WO2011013731A1 - Contact probe and socket - Google Patents

Contact probe and socket Download PDF

Info

Publication number
WO2011013731A1
WO2011013731A1 PCT/JP2010/062752 JP2010062752W WO2011013731A1 WO 2011013731 A1 WO2011013731 A1 WO 2011013731A1 JP 2010062752 W JP2010062752 W JP 2010062752W WO 2011013731 A1 WO2011013731 A1 WO 2011013731A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
contact probe
spring
contact
distal end
Prior art date
Application number
PCT/JP2010/062752
Other languages
French (fr)
Japanese (ja)
Inventor
次男 山本
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009178406A external-priority patent/JP5624740B2/en
Priority claimed from JP2010095537A external-priority patent/JP5645451B2/en
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Publication of WO2011013731A1 publication Critical patent/WO2011013731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2421Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means using coil springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0466Details concerning contact pieces or mechanical details, e.g. hinges or cams; Shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2464Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point
    • H01R13/2492Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point multiple contact points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/20Connectors or connections adapted for particular applications for testing or measuring purposes

Definitions

  • the present invention relates to a contact probe used for testing a semiconductor integrated circuit or the like and a socket provided with the contact probe.
  • a contact probe When inspecting an inspection object such as a semiconductor integrated circuit, a contact probe is generally used to electrically connect the inspection object and an inspection substrate on the measuring instrument side.
  • FIG. 25 is an explanatory diagram of a conventional contact probe, in which (A) shows a spring open state and (B) shows a spring compressed state (when energized).
  • This type of contact probe has a structure that does not have a metal tube outside the coil spring in order to reduce the diameter. Further, in order to suppress the electric resistance, the first plunger 61 that is a connection part with an inspection target such as a semiconductor integrated circuit and the second plunger 62 that is a connection part with a substrate for inspection are in direct contact with each other. It is a structure to let you.
  • A movable stroke of the first plunger 61
  • the performance required for contact probes includes, for example, low resistance, large current compatibility, and high frequency compatibility.
  • the total length of the contact probe is preferably as short as possible.
  • the movable strokes A and B of the first plunger and the second plunger and the overlap length C are determined by the required specifications and cannot be shortened to a certain length or less. .
  • the present invention has been made in view of such a situation, and its object is to make the total length of the first plunger and the second plunger longer than the conventional one when the movable stroke and the overlap allowance length are the same. It is an object of the present invention to provide a contact probe that can be shortened and a socket having the contact probe.
  • the first aspect of the present invention is a contact probe.
  • This contact probe A spring and first and second plungers, one for connection with the inspection object and the other for connection with the inspection substrate;
  • Each of the first and second plungers has a locking projection for locking the spring at an intermediate portion in the length direction, The spring is locked to the locking projection and biases the first and second plungers away from each other;
  • the spring is contracted to a length equal to or shorter than a predetermined length, the end of the second plunger is positioned closer to the tip of the first plunger than the spring.
  • the first plunger has a distal end portion, a distal end portion, and a flange portion between the distal end portion and the distal end portion,
  • the flange portion has the locking projection;
  • a sliding surface with the second plunger may continuously exist over a range of a predetermined length from the proximal end of the distal end portion, the flange portion, and the distal end portion.
  • the end of the first plunger when the spring is contracted to a length equal to or shorter than a predetermined length, the end of the first plunger may be positioned closer to the tip of the second plunger than the spring.
  • the sliding surfaces of the first and second plungers may be flat.
  • the second aspect of the present invention is also a contact probe.
  • This contact probe is the contact probe according to the first aspect,
  • the first plunger has an inclined portion at least a part of a sliding range with the second plunger, In the transition from the first state in which the spring is extended to the second state in which the spring is contracted, the second plunger rides on the inclined portion.
  • the inclined portion is present outside the spring with respect to the expansion / contraction direction of the spring.
  • the second plunger is deformed into a leaf spring in a state of riding on the inclined portion, and the end extends outside the inner peripheral width range of the spring in the direction perpendicular to the expansion / contraction direction. Good.
  • the second plunger is in a state where the intermediate portion in the longitudinal direction is in contact with the inner periphery of the end portion in the expansion / contraction direction of the spring, and a part of the distal end side with respect to the intermediate portion in a state of riding on the inclined portion. It is preferable that both of the tip side and the first plunger are in contact with each other.
  • the second plunger is a bifurcated portion that is divided into two from the middle portion in the length direction, and the distal end of the first plunger is between the bifurcated portions. It is preferable that at least one inclined portion is present corresponding to both one and the other of the bifurcated portions.
  • the flange portion of the intermediate portion in the length direction of the first plunger is formed in a groove shape by cutting out the sliding portion, and the end face of the flange portion is one end portion of the spring. It should be in contact with.
  • the first plunger In the contact probe of the second aspect, at least a part of a sliding range with the first plunger is an inclined portion, In the process of transition from the first state to the second state, the first plunger may have a structure that rides on the inclined portion of the second plunger.
  • the end of the first plunger may be inclined in the direction in which the second plunger exists.
  • the third aspect of the present invention is a socket.
  • This socket is formed by supporting a plurality of contact probes of the first or second aspect with an insulating support.
  • the first plunger of each contact probe has a sliding surface with the second plunger when the spring extends to a length equal to or longer than a predetermined length. It is good to extend from the inner side to the outer side of the insulating support.
  • the locking projection of the first plunger is a retaining member from the insulating support, and the sliding surface of the first plunger has a groove shape on the tip side of the locking projection. It should be the bottom.
  • the end of the second plunger is positioned closer to the tip of the first plunger than the spring, so the first plunger and the second plan If the movable stroke of the jar and the length of the overlap allowance are the same, the total length of the contact probe can be shortened compared to the conventional case.
  • FIG. 7 is a schematic explanatory view of a bending force applied to the second plunger in the compressed state shown in FIG. 6 (B).
  • FIG. 10 is a cross-sectional view taken along the line VV ′ of FIG. 9.
  • the schematic diagram which shows the contact and electric path which were made by the elastic deformation of a 2nd plunger in the compression state shown to FIG. 6 (B).
  • FIG. 27 is a resistance characteristic diagram of the conventional contact probe shown in FIG. 26.
  • the schematic diagram which shows the measuring method of the resistance value characteristic view of a contact probe.
  • FIG. 1 It is a whole block diagram of the contact probe which concerns on the 8th Embodiment of this invention, (A) shows a spring open state, (B) shows a spring compression state. It is a component figure of the 1st plunger of the contact probe, (A) is a front view, (B) is a right view, (C) is a bottom view. It is a whole block diagram of the contact probe which concerns on the 9th Embodiment of this invention, (A) is a front view of a spring open state, (B) is a right view of the state, (C) is a spring compression state. Front view, (D) is a right side view of the same state.
  • FIG. 1 is an overall configuration diagram of a contact probe 900 according to a first embodiment of the present invention, where (A) is a front view in a spring open state, (B) is a front view in a spring compression state, and (C).
  • FIG. 4 is a cross-sectional view of the overlapping portion of the first and second plungers.
  • FIG. 2 is a front sectional view of a socket 830 that supports a plurality of the contact probes 900 in use.
  • the contact probe 900 includes a first plunger 804, a second plunger 805, and a coil spring 806 as a spring.
  • the first plunger 804 is a connection part with the inspection object 807 (see FIG. 2)
  • the second plunger 805 is a connection part with the inspection substrate 808 (see FIG. 2).
  • a coil spring 806 made of a general conductive metal material such as a piano wire or a stainless steel wire has first and second plans so that the first and second plungers 804 and 805 can slide relative to each other. It is provided for the jars 804 and 805 (the first and second plungers 804 and 805 are connected).
  • the coil spring 806 also biases the first and second plungers 804 and 805 in a direction away from each other when in use, thereby causing the first and second plungers 804 and 805 to move toward the inspection object 807 and the inspection substrate 808. Press.
  • the inspection object 807 is, for example, a semiconductor integrated circuit in which electrodes are arranged at a predetermined interval, and in the illustrated case, electrode bumps 807a (for example, solder bumps) are arranged at a predetermined interval.
  • the inspection substrate 808 has electrode pads (not shown) connected to the measuring instrument side at predetermined intervals corresponding to the electrode bumps 807a.
  • the first plunger 804 which is a conductive metal body such as a copper alloy, includes an end portion 811, a flange portion 812 that forms a locking projection, and a distal end side body portion 813 as a distal end portion. It is the rod shape which has.
  • the semi-cylindrical end portion 811 has a smaller diameter than the inner diameter of the coil spring 806 and is positioned inside the coil spring 806.
  • the curved surface portion of the end portion 811 is located along the inner periphery of the coil spring 806.
  • a planar portion of the end portion 811 is located on the axial center side of the coil spring 806 and is in contact with the second plunger 805.
  • the flange portion 812 has a larger diameter than the inner diameter of the coil spring 806.
  • the end face of the flange portion 812 is in contact with one end of the coil spring 806.
  • the end surface on the front end side of the flange portion 812 is locked to the insulating support 809.
  • the distal end side main body portion 813 has a smaller diameter than the flange portion 812.
  • the distal end of the distal end side main body portion 813 is a contact portion 813 a that contacts the electrode bump 807 a of the inspection object 807.
  • the range of a predetermined length from the proximal end of the distal end side main body portion 813 and the flange portion 812 have a semi-cylindrical shape, and the planar portion is flush with the planar portion of the distal end portion 811.
  • a range of the predetermined length of the distal end side main body portion 813, a planar portion of the flange portion 812, and the end portion 811 is a sliding surface 814 that can come into contact with the second plunger 805. It should be noted that the flat surface portion of the distal end side main body portion 813 is formed in a range that does not come out of an insulating support 809 described later even when the spring 806 is opened.
  • the second plunger 805 which is a conductive metal body such as a copper alloy, has a distal end 821, a flange 822 that forms a locking projection, and a distal-side main body as a distal end. 823.
  • the semi-cylindrical end portion 821 has a smaller diameter than the inner diameter of the coil spring 806 and is positioned inside the coil spring 806.
  • the curved surface portion of the end portion 821 is located along the inner periphery of the coil spring 806.
  • a planar portion of the end portion 821 is located on the axial center side of the coil spring 806 and is in contact with the first plunger 804.
  • the flange portion 822 has a larger diameter than the inner diameter of the coil spring 806.
  • the end face of the flange portion 822 is in contact with the other end of the coil spring 806.
  • the front end side end surface of the flange portion 822 is locked to the insulating support 809.
  • the distal end side main body portion 823 has a smaller diameter than the flange portion 822.
  • the distal end of the distal end side body portion 823 is a contact portion 823a that comes into contact with an electrode pad (not shown) of the inspection substrate 808.
  • the range of the predetermined length from the proximal end of the distal end side main body portion 823 and the flange portion 822 are semi-cylindrical, and the plane portion is flush with the plane portion of the end portion 821.
  • the range of the predetermined length of the distal end side main body portion 823, the planar portion of the flange portion 822, and the end portion 821 is a sliding surface 824 that can contact the first plunger 804. It should be noted that the flat surface portion of the distal end side main body portion 823 is formed in a range that does not come out of the insulating support 809 even when the spring 806 is opened.
  • the socket 830 includes an insulating support 809 (for example, made of resin or ceramic) having a cavity 832 for arranging a plurality of contact probes 900 in parallel at predetermined intervals, and each of these cavities.
  • a contact probe 900 is inserted into 832.
  • the first probe 804, the second plunger 805, and the coil spring 806 are integrally assembled as shown in FIG. 1 to form the contact probe 900, and the insulating support shown in FIG. 809 is inserted into the cavity 832.
  • Opening side sliding support portions 833 and 834 at both ends (upper and lower ends) of the cavity portion 832 support the front end side main body portions 813 and 823 of the first and second plungers 804 and 805 slidably, respectively.
  • the intermediate portion 835 except for the opening side sliding support portions 833 and 834 of the cavity portion 832 has a larger diameter than the opening side sliding support portions 833 and 834, and the inner circumference where the flange portions 812 and 822 and the coil spring 806 can freely move. It is a diameter. Step portions formed on the intermediate portion 835 side of the opening side sliding support portions 833 and 834 of the cavity portion 832 engage with the front end side surfaces of the flange portions 812 and 822, respectively, and the first and second plungers 804 and 805 are engaged. Regulate the escape of Note that the insulating support 809 has a structure that can be divided into a plurality of layers in order to incorporate the contact probe 900 into the cavity 832 (two-divided structure in the figure).
  • the socket 830 When the inspection is performed using the socket 830 assembled as shown in FIG. 2, the socket 830 is positioned and placed on the inspection substrate 808. As a result, the coil spring 806 is contracted by a predetermined length and the second plunger 805 is contracted. The contact portion 823a of the front end side main body portion 823 elastically contacts the electrode pad of the inspection substrate 808. In a state where there is no inspection object 807 such as a semiconductor integrated circuit, the first plunger 804 moves in the protruding direction until the flange portion 812 is regulated by the opening side sliding support portion 833, and the tip side main body portion 813 The amount of protrusion from the insulating support 809 is the maximum.
  • the inspection object 807 When the inspection object 807 is disposed to face the insulating support 809 of the socket 830 at a predetermined interval, the distal end side body portion 813 is retracted and the spring 806 is further compressed. As a result, the distal end side body portion 813 is compressed. Elastically contacts the electrode bump 807a of the inspection object 807. In this state, the inspection object 807 is inspected.
  • the end portion 811 of the first plunger 804 and the end portion 821 of the second plunger 805 are both The sliding surfaces face each other over a predetermined length from the end side and come into contact with each other.
  • the first state (open state) is changed to the second state (compressed state, ie, energized state) in which the coil spring 806 is contracted as shown in FIG. 1B, the end of the first plunger 804 is moved.
  • the flat surface portion (sliding surface) of the portion 811 faces across the range of the predetermined length of the distal end side main body portion 823 and the flat surface portion of the flange portion 822 from the flat surface portion of the end portion 821 of the second plunger 805, and contacts To do. That is, the end of the end portion 811 of the first plunger 804 is located closer to the tip of the second plunger 805 than the coil spring 806.
  • the plane portion (sliding surface) of the end portion 821 of the second plunger 805 is within the range of the predetermined length from the plane portion of the end portion 811 of the first plunger 804 to the main body portion 813 and the plane portion of the flange portion 812. Face to face and touch. That is, the end of the end portion 821 of the second plunger 805 is located closer to the tip of the first plunger 804 than the coil spring 806.
  • the movable stroke A of the first plunger 804, the movable stroke B of the second plunger 805, and the overlap length C of the first and second plungers 804 and 805 of the contact probe 900 of the present embodiment are shown in FIG. This is the same as that of the conventional contact probe shown in FIG.
  • ⁇ X (Total length of the first plunger 61) ⁇ (A + B + C)
  • ⁇ Y (Total length of second plunger 62) ⁇ (A + B + C)
  • X ' ⁇ X and Y' ⁇ Y It becomes.
  • This is different from the conventional contact probe in the specific configuration of the present embodiment in which the range of the predetermined length of the distal end side main body portions 813 and 823 and the flange portions 812 and 822 have a semi-cylindrical shape and have a plane portion. to cause.
  • the total length of the contact probe is larger than that of the conventional one. It can be shortened. Therefore, compared with the conventional contact probe, it is advantageous in terms of low resistance, large current, and high frequency.
  • the first and second plungers 804 and 805 since the flange portions 812 and 822 are formed on the outer periphery over 180 ° or more, the holding of the spring 806 is stable. Further, since the flat portions of the distal end side main body portions 813 and 823 do not come out of the insulating support 809 even when the spring 806 is opened, rattling can be prevented.
  • FIG. 3 is an overall configuration diagram of a contact probe according to a second embodiment of the present invention, where (A) shows a spring open state and (B) shows a spring compression state.
  • the contact probe of the present embodiment is different from that of the first embodiment in that the range of a predetermined length from the distal end side of the distal end side body portion 813 of the first plunger 804 and the flange portion 812 have a cylindrical shape.
  • This is a shape in which a groove 935 is formed in the vertical direction. The bottom surface of the groove 935 is flush with the flat portion of the end portion 811. As shown in FIG.
  • the front end side of the groove 935 protrudes outside the insulating support 809 over a predetermined length.
  • FIG. 3B when the coil spring 806 is compressed, the flat portion (sliding surface) 824 of the end portion 821 of the second plunger 805 is formed on the bottom surface (sliding surface 814) of the groove 935.
  • the coil spring 806 faces and contacts the bottom surface of the portion that is outside the insulating support 809 when the coil spring 806 is opened.
  • the sliding surface 814 of the first plunger 804 extends to the outside of the insulating support 809 when the coil spring 806 is opened. Therefore, the first plunger can be made shorter with the same movable stroke and overlapping length. That is, the total length of the contact probe can be further shortened as compared with the first embodiment.
  • a range of a predetermined length from the distal end side of the distal end side main body portion 813 of the first plunger 804 is a shape in which a groove 935 is formed in the length direction of the columnar shape, the bottom surface (sliding) when the coil spring 806 is opened.
  • the surface 814) protrudes outside the insulating support 809, but the lateral direction of the first plunger 804 with respect to the insulating support 809 when the coil spring 806 is open is compared with the case where the same range is a semi-cylindrical shape. It is preferable because it can suppress rattling.
  • FIG. 4 is an overall configuration diagram of a contact probe according to a third embodiment of the present invention, where (A) is a front view of a spring open state, (B) is a right side view thereof, and (C) is spring compression. A front view of the state, (D) is a right side view thereof.
  • FIG. 5 is a component diagram of the first plunger 804 of the contact probe, where (A) is a front view, (B) is a right side view, and (C) is a bottom view.
  • the contact probe of this embodiment differs from that of the first embodiment in that the end portion 821 of the second plunger 805 has bifurcated portions 821a and 821b that are divided into two from the middle portion to the end. Further, the end portion 811 of the first plunger 804 is located between the bifurcated portions 821a and 821b.
  • the flange portion 812 has a cylindrical shape in which sliding portions with the bifurcated portions 821a and 821b are cut out into groove shapes. Therefore, sliding surfaces 814 a and 814 b extending from the end portion 811 to the flange portion 812 and further to the middle of the distal end side body portion 813 are formed.
  • the end face of the flange portion 812 is in contact with one end of the coil spring 806. According to the present embodiment, the number of contact points of the first and second plungers 804 and 805 can be increased, and a lower resistance can be expected as compared with the first embodiment.
  • FIG. 6 is an overall configuration diagram of a contact probe 100 according to a fourth embodiment of the present invention, where (A) shows a spring open state and (B) shows a spring compression state.
  • FIG. 7 is an exploded view of the contact probe 100.
  • FIG. 8 is a front sectional view of the socket 30 in which a plurality of the contact probes 100 are supported in use.
  • the contact probe 100 includes a first plunger 1, a second plunger 2, and a coil spring 3 as a spring.
  • the first plunger 1 is a connection part with the inspection object 5, and the second plunger 2 is a connection part with the inspection substrate 6.
  • a coil spring 3 formed of a general material such as a piano wire or a stainless steel wire has a first and second plunger 1, 2 so that the first and second plungers 1, 2 can slide relative to each other. 2 (the first and second plungers 1 and 2 are connected).
  • the coil spring 3 also urges the first and second plungers 1 and 2 in directions away from each other during use, and causes the inspection object 5 and the inspection substrate 6 to be applied to the first and second plungers 1 and 2. Give contact force.
  • the inspection object 5 is, for example, a semiconductor integrated circuit in which electrodes are arranged at a predetermined interval, and in the illustrated case, electrode bumps 5a are arranged at a predetermined interval.
  • the inspection substrate 6 has electrode pads (not shown) connected to the measuring instrument side at predetermined intervals corresponding to the electrode bumps 5a.
  • the socket 30 includes an insulating support 31 having cavities 32 at a predetermined interval for arranging a plurality of contact probes 100 in parallel, and the contact probes 100 are inserted into the cavities 32. It is arranged.
  • the contact probe 100 is constructed by integrally assembling the first plunger 1, the second plunger 2, and the coil spring 3 as shown in FIG. It is inserted and arranged in the cavity 32 of 31. Opening side sliding support portions 33 and 34 at both ends (upper and lower ends) of the cavity portion 32 support (fitting) the front end side main body portions 13 and 24 of the first and second plungers 1 and 2 slidably, respectively.
  • the intermediate portion 35 excluding the opening side sliding support portions 33 and 34 of the cavity portion 32 has a larger diameter than the opening side sliding support portions 33 and 34, and the inner periphery on which the flange portions 12 and 23 and the coil spring 3 can freely move. It is a diameter.
  • the opening side sliding support portions 33 and 34 of the cavity portion 32 are engaged with the flange portions 12 and 23 to restrict the withdrawal of the first and second plungers 1 and 2.
  • the insulating support 31 has a structure that can be divided into a plurality of layers in order to incorporate the contact probe 100 into the cavity 32 (not shown).
  • the first plunger 1 which is a conductive metal body such as a copper alloy, has an end portion 11 and a flange portion 12 from the inspection substrate 6 side toward the inspection object 5 side. And a bar shape having a front end side main body portion 13 sequentially.
  • the semi-cylindrical end portion 11 has a smaller diameter than the inner diameter of the coil spring 3 and is positioned inside the coil spring 3.
  • a curved surface portion is disposed along the inner periphery of the coil spring 3, and on the coil spring 3 axis side.
  • a plane portion is disposed so as to contact the second plunger 2.
  • the flange portion 12 has a larger diameter than the inner diameter of the coil spring 3, and an end surface thereof is in contact with one end of the coil spring 3.
  • the distal end side main body portion 13 has a smaller diameter than the flange portion 12, and the distal end is a contact portion 13 a that contacts the electrode bump 5 a of the inspection object 5.
  • the sliding surface of the portion of the first plunger 1 that is located outside the coil spring 3 with respect to the expansion and contraction direction of the coil spring 3 (the flange portion 12 and the distal end side main body portion 13) with the second plunger 2 is partially It becomes the inclined part 15 (here inclined surface).
  • an inclined portion 15 exists between the semi-cylindrical portion on the distal end side of the flange portion 12 and the cylindrical portion on the distal end side of the distal end side main body portion 13.
  • the second plunger 2 which is a conductive metal body such as a copper alloy, has a semi-cylindrical sliding portion 21, a cylindrical portion 22, and a flange portion from the inspection object 5 side toward the inspection substrate 6 side. 23 and a rod-shaped body having a distal end side main body portion 24 sequentially.
  • the sliding portion 21 and the columnar portion 22 are smaller than the inner diameter of the coil spring 3 and are located inside the coil spring 3, and the columnar portion 22 is fitted inside the coil spring 3.
  • the semi-cylindrical sliding portion 21 is provided with a curved surface portion along the inner periphery of the coil spring 3, and a flat surface portion on the flat surface portion of the end portion 11 of the first plunger 1 and on the end side of the flange portion 12.
  • the semi-cylindrical portion is disposed toward the plane and the inclined portion 15.
  • the flange portion 23 has a diameter larger than the inner diameter of the coil spring 3 and an end surface thereof abuts on the other end of the coil spring 3.
  • the front end side main body portion 24 has a diameter smaller than that of the flange portion 23, and the front end is a contact portion 24 a that contacts an electrode pad (not shown) of the inspection substrate 6.
  • the product outer diameters of the contact probe 100 and the socket 30 are, for example, as follows. -Diameter of the intermediate part 35 of the cavity part 32 of the insulating support 31: 0.22 mm ⁇ Outer diameter of contact probe 100 (outer diameter of coil spring 3): 0.2 mm -Coil spring 3 wire diameter (wire width): 0.04 mm -Inner diameter of coil spring 3: 0.12 mm -The thickness of the end portion 11 of the first plunger 1: 0.055 mm -Thickness of the sliding portion 21 of the second plunger 2: 0.055 mm -Free length of contact probe 100: 4 mm ⁇ Use length of contact probe 100: 3 mm
  • the socket 30 When the inspection is performed using the socket 30 assembled as shown in FIG. 8, the socket 30 is positioned and placed on the inspection substrate 6, and as a result, the coil spring 3 is contracted by a predetermined length and the second plunger 2 is contracted.
  • the contact portion 24 a of the distal end side main body portion 24 comes into elastic contact with the electrode pad of the inspection substrate 6.
  • the first plunger 1 moves in the protruding direction until the flange portion 11 is regulated by the opening-side sliding support portion 33.
  • the amount of protrusion is the maximum.
  • the distal end side body portion 13 is retracted and the spring 3 is further compressed. As a result, the distal end side body portion 13 is compressed. Elastically contacts the electrode bump 5a of the inspection object 5. In this state, the inspection object 5 is inspected.
  • the sliding part 21 extends outside the inner peripheral width range of the coil spring 3 with respect to the direction perpendicular to the expansion / contraction direction of the coil spring 3 and from the coil spring 3 with respect to the expansion / contraction direction of the coil spring 3. Is also located near the tip of the first plunger 1.
  • the presence position of the inclined portion 15 is a position away from the portion where the sliding portion 21 abuts in the first state (open state) by a predetermined length L toward the distal end side of the first plunger 1.
  • the sliding portion 21 starts to ride on the inclined portion 15 after the coil spring 3 is contracted by the predetermined length L.
  • the predetermined length L is, for example, a length that is equal to or slightly shorter than the length in which the coil spring 3 contracts when the contact portion 24a of the distal end side body portion 24 of the second plunger 2 abuts against the inspection substrate 6. Say it.
  • FIG. 9 is a schematic explanatory view of bending forces F1 to F3 applied to the second plunger 2 in the second state (compressed state shown in FIG. 6B).
  • the second plunger 2 is moved to the sliding portion 21.
  • the first plunger 1 is brought into contact with the inclined portion 15 of the first plunger 1 at the first contact 101, and a bending force F ⁇ b> 1 is applied from the inclined portion 15 of the first plunger 1 at the first contact 101.
  • the intermediate portion outer surface in the longitudinal direction of the sliding portion 21 abuts with the inner periphery of the end portion in the expansion / contraction direction of the coil spring 3 at the second contact 102.
  • a bending force F2 is applied. Further, when the bending force F2 is applied to the second plunger 2, the tip end side of the sliding portion 21 comes into contact with the end side plane of the end portion 11 of the first plunger 1 at the third contact 103, and the third contact point In 103, a bending force F3 is applied from the end 11 of the first plunger 1.
  • FIG. 10 is a cross-sectional view taken along the line VV ′ of FIG.
  • the cross-sectional areas of the end portion 11 of the first plunger 1 and the sliding portion 21 of the second plunger 2 are equal.
  • the cross-sectional area of the sliding portion 21 is made small so that the sliding portion 21 has an appropriate spring force (elastic force).
  • it is desirable that the cross-sectional area is large.
  • an excessive spring force is generated in the sliding portion 21 and smooth sliding cannot be performed.
  • FIG. 11 is a schematic diagram showing a contact and an electric path formed by elastic deformation of the second plunger 2 in the second state (compressed state shown in FIG. 6B).
  • a part of the current E ⁇ b> 1 passing through the first plunger 1 branches to the second plunger 2 at the first contact 101.
  • the current branched and flowing to the first plunger 1 and the second plunger 2 becomes a current E2 that flows through the second plunger 2 by joining at the third contact 103.
  • the contact between the first plunger 1 and the coil spring 3 third contact 103
  • the contact between the second plunger 2 and the coil spring 3 fourth contact 104. Connects the first and second plungers 1 and 2 using the coil spring 3 as a current path.
  • FIG. 13 is a resistance characteristic diagram of the contact probe 100 of the present embodiment, and shows the measurement results (when compressed and returned) of the samples of the five contact probes.
  • the contact probe 100 is sandwiched between electrodes connected to a constant voltage power source, and the passing resistance of the contact probe 100 is measured by changing the use length of the contact probe 100 (as shown in FIG. 15). Obtained from the flowing current).
  • FIG. 14 is a resistance characteristic diagram of the conventional contact probe shown in FIG. 26, and shows the measurement results of the five contact probe samples (during compression and return). The measurement method is the same as in FIG.
  • the resistance value variation among the samples is small and the resistance value is low. It can also be seen that the variation of the resistance value when the contact probe usage length is changed is small. On the other hand, in the measurement result shown in FIG. 14 (conventional example), the variation among the samples is large and the resistance value is high. Further, it can be seen that the resistance value fluctuates greatly when the contact probe usage length is changed.
  • the sliding surface of the first plunger 1 with the second plunger 2 is partially inclined 15, and the coil spring 3 is contracted from the first state in which the coil spring 3 is extended. Since the second plunger 2 rides on the inclined portion 15 during the transition to the second state, the first plunger 1 and the second plunger 2 can be reliably contacted. As a result, as is apparent from the measurement results shown in FIGS. 13 and 14, the inspection object 5 and the inspection substrate 6 can be electrically stabilized and connected with a low resistance as compared with the conventional example. .
  • the sliding portion 21 can be elastically deformed beyond the inner peripheral width range of the coil spring 3 when riding on the inclined portion 15. Further, the configuration in which the end of the sliding portion 21 extends outside the inner peripheral width range of the coil spring 3 when riding on the inclined portion 15 allows a limited space to be used effectively, and the contact probe 100 can be made compact. This is advantageous for downsizing.
  • the end of the sliding portion 21 is positioned closer to the tip of the first plunger 1 than the coil spring 3 in the expansion / contraction direction of the coil spring 3 when riding on the inclined portion 15, the same as in the first embodiment.
  • the total length of the contact probe can be shortened. Therefore, compared with the conventional contact probe, it is advantageous in terms of low resistance, large current, and high frequency.
  • FIG. 16 is an overall configuration diagram of a contact probe 200 according to a fifth embodiment of the present invention, in which (A) shows a spring open state and (B) shows a spring compression state. 17 is a cross-sectional view taken along the line XII-XII ′ of FIG.
  • the contact probe 200 according to the present embodiment has an inclined portion 225 on the second plunger 202 (part to be connected to the inspection object), and the second plunger 202.
  • the end portion 221 of the first plunger 201 is inclined in the direction in which the first plunger 201 exists over a predetermined length from the end, and the sliding portion 211 of the first plunger 201 is more than the end portion 221 of the second plunger 202. It is mainly different from the small diameter.
  • the second plunger 202 has a distal end portion 221, a flange portion 222, and a distal end side main body portion 223.
  • the end portion 221 having a substantially semi-cylindrical shape is smaller in diameter than the inner diameter of the coil spring 3, is positioned inside the coil spring 3, and is inclined from the end in a direction in which the first plunger 201 exists over a predetermined length.
  • the flange portion 222 has a larger diameter than the inner diameter of the coil spring 3, and an end surface thereof is in contact with one end of the coil spring 3.
  • the front end side main body portion 223 has a smaller diameter than the flange portion 222, and the front end is a contact portion 223a that comes into contact with the electrode pad of the inspection substrate.
  • the sliding surface of the portion of the second plunger 202 located outside the coil spring 3 with respect to the expansion / contraction direction of the coil spring 3 (the flange portion 222 and the distal end side body portion 223) with the first plunger 201 is partially It is an inclined portion 225 (here, an inclined surface).
  • an inclined portion 225 here, an inclined surface.
  • the first plunger 201 includes a substantially semi-cylindrical sliding portion 211, a cylindrical portion 212, a flange portion 213, and a front end side main body portion 214.
  • the sliding part 211 and the columnar part 212 are smaller in diameter than the inner diameter of the coil spring 3 and are located inside the coil spring 3, and the columnar part 212 is fitted inside the coil spring 3.
  • the flange portion 213 has a diameter larger than the inner diameter of the coil spring 3, and an end surface thereof is in contact with the other end of the coil spring 3.
  • the distal end side main body portion 214 has a smaller diameter than the flange portion 213, and the distal end is a contact portion 214a that comes into contact with the electrode bump of the inspection object.
  • this embodiment also has a structure in which the sliding portion 211 of the first plunger 201 rides on the inclined portion 225 of the second plunger 202.
  • the two plungers 202 can be reliably brought into contact with each other, and the inspection object and the inspection substrate can be electrically stabilized and connected with low resistance as compared with the conventional example. In other respects, the same effects as those of the fourth embodiment can be obtained. Further, in the present embodiment, since the end of the end portion 221 of the second plunger 202 is inclined in the direction in which the first plunger 201 exists over a predetermined length, when the second plunger 202 is processed.
  • the end portion 221 is slightly warped in the direction in which the first plunger 201 does not exist, the end of the end portion 221 can be reliably brought into contact with the sliding portion 211 of the first plunger 201.
  • the sliding portion 211 has a small diameter so that excessive spring force is not generated.
  • FIG. 18 is an overall configuration diagram of a contact probe 300 according to a sixth embodiment of the present invention, where (A) shows a spring open state and (B) shows a spring compression state.
  • the contact probe 300 of the present embodiment has a smaller (shorter) range of the inclined portion 15 and a sliding portion of the second plunger 2. 21 is mainly different in that the diameter is smaller than the end portion 11 of the first plunger 1.
  • the sliding portion 21 has a small diameter so that an excessive spring force is not generated.
  • FIG. 19 is an overall configuration diagram of a contact probe 400 according to a seventh embodiment of the present invention, in which (A) shows a spring open state and (B) shows a spring compression state.
  • the contact probe 400 of the present embodiment has an inclined surface 15 from a straight inclined surface to an R surface (an inclined surface in which the inclination is continuously steep from flat as viewed from the end side). The main difference is that This embodiment can achieve the same effects as those of the fourth embodiment.
  • FIG. 20 is an overall configuration diagram of a contact probe 500 according to an eighth embodiment of the present invention, where (A) shows a spring open state and (B) shows a spring compression state.
  • the contact probe 500 of the present embodiment is mainly different from the fourth embodiment in that the inclined portion 15 is formed by the convex portion 515.
  • the shape of the convex portion 515 is not particularly limited as long as the sliding portion 21 can ride on, but is a triangular pyramid shape, a quadrangular pyramid shape, a wedge shape, or the like as shown in FIG. This embodiment can achieve the same effects as those of the fourth embodiment.
  • FIG. 22 is an overall configuration diagram of a contact probe 600 according to a ninth embodiment of the present invention, where (A) is a front view of the spring open state, (B) is a right side view of the same state, and (C). Is a front view of the spring compressed state, and (D) is a right side view of the same state.
  • FIG. 23 is a component diagram of the first plunger 1 of the contact probe 600, where (A) is a front view, (B) is a right side view, and (C) is a bottom view.
  • the contact probe 600 according to the present embodiment is divided into two forks from the intermediate portion in the length direction of the second plunger 2 to the end side (sliding portion 21).
  • the point which becomes 21a, 21b, the point which the terminal part 11 of the 1st plunger 1 is located between the bifurcated part 21a, 21b, and the inclination part 15a, 15b exist corresponding to the bifurcated part 21a, 21b. It is mainly different from the point.
  • the flange portion 12 has a cylindrical shape in which a sliding portion with the second plunger 2 is cut out in a groove shape, and the end side end surface of the flange portion 12 is in contact with one end of the coil spring 3. Since this embodiment also has a structure in which the bifurcated portions 21a and 21b ride on the inclined portions 15a and 15b, the first plunger 1 and the second plunger 2 can be reliably contacted, compared with the conventional example.
  • the inspection object and the inspection substrate can be electrically stabilized and connected with low resistance. In other respects, the same effects as those of the fourth embodiment can be obtained. Furthermore, since the number of contacts of the first and second plungers 1 and 2 is increased, it is possible to further reduce the resistance.
  • FIG. 24 is an overall configuration diagram of a contact probe 700 according to a tenth embodiment of the present invention, in which (A) shows a spring open state and (B) shows a spring compression state.
  • the contact probe 700 according to the present embodiment has inclined portions in both the first plunger 1 and the second plunger 2, and both inclined portions are coil springs 3. It is mainly different in that it exists within the length range.
  • the sliding portion 21 is an inclined portion 25 (here, an inclined surface) over a predetermined length from the tip side.
  • the first plunger 1 also has a sliding portion 71 having the same configuration as the sliding portion 21 of the second plunger 2.
  • the sliding portion 71 is an inclined portion 75 (here, an inclined surface) over a predetermined length from the tip side.
  • the coil spring 3 is sandwiched between the end surfaces of the flange portions 73 and 23 of the first and second plungers 1 and 2.
  • the sliding deformable portions 21 and 71 are limited to the inner peripheral width range of the coil spring 3 when the sliding portions 21 and 71 run on the inclined portions 75 and 25, the viewpoint of downsizing (smaller diameter) of the contact probe. Then, the fourth embodiment is more excellent. In other respects, the same effects as those of the fourth embodiment are obtained.
  • the end portions 811 and 821 of the first and second plungers 804 and 805 have a semi-cylindrical shape
  • the end portions 811 and 821 have flat surfaces facing each other. If it is, it will not be limited to a semi-cylindrical shape. That is, the end portions 811 and 821 only need to have a flat surface as a sliding surface on the side surface. The same applies to the range of a predetermined length from the base ends of the distal end side main body portions 813 and 823 and the shape of the flange portion 812 in the first embodiment.
  • the range of a predetermined length from the proximal end of the distal end side main body portion 813 of the first plunger 804 and the case where the flange portion 812 has a shape in which the groove 935 is formed in the length direction of the columnar shape may have the same shape as the first embodiment (for example, a semi-cylindrical shape).
  • the coil spring 806 when the coil spring 806 is opened, the backlash in the lateral direction of the first plunger 804 with respect to the insulating support 809 is larger than in the second embodiment, but in terms of shortening the total length of the contact probe. The same effects as those of the second embodiment can be obtained.
  • the ends of the end portions 811 and 821 of the first and second plungers 804 and 805 are both outside the coil spring 806 with respect to the expansion and contraction direction of the coil spring 806.
  • one of the ends of the end portions 811 and 821 may be located outside the coil spring 806 and the other may be located inside the coil spring 806.
  • the total length of the contact probe can be shortened as compared with the conventional case.
  • the first plunger is used for connection with the inspection object
  • the second plunger is used for connection with the inspection substrate.
  • the first plunger is used for connection with the inspection substrate.
  • Two plungers may be used for connection with the inspection object.
  • the inclined portion is located outside the length range of the coil spring
  • the inclined portion may exist within the length range of the coil spring.
  • the first and second plungers can be reliably brought into contact with each other so that the inspection object and the inspection substrate can be electrically stabilized and connected with low resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

Provided is a contact probe which, although the movable strokes of a first plunger and a second plunger of the contact probe and the length of overlap between the first plunger and the second plunger are the same as those of conventional products, has a smaller overall length than the conventional products. A socket equipped with the contact probe is also provided. When a coiled spring (806) is in a compressed state in which the coiled spring is contracted, a flat surface portion of an end section (811) of a first plunger (804) faces and makes contact with a second plunger (805) over an area thereof which extends from a flat surface portion of an end section (821) of the second plunger (805), through a range of a predetermined length from the base end of a tip-side body section (823), to a flat surface portion of a flange section (822), and a flat surface portion of the end section (821) of the second plunger (805) faces and makes contact with the first plunger (804) over an area thereof which extends from a flat surface portion of the end section (811) of the first plunger (804), through a range of a predetermined length from the base end of a tip-side body section (813), to a flat surface portion of a flange section (812).

Description

コンタクトプローブ及びソケットContact probe and socket
 本発明は、半導体集積回路等の検査に使用するコンタクトプローブ及びこれを備えたソケットに関する。 The present invention relates to a contact probe used for testing a semiconductor integrated circuit or the like and a socket provided with the contact probe.
 半導体集積回路等の検査対象物の検査を行う場合において、検査対象物と測定器側の検査用基板とを電気的に接続するためにコンタクトプローブが一般的に使用されている。 When inspecting an inspection object such as a semiconductor integrated circuit, a contact probe is generally used to electrically connect the inspection object and an inspection substrate on the measuring instrument side.
 図25は、従来のコンタクトプローブの説明図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態(通電時)を示す。この種のコンタクトプローブは、小径化のためにコイルスプリングの外側に金属チューブを有しない構造である。また、電気の通過抵抗を抑えるために、半導体集積回路等の検査対象物との接続部品である第1プランジャー61と、検査用基板との接続部品である第2プランジャー62とを直接接触させる構造である。コンタクトプローブの構成部品であるコイルスプリング63を圧縮して発生するバネ力で、第1及び第2プランジャー61,62の先端がそれぞれ検査対象物及び検査用基板に押し当てられる。なお、図25と同様の構造を有する先行技術文献として、下記特許文献1及び2がある。 FIG. 25 is an explanatory diagram of a conventional contact probe, in which (A) shows a spring open state and (B) shows a spring compressed state (when energized). This type of contact probe has a structure that does not have a metal tube outside the coil spring in order to reduce the diameter. Further, in order to suppress the electric resistance, the first plunger 61 that is a connection part with an inspection target such as a semiconductor integrated circuit and the second plunger 62 that is a connection part with a substrate for inspection are in direct contact with each other. It is a structure to let you. The tip ends of the first and second plungers 61 and 62 are pressed against the inspection object and the inspection substrate, respectively, by a spring force generated by compressing the coil spring 63 which is a component of the contact probe. Note that there are the following Patent Documents 1 and 2 as prior art documents having the same structure as FIG.
特開2000-241447号公報JP 2000-241447 A 米国特許第6462567号公報US Pat. No. 6,462,567
 従来のコンタクトプローブの開放時全長L1及び圧縮時全長L2はそれぞれ、
  L1=2(A+B)+C+X+Y
  L2=A+B+C+X+Y
と表される。ここで、図25にも示すとおり、
・A=第1プランジャー61の可動ストローク
・B=第2プランジャー62の可動ストローク
・C=第1及び第2プランジャー61,62の重ね代の長さ
・X=(第1プランジャー61の全長)-(A+B+C)
・Y=(第2プランジャー62の全長)-(A+B+C)
である。
The total length L 1 when the conventional contact probe is opened and the total length L 2 when it is compressed are respectively
L 1 = 2 (A + B) + C + X + Y
L 2 = A + B + C + X + Y
It is expressed. Here, as shown in FIG.
A = movable stroke of the first plunger 61 B = movable stroke of the second plunger 62 C = length of overlap of the first and second plungers 61, 62 X = (first plunger 61 Total length)-(A + B + C)
・ Y = (Total length of second plunger 62) − (A + B + C)
It is.
 コンタクトプローブに求められる性能としては、例えば低抵抗・大電流対応・高周波対応が挙げられる。これらの性能を満足させるためには、コンタクトプローブの全長は短いほど好ましい。しかし、上記の各長さのうち第1プランジャー及び第2プランジャーの可動ストロークA,B並びに重ね代の長さCは、要求される仕様によって決まってしまい一定長以下に短くすることができない。 The performance required for contact probes includes, for example, low resistance, large current compatibility, and high frequency compatibility. In order to satisfy these performances, the total length of the contact probe is preferably as short as possible. However, among the above lengths, the movable strokes A and B of the first plunger and the second plunger and the overlap length C are determined by the required specifications and cannot be shortened to a certain length or less. .
 本発明はこうした状況を認識してなされたものであり、その目的は、第1プランジャー及び第2プランジャーの可動ストローク並びに重ね代の長さを同じとしたとき、従来と比較して全長を短くすることの可能なコンタクトプローブ及びこれを備えたソケットを提供することにある。 The present invention has been made in view of such a situation, and its object is to make the total length of the first plunger and the second plunger longer than the conventional one when the movable stroke and the overlap allowance length are the same. It is an object of the present invention to provide a contact probe that can be shortened and a socket having the contact probe.
 本発明の第1の態様は、コンタクトプローブである。このコンタクトプローブは、
 スプリングと、一方が検査対象物との接続用で他方が検査用基板との接続用である第1及び第2プランジャーとを備え、
 前記第1及び第2プランジャーはそれぞれ、前記スプリングを係止する係止凸部を長さ方向の中間部に有し、
 前記スプリングは、前記係止凸部に係止され、かつ前記第1及び第2プランジャーを互いに離れる方向に付勢し、
 前記スプリングが所定長以下の長さに縮んでいるとき、前記第2プランジャーの末端が、前記スプリングよりも、前記第1プランジャーの先端寄りに位置する。
The first aspect of the present invention is a contact probe. This contact probe
A spring and first and second plungers, one for connection with the inspection object and the other for connection with the inspection substrate;
Each of the first and second plungers has a locking projection for locking the spring at an intermediate portion in the length direction,
The spring is locked to the locking projection and biases the first and second plungers away from each other;
When the spring is contracted to a length equal to or shorter than a predetermined length, the end of the second plunger is positioned closer to the tip of the first plunger than the spring.
 第1の態様のコンタクトプローブにおいて、
 前記第1プランジャーは、末端部と、先端部と、前記末端部及び前記先端部の間のフランジ部とを有し、
 前記フランジ部が前記係止凸部を有し、
 前記先端部の基端から所定長の範囲と、前記フランジ部と、前記末端部とに渡って前記第2プランジャーとの摺動面が連続して存在するとよい。
In the contact probe of the first aspect,
The first plunger has a distal end portion, a distal end portion, and a flange portion between the distal end portion and the distal end portion,
The flange portion has the locking projection;
A sliding surface with the second plunger may continuously exist over a range of a predetermined length from the proximal end of the distal end portion, the flange portion, and the distal end portion.
 第1の態様のコンタクトプローブにおいて、前記スプリングが所定長以下の長さに縮んでいるとき、前記第1プランジャーの末端が、前記スプリングよりも、前記第2プランジャーの先端寄りに位置するとよい。 In the contact probe according to the first aspect, when the spring is contracted to a length equal to or shorter than a predetermined length, the end of the first plunger may be positioned closer to the tip of the second plunger than the spring. .
 第1の態様のコンタクトプローブにおいて、前記第1及び第2プランジャーの相互摺動面が平面であるとよい。 In the contact probe according to the first aspect, the sliding surfaces of the first and second plungers may be flat.
 本発明の第2の態様も、コンタクトプローブである。このコンタクトプローブは、第1の態様のコンタクトプローブにおいて、
 前記第1プランジャーは、前記第2プランジャーとの摺動範囲の少なくとも一部が傾斜部となっていて、
 前記スプリングが伸びている第1の状態から前記スプリングが縮んでいる第2の状態に遷移する過程で、前記第2プランジャーが前記傾斜部に乗り上げる構造である。
The second aspect of the present invention is also a contact probe. This contact probe is the contact probe according to the first aspect,
The first plunger has an inclined portion at least a part of a sliding range with the second plunger,
In the transition from the first state in which the spring is extended to the second state in which the spring is contracted, the second plunger rides on the inclined portion.
 第2の態様のコンタクトプローブにおいて、前記傾斜部が前記スプリングの伸縮方向に関して前記スプリングの外側に存在するとよい。 In the contact probe according to the second aspect, it is preferable that the inclined portion is present outside the spring with respect to the expansion / contraction direction of the spring.
 また、前記第2プランジャーは、前記傾斜部に乗り上げた状態で、板バネ状に変形して末端が前記伸縮方向に垂直な方向に関して前記スプリングの内周幅範囲外に延在しているとよい。 In addition, the second plunger is deformed into a leaf spring in a state of riding on the inclined portion, and the end extends outside the inner peripheral width range of the spring in the direction perpendicular to the expansion / contraction direction. Good.
 さらに、前記第2プランジャーは、前記傾斜部に乗り上げた状態で、長手方向の中間部が前記スプリングの伸縮方向の端部内周と当接し、かつ、前記中間部よりも末端側の一部と先端側の一部との双方が前記第1プランジャーと当接しているとよい。 Furthermore, the second plunger is in a state where the intermediate portion in the longitudinal direction is in contact with the inner periphery of the end portion in the expansion / contraction direction of the spring, and a part of the distal end side with respect to the intermediate portion in a state of riding on the inclined portion. It is preferable that both of the tip side and the first plunger are in contact with each other.
 第2の態様のコンタクトプローブにおいて、前記第2プランジャーは長さ方向の中間部から末端側が2本に分かれた二股部となっていて、前記第1プランジャーの末端が前記二股部の間に位置し、前記傾斜部は前記二股部の一方及び他方の双方に対応して少なくとも1つずつ存在するとよい。 In the contact probe according to the second aspect, the second plunger is a bifurcated portion that is divided into two from the middle portion in the length direction, and the distal end of the first plunger is between the bifurcated portions. It is preferable that at least one inclined portion is present corresponding to both one and the other of the bifurcated portions.
 また、前記第1プランジャーの長さ方向の中間部のフランジ部は、前記摺動部分を切り欠いて溝状に形成していて、前記フランジ部の末端側端面が前記スプリングの一方の端部と当接しているとよい。 The flange portion of the intermediate portion in the length direction of the first plunger is formed in a groove shape by cutting out the sliding portion, and the end face of the flange portion is one end portion of the spring. It should be in contact with.
 第2の態様のコンタクトプローブにおいて、
 前記第2プランジャーは、前記第1プランジャーとの摺動範囲の少なくとも一部が傾斜部となっていて、
 前記第1の状態から前記第2の状態に遷移する過程で、前記第1プランジャーが前記第2プランジャーの前記傾斜部に乗り上げる構造であるとよい。
In the contact probe of the second aspect,
In the second plunger, at least a part of a sliding range with the first plunger is an inclined portion,
In the process of transition from the first state to the second state, the first plunger may have a structure that rides on the inclined portion of the second plunger.
 第2の態様のコンタクトプローブにおいて、前記第1プランジャーの末端が前記第2プランジャーの存在する方向に傾いているとよい。 In the contact probe of the second aspect, the end of the first plunger may be inclined in the direction in which the second plunger exists.
 本発明の第3の態様は、ソケットである。このソケットは、第1又は第2の態様のコンタクトプローブを複数本絶縁支持体で支持してなるものである。 The third aspect of the present invention is a socket. This socket is formed by supporting a plurality of contact probes of the first or second aspect with an insulating support.
 第3の態様のソケットにおいて、各コンタクトプローブの第1プランジャーは、前記スプリングが所定長以上の長さに伸びているとき、前記第2プランジャーとの摺動面が、前記スプリングの伸縮方向に関して前記絶縁支持体の内側から外側にかけて延在するとよい。 In the socket according to the third aspect, the first plunger of each contact probe has a sliding surface with the second plunger when the spring extends to a length equal to or longer than a predetermined length. It is good to extend from the inner side to the outer side of the insulating support.
 この場合、前記第1プランジャーの前記係止凸部は前記絶縁支持体からの抜止めであり、前記第1プランジャーの前記摺動面は前記係止凸部よりも先端側において溝形状の底面であるとよい。 In this case, the locking projection of the first plunger is a retaining member from the insulating support, and the sliding surface of the first plunger has a groove shape on the tip side of the locking projection. It should be the bottom.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a conversion of the expression of the present invention between methods and systems are also effective as an aspect of the present invention.
 本発明によれば、スプリングが所定長以下の長さに縮んでいるとき、第2プランジャーの末端がスプリングよりも第1プランジャーの先端寄りに位置するため、第1プランジャー及び第2プランジャーの可動ストローク並びに重ね代の長さが同じであれば従来と比較してコンタクトプローブの全長を短くすることが可能となる。 According to the present invention, when the spring is contracted to a length equal to or shorter than the predetermined length, the end of the second plunger is positioned closer to the tip of the first plunger than the spring, so the first plunger and the second plan If the movable stroke of the jar and the length of the overlap allowance are the same, the total length of the contact probe can be shortened compared to the conventional case.
本発明の第1の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態の正面図、(B)はスプリング圧縮状態の正面図、(C)は第1及び第2プランジャーの重ね代部分の断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the contact probe which concerns on the 1st Embodiment of this invention, (A) is a front view of a spring open state, (B) is a front view of a spring compression state, (C) is 1st and 1st Sectional drawing of the overlap margin part of 2 plungers. 同コンタクトプローブを複数本支持してなるソケットの、使用時における正断面図。The front sectional view at the time of use of the socket which supports a plurality of the contact probes. 本発明の第2の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。It is a whole block diagram of the contact probe which concerns on the 2nd Embodiment of this invention, (A) shows a spring open state, (B) shows a spring compression state. 本発明の第3の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態の正面図、(B)は同右側面図、(C)はスプリング圧縮状態の正面図、(D)は同右側面図。It is a whole block diagram of the contact probe which concerns on the 3rd Embodiment of this invention, (A) is a front view of a spring open state, (B) is the right side view, (C) is a front view of a spring compression state , (D) is the right side view. 同コンタクトプローブの第1プランジャーの部品図であり、(A)は正面図、(B)は右側面図、(C)は底面図。It is a component figure of the 1st plunger of the contact probe, (A) is a front view, (B) is a right view, (C) is a bottom view. 本発明の第4の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。It is a whole block diagram of the contact probe which concerns on the 4th Embodiment of this invention, (A) shows a spring open state, (B) shows a spring compression state. 同コンタクトプローブの分解図。The exploded view of the contact probe. 同コンタクトプローブを複数本支持してなるソケットの使用状態における正断面図。The front sectional view in the use condition of the socket which supports a plurality of the contact probes. 図6(B)に示す圧縮状態において第2プランジャーに加えられる曲げ力の模式的説明図。FIG. 7 is a schematic explanatory view of a bending force applied to the second plunger in the compressed state shown in FIG. 6 (B). 図9のV-V'断面図。FIG. 10 is a cross-sectional view taken along the line VV ′ of FIG. 9. 図6(B)に示す圧縮状態で、第2プランジャーの弾性変形によってできた接点と電気経路を示す模式図。The schematic diagram which shows the contact and electric path which were made by the elastic deformation of a 2nd plunger in the compression state shown to FIG. 6 (B). 図11のVII-VII'断面図。VII-VII 'sectional drawing of FIG. 第4の実施の形態のコンタクトプローブの抵抗値特性図。The resistance characteristic figure of the contact probe of a 4th embodiment. 図26に示す従来のコンタクトプローブの抵抗値特性図。FIG. 27 is a resistance characteristic diagram of the conventional contact probe shown in FIG. 26. コンタクトプローブの抵抗値特性図の測定方法を示す模式図。The schematic diagram which shows the measuring method of the resistance value characteristic view of a contact probe. 本発明の第5の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。It is a whole block diagram of the contact probe which concerns on the 5th Embodiment of this invention, (A) shows a spring open state, (B) shows a spring compression state. 図16のXII-XII'断面図。XII-XII 'sectional drawing of FIG. 本発明の第6の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。It is a whole block diagram of the contact probe which concerns on the 6th Embodiment of this invention, (A) shows a spring open state, (B) shows a spring compression state. 本発明の第7の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。It is a whole block diagram of the contact probe which concerns on the 7th Embodiment of this invention, (A) shows a spring open state, (B) shows a spring compression state. 本発明の第8の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。It is a whole block diagram of the contact probe which concerns on the 8th Embodiment of this invention, (A) shows a spring open state, (B) shows a spring compression state. 同コンタクトプローブの第1プランジャーの部品図であり、(A)は正面図、(B)は右側面図、(C)は底面図。It is a component figure of the 1st plunger of the contact probe, (A) is a front view, (B) is a right view, (C) is a bottom view. 本発明の第9の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態の正面図、(B)は同状態の右側面図、(C)はスプリング圧縮状態の正面図、(D)は同状態の右側面図。It is a whole block diagram of the contact probe which concerns on the 9th Embodiment of this invention, (A) is a front view of a spring open state, (B) is a right view of the state, (C) is a spring compression state. Front view, (D) is a right side view of the same state. 同コンタクトプローブの第1プランジャーの部品図であり、(A)は正面図、(B)は右側面図、(C)は底面図。It is a component figure of the 1st plunger of the contact probe, (A) is a front view, (B) is a right view, (C) is a bottom view. 本発明の第10の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。It is a whole block diagram of the contact probe which concerns on the 10th Embodiment of this invention, (A) shows a spring open state, (B) shows a spring compression state. 従来のコンタクトプローブの全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。It is a whole block diagram of the conventional contact probe, (A) shows a spring open state, (B) shows a spring compression state. 従来のコンタクトプローブの説明図であり、(A)は全体構成図、(B)はそのB-B'断面図(接触状態・非接触状態)。It is explanatory drawing of the conventional contact probe, (A) is a whole block diagram, (B) is the BB 'sectional drawing (contact state / non-contact state).
 以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
(第1の実施の形態)
 図1は、本発明の第1の実施の形態に係るコンタクトプローブ900の全体構成図であり、(A)はスプリング開放状態の正面図、(B)はスプリング圧縮状態の正面図、(C)は第1及び第2プランジャーの重ね代部分の断面図である。図2は、同コンタクトプローブ900を複数本支持してなるソケット830の、使用時における正断面図である。
(First embodiment)
FIG. 1 is an overall configuration diagram of a contact probe 900 according to a first embodiment of the present invention, where (A) is a front view in a spring open state, (B) is a front view in a spring compression state, and (C). FIG. 4 is a cross-sectional view of the overlapping portion of the first and second plungers. FIG. 2 is a front sectional view of a socket 830 that supports a plurality of the contact probes 900 in use.
 コンタクトプローブ900は、第1プランジャー804と、第2プランジャー805と、スプリングとしてのコイルスプリング806とを備える。第1プランジャー804は検査対象物807(図2参照)との接続部品であり、第2プランジャー805は検査用基板808(図2参照)との接続部品である。例えばピアノ線やステンレス線等の一般的な導電性金属材質で形成されたコイルスプリング806は、第1及び第2プランジャー804,805が相互に摺動可能となるように第1及び第2プランジャー804,805に対して設けられている(第1及び第2プランジャー804,805を連結している)。コイルスプリング806は、また、使用時に第1及び第2プランジャー804,805を互いに離れる方向に付勢して、第1及び第2プランジャー804,805を検査対象物807及び検査用基板808に押圧する。検査対象物807は、例えば電極が所定間隔で配列された半導体集積回路であり、図示の場合、電極バンプ807a(例えば半田バンプ)が所定間隔で配列されたものである。検査用基板808は、測定器側に接続される電極パッド(図示せず)を電極バンプ807aに対応して所定間隔で有するものである。 The contact probe 900 includes a first plunger 804, a second plunger 805, and a coil spring 806 as a spring. The first plunger 804 is a connection part with the inspection object 807 (see FIG. 2), and the second plunger 805 is a connection part with the inspection substrate 808 (see FIG. 2). For example, a coil spring 806 made of a general conductive metal material such as a piano wire or a stainless steel wire has first and second plans so that the first and second plungers 804 and 805 can slide relative to each other. It is provided for the jars 804 and 805 (the first and second plungers 804 and 805 are connected). The coil spring 806 also biases the first and second plungers 804 and 805 in a direction away from each other when in use, thereby causing the first and second plungers 804 and 805 to move toward the inspection object 807 and the inspection substrate 808. Press. The inspection object 807 is, for example, a semiconductor integrated circuit in which electrodes are arranged at a predetermined interval, and in the illustrated case, electrode bumps 807a (for example, solder bumps) are arranged at a predetermined interval. The inspection substrate 808 has electrode pads (not shown) connected to the measuring instrument side at predetermined intervals corresponding to the electrode bumps 807a.
 図1に示すように、銅合金等の導電性金属体である第1プランジャー804は、末端部811と、係止凸部を成すフランジ部812と、先端部としての先端側本体部813とを有する棒形状である。半円柱形状の末端部811は、コイルスプリング806の内径よりも小径で、コイルスプリング806の内側に位置する。末端部811の曲面部分は、コイルスプリング806の内周に沿って位置する。末端部811の平面部分は、コイルスプリング806の軸芯側に位置し、第2プランジャー805に接する。フランジ部812は、コイルスプリング806の内径よりも大径である。フランジ部812の末端側端面は、コイルスプリング806の一端と当接する。フランジ部812の先端側端面は、絶縁支持体809に係止される。先端側本体部813は、フランジ部812よりも小径である。先端側本体部813の先端は、検査対象物807の電極バンプ807aと接触する接触部813aとなっている。 As shown in FIG. 1, the first plunger 804, which is a conductive metal body such as a copper alloy, includes an end portion 811, a flange portion 812 that forms a locking projection, and a distal end side body portion 813 as a distal end portion. It is the rod shape which has. The semi-cylindrical end portion 811 has a smaller diameter than the inner diameter of the coil spring 806 and is positioned inside the coil spring 806. The curved surface portion of the end portion 811 is located along the inner periphery of the coil spring 806. A planar portion of the end portion 811 is located on the axial center side of the coil spring 806 and is in contact with the second plunger 805. The flange portion 812 has a larger diameter than the inner diameter of the coil spring 806. The end face of the flange portion 812 is in contact with one end of the coil spring 806. The end surface on the front end side of the flange portion 812 is locked to the insulating support 809. The distal end side main body portion 813 has a smaller diameter than the flange portion 812. The distal end of the distal end side main body portion 813 is a contact portion 813 a that contacts the electrode bump 807 a of the inspection object 807.
 先端側本体部813の基端から所定長の範囲とフランジ部812は、半円柱形状であり、平面部分が末端部811の平面部分と面一である。先端側本体部813の前記所定長の範囲、フランジ部812、及び末端部811の平面部分が、第2プランジャー805と接触可能な摺動面814である。なお、先端側本体部813の平面部分は、スプリング806の開放時でも後述する絶縁支持体809の外側に出ない範囲で形成される。 The range of a predetermined length from the proximal end of the distal end side main body portion 813 and the flange portion 812 have a semi-cylindrical shape, and the planar portion is flush with the planar portion of the distal end portion 811. A range of the predetermined length of the distal end side main body portion 813, a planar portion of the flange portion 812, and the end portion 811 is a sliding surface 814 that can come into contact with the second plunger 805. It should be noted that the flat surface portion of the distal end side main body portion 813 is formed in a range that does not come out of an insulating support 809 described later even when the spring 806 is opened.
 銅合金等の導電性金属体である第2プランジャー805は、第1プランジャー804と同様に、末端部821と、係止凸部を成すフランジ部822と、先端部としての先端側本体部823とを有する棒形状である。半円柱形状の末端部821は、コイルスプリング806の内径よりも小径で、コイルスプリング806の内側に位置する。末端部821の曲面部分は、コイルスプリング806の内周に沿って位置する。末端部821の平面部分は、コイルスプリング806の軸芯側に位置し、第1プランジャー804に接する。フランジ部822は、コイルスプリング806の内径よりも大径である。フランジ部822の末端側端面は、コイルスプリング806の他端と当接する。フランジ部822の先端側端面は、絶縁支持体809に係止される。先端側本体部823は、フランジ部822よりも小径である。先端側本体部823の先端は、検査用基板808の電極パッド(不図示)と接触する接触部823aとなっている。 As with the first plunger 804, the second plunger 805, which is a conductive metal body such as a copper alloy, has a distal end 821, a flange 822 that forms a locking projection, and a distal-side main body as a distal end. 823. The semi-cylindrical end portion 821 has a smaller diameter than the inner diameter of the coil spring 806 and is positioned inside the coil spring 806. The curved surface portion of the end portion 821 is located along the inner periphery of the coil spring 806. A planar portion of the end portion 821 is located on the axial center side of the coil spring 806 and is in contact with the first plunger 804. The flange portion 822 has a larger diameter than the inner diameter of the coil spring 806. The end face of the flange portion 822 is in contact with the other end of the coil spring 806. The front end side end surface of the flange portion 822 is locked to the insulating support 809. The distal end side main body portion 823 has a smaller diameter than the flange portion 822. The distal end of the distal end side body portion 823 is a contact portion 823a that comes into contact with an electrode pad (not shown) of the inspection substrate 808.
 先端側本体部823の基端から所定長の範囲とフランジ部822は、半円柱形状であり、平面部分が末端部821の平面部分と面一である。先端側本体部823の前記所定長の範囲、フランジ部822、及び末端部821の平面部分が、第1プランジャー804と接触可能な摺動面824である。なお、先端側本体部823の平面部分は、スプリング806の開放時でも絶縁支持体809の外側に出ない範囲で形成される。 The range of the predetermined length from the proximal end of the distal end side main body portion 823 and the flange portion 822 are semi-cylindrical, and the plane portion is flush with the plane portion of the end portion 821. The range of the predetermined length of the distal end side main body portion 823, the planar portion of the flange portion 822, and the end portion 821 is a sliding surface 824 that can contact the first plunger 804. It should be noted that the flat surface portion of the distal end side main body portion 823 is formed in a range that does not come out of the insulating support 809 even when the spring 806 is opened.
 図2に示すように、ソケット830は、コンタクトプローブ900を複数本平行に配置するための空洞部832を所定間隔で有する絶縁支持体809(例えば樹脂又はセラミック製)を備え、それらの各空洞部832にコンタクトプローブ900を挿入配置したものである。具体的には、第1プランジャー804、第2プランジャー805及びコイルスプリング806の三者を図1に示すように一体的に組み立ててコンタクトプローブ900を構成したものを、図2の絶縁支持体809の空洞部832に挿入配置する。空洞部832両端(上下端)の開口側摺動支持部833,834は第1及び第2プランジャー804,805の先端側本体部813,823をそれぞれ摺動自在に支持する。空洞部832の開口側摺動支持部833,834を除く中間部835は、開口側摺動支持部833,834よりも大径で、フランジ部812,822及びコイルスプリング806が自由に動ける内周径となっている。空洞部832の開口側摺動支持部833,834の中間部835側に形成される段部が、フランジ部812,822の先端側面にそれぞれ係合して第1及び第2プランジャー804,805の抜け出しを規制する。なお、絶縁支持体809は、コンタクトプローブ900を空洞部832内に組み込むために、複数層に分割できる構造となっている(図では2分割構造)。 As shown in FIG. 2, the socket 830 includes an insulating support 809 (for example, made of resin or ceramic) having a cavity 832 for arranging a plurality of contact probes 900 in parallel at predetermined intervals, and each of these cavities. A contact probe 900 is inserted into 832. Specifically, the first probe 804, the second plunger 805, and the coil spring 806 are integrally assembled as shown in FIG. 1 to form the contact probe 900, and the insulating support shown in FIG. 809 is inserted into the cavity 832. Opening side sliding support portions 833 and 834 at both ends (upper and lower ends) of the cavity portion 832 support the front end side main body portions 813 and 823 of the first and second plungers 804 and 805 slidably, respectively. The intermediate portion 835 except for the opening side sliding support portions 833 and 834 of the cavity portion 832 has a larger diameter than the opening side sliding support portions 833 and 834, and the inner circumference where the flange portions 812 and 822 and the coil spring 806 can freely move. It is a diameter. Step portions formed on the intermediate portion 835 side of the opening side sliding support portions 833 and 834 of the cavity portion 832 engage with the front end side surfaces of the flange portions 812 and 822, respectively, and the first and second plungers 804 and 805 are engaged. Regulate the escape of Note that the insulating support 809 has a structure that can be divided into a plurality of layers in order to incorporate the contact probe 900 into the cavity 832 (two-divided structure in the figure).
 図2のように組み立てられたソケット830を使用して検査を行う場合、ソケット830は検査用基板808上に位置決め載置され、この結果、コイルスプリング806が所定長だけ縮んで第2プランジャー805の先端側本体部823の接触部823aが検査用基板808の電極パッドに弾接する。半導体集積回路等の検査対象物807が無い状態では、第1プランジャー804はフランジ部812が開口側摺動支持部833で規制されるまで突出方向に移動しており、先端側本体部813の絶縁支持体809からの突出量は最大となっている。検査対象物807がソケット830の絶縁支持体809に対して所定の間隔で対向配置されることにより、先端側本体部813は後退してスプリング806はさらに圧縮され、その結果、先端側本体部813は検査対象物807の電極バンプ807aに弾接する。この状態で検査対象物807の検査が実行される。 When the inspection is performed using the socket 830 assembled as shown in FIG. 2, the socket 830 is positioned and placed on the inspection substrate 808. As a result, the coil spring 806 is contracted by a predetermined length and the second plunger 805 is contracted. The contact portion 823a of the front end side main body portion 823 elastically contacts the electrode pad of the inspection substrate 808. In a state where there is no inspection object 807 such as a semiconductor integrated circuit, the first plunger 804 moves in the protruding direction until the flange portion 812 is regulated by the opening side sliding support portion 833, and the tip side main body portion 813 The amount of protrusion from the insulating support 809 is the maximum. When the inspection object 807 is disposed to face the insulating support 809 of the socket 830 at a predetermined interval, the distal end side body portion 813 is retracted and the spring 806 is further compressed. As a result, the distal end side body portion 813 is compressed. Elastically contacts the electrode bump 807a of the inspection object 807. In this state, the inspection object 807 is inspected.
 図1(A)に示すように、コイルスプリング806が伸びている第1の状態(開放状態)では、第1プランジャー804の末端部811及び第2プランジャー805の末端部821は、双方の末端側から所定長に渡って摺動面同士が対面し、接触する。そして、前記第1の状態(開放状態)から図1(B)に示すようにコイルスプリング806が縮んでいる第2の状態(圧縮状態すなわち通電状態)に遷移すると、第1プランジャー804の末端部811の平面部分(摺動面)は、第2プランジャー805の末端部821の平面部分から先端側本体部823の前記所定長の範囲及びフランジ部822の平面部分に跨って対面し、接触する。すなわち、第1プランジャー804の末端部811の末端は、コイルスプリング806よりも、第2プランジャー805の先端寄りに位置する。第2プランジャー805の末端部821の平面部分(摺動面)は、第1プランジャー804の末端部811の平面部分から先端側本体部813の前記所定長の範囲及びフランジ部812の平面部分に跨って対面し、接触する。すなわち、第2プランジャー805の末端部821の末端は、コイルスプリング806よりも、第1プランジャー804の先端寄りに位置する。 As shown in FIG. 1A, in the first state (open state) in which the coil spring 806 is extended, the end portion 811 of the first plunger 804 and the end portion 821 of the second plunger 805 are both The sliding surfaces face each other over a predetermined length from the end side and come into contact with each other. When the first state (open state) is changed to the second state (compressed state, ie, energized state) in which the coil spring 806 is contracted as shown in FIG. 1B, the end of the first plunger 804 is moved. The flat surface portion (sliding surface) of the portion 811 faces across the range of the predetermined length of the distal end side main body portion 823 and the flat surface portion of the flange portion 822 from the flat surface portion of the end portion 821 of the second plunger 805, and contacts To do. That is, the end of the end portion 811 of the first plunger 804 is located closer to the tip of the second plunger 805 than the coil spring 806. The plane portion (sliding surface) of the end portion 821 of the second plunger 805 is within the range of the predetermined length from the plane portion of the end portion 811 of the first plunger 804 to the main body portion 813 and the plane portion of the flange portion 812. Face to face and touch. That is, the end of the end portion 821 of the second plunger 805 is located closer to the tip of the first plunger 804 than the coil spring 806.
 本実施の形態のコンタクトプローブ900の第1プランジャー804の可動ストロークA、第2プランジャー805の可動ストロークB、及び第1及び第2プランジャー804,805の重ね代の長さCは、図25に示す従来のコンタクトプローブのものと同じである。一方、下記X',Y'
・X'=(第1プランジャー804の全長)-(A+B+C)
・Y'=(第2プランジャー805の全長)-(A+B+C)
は、図25に示す従来のコンタクトプローブのX,Y
・X=(第1プランジャー61の全長)-(A+B+C)
・Y=(第2プランジャー62の全長)-(A+B+C)
との関係で、
  X'<X かつ Y'<Y
となる。これは、従来のコンタクトプローブと異なり、先端側本体部813,823の前記所定長の範囲及びフランジ部812,822を半円柱形状として平面部分を有するものとした本実施の形態の特有の構成に起因する。本構成では、末端部811,821の平面部分だけでなく、先端側本体部813,823の前記所定長の範囲及びフランジ部812,822の平面部分も相互摺動面となり、上記のとおりX',Y'をそれぞれX,Yよりも短くすることができる。すなわち、本実施の形態のコンタクトプローブ900の開放時全長L1'及び圧縮時全長L2'並びに従来のコンタクトプローブの開放時全長L1及び圧縮時全長L2はそれぞれ
  L1'=2(A+B)+C+X'+Y'
  L2'=A+B+C+X'+Y'
  L1=2(A+B)+C+X+Y
  L2=A+B+C+X+Y
で、L1'<L1 かつ L2'<L2となる。
The movable stroke A of the first plunger 804, the movable stroke B of the second plunger 805, and the overlap length C of the first and second plungers 804 and 805 of the contact probe 900 of the present embodiment are shown in FIG. This is the same as that of the conventional contact probe shown in FIG. On the other hand, the following X ', Y'
・ X ′ = (the total length of the first plunger 804) − (A + B + C)
・ Y ′ = (the total length of the second plunger 805) − (A + B + C)
Are X and Y of the conventional contact probe shown in FIG.
・ X = (Total length of the first plunger 61) − (A + B + C)
・ Y = (Total length of second plunger 62) − (A + B + C)
In relation to
X '<X and Y'<Y
It becomes. This is different from the conventional contact probe in the specific configuration of the present embodiment in which the range of the predetermined length of the distal end side main body portions 813 and 823 and the flange portions 812 and 822 have a semi-cylindrical shape and have a plane portion. to cause. In this configuration, not only the flat portions of the end portions 811 and 821 but also the range of the predetermined length of the front end side main body portions 813 and 823 and the flat portions of the flange portions 812 and 822 are mutually sliding surfaces, and as described above, X ′ , Y ′ can be made shorter than X and Y, respectively. That is, the open length L 1 ′ and the compressed full length L 2 ′ of the contact probe 900 of the present embodiment, and the conventional contact probe full length L 1 and the compressed full length L 2 are respectively L 1 ′ = 2 (A + B ) + C + X '+ Y'
L 2 '= A + B + C + X ′ + Y ′
L 1 = 2 (A + B) + C + X + Y
L 2 = A + B + C + X + Y
Therefore, L 1 ′ <L 1 and L 2 ′ <L 2 .
 このように、本実施の形態によれば、第1プランジャー804及び第2プランジャー805の可動ストローク並びに重ね代の長さを同じとしたとき、従来のものと比較してコンタクトプローブの全長を短くすることが可能となる。したがって、従来のコンタクトプローブと比較して低抵抗・大電流対応・高周波対応の面で有利である。また、第1及び第2プランジャー804,805において、フランジ部812,822がそれぞれ180°以上にわたって外周に形成されているから、スプリング806の保持は安定である。また、先端側本体部813,823の平面部分はスプリング806の開放時であっても絶縁支持体809の外に出ないので、がたつきを防止できる。 As described above, according to the present embodiment, when the movable stroke and overlap length of the first plunger 804 and the second plunger 805 are the same, the total length of the contact probe is larger than that of the conventional one. It can be shortened. Therefore, compared with the conventional contact probe, it is advantageous in terms of low resistance, large current, and high frequency. Further, in the first and second plungers 804 and 805, since the flange portions 812 and 822 are formed on the outer periphery over 180 ° or more, the holding of the spring 806 is stable. Further, since the flat portions of the distal end side main body portions 813 and 823 do not come out of the insulating support 809 even when the spring 806 is opened, rattling can be prevented.
(第2の実施の形態)
 図3は、本発明の第2の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。本実施の形態のコンタクトプローブは、第1の実施の形態のものと異なり、第1プランジャー804の先端側本体部813の末端側から所定長の範囲、及びフランジ部812が、円柱形状の長さ方向に溝935を形成した形状である。溝935は、底面が末端部811の平面部分と面一の平面である。図3(A)に示すように、コイルスプリング806の開放時、溝935の先端側は所定長に渡って絶縁支持体809の外側に出ている。一方、図3(B)に示すように、コイルスプリング806の圧縮時、第2プランジャー805の末端部821の平面部分(摺動面)824は、溝935の底面(摺動面814)のうちコイルスプリング806の開放時に絶縁支持体809の外側に出ていた部分の底面にまで渡って対面し、接触する。
(Second embodiment)
FIG. 3 is an overall configuration diagram of a contact probe according to a second embodiment of the present invention, where (A) shows a spring open state and (B) shows a spring compression state. The contact probe of the present embodiment is different from that of the first embodiment in that the range of a predetermined length from the distal end side of the distal end side body portion 813 of the first plunger 804 and the flange portion 812 have a cylindrical shape. This is a shape in which a groove 935 is formed in the vertical direction. The bottom surface of the groove 935 is flush with the flat portion of the end portion 811. As shown in FIG. 3A, when the coil spring 806 is opened, the front end side of the groove 935 protrudes outside the insulating support 809 over a predetermined length. On the other hand, as shown in FIG. 3B, when the coil spring 806 is compressed, the flat portion (sliding surface) 824 of the end portion 821 of the second plunger 805 is formed on the bottom surface (sliding surface 814) of the groove 935. Among them, the coil spring 806 faces and contacts the bottom surface of the portion that is outside the insulating support 809 when the coil spring 806 is opened.
 本実施の形態のコンタクトプローブでは、第1の実施の形態のものと異なり、第1プランジャー804の摺動面814がコイルスプリング806の開放時に絶縁支持体809の外側にまで延在する。したがって、同じ可動ストローク及び重ね代の長さであれば、第1プランジャーをより短くすることが可能となる。すなわち、第1の実施の形態と比較してコンタクトプローブの全長を更に短くすることが可能となる。また、第1プランジャー804の先端側本体部813の末端側から所定長の範囲が、円柱形状の長さ方向に溝935を形成した形状であるため、コイルスプリング806の開放時に底面(摺動面814)は絶縁支持体809の外側に出ているが、同範囲が半円柱形状である場合と比較して、コイルスプリング806の開放時における第1プランジャー804の絶縁支持体809に対する横方向のがたつきを抑えることができて好ましい。 In the contact probe of this embodiment, unlike the first embodiment, the sliding surface 814 of the first plunger 804 extends to the outside of the insulating support 809 when the coil spring 806 is opened. Therefore, the first plunger can be made shorter with the same movable stroke and overlapping length. That is, the total length of the contact probe can be further shortened as compared with the first embodiment. In addition, since a range of a predetermined length from the distal end side of the distal end side main body portion 813 of the first plunger 804 is a shape in which a groove 935 is formed in the length direction of the columnar shape, the bottom surface (sliding) when the coil spring 806 is opened. The surface 814) protrudes outside the insulating support 809, but the lateral direction of the first plunger 804 with respect to the insulating support 809 when the coil spring 806 is open is compared with the case where the same range is a semi-cylindrical shape. It is preferable because it can suppress rattling.
(第3の実施の形態)
 図4は、本発明の第3の実施の形態に係るコンタクトプローブの全体構成図であり、(A)はスプリング開放状態の正面図、(B)は同右側面図、(C)はスプリング圧縮状態の正面図、(D)は同右側面図である。図5は、同コンタクトプローブの第1プランジャー804の部品図であり、(A)は正面図、(B)は右側面図、(C)は底面図である。
(Third embodiment)
FIG. 4 is an overall configuration diagram of a contact probe according to a third embodiment of the present invention, where (A) is a front view of a spring open state, (B) is a right side view thereof, and (C) is spring compression. A front view of the state, (D) is a right side view thereof. FIG. 5 is a component diagram of the first plunger 804 of the contact probe, where (A) is a front view, (B) is a right side view, and (C) is a bottom view.
 本実施の形態のコンタクトプローブは、第1の実施の形態のものと異なり、第2プランジャー805の末端部821が、中間部から末端にかけて2本に分かれた二股部821a,821bを有する。また、第1プランジャー804の末端部811は、二股部821a,821bの間に位置する。フランジ部812は、二股部821a,821bとの摺動部分をそれぞれ溝状に切り欠いた円柱形状である。したがって、末端部811からフランジ部812、さらに先端側本体部813の途中にまで至る摺動面814a,814bが形成される。フランジ部812の末端側端面は、コイルスプリング806の一端と当接する。本実施の形態によれば、第1及び第2プランジャー804,805の接触箇所を増やすことができ、第1の実施の形態と比較してより低抵抗化が期待できる。 The contact probe of this embodiment differs from that of the first embodiment in that the end portion 821 of the second plunger 805 has bifurcated portions 821a and 821b that are divided into two from the middle portion to the end. Further, the end portion 811 of the first plunger 804 is located between the bifurcated portions 821a and 821b. The flange portion 812 has a cylindrical shape in which sliding portions with the bifurcated portions 821a and 821b are cut out into groove shapes. Therefore, sliding surfaces 814 a and 814 b extending from the end portion 811 to the flange portion 812 and further to the middle of the distal end side body portion 813 are formed. The end face of the flange portion 812 is in contact with one end of the coil spring 806. According to the present embodiment, the number of contact points of the first and second plungers 804 and 805 can be increased, and a lower resistance can be expected as compared with the first embodiment.
(第4の実施の形態)
 以降の実施の形態では、第1及び第2プランジャーの相互接触をより確実にすることを課題とする。すなわち、図26(A)に示す従来のコンタクトプローブでは、コンタクトプローブ内部接点(第1プランジャー61と第2プランジャー62との対面構造)は、円滑に摺動するための隙間(遊び)を持っている。それがために、第1プランジャー61と第2プランジャー62との接触状態が安定せず(例えば図26(B)のプランジャー接触状態と非接触状態とを不定期に繰り返し)、通過抵抗が不安定であるという問題も起こり得る。そこで、以降の実施の形態では、第1プランジャーと第2プランジャーとを確実に接触可能とし、半導体集積回路等の検査対象物と検査用基板とを電気的に安定させて低抵抗で接続することができるコンタクトプローブ及びこれを備えたソケットの提供を目的とする。
(Fourth embodiment)
In the following embodiments, it is an object to make the mutual contact of the first and second plungers more reliable. That is, in the conventional contact probe shown in FIG. 26 (A), the contact probe internal contact (the facing structure between the first plunger 61 and the second plunger 62) has a gap (play) for smooth sliding. have. For this reason, the contact state between the first plunger 61 and the second plunger 62 is not stable (for example, the plunger contact state and the non-contact state in FIG. The problem of being unstable can also occur. Therefore, in the following embodiments, the first plunger and the second plunger can be reliably contacted, and the inspection object such as a semiconductor integrated circuit and the inspection substrate are electrically stabilized and connected with low resistance. An object of the present invention is to provide a contact probe that can be used and a socket including the same.
 図6は、本発明の第4の実施の形態に係るコンタクトプローブ100の全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。図7は、同コンタクトプローブ100の分解図である。図8は、同コンタクトプローブ100を複数本支持してなるソケット30の使用状態における正断面図である。 FIG. 6 is an overall configuration diagram of a contact probe 100 according to a fourth embodiment of the present invention, where (A) shows a spring open state and (B) shows a spring compression state. FIG. 7 is an exploded view of the contact probe 100. FIG. 8 is a front sectional view of the socket 30 in which a plurality of the contact probes 100 are supported in use.
 コンタクトプローブ100は、第1プランジャー1と、第2プランジャー2と、スプリングとしてのコイルスプリング3とを備える。第1プランジャー1は検査対象物5との接続部品であり、第2プランジャー2は検査用基板6との接続部品である。例えばピアノ線やステンレス線等の一般的な材質で形成されたコイルスプリング3は、第1及び第2プランジャー1,2が相互に摺動可能となるように第1及び第2プランジャー1,2に対して設けられている(第1及び第2プランジャー1,2を連結している)。コイルスプリング3は、また、使用時に第1及び第2プランジャー1,2を互いに離れる方向に付勢して、第1及び第2プランジャー1,2に検査対象物5及び検査用基板6との接触力を与える。検査対象物5は、例えば電極が所定間隔で配列された半導体集積回路であり、図示の場合、電極バンプ5aが所定間隔で配列されたものである。検査用基板6は、測定器側に接続される電極パッド(図示せず)を電極バンプ5aに対応して所定間隔で有するものである。 The contact probe 100 includes a first plunger 1, a second plunger 2, and a coil spring 3 as a spring. The first plunger 1 is a connection part with the inspection object 5, and the second plunger 2 is a connection part with the inspection substrate 6. For example, a coil spring 3 formed of a general material such as a piano wire or a stainless steel wire has a first and second plunger 1, 2 so that the first and second plungers 1, 2 can slide relative to each other. 2 (the first and second plungers 1 and 2 are connected). The coil spring 3 also urges the first and second plungers 1 and 2 in directions away from each other during use, and causes the inspection object 5 and the inspection substrate 6 to be applied to the first and second plungers 1 and 2. Give contact force. The inspection object 5 is, for example, a semiconductor integrated circuit in which electrodes are arranged at a predetermined interval, and in the illustrated case, electrode bumps 5a are arranged at a predetermined interval. The inspection substrate 6 has electrode pads (not shown) connected to the measuring instrument side at predetermined intervals corresponding to the electrode bumps 5a.
 図8に示すように、ソケット30は、コンタクトプローブ100を複数本平行に配置するための空洞部32を所定間隔で有する絶縁支持体31を備え、それらの各空洞部32にコンタクトプローブ100を挿入配置したものである。具体的には、第1プランジャー1、第2プランジャー2及びコイルスプリング3の三者を図6に示すように一体的に組み立ててコンタクトプローブ100を構成したものを、図8の絶縁支持体31の空洞部32に挿入配置する。空洞部32両端(上下端)の開口側摺動支持部33,34は第1及び第2プランジャー1,2の先端側本体部13,24をそれぞれ摺動自在に支持(嵌合)する。空洞部32の開口側摺動支持部33,34を除く中間部35は、開口側摺動支持部33,34よりも大径で、フランジ部12,23及びコイルスプリング3が自由に動ける内周径となっている。空洞部32の開口側摺動支持部33,34は、フランジ部12,23に係合して第1及び第2プランジャー1,2の抜け出しを規制する。なお、絶縁支持体31は、コンタクトプローブ100を空洞部32内に組み込むために、複数層に分割できる構造となっている(図示省略)。 As shown in FIG. 8, the socket 30 includes an insulating support 31 having cavities 32 at a predetermined interval for arranging a plurality of contact probes 100 in parallel, and the contact probes 100 are inserted into the cavities 32. It is arranged. Specifically, the contact probe 100 is constructed by integrally assembling the first plunger 1, the second plunger 2, and the coil spring 3 as shown in FIG. It is inserted and arranged in the cavity 32 of 31. Opening side sliding support portions 33 and 34 at both ends (upper and lower ends) of the cavity portion 32 support (fitting) the front end side main body portions 13 and 24 of the first and second plungers 1 and 2 slidably, respectively. The intermediate portion 35 excluding the opening side sliding support portions 33 and 34 of the cavity portion 32 has a larger diameter than the opening side sliding support portions 33 and 34, and the inner periphery on which the flange portions 12 and 23 and the coil spring 3 can freely move. It is a diameter. The opening side sliding support portions 33 and 34 of the cavity portion 32 are engaged with the flange portions 12 and 23 to restrict the withdrawal of the first and second plungers 1 and 2. The insulating support 31 has a structure that can be divided into a plurality of layers in order to incorporate the contact probe 100 into the cavity 32 (not shown).
 図6及び図7に示すように、銅合金等の導電性金属体である第1プランジャー1は、検査用基板6側から検査対象物5側に向けて、末端部11と、フランジ部12と、先端側本体部13とを順次有する棒形状である。半円柱形状の末端部11は、コイルスプリング3の内径よりも小径でコイルスプリング3の内側に位置し、コイルスプリング3内周に沿って曲面部分が配置されると共に、コイルスプリング3軸芯側に第2プランジャー2に接するように平面部分が配置されている。フランジ部12は、コイルスプリング3の内径よりも大径で端面がコイルスプリング3の一端と当接する。先端側本体部13は、フランジ部12よりも小径で、先端が検査対象物5の電極バンプ5aと接触する接触部13aとなっている。第1プランジャー1のうちコイルスプリング3の伸縮方向に関してコイルスプリング3の外側に位置する部分(フランジ部12及び先端側本体部13)の第2プランジャー2との摺動面は、部分的に傾斜部15(ここでは傾斜面)となっている。図示の例では、フランジ部12の末端側の半円柱形状部分と先端側本体部13の先端側の円柱形状部分との間に傾斜部15が存在する。 As shown in FIGS. 6 and 7, the first plunger 1, which is a conductive metal body such as a copper alloy, has an end portion 11 and a flange portion 12 from the inspection substrate 6 side toward the inspection object 5 side. And a bar shape having a front end side main body portion 13 sequentially. The semi-cylindrical end portion 11 has a smaller diameter than the inner diameter of the coil spring 3 and is positioned inside the coil spring 3. A curved surface portion is disposed along the inner periphery of the coil spring 3, and on the coil spring 3 axis side. A plane portion is disposed so as to contact the second plunger 2. The flange portion 12 has a larger diameter than the inner diameter of the coil spring 3, and an end surface thereof is in contact with one end of the coil spring 3. The distal end side main body portion 13 has a smaller diameter than the flange portion 12, and the distal end is a contact portion 13 a that contacts the electrode bump 5 a of the inspection object 5. The sliding surface of the portion of the first plunger 1 that is located outside the coil spring 3 with respect to the expansion and contraction direction of the coil spring 3 (the flange portion 12 and the distal end side main body portion 13) with the second plunger 2 is partially It becomes the inclined part 15 (here inclined surface). In the illustrated example, an inclined portion 15 exists between the semi-cylindrical portion on the distal end side of the flange portion 12 and the cylindrical portion on the distal end side of the distal end side main body portion 13.
 銅合金等の導電性金属体である第2プランジャー2は、検査対象物5側から検査用基板6側に向けて、半円柱形状の摺動部21と、円柱状部22と、フランジ部23と、先端側本体部24とを順次有する棒形状である。摺動部21及び円柱状部22は、コイルスプリング3の内径よりも小径でコイルスプリング3の内側に位置し、円柱状部22はコイルスプリング3の内側に嵌合している。半円柱形状の摺動部21は、コイルスプリング3内周に沿って曲面部分が配置されると共に、平面部分が、第1プランジャー1の末端部11の平面部分、フランジ部12の末端側の半円柱形状部分の平面及び傾斜部15に向かって配置されている。フランジ部23は、コイルスプリング3の内径よりも大径で端面がコイルスプリング3の他端と当接する。先端側本体部24は、フランジ部23よりも小径で、先端が検査用基板6の電極パッド(不図示)と接触する接触部24aとなっている。 The second plunger 2, which is a conductive metal body such as a copper alloy, has a semi-cylindrical sliding portion 21, a cylindrical portion 22, and a flange portion from the inspection object 5 side toward the inspection substrate 6 side. 23 and a rod-shaped body having a distal end side main body portion 24 sequentially. The sliding portion 21 and the columnar portion 22 are smaller than the inner diameter of the coil spring 3 and are located inside the coil spring 3, and the columnar portion 22 is fitted inside the coil spring 3. The semi-cylindrical sliding portion 21 is provided with a curved surface portion along the inner periphery of the coil spring 3, and a flat surface portion on the flat surface portion of the end portion 11 of the first plunger 1 and on the end side of the flange portion 12. The semi-cylindrical portion is disposed toward the plane and the inclined portion 15. The flange portion 23 has a diameter larger than the inner diameter of the coil spring 3 and an end surface thereof abuts on the other end of the coil spring 3. The front end side main body portion 24 has a diameter smaller than that of the flange portion 23, and the front end is a contact portion 24 a that contacts an electrode pad (not shown) of the inspection substrate 6.
 コンタクトプローブ100及びソケット30の製品外径は、例えば次のとおりである。
 ・絶縁支持体31の空洞部32の中間部35の径:0.22mm
 ・コンタクトプローブ100の外径(コイルスプリング3の外径):0.2mm
 ・コイルスプリング3の線径(線幅):0.04mm
 ・コイルスプリング3の内径:0.12mm
 ・第1プランジャー1の末端部11の厚さ:0.055mm
 ・第2プランジャー2の摺動部21の厚さ:0.055mm
 ・コンタクトプローブ100の自由長:4mm
 ・コンタクトプローブ100の使用長:3mm
The product outer diameters of the contact probe 100 and the socket 30 are, for example, as follows.
-Diameter of the intermediate part 35 of the cavity part 32 of the insulating support 31: 0.22 mm
・ Outer diameter of contact probe 100 (outer diameter of coil spring 3): 0.2 mm
-Coil spring 3 wire diameter (wire width): 0.04 mm
-Inner diameter of coil spring 3: 0.12 mm
-The thickness of the end portion 11 of the first plunger 1: 0.055 mm
-Thickness of the sliding portion 21 of the second plunger 2: 0.055 mm
-Free length of contact probe 100: 4 mm
・ Use length of contact probe 100: 3 mm
 図8のように組み立てられたソケット30を使用して検査を行う場合、ソケット30は検査用基板6上に位置決め載置され、この結果、コイルスプリング3が所定長だけ縮んで第2プランジャー2の先端側本体部24の接触部24aが検査用基板6の電極パッドに弾接する。半導体集積回路等の検査対象物5が無い状態では、第1プランジャー1はフランジ部11が開口側摺動支持部33で規制されるまで突出方向に移動しており、先端側本体部13の突出量は最大となっている。検査対象物5がソケット30の絶縁支持体31に対して所定の間隔で対向配置されることにより、先端側本体部13は後退してスプリング3はさらに圧縮され、その結果、先端側本体部13は検査対象物5の電極バンプ5aに弾接する。この状態で検査対象物5の検査が実行される。 When the inspection is performed using the socket 30 assembled as shown in FIG. 8, the socket 30 is positioned and placed on the inspection substrate 6, and as a result, the coil spring 3 is contracted by a predetermined length and the second plunger 2 is contracted. The contact portion 24 a of the distal end side main body portion 24 comes into elastic contact with the electrode pad of the inspection substrate 6. In a state where there is no inspection object 5 such as a semiconductor integrated circuit, the first plunger 1 moves in the protruding direction until the flange portion 11 is regulated by the opening-side sliding support portion 33. The amount of protrusion is the maximum. By disposing the inspection object 5 so as to face the insulating support 31 of the socket 30 at a predetermined interval, the distal end side body portion 13 is retracted and the spring 3 is further compressed. As a result, the distal end side body portion 13 is compressed. Elastically contacts the electrode bump 5a of the inspection object 5. In this state, the inspection object 5 is inspected.
 図6(A)に示すように、コイルスプリング3が伸びている第1の状態(開放状態)では、第1プランジャー1の末端部11及び第2プランジャー2の摺動部21は、双方の末端側から所定長に渡って摺動面同士が隙間(遊び)を持って対面している。そして、前記第1の状態(開放状態)から図6(B)に示すようにコイルスプリング3が縮んでいる第2の状態(圧縮状態)に遷移する過程で、同図に示すように第2プランジャー2の摺動部21が板バネ状に変形して第1プランジャー1の傾斜部15に乗り上げる。この状態で、摺動部21は、末端側が、コイルスプリング3の伸縮方向に垂直な方向に関してコイルスプリング3の内周幅範囲外に延在し、かつコイルスプリング3の伸縮方向に関してコイルスプリング3よりも第1プランジャー1の先端寄りに位置する。なお、傾斜部15の存在位置は前記第1の状態(開放状態)において摺動部21が当接している部分よりも所定長Lだけ第1プランジャー1の先端側に離れた位置であるため、前記第1の状態(開放状態)から前記第2の状態(圧縮状態)に遷移する過程で摺動部21はコイルスプリング3が前記所定長Lだけ縮んでから傾斜部15に乗り上げ始めることになる。なお、前記所定長Lは、例えば、第2プランジャー2の先端側本体部24の接触部24aが検査用基板6に当接することでコイルスプリング3が縮む長さと同等あるいはそれより僅かに短い長さとする。 As shown in FIG. 6 (A), in the first state (open state) in which the coil spring 3 is extended, the end portion 11 of the first plunger 1 and the sliding portion 21 of the second plunger 2 are both The sliding surfaces face each other with a gap (play) over a predetermined length from the end side. Then, in the process of transition from the first state (opened state) to the second state (compressed state) in which the coil spring 3 is contracted as shown in FIG. 6B, the second state as shown in FIG. The sliding portion 21 of the plunger 2 is deformed into a leaf spring shape and rides on the inclined portion 15 of the first plunger 1. In this state, the sliding part 21 extends outside the inner peripheral width range of the coil spring 3 with respect to the direction perpendicular to the expansion / contraction direction of the coil spring 3 and from the coil spring 3 with respect to the expansion / contraction direction of the coil spring 3. Is also located near the tip of the first plunger 1. In addition, the presence position of the inclined portion 15 is a position away from the portion where the sliding portion 21 abuts in the first state (open state) by a predetermined length L toward the distal end side of the first plunger 1. In the process of transition from the first state (open state) to the second state (compressed state), the sliding portion 21 starts to ride on the inclined portion 15 after the coil spring 3 is contracted by the predetermined length L. Become. The predetermined length L is, for example, a length that is equal to or slightly shorter than the length in which the coil spring 3 contracts when the contact portion 24a of the distal end side body portion 24 of the second plunger 2 abuts against the inspection substrate 6. Say it.
 図9は、前記第2の状態(図6(B)に示す圧縮状態)において第2プランジャー2に加えられる曲げ力F1~F3の模式的説明図である。本図に示すように、第2プランジャー2の摺動部21が板バネ状に変形して第1プランジャー1の傾斜部15に乗り上げた結果、第2プランジャー2は、摺動部21の末端側平面が第1プランジャー1の傾斜部15と第1接点101で当接し、第1接点101において第1プランジャー1の傾斜部15から曲げ力F1が加えられる。第2プランジャー2は、また、摺動部21の長手方向の中間部外側面がコイルスプリング3の伸縮方向の端部内周と第2接点102で当接し、第2接点102においてコイルスプリング3から曲げ力F2が加えられる。第2プランジャー2は、さらに、曲げ力F2が加えられることで、摺動部21の先端側が第1プランジャー1の末端部11の末端側平面と第3接点103で当接し、第3接点103において第1プランジャー1の末端部11から曲げ力F3が加えられる。 FIG. 9 is a schematic explanatory view of bending forces F1 to F3 applied to the second plunger 2 in the second state (compressed state shown in FIG. 6B). As shown in the figure, as a result of the sliding portion 21 of the second plunger 2 deforming into a leaf spring and riding on the inclined portion 15 of the first plunger 1, the second plunger 2 is moved to the sliding portion 21. Of the first plunger 1 is brought into contact with the inclined portion 15 of the first plunger 1 at the first contact 101, and a bending force F <b> 1 is applied from the inclined portion 15 of the first plunger 1 at the first contact 101. In the second plunger 2, the intermediate portion outer surface in the longitudinal direction of the sliding portion 21 abuts with the inner periphery of the end portion in the expansion / contraction direction of the coil spring 3 at the second contact 102. A bending force F2 is applied. Further, when the bending force F2 is applied to the second plunger 2, the tip end side of the sliding portion 21 comes into contact with the end side plane of the end portion 11 of the first plunger 1 at the third contact 103, and the third contact point In 103, a bending force F3 is applied from the end 11 of the first plunger 1.
 図10は、図9のV-V'断面図である。本図に示すように、第1プランジャー1の末端部11と第2プランジャー2の摺動部21の断面積は等しい。もっとも、大径となる場合は、摺動部21の断面積を小さくして摺動部21が適当なバネ力(弾性力)を有するように設定する。なお、電気抵抗を抑制するためには断面積は大きい方が望ましいが、摺動部21に必要以上のバネ力が発生してスムーズな摺動ができなくなる場合がある。 FIG. 10 is a cross-sectional view taken along the line VV ′ of FIG. As shown in this figure, the cross-sectional areas of the end portion 11 of the first plunger 1 and the sliding portion 21 of the second plunger 2 are equal. However, when the diameter is large, the cross-sectional area of the sliding portion 21 is made small so that the sliding portion 21 has an appropriate spring force (elastic force). In order to suppress the electric resistance, it is desirable that the cross-sectional area is large. However, there is a case where an excessive spring force is generated in the sliding portion 21 and smooth sliding cannot be performed.
 図11は、前記第2の状態(図6(B)に示す圧縮状態)で、第2プランジャー2の弾性変形によってできた接点と電気経路を示す模式図である。第1プランジャー1を通過する電流E1は、第1接点101で一部が第2プランジャー2へ分岐する。第1プランジャー1及び第2プランジャー2に分岐して流れる電流は、第3接点103で合流して第2プランジャー2を流れる電流E2となる。また、図12に断面図で示すように、第1プランジャー1とコイルスプリング3との接点(第3接点103)と、第2プランジャー2とコイルスプリング3との接点(第4接点104)とが、コイルスプリング3を電流経路として第1及び第2プランジャー1,2間を接続する。このように複数の電流経路を確保することにより、電気抵抗が抑制される。 FIG. 11 is a schematic diagram showing a contact and an electric path formed by elastic deformation of the second plunger 2 in the second state (compressed state shown in FIG. 6B). A part of the current E <b> 1 passing through the first plunger 1 branches to the second plunger 2 at the first contact 101. The current branched and flowing to the first plunger 1 and the second plunger 2 becomes a current E2 that flows through the second plunger 2 by joining at the third contact 103. Further, as shown in a sectional view in FIG. 12, the contact between the first plunger 1 and the coil spring 3 (third contact 103), and the contact between the second plunger 2 and the coil spring 3 (fourth contact 104). Connects the first and second plungers 1 and 2 using the coil spring 3 as a current path. By securing a plurality of current paths in this way, electrical resistance is suppressed.
 図13は、本実施の形態のコンタクトプローブ100の抵抗値特性図であり、5本のコンタクトプローブの試料の測定結果(圧縮時と戻し時)である。測定方法は、図15に示すように、定電圧電源に接続された電極間にコンタクトプローブ100を挟み、コンタクトプローブ100の使用長を変化させてコンタクトプローブ100の通過抵抗を測定した(コンタクトプローブに流れる電流から求めた)。図14は、図26に示す従来のコンタクトプローブの抵抗値特性図であり、5本のコンタクトプローブの試料の測定結果(圧縮時と戻し時)である。測定方法は、図13の場合と同様である。 FIG. 13 is a resistance characteristic diagram of the contact probe 100 of the present embodiment, and shows the measurement results (when compressed and returned) of the samples of the five contact probes. As shown in FIG. 15, the contact probe 100 is sandwiched between electrodes connected to a constant voltage power source, and the passing resistance of the contact probe 100 is measured by changing the use length of the contact probe 100 (as shown in FIG. 15). Obtained from the flowing current). FIG. 14 is a resistance characteristic diagram of the conventional contact probe shown in FIG. 26, and shows the measurement results of the five contact probe samples (during compression and return). The measurement method is the same as in FIG.
 図13に示す測定結果(本実施の形態)では、各試料間の抵抗値ばらつきが小さく、抵抗値が低い。また、コンタクトプローブ使用長を変化させたときの抵抗値の変動も小さいことが判る。一方、図14に示す測定結果(従来例)では、各試料間のばらつきが大きく、抵抗値が高い。また、コンタクトプローブ使用長を変化させたときの抵抗値の変動も大きいことが判る。 In the measurement result shown in FIG. 13 (this embodiment), the resistance value variation among the samples is small and the resistance value is low. It can also be seen that the variation of the resistance value when the contact probe usage length is changed is small. On the other hand, in the measurement result shown in FIG. 14 (conventional example), the variation among the samples is large and the resistance value is high. Further, it can be seen that the resistance value fluctuates greatly when the contact probe usage length is changed.
 本実施の形態によれば、下記の効果を奏することができる。 According to this embodiment, the following effects can be achieved.
(1) 第1プランジャー1は第2プランジャー2との摺動面が部分的に傾斜部15となっていて、コイルスプリング3が伸びている第1の状態からコイルスプリング3が縮んでいる第2の状態に遷移する過程で第2プランジャー2が傾斜部15に乗り上げる構造であるため、第1プランジャー1と第2プランジャー2とを確実に接触可能である。この結果、図13及び図14に示す測定結果からも明らかなように、従来例と比較して検査対象物5と検査用基板6とを電気的に安定させて低抵抗で接続することができる。 (1) The sliding surface of the first plunger 1 with the second plunger 2 is partially inclined 15, and the coil spring 3 is contracted from the first state in which the coil spring 3 is extended. Since the second plunger 2 rides on the inclined portion 15 during the transition to the second state, the first plunger 1 and the second plunger 2 can be reliably contacted. As a result, as is apparent from the measurement results shown in FIGS. 13 and 14, the inspection object 5 and the inspection substrate 6 can be electrically stabilized and connected with a low resistance as compared with the conventional example. .
(2) 第1プランジャー1のうちコイルスプリング3の伸縮方向に関してコイルスプリング3の外側に位置する部分(フランジ部12及び先端側本体部13)に傾斜部15が存在するため、同方向に関してコイルスプリング3の内側に位置する部分に傾斜部が存在する場合と異なり、摺動部21は傾斜部15に乗り上げた際にコイルスプリング3の内周幅範囲を越えて弾性変形可能である。そして、傾斜部15に乗り上げた際に摺動部21の末端がコイルスプリング3の内周幅範囲外に延在する構成により、限られたスペースを有効に使うことができ、コンタクトプローブ100の小型化(細型化)に有利である。さらに、傾斜部15に乗り上げた際に摺動部21の末端がコイルスプリング3の伸縮方向に関してコイルスプリング3よりも第1プランジャー1の先端寄りに位置するため、第1の実施の形態と同様にコンタクトプローブの全長を短くすることが可能となる。したがって、従来のコンタクトプローブと比較して低抵抗・大電流対応・高周波対応の面で有利である。 (2) Since the inclined portion 15 is present in the portion of the first plunger 1 located outside the coil spring 3 with respect to the expansion / contraction direction of the coil spring 3 (the flange portion 12 and the front end side main body portion 13), Unlike the case where the inclined portion exists in the portion located inside the spring 3, the sliding portion 21 can be elastically deformed beyond the inner peripheral width range of the coil spring 3 when riding on the inclined portion 15. Further, the configuration in which the end of the sliding portion 21 extends outside the inner peripheral width range of the coil spring 3 when riding on the inclined portion 15 allows a limited space to be used effectively, and the contact probe 100 can be made compact. This is advantageous for downsizing. Further, since the end of the sliding portion 21 is positioned closer to the tip of the first plunger 1 than the coil spring 3 in the expansion / contraction direction of the coil spring 3 when riding on the inclined portion 15, the same as in the first embodiment. In addition, the total length of the contact probe can be shortened. Therefore, compared with the conventional contact probe, it is advantageous in terms of low resistance, large current, and high frequency.
(3) 第2プランジャー2の摺動部21が第1プランジャー1の傾斜部15に乗り上げた結果、摺動部21の末端が傾斜部15と第1接点101で当接し、摺動部21の長手方向の中間部外側面がコイルスプリング3の伸縮方向の端部内周と第2接点102で当接し、摺動部21の先端側が末端部11の末端と第3接点103で当接する構成のため、第1及び第2プランジャー1,2同士の接点が確実に2点(第1接点101及び第3接点103)確保され、低抵抗化に有利である。 (3) As a result of the sliding portion 21 of the second plunger 2 riding on the inclined portion 15 of the first plunger 1, the end of the sliding portion 21 comes into contact with the inclined portion 15 at the first contact 101, and the sliding portion The outer surface of the intermediate portion in the longitudinal direction of 21 is in contact with the inner periphery of the end portion of the coil spring 3 in the expansion / contraction direction at the second contact 102, and the distal end side of the sliding portion 21 is in contact with the end of the end portion 11 at the third contact 103. Therefore, two points (the first contact 101 and the third contact 103) between the first and second plungers 1 and 2 are surely secured, which is advantageous in reducing the resistance.
(4) 図6(A)に示す開放状態から図6(B)に示す圧縮状態に遷移する過程で摺動部21はコイルスプリング3が所定長だけ縮んでから傾斜部15に乗り上げ始めるため、摺動部21がコイルスプリング3の縮み始めから及び伸び終わりまで傾斜部15に乗り上げる場合と比較して、摺動(特に圧縮状態から開放状態への復元)がスムーズになることが期待できる。すなわち、摺動部21がコイルスプリング3の縮み始めから及び伸び終わりまで傾斜部15に乗り上げる場合、伸び終わり付近になってコイルスプリング3の復元力が乗り上げによる摩擦力に勝てないと元の位置に復帰できないというリスクがあるが、本実施の形態ではそのようなリスクを低減することが可能となる。 (4) In the process of transition from the open state shown in FIG. 6 (A) to the compressed state shown in FIG. 6 (B), the sliding portion 21 starts to ride on the inclined portion 15 after the coil spring 3 is contracted by a predetermined length. Compared with the case where the sliding part 21 rides on the inclined part 15 from the start of contraction to the end of extension of the coil spring 3, it can be expected that the sliding (especially restoration from the compressed state to the open state) becomes smoother. That is, when the sliding portion 21 rides on the inclined portion 15 from the start of contraction of the coil spring 3 to the end of extension, it is in the vicinity of the end of extension, and if the restoring force of the coil spring 3 cannot overcome the frictional force caused by the ride, the original position is restored. Although there is a risk that it cannot be restored, in the present embodiment, such a risk can be reduced.
(第5の実施の形態)
 図16は、本発明の第5の実施の形態に係るコンタクトプローブ200の全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。図17は、図16(B)のXII-XII'断面図である。本実施の形態のコンタクトプローブ200は、第4の実施の形態と比較して、傾斜部225が第2プランジャー202(検査対象物との接続部品)に存在する点と、第2プランジャー202の末端部221が末端から所定長に渡って第1プランジャー201の存在する方向に傾いている点と、第1プランジャー201の摺動部211が第2プランジャー202の末端部221よりも小径である点とで主に相違する。
(Fifth embodiment)
FIG. 16 is an overall configuration diagram of a contact probe 200 according to a fifth embodiment of the present invention, in which (A) shows a spring open state and (B) shows a spring compression state. 17 is a cross-sectional view taken along the line XII-XII ′ of FIG. Compared with the fourth embodiment, the contact probe 200 according to the present embodiment has an inclined portion 225 on the second plunger 202 (part to be connected to the inspection object), and the second plunger 202. The end portion 221 of the first plunger 201 is inclined in the direction in which the first plunger 201 exists over a predetermined length from the end, and the sliding portion 211 of the first plunger 201 is more than the end portion 221 of the second plunger 202. It is mainly different from the small diameter.
 第2プランジャー202は、末端部221と、フランジ部222と、先端側本体部223とを有する。略半円柱形状の末端部221は、コイルスプリング3の内径よりも小径でコイルスプリング3の内側に位置し、かつ末端から所定長に渡って第1プランジャー201の存在する方向に傾いている。フランジ部222は、コイルスプリング3の内径よりも大径で端面がコイルスプリング3の一端と当接する。先端側本体部223は、フランジ部222よりも小径で、先端が検査用基板の電極パッドと接触する接触部223aとなっている。第2プランジャー202のうちコイルスプリング3の伸縮方向に関してコイルスプリング3の外側に位置する部分(フランジ部222及び先端側本体部223)の第1プランジャー201との摺動面は、部分的に傾斜部225(ここでは傾斜面)となっている。図示の例では、フランジ部222の末端側の半円柱形状部分と先端側本体部223の先端側の円柱形状部分との間に傾斜部225が存在する。 The second plunger 202 has a distal end portion 221, a flange portion 222, and a distal end side main body portion 223. The end portion 221 having a substantially semi-cylindrical shape is smaller in diameter than the inner diameter of the coil spring 3, is positioned inside the coil spring 3, and is inclined from the end in a direction in which the first plunger 201 exists over a predetermined length. The flange portion 222 has a larger diameter than the inner diameter of the coil spring 3, and an end surface thereof is in contact with one end of the coil spring 3. The front end side main body portion 223 has a smaller diameter than the flange portion 222, and the front end is a contact portion 223a that comes into contact with the electrode pad of the inspection substrate. The sliding surface of the portion of the second plunger 202 located outside the coil spring 3 with respect to the expansion / contraction direction of the coil spring 3 (the flange portion 222 and the distal end side body portion 223) with the first plunger 201 is partially It is an inclined portion 225 (here, an inclined surface). In the illustrated example, there is an inclined portion 225 between the semi-cylindrical portion on the distal end side of the flange portion 222 and the cylindrical portion on the distal end side of the distal end side main body portion 223.
 第1プランジャー201は、略半円柱形状の摺動部211と、円柱状部212と、フランジ部213と、先端側本体部214とを有する。摺動部211及び円柱状部212は、コイルスプリング3の内径よりも小径でコイルスプリング3の内側に位置し、円柱状部212はコイルスプリング3の内側に嵌合している。フランジ部213は、コイルスプリング3の内径よりも大径で端面がコイルスプリング3の他端と当接する。先端側本体部214は、フランジ部213よりも小径で、先端が検査対象物の電極バンプと接触する接触部214aとなっている。 The first plunger 201 includes a substantially semi-cylindrical sliding portion 211, a cylindrical portion 212, a flange portion 213, and a front end side main body portion 214. The sliding part 211 and the columnar part 212 are smaller in diameter than the inner diameter of the coil spring 3 and are located inside the coil spring 3, and the columnar part 212 is fitted inside the coil spring 3. The flange portion 213 has a diameter larger than the inner diameter of the coil spring 3, and an end surface thereof is in contact with the other end of the coil spring 3. The distal end side main body portion 214 has a smaller diameter than the flange portion 213, and the distal end is a contact portion 214a that comes into contact with the electrode bump of the inspection object.
 本実施の形態も、第4の実施の形態と同様に、第1プランジャー201の摺動部211が第2プランジャー202の傾斜部225に乗り上げる構造であるため、第1プランジャー201と第2プランジャー202とを確実に接触可能であり、従来例と比較して検査対象物と検査用基板とを電気的に安定させて低抵抗で接続することができる。また、その他の点においても第4の実施の形態と同様の効果を奏することができる。さらに、本実施の形態では、第2プランジャー202の末端部221の末端が所定長に渡って第1プランジャー201の存在する方向に傾いているため、第2プランジャー202の加工の際に末端部221が第1プランジャー201の存在しない方向に若干反ってしまったとしても、末端部221の末端を第1プランジャー201の摺動部211に確実に接触させることができる。また、摺動部211を小径とし、必要以上のバネ力が発生しないよう配慮している。 Similarly to the fourth embodiment, this embodiment also has a structure in which the sliding portion 211 of the first plunger 201 rides on the inclined portion 225 of the second plunger 202. The two plungers 202 can be reliably brought into contact with each other, and the inspection object and the inspection substrate can be electrically stabilized and connected with low resistance as compared with the conventional example. In other respects, the same effects as those of the fourth embodiment can be obtained. Further, in the present embodiment, since the end of the end portion 221 of the second plunger 202 is inclined in the direction in which the first plunger 201 exists over a predetermined length, when the second plunger 202 is processed. Even if the end portion 221 is slightly warped in the direction in which the first plunger 201 does not exist, the end of the end portion 221 can be reliably brought into contact with the sliding portion 211 of the first plunger 201. In addition, the sliding portion 211 has a small diameter so that excessive spring force is not generated.
(第6の実施の形態)
 図18は、本発明の第6の実施の形態に係るコンタクトプローブ300の全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。本実施の形態のコンタクトプローブ300は、第4の実施の形態と比較して、傾斜部15の存在範囲が小さくなっている(短くなっている)点と、第2プランジャー2の摺動部21が第1プランジャー1の末端部11よりも小径である点とで主に相違する。
(Sixth embodiment)
FIG. 18 is an overall configuration diagram of a contact probe 300 according to a sixth embodiment of the present invention, where (A) shows a spring open state and (B) shows a spring compression state. Compared with the fourth embodiment, the contact probe 300 of the present embodiment has a smaller (shorter) range of the inclined portion 15 and a sliding portion of the second plunger 2. 21 is mainly different in that the diameter is smaller than the end portion 11 of the first plunger 1.
 本実施の形態では、傾斜部15の存在範囲がフランジ部12の一部に限定されているため、図18(B)に示すようにコイルスプリング3が縮んでいる第2の状態(圧縮状態)では摺動部21の末端は傾斜部15の存在範囲を越えていて(傾斜部15を登り切っていて)摺動部21の中間部が傾斜部15の終端(上端)角部と当接している。 In the present embodiment, since the existence range of the inclined portion 15 is limited to a part of the flange portion 12, the second state (compressed state) in which the coil spring 3 is contracted as shown in FIG. 18B. Then, the end of the sliding portion 21 exceeds the existence range of the inclined portion 15 (the inclined portion 15 is fully climbed), and the intermediate portion of the sliding portion 21 is in contact with the end (upper end) corner of the inclined portion 15. Yes.
 本実施の形態も、第4の実施の形態と同様の効果を奏することができる。また、摺動部21を小径とし、必要以上のバネ力が発生しないよう配慮している。 This embodiment can achieve the same effects as those of the fourth embodiment. In addition, the sliding portion 21 has a small diameter so that an excessive spring force is not generated.
(第7の実施の形態)
 図19は、本発明の第7の実施の形態に係るコンタクトプローブ400の全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。本実施の形態のコンタクトプローブ400は、第4の実施の形態と比較して、傾斜部15が直線的な斜面からR面(末端側から見て傾斜が平坦から連続的に急になる斜面)になっている点で主に相違する。本実施の形態も、第4の実施の形態と同様の効果を奏することができる。
(Seventh embodiment)
FIG. 19 is an overall configuration diagram of a contact probe 400 according to a seventh embodiment of the present invention, in which (A) shows a spring open state and (B) shows a spring compression state. Compared with the fourth embodiment, the contact probe 400 of the present embodiment has an inclined surface 15 from a straight inclined surface to an R surface (an inclined surface in which the inclination is continuously steep from flat as viewed from the end side). The main difference is that This embodiment can achieve the same effects as those of the fourth embodiment.
(第8の実施の形態)
 図20は、本発明の第8の実施の形態に係るコンタクトプローブ500の全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。本実施の形態のコンタクトプローブ500は、第4の実施の形態と比較して、傾斜部15が凸部515によって成されている点で主に相違する。凸部515の形状は、摺動部21が乗り上げ可能であれば特に限定されないが、図21に示すような三角錐形状や、四角錐形状あるいは楔形形状等である。本実施の形態も、第4の実施の形態と同様の効果を奏することができる。
(Eighth embodiment)
FIG. 20 is an overall configuration diagram of a contact probe 500 according to an eighth embodiment of the present invention, where (A) shows a spring open state and (B) shows a spring compression state. The contact probe 500 of the present embodiment is mainly different from the fourth embodiment in that the inclined portion 15 is formed by the convex portion 515. The shape of the convex portion 515 is not particularly limited as long as the sliding portion 21 can ride on, but is a triangular pyramid shape, a quadrangular pyramid shape, a wedge shape, or the like as shown in FIG. This embodiment can achieve the same effects as those of the fourth embodiment.
(第9の実施の形態)
 図22は、本発明の第9の実施の形態に係るコンタクトプローブ600の全体構成図であり、(A)はスプリング開放状態の正面図、(B)は同状態の右側面図、(C)はスプリング圧縮状態の正面図、(D)は同状態の右側面図を示す。図23は、同コンタクトプローブ600の第1プランジャー1の部品図であり、(A)は正面図、(B)は右側面図、(C)は底面図である。
(Ninth embodiment)
FIG. 22 is an overall configuration diagram of a contact probe 600 according to a ninth embodiment of the present invention, where (A) is a front view of the spring open state, (B) is a right side view of the same state, and (C). Is a front view of the spring compressed state, and (D) is a right side view of the same state. FIG. 23 is a component diagram of the first plunger 1 of the contact probe 600, where (A) is a front view, (B) is a right side view, and (C) is a bottom view.
 本実施の形態のコンタクトプローブ600は、第4の実施の形態と比較して、第2プランジャー2の長さ方向の中間部から末端側(摺動部21)が2本に分かれて二股部21a,21bになっている点と、第1プランジャー1の末端部11が二股部21a,21bの間に位置する点と、傾斜部15a,15bが二股部21a,21bに対応して存在する点とで主に相違する。 Compared with the fourth embodiment, the contact probe 600 according to the present embodiment is divided into two forks from the intermediate portion in the length direction of the second plunger 2 to the end side (sliding portion 21). The point which becomes 21a, 21b, the point which the terminal part 11 of the 1st plunger 1 is located between the bifurcated part 21a, 21b, and the inclination part 15a, 15b exist corresponding to the bifurcated part 21a, 21b. It is mainly different from the point.
 フランジ部12は、第2プランジャー2との摺動部分を溝状に切り欠いた円柱形状であり、フランジ部12の末端側端面がコイルスプリング3の一端と当接している。本実施の形態も、二股部21a,21bが傾斜部15a,15bに乗り上げる構造であるため、第1プランジャー1と第2プランジャー2とを確実に接触可能であり、従来例と比較して検査対象物と検査用基板とを電気的に安定させて低抵抗で接続することができる。また、その他の点においても第4の実施の形態と同様の効果を奏することができる。さらに、第1及び第2プランジャー1,2の接点数が増えるため、より低抵抗化を図ることが可能となる。 The flange portion 12 has a cylindrical shape in which a sliding portion with the second plunger 2 is cut out in a groove shape, and the end side end surface of the flange portion 12 is in contact with one end of the coil spring 3. Since this embodiment also has a structure in which the bifurcated portions 21a and 21b ride on the inclined portions 15a and 15b, the first plunger 1 and the second plunger 2 can be reliably contacted, compared with the conventional example. The inspection object and the inspection substrate can be electrically stabilized and connected with low resistance. In other respects, the same effects as those of the fourth embodiment can be obtained. Furthermore, since the number of contacts of the first and second plungers 1 and 2 is increased, it is possible to further reduce the resistance.
(第10の実施の形態)
 図24は、本発明の第10の実施の形態に係るコンタクトプローブ700の全体構成図であり、(A)はスプリング開放状態、(B)はスプリング圧縮状態を示す。本実施の形態のコンタクトプローブ700は、第4の実施の形態と比較して、第1プランジャー1と第2プランジャー2との双方に傾斜部が存在し、傾斜部が共にコイルスプリング3の長さ範囲内に存在する点で主に相違する。
(Tenth embodiment)
FIG. 24 is an overall configuration diagram of a contact probe 700 according to a tenth embodiment of the present invention, in which (A) shows a spring open state and (B) shows a spring compression state. Compared with the fourth embodiment, the contact probe 700 according to the present embodiment has inclined portions in both the first plunger 1 and the second plunger 2, and both inclined portions are coil springs 3. It is mainly different in that it exists within the length range.
 第2プランジャー2は、摺動部21が先端側から所定長に渡って傾斜部25(ここでは傾斜面)となっている。第1プランジャー1も、第2プランジャー2の摺動部21と同様の構成の摺動部71を有する。摺動部71は先端側から所定長に渡って傾斜部75(ここでは傾斜面)となっている。コイルスプリング3は第1及び第2プランジャー1,2のフランジ部73,23の端面間に挟まれて存在する。 In the second plunger 2, the sliding portion 21 is an inclined portion 25 (here, an inclined surface) over a predetermined length from the tip side. The first plunger 1 also has a sliding portion 71 having the same configuration as the sliding portion 21 of the second plunger 2. The sliding portion 71 is an inclined portion 75 (here, an inclined surface) over a predetermined length from the tip side. The coil spring 3 is sandwiched between the end surfaces of the flange portions 73 and 23 of the first and second plungers 1 and 2.
 コイルスプリング3が伸びている第1の状態(図24(A)に示す開放状態)から、コイルスプリング3が縮んでいる第2の状態(同図(B)に示す圧縮状態)に遷移する過程で、摺動部21,71はそれぞれ板バネ状に変形して傾斜部75,25に乗り上げる。これにより、第1及び第2プランジャー1,2が2箇所で確実に接触する。したがって、第4の実施の形態と同様に、従来例と比較して検査対象物と検査用基板とを電気的に安定させて低抵抗で接続することができる。もっとも、摺動部21,71は傾斜部75,25に乗り上げた際の弾性変形可能範囲がコイルスプリング3の内周幅範囲内に制限されるので、コンタクトプローブの小型化(小径化)の観点では第4の実施の形態のほうがより優れている。その他の点においては第4の実施の形態と同様の効果を奏する。 Process of transition from the first state in which the coil spring 3 is extended (open state shown in FIG. 24A) to the second state in which the coil spring 3 is contracted (compressed state shown in FIG. 24B) Thus, the sliding portions 21 and 71 are deformed into leaf springs and ride on the inclined portions 75 and 25, respectively. Thereby, the 1st and 2nd plungers 1 and 2 contact reliably at two places. Therefore, as in the fourth embodiment, the object to be inspected and the inspection substrate can be electrically stabilized and connected with low resistance as compared with the conventional example. However, since the sliding deformable portions 21 and 71 are limited to the inner peripheral width range of the coil spring 3 when the sliding portions 21 and 71 run on the inclined portions 75 and 25, the viewpoint of downsizing (smaller diameter) of the contact probe. Then, the fourth embodiment is more excellent. In other respects, the same effects as those of the fourth embodiment are obtained.
 以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素には請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。 The present invention has been described above by taking the embodiment as an example, but it will be understood by those skilled in the art that each component of the embodiment can be variously modified within the scope of the claims. Hereinafter, modifications will be described.
 第1~第3の実施の形態では第1及び第2プランジャー804,805の末端部811,821が半円柱形状である場合を説明したが、末端部811,821は相互の対向面が平面であれば半円柱形状に限定されない。つまり、末端部811,821は、側面に摺動面となる平面があればよい。第1の実施の形態における先端側本体部813,823の基端から所定長の範囲及びフランジ部812の形状についても同様のことがいえる。 In the first to third embodiments, the case where the end portions 811 and 821 of the first and second plungers 804 and 805 have a semi-cylindrical shape has been described, but the end portions 811 and 821 have flat surfaces facing each other. If it is, it will not be limited to a semi-cylindrical shape. That is, the end portions 811 and 821 only need to have a flat surface as a sliding surface on the side surface. The same applies to the range of a predetermined length from the base ends of the distal end side main body portions 813 and 823 and the shape of the flange portion 812 in the first embodiment.
 第2の形態では第1プランジャー804の先端側本体部813の基端から所定長の範囲及びフランジ部812が円柱形状の長さ方向に溝935を形成した形状である場合を説明したが、先端側本体部813の前記所定長の範囲及びフランジ部812は第1の実施の形態と同様の形状(例えば半円柱形状)であってもよい。この場合、コイルスプリング806の開放時における第1プランジャー804の絶縁支持体809に対する横方向のがたつきは第2の実施の形態よりも大きくなるものの、コンタクトプローブの全長を短くする点においては第2の実施の形態と同様の効果を奏することができる。 In the second embodiment, the range of a predetermined length from the proximal end of the distal end side main body portion 813 of the first plunger 804 and the case where the flange portion 812 has a shape in which the groove 935 is formed in the length direction of the columnar shape, The range of the predetermined length of the distal end side main body portion 813 and the flange portion 812 may have the same shape as the first embodiment (for example, a semi-cylindrical shape). In this case, when the coil spring 806 is opened, the backlash in the lateral direction of the first plunger 804 with respect to the insulating support 809 is larger than in the second embodiment, but in terms of shortening the total length of the contact probe. The same effects as those of the second embodiment can be obtained.
 第1~第3の実施の形態では、コイルスプリング806の圧縮状態において第1及び第2プランジャー804,805の末端部811,821の末端が共にコイルスプリング806の伸縮方向に関してコイルスプリング806の外側に位置する場合を説明したが、変形例では末端部811,821の末端の一方はコイルスプリング806の外側に位置し、他方はコイルスプリング806の内側に位置してもよい。この場合も、従来との比較ではコンタクトプローブの全長を短くすることができる。 In the first to third embodiments, when the coil spring 806 is compressed, the ends of the end portions 811 and 821 of the first and second plungers 804 and 805 are both outside the coil spring 806 with respect to the expansion and contraction direction of the coil spring 806. In the modification, one of the ends of the end portions 811 and 821 may be located outside the coil spring 806 and the other may be located inside the coil spring 806. Also in this case, the total length of the contact probe can be shortened as compared with the conventional case.
 実施の形態では第1プランジャーを検査対象物との接続用、第2プランジャーを検査用基板との接続用としたが、変形例では第1プランジャーを検査用基板との接続用、第2プランジャーを検査対象物との接続用としてもよい。 In the embodiment, the first plunger is used for connection with the inspection object, and the second plunger is used for connection with the inspection substrate. However, in the modification, the first plunger is used for connection with the inspection substrate. Two plungers may be used for connection with the inspection object.
 第4~第9の実施の形態では傾斜部がコイルスプリングの長さ範囲外に位置する場合を説明したが、傾斜部はコイルスプリングの長さ範囲内に存在してもよい。この場合も、第1及び第2プランジャーを確実に接触させて検査対象物と検査用基板とを電気的に安定させて低抵抗で接続することができる。 In the fourth to ninth embodiments, the case where the inclined portion is located outside the length range of the coil spring has been described, but the inclined portion may exist within the length range of the coil spring. Also in this case, the first and second plungers can be reliably brought into contact with each other so that the inspection object and the inspection substrate can be electrically stabilized and connected with low resistance.
 第4~第9の実施の形態では傾斜部が第1及び第2プランジャーのいずれか一方に存在する場合を説明したが、変形例では第1及び第2プランジャーの双方に傾斜部を設けてもよい。 In the fourth to ninth embodiments, the case where the inclined portion is present in one of the first and second plungers has been described, but in the modified example, the inclined portion is provided in both the first and second plungers. May be.
804 第1プランジャー
805 第2プランジャー
806 コイルスプリング
807 検査対象物
807a 電極バンプ
808 検査用基板
809 絶縁支持体
811,821 末端部
812,822 フランジ部
813,823 先端側本体部
813a,823a 接触部
830 ソケット
900 コンタクトプローブ
804 1st plunger 805 2nd plunger 806 Coil spring 807 Inspection object 807a Electrode bump 808 Inspection substrate 809 Insulation support 811,821 End portion 812,822 Flange portion 813,823 Front end side body portion 813a, 823a Contact portion 830 Socket 900 Contact probe

Claims (15)

  1.  スプリングと、一方が検査対象物との接続用で他方が検査用基板との接続用である第1及び第2プランジャーとを備え、
     前記第1及び第2プランジャーはそれぞれ、前記スプリングを係止する係止凸部を長さ方向の中間部に有し、
     前記スプリングは、前記係止凸部に係止され、かつ前記第1及び第2プランジャーを互いに離れる方向に付勢し、
     前記スプリングが所定長以下の長さに縮んでいるとき、前記第2プランジャーの末端が、前記スプリングよりも、前記第1プランジャーの先端寄りに位置する、コンタクトプローブ。
    A spring and first and second plungers, one for connection with the inspection object and the other for connection with the inspection substrate;
    Each of the first and second plungers has a locking projection for locking the spring at an intermediate portion in the length direction,
    The spring is locked to the locking projection and biases the first and second plungers away from each other;
    The contact probe, wherein the end of the second plunger is positioned closer to the tip of the first plunger than the spring when the spring is contracted to a predetermined length or less.
  2.  請求項1に記載のコンタクトプローブにおいて、
     前記第1プランジャーは、末端部と、先端部と、前記末端部及び前記先端部の間のフランジ部とを有し、
     前記フランジ部が前記係止凸部を有し、
     前記先端部の基端から所定長の範囲と、前記フランジ部と、前記末端部とに渡って前記第2プランジャーとの摺動面が連続して存在する、コンタクトプローブ。
    The contact probe according to claim 1,
    The first plunger has a distal end portion, a distal end portion, and a flange portion between the distal end portion and the distal end portion,
    The flange portion has the locking projection;
    A contact probe in which a sliding surface with the second plunger continuously exists over a range of a predetermined length from the proximal end of the distal end portion, the flange portion, and the distal end portion.
  3.  請求項1又は2に記載のコンタクトプローブにおいて、前記スプリングが所定長以下の長さに縮んでいるとき、前記第1プランジャーの末端が、前記スプリングよりも、前記第2プランジャーの先端寄りに位置する、コンタクトプローブ。 3. The contact probe according to claim 1, wherein when the spring is contracted to a length equal to or shorter than a predetermined length, an end of the first plunger is closer to a tip of the second plunger than the spring is. Positioned contact probe.
  4.  請求項1から3のいずれかに記載のコンタクトプローブにおいて、前記第1及び第2プランジャーの相互摺動面が平面である、コンタクトプローブ。 The contact probe according to any one of claims 1 to 3, wherein the sliding surfaces of the first and second plungers are flat surfaces.
  5.  請求項1に記載のコンタクトプローブにおいて、
     前記第1プランジャーは、前記第2プランジャーとの摺動範囲の少なくとも一部が傾斜部となっていて、
     前記スプリングが伸びている第1の状態から前記スプリングが縮んでいる第2の状態に遷移する過程で、前記第2プランジャーが前記傾斜部に乗り上げる構造である、コンタクトプローブ。
    The contact probe according to claim 1,
    The first plunger has an inclined portion at least a part of a sliding range with the second plunger,
    The contact probe having a structure in which the second plunger rides on the inclined portion in a process of transition from a first state in which the spring is extended to a second state in which the spring is contracted.
  6.  請求項5に記載のコンタクトプローブにおいて、前記傾斜部が前記スプリングの伸縮方向に関して前記スプリングの外側に存在する、コンタクトプローブ。 6. The contact probe according to claim 5, wherein the inclined portion is present outside the spring with respect to a direction of expansion and contraction of the spring.
  7.  請求項6に記載のコンタクトプローブにおいて、前記第2プランジャーは、前記傾斜部に乗り上げた状態で、板バネ状に変形して末端が前記伸縮方向に垂直な方向に関して前記スプリングの内周幅範囲外に延在している、コンタクトプローブ。 7. The contact probe according to claim 6, wherein the second plunger is deformed into a leaf spring in a state of riding on the inclined portion, and an inner peripheral width range of the spring with respect to a direction perpendicular to the expansion / contraction direction. A contact probe that extends outside.
  8.  請求項7に記載のコンタクトプローブにおいて、前記第2プランジャーは、前記傾斜部に乗り上げた状態で、長手方向の中間部が前記スプリングの伸縮方向の端部内周と当接し、かつ、前記中間部よりも末端側の一部と先端側の一部との双方が前記第1プランジャーと当接している、コンタクトプローブ。 8. The contact probe according to claim 7, wherein the second plunger is in a state in which the second plunger rides on the inclined portion, a middle portion in a longitudinal direction abuts on an inner periphery of an end portion in an expansion / contraction direction of the spring, and the middle portion A contact probe in which both a part on the distal end side and a part on the distal end side are in contact with the first plunger.
  9.  請求項5から8のいずれかに記載のコンタクトプローブにおいて、前記第2プランジャーは長さ方向の中間部から末端側が2本に分かれた二股部となっていて、前記第1プランジャーの末端が前記二股部の間に位置し、前記傾斜部は前記二股部の一方及び他方の双方に対応して少なくとも1つずつ存在する、コンタクトプローブ。 9. The contact probe according to claim 5, wherein the second plunger is a bifurcated portion that is divided into two from the middle portion in the longitudinal direction, and the end of the first plunger is The contact probe is located between the two forked portions, and the inclined portion exists at least one corresponding to both one and the other of the two forked portions.
  10.  請求項9に記載のコンタクトプローブにおいて、前記第1プランジャーの長さ方向の中間部のフランジ部は、前記摺動部分を切り欠いて溝状に形成していて、前記フランジ部の末端側端面が前記スプリングの一方の端部と当接している、コンタクトプローブ。 10. The contact probe according to claim 9, wherein the flange portion of the intermediate portion in the length direction of the first plunger is formed in a groove shape by cutting out the sliding portion, and the distal end surface of the flange portion. A contact probe in contact with one end of the spring.
  11.  請求項5から10のいずれかに記載のコンタクトプローブにおいて、
     前記第2プランジャーは、前記第1プランジャーとの摺動範囲の少なくとも一部が傾斜部となっていて、
     前記第1の状態から前記第2の状態に遷移する過程で、前記第1プランジャーが前記第2プランジャーの前記傾斜部に乗り上げる構造である、コンタクトプローブ。
    The contact probe according to any one of claims 5 to 10,
    In the second plunger, at least a part of a sliding range with the first plunger is an inclined portion,
    A contact probe having a structure in which the first plunger rides on the inclined portion of the second plunger in the process of transition from the first state to the second state.
  12.  請求項5から11のいずれかに記載のコンタクトプローブにおいて、前記第1プランジャーの末端が前記第2プランジャーの存在する方向に傾いている、コンタクトプローブ。 The contact probe according to any one of claims 5 to 11, wherein an end of the first plunger is inclined in a direction in which the second plunger exists.
  13.  請求項1から12のいずれかに記載のコンタクトプローブを複数本絶縁支持体で支持してなるソケット。 A socket formed by supporting a plurality of contact probes according to any one of claims 1 to 12 with an insulating support.
  14.  請求項13に記載のソケットにおいて、各コンタクトプローブの第1プランジャーは、前記スプリングが所定長以上の長さに伸びているとき、前記第2プランジャーとの摺動面が、前記スプリングの伸縮方向に関して前記絶縁支持体の内側から外側にかけて延在する、ソケット。 14. The socket according to claim 13, wherein the first plunger of each contact probe has a sliding surface with the second plunger when the spring extends to a length equal to or longer than a predetermined length. A socket extending from the inside to the outside of the insulating support with respect to the direction.
  15.  請求項14に記載のソケットにおいて、
     前記第1プランジャーの前記係止凸部は、前記絶縁支持体からの抜止めであり、
     前記第1プランジャーの前記摺動面は、前記係止凸部よりも先端側において溝形状の底面である、ソケット。
    The socket according to claim 14,
    The locking projection of the first plunger is a retaining from the insulating support,
    The socket, wherein the sliding surface of the first plunger is a groove-shaped bottom surface on the tip side of the locking projection.
PCT/JP2010/062752 2009-07-30 2010-07-29 Contact probe and socket WO2011013731A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-178406 2009-07-30
JP2009178406A JP5624740B2 (en) 2009-07-30 2009-07-30 Contact probe and socket
JP2010095537A JP5645451B2 (en) 2010-04-16 2010-04-16 Contact probe and socket
JP2010-095537 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011013731A1 true WO2011013731A1 (en) 2011-02-03

Family

ID=43529384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062752 WO2011013731A1 (en) 2009-07-30 2010-07-29 Contact probe and socket

Country Status (1)

Country Link
WO (1) WO2011013731A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051675A1 (en) 2011-10-07 2013-04-11 日本発條株式会社 Probe unit
WO2015133016A1 (en) * 2014-03-06 2015-09-11 オムロン株式会社 Probe pin and electronic device using same
US10082525B2 (en) 2014-09-19 2018-09-25 Nhk Spring Co., Ltd. Probe unit
WO2020022236A1 (en) * 2018-07-26 2020-01-30 株式会社エンプラス Probe pin and socket
DE202019101232U1 (en) * 2019-03-05 2020-06-08 PTR HARTMANN GmbH Spring contact pin
EP4089721A4 (en) * 2020-01-10 2024-02-14 Nidec Read Corporation Contactor, inspection jig, inspection device, and method for manufacturing said contactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157576A (en) * 1985-12-20 1987-07-13 オ−ガツト・インコ−ポレ−テツド Test probe
JP2005069805A (en) * 2003-08-22 2005-03-17 Jst Mfg Co Ltd Contact probe and contact assembly using it
JP2006310025A (en) * 2005-04-27 2006-11-09 Chichibu Fuji Co Ltd Contact device for ic socket
JP2008032743A (en) * 2007-10-01 2008-02-14 Nhk Spring Co Ltd Conductive terminal
JP2008516398A (en) * 2004-10-06 2008-05-15 プラストロニックス・ソケット・パートナーズ, エルピー Contacts for electronic devices
WO2008136396A1 (en) * 2007-04-27 2008-11-13 Nhk Spring Co., Ltd. Conductive contactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157576A (en) * 1985-12-20 1987-07-13 オ−ガツト・インコ−ポレ−テツド Test probe
JP2005069805A (en) * 2003-08-22 2005-03-17 Jst Mfg Co Ltd Contact probe and contact assembly using it
JP2008516398A (en) * 2004-10-06 2008-05-15 プラストロニックス・ソケット・パートナーズ, エルピー Contacts for electronic devices
JP2006310025A (en) * 2005-04-27 2006-11-09 Chichibu Fuji Co Ltd Contact device for ic socket
WO2008136396A1 (en) * 2007-04-27 2008-11-13 Nhk Spring Co., Ltd. Conductive contactor
JP2008032743A (en) * 2007-10-01 2008-02-14 Nhk Spring Co Ltd Conductive terminal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051675A1 (en) 2011-10-07 2013-04-11 日本発條株式会社 Probe unit
KR20140065467A (en) 2011-10-07 2014-05-29 닛폰 하츠죠 가부시키가이샤 Probe unit
US9291645B2 (en) 2011-10-07 2016-03-22 Nhk Spring Co., Ltd. Probe unit
WO2015133016A1 (en) * 2014-03-06 2015-09-11 オムロン株式会社 Probe pin and electronic device using same
JP2015169527A (en) * 2014-03-06 2015-09-28 オムロン株式会社 Probe pin and electronic device using the same
CN106062567A (en) * 2014-03-06 2016-10-26 欧姆龙株式会社 Probe pin and electronic device using same
US10082525B2 (en) 2014-09-19 2018-09-25 Nhk Spring Co., Ltd. Probe unit
WO2020022236A1 (en) * 2018-07-26 2020-01-30 株式会社エンプラス Probe pin and socket
JP2020017428A (en) * 2018-07-26 2020-01-30 株式会社エンプラス Probe pin and socket
DE202019101232U1 (en) * 2019-03-05 2020-06-08 PTR HARTMANN GmbH Spring contact pin
EP4089721A4 (en) * 2020-01-10 2024-02-14 Nidec Read Corporation Contactor, inspection jig, inspection device, and method for manufacturing said contactor

Similar Documents

Publication Publication Date Title
JP5624740B2 (en) Contact probe and socket
TWI482974B (en) Contact probe and socket
WO2011013731A1 (en) Contact probe and socket
KR101409821B1 (en) Compliant contact assembly and method of scrubbing a test site by a compliant contact member
KR101145283B1 (en) Spring contact assembly
JP4614434B2 (en) probe
JP4224389B2 (en) Spring connector
TWI598594B (en) Bolt type probe
WO2019069576A1 (en) Probe
JP5782261B2 (en) socket
JP5624746B2 (en) Contact probe and socket
KR102498454B1 (en) Contact probe and inspection jig
JP7095753B2 (en) probe
JP5156973B1 (en) Anisotropic conductive member
JP6013731B2 (en) Contact probe and manufacturing method thereof
JP5008582B2 (en) Contact probe
WO2015040999A1 (en) Spring connector
JP2017015581A (en) contact
JP5645451B2 (en) Contact probe and socket
TWI574014B (en) Probe structure and probe card
JP5567523B2 (en) Connection pin
JP2010014544A (en) Manufacturing method of probe pin of external spring type
JP3088866U (en) Inspection probe
JP6837513B2 (en) socket
KR100805947B1 (en) Slide type contact

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804477

Country of ref document: EP

Kind code of ref document: A1