WO2011091597A1 - 将voip呼叫从分组交换域切换到电路交换域的方法和设备 - Google Patents

将voip呼叫从分组交换域切换到电路交换域的方法和设备 Download PDF

Info

Publication number
WO2011091597A1
WO2011091597A1 PCT/CN2010/070418 CN2010070418W WO2011091597A1 WO 2011091597 A1 WO2011091597 A1 WO 2011091597A1 CN 2010070418 W CN2010070418 W CN 2010070418W WO 2011091597 A1 WO2011091597 A1 WO 2011091597A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
time period
session
voip
message
Prior art date
Application number
PCT/CN2010/070418
Other languages
English (en)
French (fr)
Inventor
雷正雄
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯公司 filed Critical 上海贝尔股份有限公司
Priority to PCT/CN2010/070418 priority Critical patent/WO2011091597A1/zh
Priority to CN201080061859.3A priority patent/CN102714830B/zh
Publication of WO2011091597A1 publication Critical patent/WO2011091597A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • H04W36/00224Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB]
    • H04W36/00226Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB] wherein the core network technologies comprise IP multimedia system [IMS], e.g. single radio voice call continuity [SRVCC]

Definitions

  • the present invention relates to communication networks, and more particularly to methods and apparatus for switching VoIP calls from a packet switched domain to a circuit switched domain. Background technique
  • IMS is a global, access independent and standards-based IP channel and service control system that enables end users of common Internet protocols to use different types of multimedia services.
  • the IMS system not only provides multiple access methods, but also provides interoperability with circuit switched domains (CS domains).
  • CS domains circuit switched domains
  • PS domain packet switched domain
  • the call can be switched from the PS domain to the CS domain to ensure the quality of the call.
  • the handover is usually completed before the current connection is disconnected. That is, the user terminal creates a call or session in the CS domain while maintaining the existing voice call in the PS domain, and then switches the voice media to the CS domain call or session after the call or session establishment of the telephone switching domain is completed. And then release the network resources in the PS domain before the switch.
  • This approach usually has the smallest interrupt time.
  • the above method cannot be used for a terminal that cannot receive and transmit information through two domains at the same time.
  • 3GPP TS 23.216 specifies that calls anchored in the IMS system are accessed via EPS (Evolved Packet System) PS access and CS access via UTRAN/GERAN (Universal Terrestrial Radio Access Network/GSM EDGE Radio Access Network) Inter-SRVCC (Single Radio Frequency Voice Call Continuity) solution for maintaining the continuity of voice calls.
  • EPS Evolved Packet System
  • GERAN Universal Terrestrial Radio Access Network/GSM EDGE Radio Access Network
  • Inter-SRVCC Single Radio Frequency Voice Call Continuity
  • the UE User Equipment
  • the SRVCC scheme specified in 3GPP TS 23.216 also has some drawbacks, such as undeterminable voice interruption time, complex signaling procedures, and the like. The following section will analyze in detail why there is an indeterminate voice interruption time.
  • Fig. 1 exemplarily shows a network architecture diagram of a VoIP call specified by 3GPP TS 23.216 from an E-UTRAN (Dynamic Universal Terrestrial Radio Access Network) to an SRVCC of UTRAN/GERAN.
  • E-UTRAN Dynamic Universal Terrestrial Radio Access Network
  • the UE accesses the IMS through the E-UTRAN, S-GW/PDN GW.
  • E-UTRAN also known as LTE (Long Term Evolution)
  • the EPS is simplified into two network elements, eNodeB and EPC.
  • the EPC includes: MME (Mobility Management Entity), acting as a control node, responsible for signaling processing of the core network; S-GW (Serving Gateway) / PDN-GW (Packet Data Network Gateway), responsible for data processing of the core network.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • PDN-GW Packet Data Network Gateway
  • the UE when the UE is outside the coverage edge or coverage area of the E-UTRAN, it may decide to switch to the CS domain provided by the UTRAN/GERAN.
  • the UE accesses the IMS network via a base station, an MSC (Mobile Switching Center) server.
  • MSC Mobile Switching Center
  • UTRAN has become an important access method for UMTS; GERAN is a key part of GSM developed and maintained by 3GPP, and is also included in the UMTS/GSM network. .
  • a mobile operator's network consists of multiple GERANs, combined with UTRAN in a UMTS/GSM network.
  • Figure 2 shows a related call flow diagram for SRVCC switching from E-UTRAN to UTRAN/GERAN in the case specified by 3GPP TS 23.216.
  • the voice call needs to be anchored in advance in the IMS, such as SCC AS (Service Centralization and Continuity Application Server).
  • Figure 2 corresponds to Figure 6.2.2.1-1 of 3GPP TS 23.216.
  • the source E-UTRAN is based on the measurement report received from the local/source UE
  • the handover request is sent to the local MME, that is, step 203.
  • the source MME then divides the bearer in step 204 (for subsequent transfer of the voice service), and in step 205 sends a corresponding handover from the PS domain to the CS domain to the MSC server/media gateway currently capable of covering the local UE. request.
  • the corresponding MSC/media gateway performs handover preparation and establishes a circuit, a session transfer is initiated.
  • the steps 206, 208, 209 of the dotted line portion may be omitted (steps 220, 221 are also in this way) .
  • the SRVCC includes a session handover procedure at the IMS layer and a cell handover procedure for layer 2 handover to the target cell. That is, it includes two user-level switches:
  • Steps 210 to 212 performing a session handover procedure by the SCC AS in the IMS, updating the remote UE (that is, the counterpart establishing a VoIP session with the local UE) with the SDP of the target CS access leg (access le), and releasing the source EPC PS access to the legs.
  • the above steps will cause the voice portion of the ongoing session to be transformed from EPC to MGW at the user level.
  • the INVITE message in step 210 is a session handover request, because it contains the SDP information of the MGW, and the remote UE initiates the session handover process by receiving the INVITE message via the SCC AS.
  • Steps 215-221 handover from E-UTRAN to UTRAN/GERAN performed on the local UE and the access network, which is a handover between the local UE and the RAT (radio access type) performed at the access network Will cause the local UE to handover from the current E-UTRAN cell to the target UTRAN/GERAN cell.
  • RAT radio access type
  • the interruption of the VoIP call that is, the interruption of the voice stream
  • steps are numbered in consecutive numbers in Fig. 2, this does not indicate the time relationship between the steps 210 to 212 and the steps 215 to 221.
  • steps 210 to 212 may not be executed until after step 215, or may be performed at the same time. That is to say, there is no synchronization mechanism between the two switching processes, which makes the time of voice interruption uncontrollable and uncertain. In the worst case, the time of voice interruption can be very long, making the user feel worse.
  • FIG. 3 exemplarily shows the length of time during which the VoIP call is interrupted in the above SRVCC scheme.
  • T1 is the interruption time of the cell handover process of layer 2, and also shows the start time and the end time of the interruption.
  • T2 is the interruption time of the session switching process of the IMS layer, and also shows the start time and end time of the interruption.
  • Case 1 The interruption caused by the session switching process of the IMS layer occurs earlier than the interruption caused by the cell handover process.
  • the SRVCC will generate an interrupt time greater than the maximum of T1 and T2, and in the worst case, equal to Tl+T2.
  • Case 2 The interruption caused by the session switching process of the IMS layer and the interruption caused by the cell handover process occur simultaneously.
  • the SRVCC generates an interrupt time equal to the maximum of T1 and T2.
  • Case 3 The interruption caused by the cell handover process occurs earlier than the interruption caused by the session switching process of the IMS layer.
  • the SRVCC will generate an interrupt time greater than the maximum of both T1 and T2, and in the worst case, equal to Tl+T2.
  • the voice interruption in the existing SRVCC scheme is mainly the session handover procedure of the IMS layer and the cell handover procedure to the target cell performed at layer 2 (the handover performed between the local UE and the access network) ) produced in two parts.
  • the arbitrariness of these two processes the time of voice interruption becomes uncontrollable and uncertain. Long-term voice interruptions will undoubtedly worsen the user experience. Summary of the invention
  • the present invention proposes to introduce a synchronization mechanism between the session switching process of the IMS layer and the cell handover process of layer 2, so that the two handover processes start simultaneously or almost simultaneously, thereby the entire SRVCC
  • the interruption time is reduced to a minimum constant value to improve the user experience.
  • the control device MSC server of the CS domain may support the service interface to the IMS, or may not support the IMS interface but only the interface to the ISUP/BICC. In the present application, the latter case is mainly considered, that is, the MSC server only supports the interface to the ISUP/BICC.
  • ISUP ISDN User Part
  • the circuit transmits voice and data calls over the Public Switched Telephone Network (PSTN).
  • PSTN Public Switched Telephone Network
  • the BICC protocol (bearer-independent call control protocol) is a protocol developed by the ITU-TSG11 group and evolved from the ISUP protocol. It is a control protocol for implementing calls that are independent of service bearers in the backbone network.
  • a method of switching a VoIP call from a packet switched PS domain to a circuit switched CS domain in a communication system including a VoIP session anchoring device, a CS domain
  • the CS control device and the PS control device of the PS domain, when the CS control device receives a handover request from the PS control device includes:
  • the first time period is a time required for the remote control terminal to send a message from the CS control device to the VoIP call
  • the second time period is a time required for the CS control device to send a message to a local terminal of the VoIP call
  • the transmission of the session handover request to the VoIP session anchoring device and the transmission of the cell handover request to the PS control device are controlled.
  • the communication system further includes an intermediate control device, wherein calculating the first time period further comprises:
  • the CS control device triggers an intermediate control device of the communication system to send a non-session handover request to the VoIP session anchor device;
  • the CS control device receives a response message from the intermediate control device, the response message is that the VoIP session anchoring device interacts with the remote terminal and the intermediate control device receives a reply from the VoIP session anchoring device Generated after the message.
  • calculating the first time period includes storing a time when the CS control device triggers the intermediate control device, storing a time at which the CS control device receives a response message from the intermediate control device, and A period of time is taken as 0.4 to 0.6 times, preferably 0.5 times, the length of time between the two moments.
  • the CS control device in a case where the first time period is greater than the second time period, sets a timeout period equal to a time while starting to send a session switching request to the VoIP session anchoring device. a timer describing a difference between the first time period and the second time period; And after the timer expires, the CS control device sends a cell handover request to the PS control device.
  • the CS control device in a case where the first time period is equal to the second time period, the CS control device initiates sending a session switching request to the VoIP session anchoring device, and simultaneously to the PS control device Send a cell handover request.
  • the CS control device when the first time period is smaller than the second time period, sets a timeout time equal to the second time while sending a cell handover request to the PS control device. a timer of a difference between the time period and the first time period; and after the timer expires, initiating sending a session switching request to the VoIP session anchoring device.
  • embodiments of the present invention also provide a CS control device for switching a VoIP call from a packet switched PS domain to a circuit switched CS domain in a communication system, the communication system further comprising a VoIP session anchoring device and a PS
  • the PS control device of the domain, the CS control device includes:
  • a computing device configured to: when receiving a handover request from the PS control device, calculate a first time period, where the first time period is a time required to send a message from the CS control device to a remote terminal that arrives at a VoIP call;
  • the comparing device comparing, by the comparing device, the first time period and a preset second time period, where the second time period is a time required for the CS control device to send a message to the local terminal of the VoIP call;
  • a control device configured to control transmission of a session handover request to the VoIP session anchoring device and transmission of a cell handover request to the PS control device according to the comparison result.
  • control apparatus is configured to: when the first time period is greater than the second time period, set a timeout period equal to while starting to send a session switching request to the VoIP session anchoring device a timer of the difference between the first time period and the second time period; and after the timer expires, sending a cell handover request to the PS control device.
  • the control device is configured to: when the first time period and the second time period are equal, initiate sending a session switching request to the VoIP session anchoring device, and simultaneously to the PS control device Send a cell handover request.
  • the control device is configured to: when the first time period is less than the second time period, set a timeout period equal to the first time while sending a cell handover request to the PS control device a timer of a difference between the second period and the first period; and after the timer expires, initiating a session switching request to the VoIP session anchoring device.
  • the present invention also provides an intermediate control device in a communication system, the communication system further comprising a VoIP session anchoring device, a PS control device of the PS domain, and switching the VoIP call from the packet switched PS domain to the circuit switching CS control device in the CS domain,
  • the intermediate control device includes an auxiliary computing device configured to: send a non-session handover request to the VoIP session anchor device by triggering by the CS control device; anchor device and VoIP call at the VoIP session Receiving a reply message from the VoIP session anchoring device after the remote terminal interacts; and sending a response message to the CS control device, so that the CS control device calculates a first time period, the first time period being the CS The time required for the control device to send a message to the remote terminal that arrived at the VoIP call,
  • the control device further includes an auxiliary control device configured to: compare, at the CS control device, the second time period with a second time required to indicate that the CS control device sends a message to a local terminal of the VoIP call After the time period, the CS control device initiates sending a session switch request to the VoIP session anchor device.
  • a synchronization mechanism is introduced between the two main handover procedures causing voice interruption in the SRVCC scheme, ie, the session handover procedure of the IMS layer and the cell handover procedure of layer 2, so that the two handover procedures Interrupts occur simultaneously or almost simultaneously, which makes the interruption of the entire SRVCC process controllable and constant, and reduces to a minimum, improves system performance, and significantly improves the user's service shield.
  • the solution of the present invention has substantially no impact on the existing network environment, and thus has high compatibility.
  • Figure 1 shows the network architecture of SRVCC specified in 3GPP TS 23.216;
  • 2 is a schematic diagram of related SRVCC processes in the prior art for switching from E-UTRAN to destination GERAN without DTM/PSHO support;
  • FIG. 3 is a schematic diagram of a length of an SRVCC interrupt time in the prior art
  • FIG. 5 is a flow chart in accordance with an embodiment of the present invention.
  • FIG. 6 is a functional block diagram of a CS control device and an intermediate control device in accordance with an embodiment of the present invention. detailed description
  • the local UE will switch from the PS domain to the CS domain.
  • the source MME is a control device responsible for processing signaling in the PS domain.
  • the MSC server is a control device responsible for processing signaling in the CS domain (including CS domains such as WCDMA, GSM, and TD-SCDMA).
  • CS domains such as WCDMA, GSM, and TD-SCDMA.
  • the SCC AS can act as a VoIP session anchoring device in IMS.
  • the VoIP session anchoring device can also be an IBCF (Interconnect Boundary Control Function) or other logical entity.
  • the MSC server only supports interfaces to the ISUP/BICC, and an intermediate control device is required to perform the signaling processing tasks that may be required.
  • the MGCF acts as an intermediate control device for processing signaling in this embodiment.
  • IM-MGW IP Multimedia Gateway
  • IP Multimedia Gateway IP Multimedia Gateway
  • a value P2 in the MSC server which indicates the time required for the MSC server to send a message for CS handover to the local UE.
  • P2 represents the average time required to send a PS to CS Response message from the MSC server to the MME until the last local UE receives the HO from EUTRAN Command.
  • This averaging time consists mainly of two parts: the sum of the processing time of the communication node through which the message passes and the time it takes for the message to travel in the network. Since the number of nodes through which the message arrives at the UE is fixed, the time required for these nodes to process the message can be measured.
  • the MSC server and the local UE are both in the same local network, the distance traveled by the MSC server to the UE in the local network does not change much, so the message The time required to transmit in the network does not change much and can be estimated empirically. It can be seen that the time required for the message to be sent from the MSC server to the last arrival to the local UE can be estimated and estimated based on experience, so P2 can be preset.
  • FIG. 4 shows a sequence diagram of signaling messages in accordance with the present invention. It should be noted that although the steps in the figures are numbered consecutively, these do not indicate the order in which the steps are performed.
  • Steps 401 to 409 are similar to steps 201 to 209 in Fig. 2, and the description will not be repeated here.
  • step 409a when the MSC server detects that an SRVCC handover is to be performed, a BICC IAM message with a STN-SR (Session Transfer Number - Single Radio Frequency) is sent to the MGCF.
  • STN-SR Session Transfer Number - Single Radio Frequency
  • the IAM message is used to trigger the MGCF to perform subsequent operations.
  • the MSC server will store the time at which the IAM message was sent, e.g., mark the time as T4.
  • step 410 upon receiving the ⁇ message including the STN-SR, the MGCF detects that this is an SRVCC procedure.
  • the MGCF then sends an empty INVITE request to the S-CSCF in the IMS that does not include the SDP information of the IM-MGW, and the S-CSCF forwards the empty INVITE request to the VoIP session anchoring device according to the standard procedure, that is, in the embodiment. SCC AS.
  • the null INVITE request does not include the SDP information of the IM-MGW.
  • the message is not a session switch request in the traditional sense, we can call it a "non-session switch request" to distinguish it from a general session switch request.
  • other messages for measuring the time required for the MSC to send a message to the remote UE are also possible.
  • step 410a when the SCC AS receives the INVITE message, it interacts with the remote UE.
  • the process of the interaction may include: the SCC AS forwards the re-INVITE request without the SDP information to the remote UE based on the INVITE request in step 410.
  • the remote UE After the remote UE processes the request, it responds to the SCC AS with a 200 OK message with its own SDP information.
  • the MGCF sends an ACM message to the MSC server before the reply message ANM is sent to the MSC server.
  • the ACM message refers to the address completion information, indicating that the remote terminal of the relay circuit has been reserved.
  • the ANM is a response message indicating that the called party has picked up the call.
  • the MGCF sends a BICC ACM message to the MSC server after the timer defined in clause 7.2.3.2.4 of TS 29.163 times out.
  • Another alternative is when the final successful response (eg, 200 OK response) is received, the MGCF sends an ACM message and a BICC ANM message to the MSC server.
  • the final successful response eg, 200 OK response
  • the MGCF sends an ACM message and a BICC ANM message to the MSC server.
  • other methods can also be used.
  • step 411 after communicating with the remote UE, the SCC AS responds to the MGCF with a 200 OK message with SDP information for the remote UE. Since the remote UE does not obtain the SDP information of the IM-MGW, the handover process of the remote UE cannot be started, and thus the media stream of the current session remains connected.
  • step 411a the MGCF sends an ANM message to the MSC server as defined in TS 29.163.
  • the MSC receives the ANM message, it stores the time and can mark the time as T5. At this moment, the media stream of the ongoing session is still connected. Since in step 410, the MGCF has detected that this is an SRVCC procedure, it does not send an ACK message to the SCC AS at this time.
  • the MSC server After step 411a, once the MSC server stores and flags T5, it will calculate the duration of time it takes to send a signaling message from the MSC server to the remote UE based on T4 and T5 (e.g., the duration can be represented as P1).
  • the BICC message and the SIP message are sent and received from the time period T4 to T5 (step 409a to step 411a), and the MSC server can calculate the required time for the sending message to reach the remote UE according to the round trip of the above message.
  • Time P1 for example, calculates P1 as a certain ratio of the length of time between time T4 and time T5, which can be set according to experience and network conditions. In the case where the round trip is symmetrical, the ratio can be 0.5.
  • the ratio is 0.55. or 0.45 is also possible. In general, the ratio can be set between 0.4 and 0.6 and adjusted according to the actual situation.
  • the value of the duration P2 at which the MSC server sends a message related to the CS handover to the local UE can be preset by the operator. After calculating P1, the MSC server compares the size of P1 with the preset P2. Based on the different comparison results, the MSC server will perform different actions.
  • Steps 411b and 413 are discussed in detail below.
  • the MSC server receives the ANM message from the MGCF, after multiple calculations and comparisons, the MSC determines whether to set a timer based on the comparison result. For example, when the sizes of P1 and P2 are different, the MSC server sets a timer, and the timeout value of the timer can be set to the difference between P1 and P2.
  • Example 1 P1 is greater than P2, indicating that the time required for the MSC server to send a message to the remote UE is greater than the time it takes for the message to arrive at the local UE.
  • the session switch of the IMS layer should be started first. For example, it can start the MGCF to send a session switch request to the SCC AS.
  • the MSC server will simultaneously perform steps 411b and 413.
  • the MSC server again sends the same initial IAM message to the MGCF as the IAM message in step 409a, and we can mark the IAM message as re-IAM to distinguish it from the message in step 409a.
  • the MSC server starts a timer at the same time, and the timer has a timeout of Pl-P2.
  • the MGCF Upon activation or driving of the re-IAM message sent by the MSC server, as shown in step 412, the MGCF sends an ACK message including the IM-MGW to the SCC AS of the IMS, which is an actual session switch request message.
  • the SCC AS After receiving the ACK message of the SDP with the MGW, the SCC AS will immediately send an ACK message to the remote UE based on the ACK message to start the session handover procedure and update the remote UE, the subsequent process and the existing Similar to the definition of the 3GPP TS 23.216 specification.
  • the MSC server sends a cell handover request to the source MME, such as the PS to CS Response message shown in step 14 in FIG. 4, and then performs steps 15 and 16, thereby starting the local
  • the UE side switches to the cell handover process of the target cell, and the subsequent process is similar to that defined by the 3GPP TS 23.216 specification, and will not be described in detail herein to avoid unnecessarily obscuring the present invention.
  • Example 2 If P1 is equal to P2, it indicates that the time required for the MSC server to send a message to the remote UE is the same as the time it takes for the sending message to reach the local UE. In this case, MSC service The server does not need to set a timer, and steps 411b and 414 are simultaneously performed.
  • the MSC server drives or initiates the MGCF to send a true session switch request to the SCC AS by transmitting the same initial IAM message, ie, the re-IAM message, in the same step as the IAM message in step 409a.
  • the MSC server sends a PS to CS Response message to the source MME. In other words, in Figure 4, the re-IAM message and the PS to CS Response message are sent simultaneously.
  • step 412 upon receiving the re-IAM message, the MGCF finds that the call is still continuing and is related to the SRVCC procedure. Therefore, the MGCF discards the re-IAM message and sends an ACK message with the SDP information of the IM-MGW to the SCC AS.
  • the SDP information should be consistent with the SDP information in the 200 OK received from the SCC AS/remote UE in step 411.
  • the SCC AS will immediately send an ACK message to the remote UE based on the ACK message to start the handover process and update the remote UE, and the source MME will start the local UE side after receiving the PS to CS Response message. Cell handover process.
  • P2 is greater than P1, that is, the time required for the MSC server to send a message to the local UE is greater than the time it takes for the message to reach the remote UE.
  • the MSC server should first send a cell handover request to the source MME, and then start the session handover procedure. Therefore, the timer's timeout period is set to P2-P1.
  • step 414 of FIG. 4 the MSC server sends a PS to CS Response message to the source MME to initiate a cell handover procedure on the local UE side.
  • the MSC server starts a timer (ie, step 413), and the timer has a timeout of P2 - Pl. Only after the timer expires, the MSC server initiates a session switch at the IMS layer, for example, sending a re-IAM message to the MGCF to initiate a session switch, step 411b.
  • P2 is greater than P1
  • step 411b will be executed after step 414, the timer is started at step 414, and step 411b is only executed after the timer expires.
  • FIG. 5 shows a flowchart of a method corresponding to the sequence diagram of the signaling message of FIG.
  • the MSC server calculates P1 through steps 409a to 411a in FIG. 4, that is, the signaling message is sent from the MSC server to the remote UE. Duration and after step 411a and in it Before his possible steps (steps 411b, 413 or 414), the comparison process of P1 with the preset value P2 is initiated. The comparison produces three possible outcomes.
  • steps 411b and 413 are performed simultaneously, that is, a timer with a timeout of P1 - P2 is set while the session switch is initiated.
  • step 414 is performed, that is, the cell handover on the local UE side is started by sending PS to CS Req to the source MME.
  • P1 P2
  • steps 411b and 414 are simultaneously performed.
  • steps 414 and 413 are performed simultaneously, that is, a timer with a timeout period of P2 - P1 is set while the cell handover on the local UE side is started.
  • step 411b is performed, for example, by sending a re-IAM message to the MGCF.
  • step 409a to step 411a is to calculate P1 instead of actually starting the session switching of the IMS layer. This is fundamentally different from step 210 (actually initiating session switching of the IMS layer) in Figure 2.
  • the method of calculating P1 is not limited to the above INVITE-200OK message pair, and other messages such as INVITE-183 temporary response message may be used.
  • the MSC server does not support the SIP interface.
  • the flow illustrated in Figure 5 can still be employed to reduce the interruption time of the entire SRVCC process.
  • the MSC server may send an INVITE message not including the IM-MGW to the SCC AS, receive a 200 OK message with the SDP of the remote UE from the SCC AS to calculate the value of P1, and send the session switch of the IMS layer by the MSC server. request.
  • the MGCF entity is not required.
  • FIG. 6 is a functional block diagram showing an CS control device 601 according to an embodiment of the present invention and an intermediate control device 602 according to an embodiment of the present invention, taking an MSC server and an MGCF device as an example.
  • the MSC server includes: a computing device 611, a comparing device 612, and a control device 613.
  • the MGCF device 602 includes an auxiliary computing device 621 and an auxiliary control device 622. It is worth noting that the presence of the MGCF device is not necessary, so the interaction between the computing device 611 and the auxiliary computing device 621 and the interaction between the control device 613 and the auxiliary control device 622 are shown in dashed lines. It is worth noting that the above device includes more functional modules than shown in Figure 6.
  • the present invention also includes various message receiving and transmitting units, and only parts related to the embodiments of the present invention are shown in the drawings to avoid unnecessarily obscuring the present invention.
  • the various means in the figures can be implemented by computer program code on the basis of existing functional entities.
  • the computing device 611 upon receiving a handover request (PS to CS Req) from the PS control device (e.g., source MME), calculates the time P1 required to transmit a message from the CS control device (i.e., the MSC server) to the remote terminal of the VoIP call.
  • PS to CS Req a handover request
  • the CS control device i.e., the MSC server
  • the computing device 611 can be configured to: send an empty INVITE message to the VoIP session anchoring device SCC AS.
  • the session switching request and the response message are received from the SCC AS after the SCC AS interacts with the remote terminal, and half or about half of the time period elapsed between the above transmission and reception messages is taken as the value of P1.
  • the computing device 611 triggers the auxiliary computing device 621 to send a non-session switching request to the SCC AS, for example, via the IAM message.
  • the secondary computing device returns a response message, such as an ANM, to the MSC 601.
  • the MSC calculates P1 based on the time of the "trigger" and the time of receiving the response message.
  • Comparison device 612 compares PI with a pre-set P2, which, as described above, is the time required for the MSC server to send a message to the local terminal of the VoIP call.
  • the control means 613 will control the start time of the session handover and the cell handover based on the comparison result of P1 and P2.
  • a timer 614 is also shown in block 601 of Figure 6, with the caveat that timer 614 is not required.
  • the MSC server 601 does not need to set a timer, and simultaneously initiates session switching and cell handover of the local UE.
  • the timer with the timeout equal to I P1-P2 I is set only when P1 and P2 are different.
  • the control device 613 starts a session switch and sets a timer, and only starts the cell switch after the timer expires.
  • P2>P1 the control device 613 starts a cell handover and sets a timer, and the session switch is started only after the timer expires.
  • the MSC server 601 initiates a session switch of the IMS layer, for example by sending a session switch request to the SCC AS, for example by sending a cell handover request to the PS control device (eg, the source MME) to initiate the cell handover.
  • the PS control device eg, the source MME
  • control device 613 initiates session switching, e.g., by sending a re-IAM message to the auxiliary control device 622.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种在通信系统中将VoIP呼叫从PS域切换到CS域的方法,所述通信系统包括VoIP会话锚定设备、CS域的CS控制设备以及PS域的PS控制设备,当CS控制设备接收到来自PS控制设备的切换请求时,该方法包括:计算第一时段,所述第一时段为从所述CS控制设备发送消息到达VoIP呼叫的远程终端所需的时间;比较第一时段和和预先设定的第二时段,所述第二时段为所述CS控制设备发送消息到达VoIP呼叫的本地终端所需的时间;以及根据比较结果,控制到VoIP会话锚定设备的会话切换请求的发送以及到PS控制设备的小区切换请求的发送,以使得IMS层的会话切换与层2的小区切换同时或几乎同时发生。本发明还涉及将VoIP呼叫从分组交换PS域切换到电路交换CS域的设备。

Description

将 VoIP呼叫从分组交换域切换到电路交换域的方法和设备
技术领域
本发明涉及通信网络, 具体涉及将 VoIP呼叫从分组交换域切换到电 路交换域的方法和设备。 背景技术
IMS是一个全球性的、 接入独立并且基于标准的 IP通道和业务控制 体系, 它使得基于普通因特网协议的终端用户使用不同类型多媒体业务成 为可能。 IMS系统不仅提供了多种接入方式, 也提供了与电路交换域(CS 域)之间的互操作。 对于正处于分组交换域(PS域)的多模式移动终端而 言, 当它移动到 PS域覆盖的网络边缘或之外, 或当前 PS域覆盖的网络变 得不可用而其它处于 CS域覆盖的网络中时, 可以把通话从 PS域切换到 CS域以保证通话质量。
在现有技术中,如果用户终端能够同时经由 PS域和 CS域来进行信息 的接收和发送, 则通常在断开当前连接之前完成切换。 也就是说, 用户终 端在 CS域创建呼叫或会话, 同时在 PS域维持现有的语音呼叫, 当电话交 换域的呼叫或会话建立完成后, 才将语音媒体切换到 CS域的呼叫或会话 中, 然后释放切换前的 PS域中的网络资源。 这种方式通常具有最小的中 断时间。 但是, 对于不能同时通过两个域进行信息的接收和发送的终端而 言, 无法使用上述的方法。
因此, 3GPP TS 23.216规定了锚定在 IMS系统中的呼叫通过 EPS (演 进分组系统) PS接入和通过 UTRAN/GERAN (通用陆地无线接入网 /GSM EDGE无线接入网络) 的 CS接入之间的 SRVCC (单无线频率语 音呼叫连续性)解决方案, 用于保持语音呼叫的连续性, 这种情况下, UE (用户设备)在给定的某一时刻, 只能通过前述的两种接入网中的一种来 发送或接收数据。 然而, 3GPP TS 23.216规定的 SRVCC方案也存在着一些缺陷, 如不 可确定的语音中断时间、 复杂的信令流程等。 下面将详细分析其为什么会 存在不确定的语音中断时间。
图 1示例性示出了 3GPP TS 23.216规定的 VoIP通话从 E-UTRAN(演 进通用陆地无线接入网)切换到 UTRAN/GERAN的 SRVCC的网络构架 图。
如图 1 所示, UE 通过 E-UTRAN、 S-GW/PDN GW接入 IMS。 E-UTRAN也被称为 LTE (长期演进技术), 包含若干个 E-Node B, 负责 无线接入网部分。 EPS通过对现有的 WCDMA和 TD-SCDMA 系统的 NodeB、 RNC、 CN进行功能上的整合, 简化为 eNodeB和 EPC两种网络 单元。 EPC包括: MME (移动性管理实体) , 充当控制节点, 负责核心 网的信令处理; S-GW (服务网关) /PDN-GW (分组数据网络网关) , 负 责核心网的数据处理。 其中, 非 3GPP无线接入网可通过 PDN-GW接入 EPC, 3GPP无线接入网可通过 S-GW接入 EPC。
在图 1所示的环境中, 当 UE处于 E-UTRAN的覆盖边缘或覆盖区域 外时,可以决定切换到 UTRAN/GERAN提供的 CS域。在 UTRAN/GERAN 中, UE经由基站、 MSC (移动交换中心)服务器接入到 IMS网络。
UTRAN目前已成为 UMTS较重要的一种接入方式; 而 GERAN则是 由 3GPP制定和维护的 GSM的关键部分,也包括在 UMTS/GSM网络中。。 通常, 移动运营商的网络由多个 GERAN组成, 在 UMTS/GSM的网络中 则与 UTRAN组合。
关于图 1 中的其他网络单元以及各网络单元之间通信方式等详细信 息, 可以参考 TS 23.216。
图 2 示出了 3GPP TS 23.216规定的情况下从 E-UTRAN切换到 UTRAN/GERAN的 SRVCC的相关呼叫流程图。 为了完成语音会话的切 换, 需要预先在 IMS中, 例如 SCC AS (服务集中和连续性应用服务器) 上, 锚定该语音呼叫。 图 2对应于 3GPP TS 23.216的图 6.2.2.1-1。
如图 2所示, 当源 E-UTRAN根据接收自本地 /源 UE的测量报告, 决 定对本地 UE正在进行的 VoIP呼叫进行从 PS域到 CS域的切换时, 向本 地 MME发送切换请求, 即步骤 203。 随后源 MME在步骤 204中对承载 进行划分(用于后续对语音服务的转移) , 并在步骤 205中向目前能够覆 盖本地 UE的 MSC服务器 /媒体网关发送相应的从 PS域到 CS域的切换请 求。 相应的 MSC/媒体网关进行切换准备并建立电路后, 发起会话转移。 这里, 需要注意的是, 如果该本地 UE将要切换到的目标 MSC与收到来 自 MME的切换请求的 MSC为同一个时, 则虚线部分的步骤 206、 208、 209可以省略(步骤 220、 221也是如此) 。
接下来, SRVCC包括位于 IMS层的会话切换过程和层 2的切换到目 标小区的小区切换过程。 也就是说, 其包括两个用户层面的切换:
1 )步骤 210至 212, 由 IMS中的 SCC AS执行会话切换过程, 用目 标 CS接入腿 ( access le ) 的 SDP更新远程 UE (也就是与本地 UE建立 VoIP会话的对方) , 并释放源 EPC PS接入腿。 上述步骤将导致正在进 行的会话的语音部分在用户层面从 EPC变换到 MGW。 在图 2中, 步骤 210中的 INVITE消息为会话切换请求, 因为其包含 MGW的 SDP信息, 远程 UE经由 SCC AS接收到该 INVITE消息即启动会话切换过程。
2 ) 步骤 215-221, 在本地 UE 和接入网上执行的从 E-UTRAN到 UTRAN/GERAN 的切换, 这是在本地 UE和接入网络处执行的 RAT (无 线接入类型)之间的切换, 将导致本地 UE从当前的 E-UTRAN小区切换 到目标 UTRAN/GERAN小区。
在上述两个切换过程中, 都会产生 VoIP呼叫的中断, 即语音流的中 断。 尽管图 2中以连续的数字对各步骤进行了编号, 但是, 这不是表明步 骤 210至 212以及步骤 215至 221两部分之间的时间关系。 事实上恰恰相 反, 步骤 210至 212完全可能在步骤 215之后才开始执行, 也可能同时执 行。 也就是说, 这两个切换过程之间没有同步机制, 这样就使得语音中断 的时间变得不可控制, 具有不确定性。 最坏的情况下, 语音中断的时间会 非常长, 使用户的感觉变差。
图 3示例性示出了上述 SRVCC方案中的 VoIP通话中断的时间长度。 其中, Tl为层 2的小区切换过程的中断时间, 同时也示出了中断的开始时 刻和结束时刻。 T2为 IMS层的会话切换过程的中断时间, 同时也示出了 中断的开始时刻和结束时刻。
情况 1: IMS层的会话切换过程所引起的中断比小区切换过程所引起 的中断早发生。 这种情况下, SRVCC产生的中断时间将大于 T1和 T2两 者中的最大值, 最坏的情况下, 等于 Tl+T2。
情况 2: IMS层的会话切换过程所引起的中断和小区切换过程所引起 的中断同时发生。 这种情况下, SRVCC产生的中断时间等于 T1和 T2两 者中的最大值。
情况 3: 小区切换过程所引起的中断比 IMS层的会话切换过程所引起 的中断早发生。 这种情况下, 同情况 1类似, SRVCC产生的中断时间将 大于 T1和 T2两者中的最大值, 最坏的情况下, 等于 Tl+T2。
基于以上的分析, 可以看出现有 SRVCC方案中的语音中断主要是由 IMS层的会话切换过程和在层 2进行的向目标小区的小区切换过程 (在本 地 UE和接入网络之间执行的切换) 两部分产生的。 而这两个过程执行的 随意性, 语音中断的时间变得不可控制, 具有不确定性。 长时间的语音中 断无疑会恶化用户体验。 发明内容
为了解决现有技术中的缺陷,本发明提出在 IMS层的会话切换过程和 层 2的小区切换过程之间引入同步机制, 使这两个切换过程同时或几乎同 时开始, 由此将整个 SRVCC的中断时间减少到最小的恒定值, 从而改善 用户体验。
需要注意的是, CS域的控制设备 MSC服务器可能支持到 IMS的服 务接口, 也可能不支持 IMS接口而只支持到 ISUP/BICC的接口。 在本申 请中,主要考虑后一种情况,即 MSC服务器只支持到 ISUP/BICC的接口。 可以简单回顾一下: ISUP ( ISDN用户部分)是 SS7/C7信令系统的一种 主要协议, 定义了协议和程序, 用于建立、 管理和释放中继电路, 该中继 电路在公共交换电话网络( PSTN )上传输语音和数据呼叫。 BICC协议(承 载无关的呼叫控制协议 )是 ITU-TSG11小组制订的协议, 由 ISUP协议演 进而来, 是一种在骨干网中实现使用与业务承载无关的呼叫的控制协议。
为实现以上目的, 根据本发明的实施例, 提供了一种在通信系统中将 VoIP呼叫从分组交换 PS域切换到电路交换 CS域的方法, 所述通信系统 包括 VoIP会话锚定设备、 CS域的 CS控制设备以及 PS域的 PS控制设备, 当所述 CS控制设备接收到来自所述 PS控制设备的切换请求时,该方法包 括:
计算第一时段, 所述第一时段为从所述 CS控制设备发送消息到达 VoIP呼叫的远程终端所需的时间;
比较所述第一时段和和预先设定的第二时段,所述第二时段为所述 CS 控制设备发送消息到达 VoIP呼叫的本地终端所需的时间; 以及
根据比较结果, 控制到所述 VoIP会话锚定设备的会话切换请求的发 送以及到所述 PS控制设备的小区切换请求的发送。
在本发明的优选实施例中, 所述通信系统还包括中间控制设备, 其中 计算第一时段进一步包括:
所述 CS控制设备触发所述通信系统的中间控制设备向所述 VoIP会话 锚定设备发送非会话切换请求; 以及
所述 CS控制设备从所述中间控制设备接收应答消息, 所述应答消息 是在所述 VoIP会话锚定设备与所述远程终端交互并且所述中间控制设备 从所述 VoIP会话锚定设备接收回复消息后生成的。
根据本发明的实施例, 计算第一时段包括存储所述 CS控制设备触发 所述中间控制设备的时刻, 存储所述 CS控制设备从所述中间控制设备接 收应答消息的时刻, 并且将所述第一时段取值为这两个时刻之间的时间长 度的 0.4至 0.6倍, 优选地为 0.5倍。
根据本发明的实施例, 在所述第一时段大于所述第二时段的情况下, 所述 CS控制设备在启动向所述 VoIP会话锚定设备发送会话切换请求的同 时, 设置超时时间等于所述第一时段与所述第二时段的差值的定时器; 并 且在所述定时器超时后,所述 CS控制设备向所述 PS控制设备发送小区切 换请求。
根据本发明的实施例, 在所述第一时段等于所述第二时段的情况下, 所述 CS控制设备启动向所述 VoIP会话锚定设备发送会话切换请求,并且 同时向所述 PS控制设备发送小区切换请求。
根据本发明的实施例, 在所述第一时段小于所述第二时段的情况下, 所述 CS控制设备在向所述 PS控制设备发送小区切换请求的同时,设置超 时时间等于所述第二时段与所述第一时段的差值的定时器; 并且在所述定 时器超时后, 启动向所述 VoIP会话锚定设备发送会话切换请求。
另一方面, 本发明的实施例还提供了一种在通信系统中将 VoIP呼叫 从分组交换 PS域切换到电路交换 CS域的 CS控制设备,所述通信系统还 包括 VoIP会话锚定设备以及 PS域的 PS控制设备, 所述 CS控制设备包 括:
计算装置, 用于在接收到来自所述 PS控制设备的切换请求时, 计算 第一时段,所述第一时段为从所述 CS控制设备发送消息到达 VoIP呼叫的 远程终端所需的时间;
比较装置, 用于比较所述第一时段和预先设定的第二时段, 所述第二 时段为所述 CS控制设备发送消息到达 VoIP呼叫的本地终端所需的时间; 以及
控制装置, 用于根据比较结果控制到所述 VoIP会话锚定设备的会话 切换请求的发送以及到所述 PS控制设备的小区切换请求的发送。
根据本发明的实施例, 所述控制装置被配置为: 当所述第一时段大于 所述第二时段时, 在启动向所述 VoIP会话锚定设备发送会话切换请求的 同时, 设置超时时间等于所述第一时段与所述第二时段的差值的定时器; 并且在所述定时器超时后, 向所述 PS控制设备发送小区切换请求。
根据本发明的实施例, 所述控制装置被配置为: 当所述第一时段和第 二时段相等时, 启动向所述 VoIP会话锚定设备发送会话切换请求, 并且 同时向所述 PS控制设备发送小区切换请求。 根据本发明的实施例, 所述控制装置被配置为: 当所述第一时段小于 所述第二时段时, 在向所述 PS控制设备发送小区切换请求的同时, 设置 超时时间等于所述第二时段与所述第一时段的差值的定时器; 并且在所述 定时器超时后, 启动向所述 VoIP会话锚定设备发送会话切换请求。
另一方面, 本发明还提供了一种通信系统中的中间控制设备, 所述通 信系统还包括 VoIP会话锚定设备、 PS域的 PS控制设备以及将 VoIP呼 叫从分组交换 PS域切换到电路交换 CS域的 CS控制设备,
所述中间控制设备包括辅助计算装置,该装置被配置为:通过所述 CS 控制设备的触发, 向所述 VoIP会话锚定设备发送非会话切换请求; 在所 述 VoIP会话锚定设备与 VoIP呼叫的远程终端交互之后,从所述 VoIP会 话锚定设备接收回复消息; 以及, 向所述 CS控制设备发送应答消息, 以 便所述 CS控制设备计算第一时段, 所述第一时段为所述 CS控制设备发 送消息到达 VoIP呼叫的远程终端所需的时间,
所述控制设备还包括辅助控制装置, 该装置被配置为: 在所述 CS控 制设备比较所述第一时段与表示所述 CS控制设备发送消息到达 VoIP呼叫 的本地终端所需的时间的第二时段之后, 经所述 CS控制设备启动向所述 VoIP会话锚定设备发送会话切换请求。
通过使用本发明的方法和设备, 在 SRVCC方案中引起语音中断的两 个主要切换过程即 IMS层的会话切换过程和在层 2的小区切换过程之间引 入了同步机制, 使得两个切换过程的中断同时或几乎同时发生, 这样就使 得整个 SRVCC过程的中断变得可控和恒定, 并减小到了一个最小值, 提 高了系统性能, 明显改善了用户的服务盾量。 而且, 本发明的方案对于现 有的网络环境基本没有影响, 从而具有 ί艮高的兼容性。 附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述, 本发明的 其它特征、 目的和优点将会变得更明显。
图 1为 3GPP TS 23.216中规定的 SRVCC的网络架构; 图 2为现有技术中在没有 DTM/PSHO支持下从 E-UTRAN切换到目 的 GERAN的相关 SRVCC流程示意图;
图 3为现有技术中的 SRVCC中断时间长度的示意图;
图 4为根据本发明的特定实施例的消息序列图;
图 5为根据本发明的实施例的流程图; 以及
图 6为根据本发明的实施例的 CS控制设备和中间控制设备的功能框 图。 具体实施方式
在图 4中, 本地 UE将要从 PS域切换到 CS域。 图中, 源 MME是 PS域中负责处理信令的控制设备。 MSC服务器是 CS域(包括 WCDMA、 GSM, TD-SCDMA等 CS域) 中负责处理信令的控制设备。 当然, 本发 明的基本思想还可以应用于 CDMA网络中的 MSC服务器。 SCC AS可以 作为 IMS中的 VoIP会话锚定设备, 当然, VoIP会话锚定设备也可以是 IBCF (互连边界控制功能)或者其他逻辑实体。在本发明的一个实施例中, MSC服务器只支持到 ISUP/BICC的接口, 还需要一个中间控制设备来完 成可能需要的信令处理任务。 MGCF在该实施例中充当处理信令的中间控 制设备。 相应地, IM-MGW ( IP 多媒体网关)用于处理用户平面的媒体 编解码转换。
为了完成本发明提出的 VoIP切换机制,需要在 MSC服务器中预先设 定一个值 P2, 该值表示 MSC服务器向本地 UE发送与 CS切换的消息所 需的时间。 具体地说, 表示从 MSC服务器发送 PS to CS Response消息给 MME到最后本地 UE收到 HO from EUTRAN Command所需的平均时 间。 这个平均时间主要由 2个部分组成: 消息所经过的通信节点对消息的 处理时间的总和以及消息在网络中传输所需的时间。 因为消息传递到达 UE 所经过的节点数目是固定的, 所以这些结点处理消息所需要的时间可 以测算出来。 此外, 由于 MSC服务器和本地 UE都在同一个本地网, 在 本地网内消息从 MSC服务器到达 UE所经过的距离变化不大, 因此消息 在网络中传输所需要的时间的变化也不大, 可以靠经验估计出来。 由此可 见, 消息从 MSC服务器发出到最后到达本地 UE所需的时间是可以基于 经验测算和估计的, 因此, P2是可以预设的。
图 4示出了根据本发明的信令消息序列图。 需要指出的是, 虽然图中 的各个步骤是以连续的数字编号的, 但这些不表示各个步骤执行的先后次 序。
步骤 401至步骤 409与图 2中的步骤 201至步骤 209相似, 这里不再 展开叙述。
在步骤 409a中, 当 MSC服务器检测到要进行 SRVCC切换时, 向 MGCF发送带有 STN-SR(会话转移号 -单无线频率)的 BICC IAM消息。 在该实施例中, 该 IAM 消息用于触发 MGCF执行后续的操作。 另外, MSC服务器将存储发送该 IAM消息的时间, 例如把该时间标记为 T4。
在步骤 410中, 在接收到包括 STN-SR的 ΙΑΜ 消息时, MGCF检测 到这是一个 SRVCC过程。 于是 MGCF 向 IMS中的 S-CSCF发送一条不 包括 IM-MGW的 SDP信息的空 INVITE请求,而 S-CSCF依照标准程序 将该空 INVITE请求转发给 VoIP会话锚定设备,即本实施例中的 SCC AS。 值得注意的是, 该空 INVITE请求不包括 IM-MGW的 SDP信息。换句话 说, 该消息不是传统意义上的会话切换请求, 我们可以把它称为 "非会话 切换请求" , 以便与一般意义上的会话切换请求相区别。 当然, 其他用于 测量 MSC发消息到远端 UE所需时间的消息也是可能的。
在步骤 410a中, 当 SCC AS收到上述 INVITE消息后,和远程 UE进 行交互。交互的过程可以包括: SCC AS基于步骤 410中的 INVITE请求, 将不带有 SDP信息的 re-INVITE请求转发给远程 UE。在远程 UE处理该 请求后, 以带有自己的 SDP信息的 200 OK消息来响应 SCC AS 。
在步骤 410b中, MGCF在应答消息 ANM发送到 MSC服务器之前, 向 MSC服务器发送 ACM消息。 这里需要简单回顾一下, 在 CS域中, ACM消息是指地址完成信息,表示中继电路的远程终端已经预留好。 ANM 是应答信息, 表示被叫已摘机应答。 有若干种确定如何发送 ACM消息的方式。在该实施例中可以使用以 下两种: MGCF在 TS 29.163 的第 7.2.3.2.4节定义的定时器超时后向 MSC 服务器发送 BICC ACM 消息。 另一种可选方案是当接收最终的成功响应 (例如, 200 OK response )时, MGCF向 MSC服务器发送 ACM消息和 BICC ANM消息。 当然也可以使用其它方式。
在步骤 411中, 在与远程 UE通信之后, SCC AS通过带有远程 UE 的 SDP信息的 200OK 消息来响应 MGCF 。 由于远程 UE 没有获得 IM-MGW的 SDP信息, 因此, 远程 UE的切换过程无法启动, 至此, 当 前会话的媒体流依然保持连接。
在步骤 411a中,像 TS 29.163 定义的那样, MGCF向 MSC服务器发 送 ANM 消息。 当 MSC接收该 ANM消息时, 它存储该时间并且可以将 该时间标记为 T5。 在该时刻, 进行中的会话的媒体流依然是连接的。 由于 在步骤 410中, MGCF 已经检测到这是一个 SRVCC过程, 因此它此时不 向 SCC AS发送 ACK消息。
在步骤 411a之后, 一旦 MSC服务器存储并标记 T5, 它将根据 T4和 T5计算从 MSC服务器向远程 UE发送信令消息所花的持续时间 (例如可 以将该持续时间表示为 P1 ) 。 在该实施例中, 从 T4到 T5时间段内 (步 骤 409a到步骤 411a )发送和接收了 BICC消息和 SIP消息, MSC服务器 可以根据上述消息的来回行程计算出其发送消息到达远程 UE所需的时间 P1, 比如将 P1计算为时刻 T4和时刻 T5之间时间长度的某个比例, 该比 例可以根据经验和网络状况设定。 在来回行程对称的情况下, 该比例可以 为 0.5。 考虑到来回行程的可能不一致, 该比例为 0.55.或者 0.45也是可能 的。一般情况下,可以将比例设置在 0.4和 0.6之间并根据实际情况作调整。 如前面所提到的, MSC服务器向本地 UE发送与 CS切换相关的消息的持 续时间 P2的值可以由运营商预先设定。 计算出 P1后, MSC服务器会比 较 P1和预先设定的 P2的大小。 根据不同的比较结果, MSC服务器将执 行不同的动作。
MSC服务器计算 P1以及比较 P1和 P2大小的步骤在图 4中没有明确 标出, 但是应当理解, 计算和比较的步骤是在步骤 411a之后立即进行的。 这是一个极简单的算法, 几乎不会占用 MSC的额外资源。
下面将详细讨论步骤 411b和 413:当 MSC服务器接收到来自 MGCF 的 ANM消息后, 经多计算和比较, MSC会根据比较结果决定是否要设置 一个定时器。 例如, 当 P1和 P2大小不同时, MSC服务器会设置定时器, 该定时器的超时值可以设定为 Pl、 P2的差值。
例 1: P1大于 P2, 表明 MSC服务器发送消息到达远程 UE所需的时 间大于它发送消息到达本地 UE所需的时间。 在这种情况下, 对于 MSC 服务器来说, 应当先启动 IMS层的会话切换, 例如, 它可以启动 MGCF 向 SCC AS发送会话切换请求。
在例 1的情况下, MSC服务器将同时执行步骤 411b和步骤 413。 一 方面, MSC服务器向 MGCF再次发送与步骤 409a中的 IAM消息相同的 初始 IAM消息,我们可以把该 IAM消息标记为 re-IAM, 以与步骤 409a 中的消息区别。 另一方面, MSC服务器同时会启动一个定时器, 该定时 器的超时时间为 Pl-P2。
在 MSC服务器发送的 re-IAM消息的启动或者驱动下, 如步骤 412 所示, MGCF向 IMS的 SCC AS发送包括 IM-MGW的 ACK消息, 这是 一个实际的会话切换请求消息。 在步骤 417、 418 中, SCC AS收到带有 MGW的 SDP的 ACK消息后, 将立即基于此 ACK消息向远程 UE发出 ACK消息以启动会话切换过程并更新远程 UE,后续的过程和现有的 3GPP TS 23.216规范定义的类似。
注意, 在步骤 413中设置的定时器超时后, MSC服务器才向源 MME 发送小区切换请求, 比如图 4中步骤 14所示的 PS to CS Response消息, 随后执行步骤 15和步骤 16, 从而启动本地 UE侧的切换到目标小区的小 区切换过程,后续的过程和 3GPP TS 23.216规范定义的类似,此处不再详 细描述, 以免不必要地模糊本发明。
例 2: 如果 P1等于 P2,表明 MSC服务器发送消息到达远程 UE所需 的时间其发送消息到达本地 UE所需的时间相同。在这种情况下, MSC服 务器不需要设置定时器, 并且同时执行步骤 411b和步骤 414 。 一方面, MSC服务器通过再次发送与步骤 409a中的 IAM消息相同的初始 IAM消 息, 即 re-IAM 消息, 来驱动或者启动 MGCF向 SCC AS发送真正的会 话切换请求; 另一方面, 如步骤 414所示的, MSC服务器向源 MME发 送 PS to CS Response消息。换句话说,在图 4中, re-IAM 消息和 PS to CS Response消息是同时发送的。
而在下面的步骤 412中, 当接收到 re-IAM消息时, MGCF发现呼叫 还在继续并且与 SRVCC过程相关。 因此, MGCF丢弃该 re-IAM消息并 向 SCC AS发送具有 IM-MGW 的 SDP信息的 ACK消息。当然,该 SDP 信息应当与步骤 411中从 SCC AS/remote UE接收的 200 OK中的 SDP信 息一致。 SCC AS收到上述 ACK消息后, 将立即基于此 ACK消息向远程 UE发出 ACK消息以启动^^切换过程并更新远程 UE, 而源 MME收到 所述 PS to CS Response消息后将启动本地 UE侧的小区切换过程。
例 3: P2大于 P1, 即 MSC服务器发送消息到达本地 UE所需的时 间大于它发送消息到达远程 UE 所需的时间, MSC服务器应当先向源 MME发送小区切换请求, 之后再启动会话切换过程。 因此, 定时器的超 时时间将核殳定为 P2-P1。
在图 4 中的步骤 414 中, MSC服务器向源 MME发送 PS to CS Response消息, 启动本地 UE侧的小区切换过程。 执行步骤 414的同时, MSC服务器会启动定时器(即步骤 413 ) , 定时器的超时时间为 P2 - Pl。 只有在定时器超时之后, MSC服务器才启动 IMS层的会话切换, 例如向 MGCF发送 re-IAM 消息以启动会话切换, 即步骤 411b。 换句话说, 如 果 P2大于 P1, 步骤 411b将在步骤 414之后执行,定时器在步骤 414启动, 并且只有在定时器超时之后才执行步骤 411b 。
为了便于理解,图 5示出图 4的信令消息序列图所对应的方法流程图。 如图所示, 当在步骤 405中接收到源 MME发送的 PS to CS req消息 后, MSC服务器通过图 4中的步骤 409a至 411a计算 P1, 即从 MSC服 务器向远程 UE发送信令消息所花的持续时间,并在步骤 411a之后并在其 他可能的步骤(步骤 411b、 413或 414 )之前, 启动 P1与预设值 P2的比 较过程。 比较产生三种可能的结果, 当 P1>P2时, 步骤 411b和 413将同 时执行, 即启动会话切换的同时设置超时时间为 P1 - P2的定时器。 当定 时器超时后, 才执行步骤 414, 即通过向源 MME发送 PS to CS Req启动 本地 UE侧的小区切换。 当 P1 = P2时, 不必设置定时器, 并且同时执行 步骤 411b和 414。 当 PKP2时, 步骤 414和 413同时执行, 即启动本地 UE侧的小区切换的同时设置超时时间为 P2 - P1的定时器。当定时器超时 后, 执行步骤 411b, 例如通过向 MGCF发送 re - IAM消息来启动会话切 换。
需要说明的是, 步骤 409a至步骤 411a的目的是为了计算 P1而不是 实际启动 IMS层的会话切换。 这与图 2中的步骤 210 (实际启动 IMS层 的会话切换)是根本不同的。 另夕卜, 计算 P1的方法不仅限于上述 INVITE - 200OK消息对, 也可以采用其他的消息, 比如 INVITE - 183 临时响应 消息。
值得注意的是, 在参照图 4描述的实施例中, MSC服务器不支持 SIP 接口。 在本发明的其他实施例中, 当 MSC服务器支持 SIP接口的情况下, 依然可以采用图 5示出的流程来减小整个 SRVCC过程的中断时间。例如, 可以由 MSC服务器向 SCC AS发送不包括 IM-MGW的 INVITE消息、 从 SCC AS接收带有远程 UE的 SDP的 200OK消息来计算 P1的值,并由 MSC服务器发送启动 IMS层的会话切换的请求。在这样的情况下, MGCF 实体并不是必需的。
图 6以 MSC J! 务器和 MGCF设备为例示出根据本发明实施例的 CS 控制设备 601和根据本发明的实施例的中间控制设备 602的功能框图。
在图 6中, MSC服务器包括: 计算装置 611、 比较装置 612和控制装 置 613。 MGCF设备 602包括辅助计算装置 621和辅助控制装置 622。 值 得注意的是, MGCF设备的存在并不是必需的, 因此计算装置 611和辅助 计算装置 621之间的交互以及控制装置 613和辅助控制装置 622之间的交 互用虚线示出。 值得注意的是, 以上设备包括的功能模块不止图 6中所示 出的, 例如还包括各种消息接收和发送单元, 图中只示出与本发明的实施 例有关的部分, 以免不必要地模糊本发明。 图中的各种装置可以在现有功 能实体的基 上通过计算机程序代码来实现。
计算装置 611在接收到来自 PS控制设备 (例如源 MME )的切换请求 ( PS to CS Req )时, 计算从 CS控制设备 (即 MSC服务器)发送消息到 达 VoIP呼叫的远程终端所需的时间 Pl。
在 MSC服务器支持 SIP接口的情况下, 为了 "测量 "从 MSC服务器 发送消息到远程终端所经历的时间 P1, 可以将计算装置 611 配置为: 向 VoIP会话锚定设备 SCC AS发送空 INVITE消息即非会话切换请求以及 在 SCC AS与远程终端交互后从 SCC AS接收响应消息, 将以上发送和接 收消息之间经过的时间段的一半或大约一半作为 P1的值。
在 MSC服务器不支持 SIP接口的情况下, 为了 "测量 "从 MSC服务 器发送消息到远程终端所经历的时间 P1, 计算装置 611例如通过 IAM消 息触发辅助计算装置 621向 SCC AS发送非会话切换请求, 辅助计算装置 并向 MSC 601返回例如 ANM的应答消息。 MSC根据 "触发" 的时刻和 接收应答消息的时刻计算 Pl。
比较装置 612比较 PI和预先设定 P2, 以上所述, P2为 MSC服务器 发送消息到达 VoIP呼叫的本地终端所需的时间。
控制装置 613将根据 P1和 P2的比较结果控制会话切换和小区切换的 启动时间。
图 6中的框 601中还示出一个定时器 614,需要注意的是,定时器 614 也不是必需的。 当 P1与 P2相同时, MSC服务器 601无需设置定时器, 并同时启动会话切换和本地 UE的小区切换。 只有在 P1和 P2不同时, 才 设置超时时间等于 I P1-P2 I 的定时器。 当 P1>P2时, 控制装置 613启动 会话切换的同时设置定时器,只有定时器超时后才启动小区切换。当 P2>P1 时, 控制装置 613启动小区切换的同时设置定时器, 只有定时器超时后才 启动会话切换。 在 MSC服务器支持 SIP接口的情况下, MSC服务器 601例如通过向 SCC AS发送会话切换请求来启动 IMS层的会话切换, 例如通过向 PS控 制设备(例如, 源 MME )发送小区切换请求来启动小区切换。
在 MSC服务器不支持 SIP接口的情况下, 控制装置 613例如通过向 辅助控制装置 622发送 re-IAM消息来启动会话切换。
以上参照附图对本发明的具体实施例进行了描述。 需要理解的是, 本 发明并不局限于上述特定实施方式, 本领域技术人员可以在所附权利要求 的范围内做出各种变形或修改。

Claims

权利要求
1. 一种在通信系统中将 VoIP呼叫从分组交换 PS域切换到电路交换 CS域的方法, 所述通信系统包括 VoIP会话锚定设备、 CS域的 CS控制 设备以及 PS域的 PS控制设备, 当所述 CS控制设备接收到来自所述 PS 控制设备的切换请求时, 该方法包括:
计算第一时段, 所述第一时段为从所述 CS控制设备发送消息到达 VoIP呼叫的远程终端所需的时间;
比较所述第一时段和和预先设定的第二时段,所述第二时段为所述 CS 控制设备发送消息到达 VoIP呼叫的本地终端所需的时间; 以及
根据比较结果, 控制到所述 VoIP会话锚定设备的会话切换请求的发 送以及到所述 PS控制设备的小区切换请求的发送。
2. 如权利要求 1所述的方法, 还包括中间控制设备, 其中计算第一时 段进一步包括:
所述 CS控制设备触发所述通信系统的中间控制设备向所述 VoIP会话 锚定设备发送非会话切换请求; 以及
所述 CS控制设备从所述中间控制设备接收应答消息, 所述应答消息 是在所述 VoIP会话锚定设备与所述远程终端交互并且所述中间控制设备 从所述 VoIP会话锚定设备接收回复消息后生成的。
3. 如权利要求 2所述的方法, 其中计算第一时段包括存储所述 CS控 制设备触发所述中间控制设备的时刻, 存储所述 CS控制设备从所述中间 控制设备接收应答消息的时刻, 并且将所述第一时段取值为这两个时刻之 间的时间长度的 0.4至 0.6倍, 优选地为 0.5倍。
4. 如权利要求 1至 3任一项所述的方法, 进一步包括: 在所述第一时 段大于所述第二时段的情况下,所述 CS控制设备在启动向所述 VoIP会话 锚定设备发送会话切换请求的同时, 设置超时时间等于所述第一时段与所 述第二时段的差值的定时器; 并且在所述定时器超时后, 所述 CS控制设 备向所述 PS控制设备发送小区切换请求。
5. 如权利要求 1至 3任一项所述的方法, 进一步包括: 在所述第一时 段等于所述第二时段的情况下,所述 CS控制设备启动向所述 VoIP会话锚 定设备发送会话切换请求, 并且同时向所述 PS控制设备发送小区切换请 求。
6. 如权利要求 1至 3任一项所述的方法, 进一步包括: 在所述第一时 段小于所述第二时段的情况下,所述 CS控制设备在向所述 PS控制设备发 送小区切换请求的同时, 设置超时时间等于所述第二时段与所述第一时段 的差值的定时器; 并且在所述定时器超时后, 启动向所述 VoIP会话锚定 设备发送^^切换请求。
7. 一种在通信系统中将 VoIP呼叫从分组交换 PS域切换到电路交换 CS域的 CS控制设备, 所述通信系统还包括 VoIP会话锚定设备以及 PS 域的 PS控制设备, 所述 CS控制设备包括:
计算装置, 用于在接收到来自所述 PS控制设备的切换请求时, 计算 第一时段,所述第一时段为从所述 CS控制设备发送消息到达 VoIP呼叫的 远程终端所需的时间;
比较装置, 用于比较所述第一时段和预先设定的第二时段, 所述第二 时段为所述 CS控制设备发送消息到达 VoIP呼叫的本地终端所需的时间; 以及
控制装置, 用于根据比较结果控制到所述 VoIP会话锚定设备的会话 切换请求的发送以及到所述 PS控制设备的小区切换请求的发送。
8. 如权利要求 7所述的 CS控制设备, 其中所述控制装置被配置为: 当所述第一时段大于所述第二时段时, 在启动向所述 VoIP会话锚定设备 发送会话切换请求的同时, 设置超时时间等于所述第一时段与所述第二时 段的差值的定时器; 并且在所述定时器超时后, 向所述 PS控制设备发送 小区切换请求。
9. 如权利要求 7所述的 CS控制设备, 其中所述控制装置被配置为: 当所述第一时段和第二时段相等时, 启动向所述 VoIP会话锚定设备发送 会话切换请求, 并且同时向所述 PS控制设备发送小区切换请求。
10. 如权利要求 6所述的 CS控制设备, 其中所述控制装置被配置为: 当所述第一时段小于所述第二时段时, 在向所述 PS控制设备发送小区切 换请求的同时, 设置超时时间等于所述第二时段与所述第一时段的差值的 定时器; 并且在所述定时器超时后, 启动向所述 VoIP会话锚定设备发送 会话切换请求。
11. 一种通信系统中的中间控制设备, 所述通信系统还包括 VoIP会 话锚定设备、 PS域的 PS控制设备以及将 VoIP呼叫从分组交换 PS域切换 到电路交换 CS域的 CS控制设备,
所述中间控制设备包括辅助计算装置,该装置被配置为:通过所述 CS 控制设备的触发, 向所述 VoIP会话锚定设备发送非会话切换请求; 在所 述 VoIP会话锚定设备与 VoIP呼叫的远程终端交互之后,从所述 VoIP会 话锚定设备接收回复消息; 以及, 向所述 CS控制设备发送应答消息, 以 便所述 CS控制设备计算第一时段, 所述第一时段为所述 CS控制设备发 送消息到达 VoIP呼叫的远程终端所需的时间,
所述控制设备还包括辅助控制装置, 该装置被配置为: 在所述 CS控 制设备比较所述第一时段与表示所述 CS控制设备发送消息到达 VoIP呼叫 的本地终端所需的时间的第二时段之后, 经所述 CS控制设备启动向所述 VoIP会话锚定设备发送会话切换请求。
PCT/CN2010/070418 2010-01-29 2010-01-29 将voip呼叫从分组交换域切换到电路交换域的方法和设备 WO2011091597A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/070418 WO2011091597A1 (zh) 2010-01-29 2010-01-29 将voip呼叫从分组交换域切换到电路交换域的方法和设备
CN201080061859.3A CN102714830B (zh) 2010-01-29 2010-01-29 将VoIP呼叫从分组交换域切换到电路交换域的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070418 WO2011091597A1 (zh) 2010-01-29 2010-01-29 将voip呼叫从分组交换域切换到电路交换域的方法和设备

Publications (1)

Publication Number Publication Date
WO2011091597A1 true WO2011091597A1 (zh) 2011-08-04

Family

ID=44318622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070418 WO2011091597A1 (zh) 2010-01-29 2010-01-29 将voip呼叫从分组交换域切换到电路交换域的方法和设备

Country Status (2)

Country Link
CN (1) CN102714830B (zh)
WO (1) WO2011091597A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200149A (zh) * 2012-01-04 2013-07-10 中兴通讯股份有限公司 一种反向单待业务连续性实现方法和装置
CN103281735A (zh) * 2012-03-22 2013-09-04 美商威睿电通公司 基于用户终端的增强型电路交换回馈

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522048B (zh) * 2017-09-18 2023-05-23 展讯通信(上海)有限公司 一种同步多线程中断验证方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227677A (zh) * 2008-02-05 2008-07-23 中兴通讯股份有限公司 一种单无线信道语音业务连续性的域切换方法
WO2008148430A1 (en) * 2007-06-08 2008-12-11 Telefonaktiebolaget Lm Ericsson (Publ) Handover from circuit switched domain to circuit switched service over packet switched domain
CN101577951A (zh) * 2008-11-04 2009-11-11 中兴通讯股份有限公司 一种语音业务连续性切换失败时的处理方法
CN101589640A (zh) * 2007-01-26 2009-11-25 朗讯科技公司 提高在分组交换和电路交换域之间的切换性能的方法
WO2010003501A2 (en) * 2008-06-17 2010-01-14 Alcatel Lucent Explicit indication of bearers subject to voice call continuity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589640A (zh) * 2007-01-26 2009-11-25 朗讯科技公司 提高在分组交换和电路交换域之间的切换性能的方法
WO2008148430A1 (en) * 2007-06-08 2008-12-11 Telefonaktiebolaget Lm Ericsson (Publ) Handover from circuit switched domain to circuit switched service over packet switched domain
CN101227677A (zh) * 2008-02-05 2008-07-23 中兴通讯股份有限公司 一种单无线信道语音业务连续性的域切换方法
WO2010003501A2 (en) * 2008-06-17 2010-01-14 Alcatel Lucent Explicit indication of bearers subject to voice call continuity
CN101577951A (zh) * 2008-11-04 2009-11-11 中兴通讯股份有限公司 一种语音业务连续性切换失败时的处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200149A (zh) * 2012-01-04 2013-07-10 中兴通讯股份有限公司 一种反向单待业务连续性实现方法和装置
CN103281735A (zh) * 2012-03-22 2013-09-04 美商威睿电通公司 基于用户终端的增强型电路交换回馈
CN103281735B (zh) * 2012-03-22 2016-04-06 C·W·投资服务有限公司 基于用户终端的增强型电路交换回馈

Also Published As

Publication number Publication date
CN102714830A (zh) 2012-10-03
CN102714830B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
US9807650B2 (en) Method for handing over a terminal during a non steady VoIP call, network element, device and system
US8644258B2 (en) Method and apparatus for reducing break duration in handover of VoIP conversation
US8249019B2 (en) System and method for SR-VCC of IMS emergency sessions
US8948127B2 (en) Method, apparatus and computer program for supporting a session identifier in case of a transfer between different radio access networks
EP2638732B1 (en) Apparatuses for srvcc solution
US9706449B2 (en) Technique for transferring a session with changeable session state
EP2957126B1 (en) Synchronizing call states of network component and mobile device at session transfer
US9055546B2 (en) Handling a registration timer to provide service continuity in IMS
WO2012149866A1 (zh) 单一无线语音呼叫连续性域的切换方法及系统
WO2010127511A1 (zh) Srvcc切换及其数据传输的方法、装置和系统
WO2011091597A1 (zh) 将voip呼叫从分组交换域切换到电路交换域的方法和设备
US8982840B2 (en) Handover
WO2011160928A1 (en) Enhanced radio voice call continuity gateway solution

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061859.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844375

Country of ref document: EP

Kind code of ref document: A1