时长大于第二时长, 则 电路交换域的控制设备向 VoIP通话锚定设备发送会话切换请求; 电路交 换域的控制设备启动间隔时间为第一时长与第二时长之差的定时器; 定时 器超时后, 电路交换域的控制设备向分组交换域的控制设备发送小区切换 请求。 优选地, 所述同步步骤还包括: 如果第一时长小于第二时长, 则电路 交换域的控制设备向分组交换域的控制设备发送小区切换请求; 电路交换 域的控制设备启动间隔时间为第二时长与第一时长之差的定时器; 定时器 超时后, 电路交换域的控制设备向 VoIP通话锚定设备发送会话切换请求。
优选地, 所述同步步骤还包括: 如果第一时长等于第二时长, 则电路 交换域的控制设备同时向分组交换域的控制设备发送小区切换请求和向
VoIP通话锚定设备发送会话切换请求。
根据本发明的第二方面, 提供了一种在电路交换域的控制设备中用于 减小切换 VoIP通话时的中断时间的装置, 包括: 接收装置, 用于接收来 自分组交换域的控制设备的切换请求, 该请求指示将当前通话从分组交换 域切换到电路交换域; 计算装置, 用于计算第一时长, 即电路交换域的控 制设备发送消息到达远端通信终端所需的时间; 比较装置, 用于比较计算 出的第一时长和预先设定的第二时长, 所述第二时长为电路交换域的控制 设备发送消息到达本地通信终端所需的时间; 同步装置, 用于根据比较装 置的比较结果, 确定向 VoIP通话锚定设备发送会话切换请求和向分组交 换域的控制设备发送小区切换请求的先后次序和时刻, 用于保证会话切换 请求到达远端通信终端的时刻与小区切换请求到达本地通信终端的时刻是 同时或几乎同时的; 发送装置, 用于根据同步装置确定的向 VoIP通话锚 定设备发送会话切换请求和向分组交换域的控制设备发送小区切换请求的 先后次序和时刻, 发送上述两条请求。
优选地, 所述发送装置还用于向 VoIP通话锚定设备发送非会话切换 请求的请求消息; 所述接收装置还用于接收 VoIP通话锚定设备在与远端 通信终端交互后向电路交换域的控制设备发送的回复消息; 所述计算装置 根据发送上述请求消息的时刻和收到上述回复消息的时刻, 计算出第一时 长。
优选地, 所述计算装置根据发送上述请求消息的时刻和收到上述回复 消息的时刻, 计算第一时长为上述两个时刻之间时间长度的某一比例。
优选地, 如果比较装置的比较结果为第一时长大于第二时长, 则所述 同步装置触发所述发送装置向 VoIP通话锚定设备发送会话切换请求; 所 述同步装置启动间隔时间为第一时长与第二时长之差的定时器; 所述同步 装置在定时器超时后, 触发所述发送装置向分组交换域的控制设备发送小 区切换请求。
优选地, 如果比较装置的比较结果为第一时长小于第二时长, 则所述 同步装置触发所述发送装置向分组交换域的控制设备发送小区切换请求; 所述同步装置启动间隔时间为第二时长与第一时长之差的定时器; 所述同 步装置在定时器超时后, 触发所述发送装置向 VoIP通话锚定设备发送会 话切换请求。
优选地, 如果比较装置的比较结果为第一时长等于第二时长, 则所述 同步装置触发所述发送装置同时向分组交换域的控制设备发送小区切换请 求和向 VoIP通话锚定设备发送会话切换请求。
通过使用本发明的方法和装置, 在 SRVCC方案中引起语音中断的两 个主要切换过程即 IMS层的会话切换过程和在层 2的小区切换过程之间引 入了同步机制, 使得两个切换过程的中断同时或几乎同时发生, 这样就使 得整个 SRVCC过程的中断变得可控和恒定, 并减小到了一个最小值, 提 高了系统性能, 明显改善了用户的服务盾量。 而且, 本发明的方案对于现 有的网络环境基本没有影响, 从而具有 ί艮高的兼容性。 附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述, 本发明的 其它特征、 目的和优点将会变得更明显。
图 1为 3GPP TS 23.216中规定的用于 SRVCC的网络架构;
图 2为现有技术中在没有 DTM/PSHO支持下从 E-UTRAN切换到目 的 GERAN的相关 SRVCC流程示意图;
图 3为现有技术中的 SRVCC中断时间长度的示意图;
图 4为根据本发明的一个具体实施方式的优化的 SRVCC流程示意图; 图 5为根据本发明的一个具体实施方式的优化的 SRVCC流程示意图; 图 6为根据本发明的一个具体实施方式的优化的 SRVCC流程示意图; 图 7为根据本发明的一个具体实施方式的在 MSC服务器中用于减小 切换 VoIP通话时的中断时间的装置。 具体实施方式
基于以上的分析,可以看出 3GPP TS 23.216规范给出的 SRVCC方案 中的语音中断主要是由 IMS层的会话切换过程和在层 2进行的向目标小区 而这两个过程之间没有同步机制, 这样就使得语音中断的时间变得不可控 制, 具有不确定性。 最坏的情况下, 如上文所述, 语音中断的时间会非常 长, 使用户的感觉非常差。 这都是由于上述的两个切换过程之间缺乏同步 机制引起的, 如果能引入同步机制, 那么语音中断的时间将会缩短到一个 固定值。
本发明的基本思想就是,在 IMS层的会话切换过程和层 2的小区切换 过程这两者之间引入同步机制, 使这两个切换过程同时或几乎同时开始, 这样, 整个 SRVCC的中断时间就同上文提到的情况 2所述的一样, 为一 个恒定值, 且是最小的。
为此, 在 MSC服务器中需要预先设定一个值 P2, 表示从 MSC服务 器发送 PS to CS Response消息给 MME到最后本地 UE收到 HO from EUTRAN Command所需的平均时间。这个平均时间主要由 2个部分组成: 消息所经过的通信节点对消息的处理时间的总和以及消息在网络中传输所 需的时间。 因为消息传递到达 UE所经过的节点数目是固定的, 所以这些 结点处理消息所需要的时间可以测算出来。 此外由于 MSC服务器和本地 UE都在同一个本地网, 在本地网内消息从 MSC服务器到达 UE所经过的 距离变化不大, 因此消息在网络中传输所需要的时间的变化也不大, 可以 靠经验估计出来。 由此可见, 消息从 MSC服务器发出到最后到达本地 UE 所需的时间是可以基于经验测算和估计的, 因此, P2是可以预先假设的。
图 4、图 5及图 6示出了根据本发明的具体实施方式的优化的 SRVCC 流程图。 需要指出的是, 虽然图中的各个步骤是以连续的数字编号的, 但 这些不表示各个步骤执行的先后次序。 可以看出, 步骤 1至步骤 9与图 2 中的步骤 1至步骤 9相同。
不同的是, 在图 4、 图 5及图 6的步骤 10中, MSC服务器向 IMS中 的 SCC AS发送的 INVITE消息中不含有 MGW的 SDP信息,同时, MSC 服务器记录其发送 INVITE消息的时刻, 记为 T4。 当 SCC AS收到上述 INVITE消息后, 其和远端 UE进行交互(图中未示出), 然后向 MSC J! 务器发送 200 OK的回复消息, 其中包含了远端 UE的 SDP信息。 由于远 端 UE没有获得 MGW的 SDP信息,因此,远端 UE的切换过程无法启动, 至此, 当前会话的媒体流依然保持连接。 MSC服务器记录其收到 200OK 消息的时刻, 记为 T5。 然后, MSC服务器根据上述消息的来回行程计算 出其发送消息到达远端 UE所需的时间 P1,比如将 P1计算为时刻 Τ4和时 刻 Τ5之间时间长度的某个特定比例, 该比例可以根据经验和网络状况设 定, 比如 50%或者 45%。 步骤 10至步骤 11的目的是为了计算 P1, 但是 计算 P1不仅限于上述的 INVITE - 200OK消息对, 也可以采用其他的消 息, 比如 INVITE - 183 临时响应消息。
需要指出的是, 图 2中步骤 10的 INVITE消息为会活切换请求, 因为 其包含 MGW的 SDP信息,远端 UE经由 SCC AS接收到该 INVITE消息 即启动会话切换过程。 而图 4、 图 5及图 6的步骤 10中的 INVITE消息为 非会话切换请求的请求消息, 因为其不含有 MGW的 SDP信息, 远端 UE 经由 SCC AS接收到该 INVITE消息后无法启动会话切换过程,该 INVITE 消息主要是为了计算 P1的值。
计算出 P1后, MSC服务器会比较 P1和预先设定的 P2的大小。根据 不同的比较结果, MSC服务器会执行不同的动作。
如果 P1大于 P2,即 MSC服务器发送消息到达远端 UE所需的时间大 于其发送消息到达本地 UE所需的时间,则接下来的流程如图 4所示。 MSC 服务器先向 SCC AS发送会话切换请求, 比如图 4中步骤 12所示的 ACK 消息, 在该消息中带有 MGW的 SDP信息。 同时, MSC服务器会启动一 个定时器, 定时器的时间间隔为 Pl-P2。 SCC AS收到带有 MGW的 SDP 的 ACK消息后, 将立即基于此 ACK消息向远程 UE发出 ACK消息以启 动会话切换过程并更新远端 UE, 后续的过程和现有的 3GPP TS 23.216规 范定义的类似。待定时器超时后, MSC服务器会向源 MME发送小区切换 请求, 比如图 4中步骤 14所示的 PS to CS Response消息, 随后执行步骤 15和步骤 16, 从而启动本地 UE侧的切换到目标小区的小区切换过程, 后 续的过程和现有技术相同。
如果 P2大于 P1,即 MSC服务器发送消息到达本地 UE所需的时间大 于其发送消息到达远端 UE所需的时间,则接下来的流程如图 5所示。 MSC 服务器先向源 MME发送小区切换请求, 比如图 5中步骤 14所示的 PS to CS Response消息, 启动本地 UE侧的小区切换过程, 后续的过程和现有 的 3GPP TS 23.216规范定义的相同。 同时, MSC服务器会启动一个定时 器, 定时器的时间间隔为 P2-P1。 待定时器超时后, MSC服务器会向 IMS 中的 SCC AS发送会话切换请求, 比如图 5中步骤 12所示的 ACK消息, 在该消息中带有 MGW的 SDP信息, SCC AS收到带有 MGW的 SDP的 ACK消息后, 将立即基于此 ACK消息向远程 UE发出 ACK消息以启动 会话切换过程并更新远程 UE, 后续的过程和现有的 3GPP TS 23.216规范 定义的类似。
如果 P1等于 P2,即 MSC服务器发送消息到达本地 UE所需的时间与 其发送消息到达远端 UE所需的时间相同。 则如图 6所示, MSC服务器同 时向 SCC AS发送会话切换请求和向源 MME发送小区切换请求, 即图 6 中步骤 12所示的 ACK消息(带有 MGW的 SDP信息)和步骤 14所示的 PS to CS Response消息同时发出。 SCC AS收到上述 ACK消息后, 将立 即基于此 ACK消息向远程 UE发出 ACK消息以启动会话切换过程并更新 远程 UE,后续的过程和现有的 3GPP TS 23.216规范定义的类似。源 MME 收到上述 PS to CS Response消息后将进一步启动本地 UE侧的小区切换过 程。
这样, 会话切换请求最终到达远端 UE的时刻与小区切换请求最终到 达本地 UE的时刻是同时或几乎同时的。 由于会话切换请求到达远端 UE 时, 远端 UE就会更新对端通信实体(也就是本地 UE ) 的 SDP信息为 MGW的 SDP信息, 从而导致 IMS层的^ ^切换引起的中断开始。 另一 方面, 小区切换请求最终到达本地 UE时, 层 2的小区切换引起的中断就 会开始。 因此, IMS层的^ ^切换引起的中断与层 2的小区切换引起的中 断是同时或几乎同时发生的, 即图 3中的情况 2所示。 这种情况下, 如前 文所述, 整个 SRVCC过程的中断时间最小。
前文中已指出, 当 MSC服务器和本地 UE将要切换到的目标 MSC为 同一个时, 步骤 6, 8, 9可以省略。 此外, 为了加快切换的速度, 当 MSC 服务器收到来自源 MME的 PS to CS Req后,便可以立即发送 INVITE消 息给 SCC AS, 即步骤 5之后可立即执行步骤 10。 在这种情况下, 在执行 步骤 12之前(也就是发送 ACK消息之前) , MSC必须满足如下两个条 件: 1, 收到了步骤 11的 200 OK消息; 2, 如果 6, 8, 9不需要执行时, 也就是说 MSC Server和目标 MSC是同一个时, 收到了步骤 7的消息; 如 果 6, 8, 9需要执行时,也就是说 MSC Server和目标 MSC不是同一个时, 收到了步骤 9的消息。
图 7示出了根据本发明的实施例的在 MSC服务器中用于减少 SRVCC 中断时间的装置。 当接收装置 701接收到来自源 MME的切换请求时, 比 如图 4-图 6中步骤 5的 PS to CS Req消息时,该切换请求指示将当前通话 从分组交换域切换到电路交换域, 接收装置 701将触发计算装置 703计算 第一时长 P1, 即 MSC服务器发送消息到达远端 UE所需的平均时间。 需 要指出的是, 当 MSC服务器和本地 UE将要切换到的目标 MSC不同时, 当接收装置 701接收到来自源 MME的 PS to CS Req消息时,图 4-图 6中 的步骤 6、 8、 9将会被执行, 但是步骤 6、 8、 9的执行与计算装置 703计 算第一时长 P1这两组动作之间没有必然的先后关系, 即计算装置 703计 算第一时长 P1可与步骤 6同时执行。 当 MSC服务器和本地 UE将要切换 到的目标 MSC相同时, 图 4-图 6中的步骤 6、 8、 9将会被省略, 即当接 收装置 701接收到来自源 MME的 PS to CS Req消息时,将立即触发计算 装置 703计算第一时长 Pl。
具体地,计算装置 703通知发送装置 702向 IMS中的 SCC AS发送非 会话切换请求的请求消息, 比如图 4-图 6中步骤 10中的 INVITE消息, 与图 2中的步骤 10的 INVITE消息不同, 该 INVITE消息不包含 MGW 的 SDP信息。 计算装置 703记录发送 INVITE消息的时刻为 T4。 由于没 有获得 MGW的 SDP消息, SCC AS在收到 INVITE消息后,无法启动远 端 UE侧的会话切换过程。 SCC AS在与远端 UE进行交互后, 向 MSC服 务器发送 200 OK的回复消息。 MSC服务器经由接收装置 701接收该消息, 接收装置 701通知计算装置 703该事件,接收装置 701记录收到 200 OK消 息的时刻为 T5。 计算装置 703根据时刻 Τ4和时刻 Τ5来计算 P1, 比如将 P1计算为时刻 Τ4和时刻 Τ5之间时间长度的某个特定比例, 该比例可以 根据经验和网络状况设定, 比如 50%或者 45%。
然后, 计算装置 703将计算出的 P1的值告知比较装置 704。 比较装置 704比较 P1和预先设定的 Ρ2的大小, 并将比较结果告知同步装置 705。 同步装置 705根据比较结果, 决定向 SCC AS发送会话切换请求和向源 MME发送小区切换请求的先后次序和时刻, 用于保证会话切换请求到达 远端通信终端的时刻与小区切换请求到达本地通信终端的时刻是同时或几 乎同时的。
具体地, 同步装置 705执行的动作如下。
如果 P1大于 P2,即 MSC服务器发送消息到达远端 UE所需的时间大 于其发送消息到达本地 UE所需的时间,同步装置 705先触发发送装置 702 向 SCC AS发送^ ^切换请求, 比如图 4中步骤 12所示的 ACK消息, 在 该消息中带有 MGW的 SDP信息。 同时, 同步装置 705会启动一个定时 器,定时器的时间间隔为 Pl-P2。 SCC AS收到带有 MGW的 SDP的 ACK 消息后,将立即基于此 ACK消息向远程 UE发出 ACK消息以启动会话切 换过程并更新远程 UE, 后续的过程和现有的 3GPP TS 23.216规范定义的 类似。 待定时器超时后, 同步装置 705会触发发送装置 702向源 MME发 送小区切换请求, 比如图 4中步骤 14所示的 PS to CS Response消息, 随 后执行步骤 15和步骤 16, 从而启动本地 UE侧的切换到目标小区的小区 切换过程, 后续的过程和现有技^目同。
如果 P2大于 P1,即 MSC服务器发送消息到达本地 UE所需的时间大 于其发送消息到达远端 UE所需的时间, 则同步装置 705先触发发送装置 702向源 MME发送小区切换请求, 比如图 5中步骤 14所示的 PS to CS Response 消息, 启动本地 UE侧的小区切换过程, 后续的过程和现有的 3GPP TS 23.216规范定义的相同。同时,同步装置 705会启动一个定时器, 定时器的时间间隔为 P2-P1。 待定时器超时后, 同步装置 705会触发发送 装置 702向 IMS中的 SCC AS发送会话切换请求, 比如图 5中步骤 12所 示的 ACK消息, 在该消息中带有 MGW的 SDP信息, SCC AS收到带有 MGW的 SDP的 ACK消息后, 将立即基于此 ACK消息向远程 UE发出 ACK消息以启动会话切换过程并更新远程 UE,后续的过程和现有的 3GPP TS 23.216规范定义的类似。
如果 P1等于 P2,即 MSC服务器发送消息到达本地 UE所需的时间与 其发送消息到达远端 UE所需的时间相同, 则同步装置 705触发发送装置 702同时向 SCC AS发送会话切换请求和向源 MME发送小区切换请求, 即图 6中步骤 12所示的 ACK消息 (带有 MGW的 SDP信息)和步骤 14 所示的 PS to CS Response消息同时发出。 SCC AS收到上述 ACK消息, 将立即基于此 ACK消息向远程 UE发出 ACK消息以启动会话切换过程并 更新远程 UE, 后续的过程和现有的 3GPP TS 23.216规范定义的类似。 源 MME收到上述 PS to CS Response消息后, 将进一步启动本地 UE侧的小 区切换过程, 后续的过程和现有技^目同。
尽管上文以 3GPP TS 23.216为应用环境, 并以 MME、 MSC服务器、 MGW等实体来说明本发明的基本思想。 但是, 本发明的应用不限于此。 例如, 本发明还可应用于 3GPP TS 23.237、 23.292等。 事实上, 只要是分 组交换域中能够对 VoIP呼叫提供相应的管理 /控制的实体, 便可以充当上 文中的 MME; 只要是电路交换域中能够对 VoIP呼叫提供相应的管理 /控 制的实体, 例如, 对媒体进行管理 /处理的 MGW、 MSC服务器等等, 都 可以充当电路交换域中的相应的控制单元。 只要是能够锚定用户的呼叫的 实体, 都可以充当上文中的 SCC AS。
以上对本发明的具体实施例进行了描述。 需要理解的是, 本发明并不 局限于上述特定实施方式, 本领域技术人员可以在所附权利要求的范围内 做出各种变形或修改。

Claims

权 利 要 求
1. 一种用于减小切换 VoIP通话时的中断时间的方法, 当电路交换域 的控制设备接收到来自分组交换域的控制设备的切换请求, 指示将当前通 话从分组交换域切换到电路交换域时, 包括:
计算步骤, 计算第一时长, 即电路交换域的控制设备发送消息到达远 端通信终端所需的时间;
比较步骤, 比较计算出的第一时长和预先设定的第二时长, 所述第二 时长为电路交换域的控制设备发送消息到达本地通信终端所需的时间; 同步步骤, 根据第一时长和第二时长的比较结果, 电路交换域的控制 设备确定向 VoIP通话锚定设备发送会话切换请求和向分组交换域的控制 设备发送小区切换请求的先后次序和时刻, 并根据该先后次序和时刻发送 上述两条请求, 用于保证会话切换请求到达远端通信终端的时刻与小区切 换请求到达本地通信终端的时刻是同时或几乎同时的。
2.如权利要求 1所述的方法,其特征在于,所述计算步骤进一步包括: 电路交换域的控制设备向 VoIP通话锚定设备发送非会话切换请求的 请求消息;
VoIP通话锚定设备收到上述请求消息后, 与远端通信终端进行交互; VoIP通话锚定设备在与远端通信终端交互后向电路交换域的控制设 备发送回复消息;
电路交换域的控制设备根据发送请求消息的时刻和收到回复消息的时 刻, 计算出第一时长。
3. 如权利要求 1-2所述的方法, 其特征在于, 所述计算步骤进一步包 括:
电路交换域的控制设备根据发送请求消息的时刻和收到回复消息的时 刻, 计算第一时长为上述两个时刻之间时间长度的某一比例。
4. 如权利要求 1-3所述的方法, 其特征在于, 所述同步步骤进一步包 括: 如果第一时长大于第二时长, 则 电路交换域的控制设备向 VoIP通话锚定设备发送会话切换请求; 电路交换域的控制设备启动间隔时间为第一时长与第二时长之差的定 时器;
定时器超时后, 电路交换域的控制设备向分组交换域的控制设备发送 小区切换请求。
5. 如权利要求 1-4所述的方法, 其特征在于, 所述同步步骤进一步包 括: 如果第一时长小于第二时长, 则
电路交换域的控制设备向分组交换域的控制设备发送小区切换请求; 电路交换域的控制设备启动间隔时间为第二时长与第一时长之差的定 时器;
定时器超时后, 电路交换域的控制设备向 VoIP通话锚定设备发送会 话切换请求。
6. 如权利要求 1-5所述的方法, 其特征在于, 所述同步步骤进一步包 括:
如果第一时长等于第二时长, 则电路交换域的控制设备同时向分组交 换域的控制设备发送小区切换请求和向 VoIP通话锚定设备发送会话切换 请求。
7. 如权利要求 1-6所述的方法, 其特征在于, 所述电路交换域的控制 设备为 MSC服务器或媒体网关 MGW。
8. 如权利要求 1-7所述的方法, 其特征在于, 所述分组交换域的控制 设备为移动性管理实体 MME。
9. 如权利要求 1-8所述的方法, 其特征在于, 所述 VoIP通话锚定设 备为服务集中和连续性应用服务器 SCC AS。
10. 一种在电路交换域的控制设备中用于减小切换 VoIP通话时的中 断时间的装置, 其特征在于, 包括:
接收装置, 用于接收来自分组交换域的控制设备的切换请求, 该请求 指示将当前通话从分组交换域切换到电路交换域;
计算装置, 用于计算第一时长, 即电路交换域的控制设备发送消息到 达远端通信终端所需的时间;
比较装置, 用于比较计算出的第一时长和预先设定的第二时长, 所述 第二时长为电路交换域的控制设备发送消息到达本地通信终端所需的时 间;
同步装置, 用于根据比较装置的比较结果, 确定向 VoIP通话锚定设 备发送会话切换请求和向分组交换域的控制设备发送小区切换请求的先后 次序和时刻, 用于保证会话切换请求到达远端通信终端的时刻与小区切换 请求到达本地通信终端的时刻是同时或几乎同时的;
发送装置, 用于根据同步装置确定的向 VoIP通话锚定设备发送会话 切换请求和向分组交换域的控制设备发送小区切换请求的先后次序和时 刻, 发送上述两条请求。
11. 如权利要求 10所述的装置, 其中, 所述发送装置还用于向 VoIP 通话锚定设备发送非会话切换请求的请求消息; 所述接收装置还用于接收
VoIP通话锚定设备在与远端通信终端交互后向电路交换域的控制设备发 送的回复消息; 所述计算装置根据发送上述请求消息的时刻和收到上述回 复消息的时刻, 计算出第一时长。
12. 如权利要求 10-11所述的装置, 其中, 所述计算装置根据发送上 述请求消息的时刻和收到上述回复消息的时刻, 计算第一时长为上述两个 时刻之间时间长度的某一比例。
13. 如权利要求 10-12所述的装置, 其中, 如果比较装置的比较结果 为第一时长大于第二时长, 则
所述同步装置触发所述发送装置向 VoIP通话锚定设备发送会话切换 请求;
所述同步装置启动间隔时间为第一时长与第二时长之差的定时器; 所述同步装置在定时器超时后, 触发所述发送装置向分组交换域的控 制设备发送小区切换请求。
14. 如权利要求 10-13所述的装置, 其中, 如果比较装置的比较结果 为第一时长小于第二时长, 则 所述同步装置触发所述发送装置向分组交换域的控制设备发送小区切 换请求;
所述同步装置启动间隔时间为第二时长与第一时长之差的定时器; 所述同步装置在定时器超时后, 触发所述发送装置向 VoIP通话锚定 设备发送会话切换请求。
15. 如权利要求 10-14所述的装置, 其中, 如果比较装置的比较结果 为第一时长等于第二时长, 则
所述同步装置触发所述发送装置同时向分组交换域的控制设备发送小 区切换请求和向 VoIP通话锚定设备发送会话切换请求。
16. 如权利要求 10-15所述的装置, 其特征在于, 所述电路交换域的 控制设备为 MSC服务器或媒体网关 MGW。
17. 如权利要求 10-16所述的装置, 其特征在于, 所述分组交换域的 控制设备为移动性管理实体 MME。
18. 如权利要求 10-17所述的装置, 其特征在于, 所述 VoIP通话锚定 设备为服务集中和连续性应用服务器 SCC AS。
PCT/CN2009/073143 2009-08-07 2009-08-07 一种用于减小切换VoIP通话时的中断时间的方法和装置 WO2011014992A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09847970.2A EP2464169B1 (en) 2009-08-07 2009-08-07 Method and device for reducing interrupt time when handing over voice over ip (voip) call
KR1020127004587A KR101368708B1 (ko) 2009-08-07 2009-08-07 VoIP 통화의 핸드오버시 인터럽트 시간을 감소시키는 방법 및 장치
US13/389,379 US8644258B2 (en) 2009-08-07 2009-08-07 Method and apparatus for reducing break duration in handover of VoIP conversation
CN2009801599883A CN102474783B (zh) 2009-08-07 2009-08-07 一种用于减小切换VoIP通话时的中断时间的方法和装置
JP2012523177A JP5314192B2 (ja) 2009-08-07 2009-08-07 VoIP会話のハンドオーバでのブレーク継続時間を低減するための方法及び装置
PCT/CN2009/073143 WO2011014992A1 (zh) 2009-08-07 2009-08-07 一种用于减小切换VoIP通话时的中断时间的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/073143 WO2011014992A1 (zh) 2009-08-07 2009-08-07 一种用于减小切换VoIP通话时的中断时间的方法和装置

Publications (1)

Publication Number Publication Date
WO2011014992A1 true WO2011014992A1 (zh) 2011-02-10

Family

ID=43543870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073143 WO2011014992A1 (zh) 2009-08-07 2009-08-07 一种用于减小切换VoIP通话时的中断时间的方法和装置

Country Status (6)

Country Link
US (1) US8644258B2 (zh)
EP (1) EP2464169B1 (zh)
JP (1) JP5314192B2 (zh)
KR (1) KR101368708B1 (zh)
CN (1) CN102474783B (zh)
WO (1) WO2011014992A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104703A1 (de) 2012-01-11 2013-07-18 Bayer Pharma Aktiengesellschaft Substituierte annellierte pyrimidine und triazine und ihre verwendung
US9526037B2 (en) 2013-02-04 2016-12-20 Apple Inc. SRVCC handover indication for remote party to voice call
US9544127B2 (en) * 2011-02-11 2017-01-10 Interdigital Patent Holdings, Inc. Method and apparatus for synchronizing mobile station media flows during a collaborative session
US10119735B2 (en) 2013-10-28 2018-11-06 Gree Electric Appliances, Inc. Of Zhuhai Electronic expansion valve

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577504B (zh) * 2009-10-28 2015-01-28 上海贝尔股份有限公司 一种将视频通话从ps域切换到cs域的方法和装置
EP2524540A4 (en) * 2010-01-11 2017-05-31 Nokia Technologies Oy Method and apparatus for implementing a wait period for single radio continuity transfers
US9516559B2 (en) * 2010-01-20 2016-12-06 Blackberry Limited Methods of performing cell change without receiving description of resources in a target cell
US9525569B2 (en) * 2010-03-03 2016-12-20 Skype Enhanced circuit-switched calls
CN103582020B (zh) * 2012-07-27 2017-12-19 电信科学技术研究院 一种3gpp接入间切换时的ip流分流方法及装置
US9338718B2 (en) 2013-03-14 2016-05-10 Apple Inc. Voice call resumption on a legacy network
CN106465210A (zh) * 2014-03-28 2017-02-22 诺基亚通信公司 切换装置和方法
WO2016176816A1 (zh) 2015-05-05 2016-11-10 华为技术有限公司 电路域回落的方法、网络设备和系统
CN106332306A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 承载建立方法、装置、媒体网关以及语音承载建立系统
US10383164B2 (en) * 2016-10-06 2019-08-13 T-Mobile Usa, Inc. Network terminal having configurable retry or changeover

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459940A (zh) * 2008-02-25 2009-06-17 中兴通讯股份有限公司 单无线信道语音业务连续性的域切换方法
WO2009089987A1 (en) * 2008-01-14 2009-07-23 Nortel Networks Limited Single radio voice call continuity (sr-vcc)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753952B2 (ja) * 2005-12-27 2011-08-24 富士通株式会社 ハンドオーバ制御方法
US20080181205A1 (en) * 2007-01-26 2008-07-31 Maria Rg Azada Method to improve the performance of handoffs between packet switched and circuit switched domains
CN101472313B (zh) * 2007-12-27 2011-09-14 华为技术有限公司 一种语音业务切换方法、系统和装置
CN101635968A (zh) * 2008-07-22 2010-01-27 株式会社Ntt都科摩 切换处理方法、基站及网络通信系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009089987A1 (en) * 2008-01-14 2009-07-23 Nortel Networks Limited Single radio voice call continuity (sr-vcc)
CN101459940A (zh) * 2008-02-25 2009-06-17 中兴通讯股份有限公司 单无线信道语音业务连续性的域切换方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Single Radio Voice Call Continuity (SRVCC) Stage 2 (Release 9)", 3GPP TS 23.216 V9.0.0, June 2009 (2009-06-01), XP050363169 *
See also references of EP2464169A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9544127B2 (en) * 2011-02-11 2017-01-10 Interdigital Patent Holdings, Inc. Method and apparatus for synchronizing mobile station media flows during a collaborative session
US10003933B2 (en) 2011-02-11 2018-06-19 Interdigital Patent Holdings, Inc. Method and apparatus for synchronizing mobile station media flows during a collaborative session
WO2013104703A1 (de) 2012-01-11 2013-07-18 Bayer Pharma Aktiengesellschaft Substituierte annellierte pyrimidine und triazine und ihre verwendung
US9526037B2 (en) 2013-02-04 2016-12-20 Apple Inc. SRVCC handover indication for remote party to voice call
US10119735B2 (en) 2013-10-28 2018-11-06 Gree Electric Appliances, Inc. Of Zhuhai Electronic expansion valve

Also Published As

Publication number Publication date
EP2464169B1 (en) 2018-01-17
EP2464169A4 (en) 2016-12-14
KR20120046275A (ko) 2012-05-09
EP2464169A1 (en) 2012-06-13
US20120134340A1 (en) 2012-05-31
US8644258B2 (en) 2014-02-04
KR101368708B1 (ko) 2014-03-04
CN102474783B (zh) 2013-12-04
JP5314192B2 (ja) 2013-10-16
JP2013501431A (ja) 2013-01-10
CN102474783A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2011014992A1 (zh) 一种用于减小切换VoIP通话时的中断时间的方法和装置
KR101441946B1 (ko) Sr-vcc 이동도에서 흐름 중단의 감소
US9723534B2 (en) Method and system for managing handover in radio access networks
JP5727477B2 (ja) 非定常VoIP通話の間で端末をハンドオーバさせるための方法、ネットワーク要素、装置およびシステム
WO2017005083A1 (zh) 一种异系统检测事件的控制方法和用户设备
US8249019B2 (en) System and method for SR-VCC of IMS emergency sessions
WO2013010464A1 (zh) 小区信息上报和小区移动性参数调整的方法及设备
EP2567571B1 (en) Improvements to handover
US9706449B2 (en) Technique for transferring a session with changeable session state
EP2957126B1 (en) Synchronizing call states of network component and mobile device at session transfer
KR101358774B1 (ko) 핸드오버를 처리하는 방법, 통신 장치 및 통신 시스템
WO2011050525A1 (zh) 一种将视频通话从ps域切换到cs域的方法和装置
WO2011006440A1 (zh) 一种切换方法和装置
TW200835244A (en) Method and apparatus for supporting handoff from GPRS/GERAN to LTE/EUTRAN
JP2010068233A (ja) 無線通信システム、無線通信方法および無線基地局装置
WO2012149866A1 (zh) 单一无线语音呼叫连续性域的切换方法及系统
EP2564634B1 (en) Improvements to handover
WO2010108447A1 (zh) 单无线接入方式语音切换的实现方法及系统
WO2013000235A1 (zh) 一种终端切换的方法及装置
WO2011091597A1 (zh) 将voip呼叫从分组交换域切换到电路交换域的方法和设备
WO2011043527A1 (en) Method and system for media anchoring and bi-casting media data
WO2011023054A1 (zh) 一种ip多媒体子系统中多会话能力同步方法及系统
WO2017177427A1 (zh) 业务处理方法和相关装置及通信系统
WO2011160928A1 (en) Enhanced radio voice call continuity gateway solution
WO2014005306A1 (zh) 视频呼叫的反向切换的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159988.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009847970

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012523177

Country of ref document: JP

Ref document number: 13389379

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127004587

Country of ref document: KR

Kind code of ref document: A