WO2011013570A1 - Vibration motor - Google Patents

Vibration motor Download PDF

Info

Publication number
WO2011013570A1
WO2011013570A1 PCT/JP2010/062356 JP2010062356W WO2011013570A1 WO 2011013570 A1 WO2011013570 A1 WO 2011013570A1 JP 2010062356 W JP2010062356 W JP 2010062356W WO 2011013570 A1 WO2011013570 A1 WO 2011013570A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
movable part
movable
vibration motor
permanent magnet
Prior art date
Application number
PCT/JP2010/062356
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 宮崎
徹史 林
貴弘 高木
英明 宮本
運也 本間
Original Assignee
三洋電機株式会社
三洋精密株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 三洋精密株式会社 filed Critical 三洋電機株式会社
Publication of WO2011013570A1 publication Critical patent/WO2011013570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system

Definitions

  • the present invention relates to a vibration motor including a movable part including a permanent magnet and a fixed part including a coil.
  • a vibration motor including a movable part including a permanent magnet and a fixed part including a coil is known (for example, see Patent Document 1).
  • Patent Document 1 discloses a vibration motor including a movable part including a permanent magnet, a box-shaped case, and a fixed part including a coil that generates a magnetic force to move the movable part when energized.
  • the movable part is provided with a yoke disposed so as to surround the upper surface, the lower surface and the side surface of the permanent magnet.
  • the yoke is not provided in the movable part but is provided in the fixed part.
  • the vibration motor disclosed in Patent Document 1 even when the yoke on the upper surface side of the permanent magnet of the movable portion is disposed on the upper surface of the fixed portion (case), the permanent magnet is formed by the yoke of the movable portion and the yoke of the fixed portion. It is possible to confine magnetism and suppress magnetic leakage.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to make it possible to easily vibrate the movable portion even when the yoke is disposed on the fixed portion. It is to provide a vibration motor.
  • a vibration motor includes a movable part including a permanent magnet and a magnetic force that is arranged to face the movable part and moves the movable part when energized. And a fixed portion including a movable portion and an upper surface side yoke and a lower surface side yoke arranged to face the movable portion on both the upper surface side and the lower surface side of the movable portion so as to sandwich the coil. And.
  • the movable portion can be vibrated easily even when the yoke is disposed on the fixed portion due to the above configuration.
  • FIG. 5 is a cross-sectional view taken along line 50-50 in FIG.
  • FIG. 5 is a cross-sectional view taken along line 51-51 in FIG.
  • FIG. 5 is a top view which shows the coil part of the vibration motor by 1st Embodiment of this invention shown in FIG.
  • FIG. 5 is typical sectional drawing which shows the coil part of the vibration motor by 1st Embodiment of this invention shown in FIG.
  • FIG. 1st Embodiment of this invention It is a disassembled perspective view which shows the movable part and spring member of a vibration motor by 1st Embodiment of this invention shown in FIG. It is a graph which shows the simulation result of the vibration characteristic of the vibration motor by the Example (1st Embodiment of this invention). It is a graph which shows the simulation result of the vibration characteristic of the vibration motor by a comparative example. It is a disassembled perspective view which shows the vibration motor by 2nd Embodiment of this invention. It is sectional drawing corresponding to FIG. 4 of the vibration motor by 2nd Embodiment of this invention. It is sectional drawing corresponding to FIG. 5 of the vibration motor by 2nd Embodiment of this invention.
  • the vibration motor 1 is a device that is built in a portable device (not shown) or the like and applies vibration to the portable device. As shown in FIG. 1, the vibration motor 1 includes a fixed portion 2, a movable portion 3 that vibrates with respect to the fixed portion 2, and a spring member 4 that supports the movable portion 3 so as to vibrate.
  • the fixing portion 2 includes a metal box-like case 23 including a base plate (lower case portion) 21 and an upper case portion 22, and a yoke-integrated coil portion fixed to the base plate 21. 24.
  • the base plate 21 and the upper case portion 22 are made of a magnetic metal material (for example, SPCC).
  • the base plate 21 and the upper case portion 22 are fixed by welding at six welding portions 23a, 23b, 23c, 23d, 23e, and 23f (see FIG. 1). Specifically, as shown in FIGS. 1 to 3, protrusions 21a are formed at both ends in the X direction of the base plate 21, and the protrusions of the base plate 21 are formed at the lower ends of the side surfaces of the upper case part 22. A notch 22a into which 21a is fitted is formed. Two portions (welded portions 23a and 23b) are welded at the fitting portion between the protruding portion 21a and the cutout portion 22a.
  • the upper end portion 21c of the side surface 21b of the base plate 21 and the end portion 22c in the Y direction of the upper surface 22b of the upper case portion 22 are respectively provided at two positions at both ends in the Y direction of the case 23 (welded portions 23c, 23d, 23e). And 23f).
  • the case 23 (the base plate 21 and the upper case part 22) has a function as a magnetic shield (yoke) for suppressing the leakage of magnetism from the case 23 to the outside by being made of a magnetic material.
  • a magnetic shield (yoke) for suppressing the leakage of magnetism from the case 23 to the outside by being made of a magnetic material.
  • an opening 21d is formed in the lower surface of the base plate 21, and the yoke-integrated coil portion 24 is disposed so as to be fitted into the opening 21d.
  • the base plate 21 and the yoke integrated coil portion 24 are fixed by being bonded at two bonding portions. Specifically, in the region corresponding to the opening 21d, the lower surface of a portion 21e (see FIGS.
  • the base plate 21 and the upper case portion 22 are examples of the “lower surface side yoke” and the “upper surface side yoke” of the present invention, respectively.
  • a pair of rails 21 g protruding upward is provided integrally with the base plate 21 on the upper surface 21 f of the base plate 21 (the lower inner surface of the case 23).
  • a pair of rails 21g is provided in each of the regions on both sides in the X direction across the opening 21d.
  • the pair of rails 21g is formed so as to extend in the X direction, which is the vibration direction of the movable portion 3, from the end portion of the base plate 21 in the X direction (end portion on the protruding portion 21a side) to the opening portion 21d.
  • the pair of rails 21g are arranged at positions slightly corresponding to the inner side portions from both ends of the movable portion 3 in the Y direction.
  • the surface of the rail 21g is rounded, and the shape of the surface of the rail 21g in the cross section in the direction (Y direction) orthogonal to the direction in which the rail 21g extends (X direction) is a substantially arc shape.
  • Nimflon treatment (Nimflon is a registered trademark) is applied.
  • the Nimflon treatment is a plating treatment having both characteristics of Teflon (polytetrafluoroethylene: PTFE) (Teflon is a registered trademark) having a low friction coefficient and electroless Ni.
  • the Nimflon treatment is performed by mixing PTFE particles in an electroless plating solution and plating.
  • the entire surface of the upper case portion 22 is also treated with Nimflon.
  • the yoke-integrated coil portion 24 includes flat planar coils 25 and 26 having a two-layer wiring structure, and mounting terminals 27a exposed on the lower surface side of the yoke-integrated coil portion 24. And a wiring layer 27 including the mounting terminals 27b and a yoke 28 made of a magnetic material (for example, SPCC, silicon steel plate, etc.).
  • the planar coils 25, 26, the wiring layer 27 and the yoke 28 are formed as an integral part with an insulating resin 29. More specifically, as shown in FIG.
  • planar coil 25 and the yoke 28 are integrated with a resin 29a, and the planar coil 26 and the wiring layer 27 formed on the upper and lower surfaces of the resin 29a are made of a resin 29b. Covered. A part of the wiring layer 27 including the mounting terminal 27a and the mounting terminal 27b is exposed through the opening 29c of the resin 29b on the lower surface side.
  • Each of the planar coils 25 and 26 has a rectangular outline in plan view, and spirals so as to spread from the inside toward the outside in the XY plane (surface formed by the X direction and the Y direction). It is formed in a shape.
  • Each of the planar coils 25 and 26 is an example of the “coil” in the present invention.
  • the yoke 28 is an example of the “lower surface side yoke” in the present invention.
  • the planar coils 25 and 26 are electrically connected in series by one current line. Specifically, as shown in FIG. 6, the first-layer current line 25a constituting the planar coil 25 is wound spirally counterclockwise from the outside when viewed from above. Yes. As shown in FIGS. 6 and 7, the outer end of the first-layer current line 25a of the planar coil 25 is exposed on the surface of the lower surface of the yoke-integrated coil section 24 through a connecting line 25b extending in the thickness direction. Connected to the mounting terminal 27a.
  • the second layer current line 26a constituting the planar coil 26 is wound in a spiral shape counterclockwise from the inside to the outside when viewed from above.
  • the outer end of the second-layer current line 26a of the planar coil 26 is connected to the mounting terminal 27b via a connection line 26b extending in the thickness direction (Z direction). Yes.
  • the inner end portion of the first layer current line 25a constituting the planar coil 25 and the inner end portion of the second layer current line 26a constituting the planar coil 26 are the same as the yoke when viewed in plan.
  • the body coil portions 24 are connected to each other in the vicinity of the central portion 24a.
  • the planar coils 25 and 26 are wound in a spiral shape with a predetermined space having a width W4 in the X direction at the center.
  • the width W1 (see FIG. 5) in the X direction of the outermost periphery of the planar coils 25 and 26 is substantially equal to the width W2 (see FIG. 8) in the X direction of the permanent magnet 31.
  • the width W3 (see FIG. 5) in the X direction of the yoke-integrated coil portion 24 is larger than the width W2 in the X direction of the permanent magnet 31.
  • the center lines O1 and O2 of the portions around which the current lines of the planar coils 25 and 26 are wound are a center line O3 of the first magnet 311 and a center line O4 of the second magnet 312 described later. It is located outside.
  • the movable part 3 includes a flat permanent magnet 31, a weight 32 made of a material having a large specific gravity (for example, tungsten), and a non-magnetic material (for example, phosphorous) that covers the permanent magnet 31 and the weight 32. Bronze) magnet cover 33.
  • the movable part 3 does not include a yoke (magnetic material).
  • the permanent magnet 31 is a permanent magnet made of a ferromagnetic material such as ferrite or neodymium.
  • the permanent magnet 31 is formed in a substantially rectangular shape when seen in a plan view.
  • the weight 32 is formed in a frame shape whose outer shape is substantially rectangular when viewed in a plan view, and has an opening 32 a having substantially the same shape as the permanent magnet 31.
  • a permanent magnet 31 is fitted in the opening 32 a of the weight 32.
  • the permanent magnet 31 and the weight 32 have substantially the same thickness.
  • the magnet cover 33 is integrated with the permanent magnet 31 and the weight 32 so as to cover the entire upper surface of the permanent magnet 31 and the weight 32, the entire side surface in the X direction of the weight 32, and a part of the lower surface of the weight 32. It is fixed to.
  • the lower surface of the magnet cover 33 is located below the lower surfaces of the permanent magnet 31 and the weight 32. Further, the entire surface of the magnet cover 33 is subjected to Nimflon treatment.
  • the permanent magnet 31 is composed of two permanent magnets including a first magnet 311 and a second magnet 312 in which a pair of magnetic poles are magnetized in the thickness direction (Z direction). .
  • the first magnet 311 is arranged on the arrow X1 direction side with the center line of the movable portion 3 as a boundary
  • the second magnet 312 is arranged on the arrow X2 direction side.
  • the side facing the yoke-integrated coil unit 24 is an N pole surface 311 a magnetized to N pole
  • the opposite side is an S pole surface 311 b magnetized to S pole.
  • the side facing the yoke-integrated coil portion 24 is an S pole surface 312 a magnetized to the S pole
  • the opposite side is an N pole surface 312 b magnetized to the N pole.
  • the first magnet 311 and the second magnet 312 are adjacent to the N pole surface 311a and the S pole surface 312a on the surface on the yoke integrated coil portion 24 side, and opposite to the yoke integrated coil portion 24 side.
  • the S pole face 311b and the N pole face 312b are disposed adjacent to each other.
  • the first magnet 311 and the second magnet 312 are in close contact with each other due to the attractive force between the N pole surface 311a and the S pole surface 312a adjacent to each other and the attractive force between the S pole surface 311b and the N pole surface 312b. And are fixed to each other by an adhesive or the like.
  • the movable portion 3 is disposed to face the magnetic pole surface of the permanent magnet 31 so as to be parallel to the yoke-integrated coil portion 24.
  • the movable portion 3 is linearly moved in the directions of arrows X1 and X2 parallel to the yoke-integrated coil portion 24 inside the case 23 while being supported by the spring member 4.
  • the term “parallel” includes not only a state parallel to each other but also a state deviated from a parallel state (a state inclined at a predetermined angle) to the extent that the movable portion 3 does not hinder linear movement.
  • the side surface in the Y direction of the case 23 has a function as a guide when the movable portion 3 moves in the directions of the arrows X1 and X2.
  • the spring member 4 includes a dish part 41 and a pair of spring parts 42 and 43 provided on both sides of the dish part 41.
  • the plate part 41 and the spring parts 42 and 43 are made of a plate-like nonmagnetic material (for example, SUS304).
  • the lower surface of the dish part 41 and the upper surface of the magnet cover 33 are fixed by being bonded.
  • a rectangular opening 41 a is formed at the center of the dish 41.
  • the opening 41a and the permanent magnet 31 are configured to have substantially the same size when viewed in a plan view.
  • the SUS 304 constituting the dish part 41 is basically non-magnetic, but may be magnetized during processing, and thus the magnetic field lines of the permanent magnet 31 may be shielded by the dish part.
  • the opening 41 a it is possible to suppress the lines of magnetic force from the permanent magnet 31 from being shielded by the spring member 4. Thereby, all or part of the attractive force (downward attractive force) between the yoke 28 and the base plate 21 of the yoke-integrated coil portion 24 and the permanent magnet 31 is reduced between the upper case portion 22 and the permanent magnet 31. It is offset by the suction force (upward suction force).
  • the dish portion 41 is an example of the “attachment portion” in the present invention.
  • the spring portion 42 is provided so as to stretch the side surface of the magnet cover 33 and the side surface of the upper case portion 22 on the arrow X1 direction side of the movable portion 3.
  • the spring member 4 supports the movable portion 3 so as not to contact the case 23 (the base plate 21 and the upper case portion 22). That is, the movable portion is caused by the difference between the attractive force between the permanent magnet 31 and the upper case portion 22 and the attractive force between the permanent magnet 31 and the yoke 28 and the base plate 21 of the yoke-integrated coil portion 24.
  • the spring member 4 has a force larger than the vertical suction force applied to the movable portion 3 (the vertical suction force applied to the movable portion 3).
  • the movable part 3 is configured to be supported in the vertical direction by the strength to withstand.
  • the spring part 42 includes a first part 42 a formed integrally with the dish part 41, and a second part 42 b welded to the first part 42 a and the upper case part 22.
  • the first portion 42a and the second portion 42b are leaf springs.
  • the first portion 42a is in contact with the side surface of the magnet cover 33 at the end in the arrow Y1 direction, and is curved so that the end in the arrow Y2 direction is separated from the side surface of the magnet cover 33.
  • the second portion 42b is in planar contact with the side surface in the arrow X1 direction of the upper case portion 22 at the end portion in the arrow Y1 direction, and the end portion in the arrow Y2 direction is from the side surface in the arrow X1 direction of the upper case portion 22. It is curved to be separated.
  • the end portion in the arrow Y2 direction of the first portion 42a and the end portion in the arrow Y2 direction of the second portion 42b are welded in a surface contact state.
  • the spring portion 43 has a configuration similar to that of the spring portion 42, and includes a first portion 43a and a second portion 43b having the same structure as the first portion 42a and the second portion 42b. With the above configuration, the spring portions 42 and 43 are configured to bias the movable portion 3 in opposite directions.
  • the vibration motor 1 is fixedly attached to the portable device by soldering the mounting terminals 27a and 27b to terminals (not shown) formed on the mother board of the portable device, for example.
  • a drive current is supplied to the current lines constituting the planar coils 25 and 26 via the mounting terminals 27a and 27b.
  • a current in a direction (arrow Y1 and Y2 directions) perpendicular to the vertical magnetic field generated between the N pole surface 311a and the S pole surface 312a of the movable part 3 flows in the planar coil 25 and the planar coil 26.
  • the direction of the current flowing in the portion on the arrow X1 direction side hereinafter referred to as the right portion when viewed in plan from the central portion of the planar coil 25 and the planar coil 26 (the central portion of the spiral), and the arrow from the central portion.
  • the direction of the current flowing through the portion on the X2 direction side (hereinafter, the left portion) is opposite.
  • the Lorentz force acts in the direction of the arrow X1 on the right side portions of the planar coils 25 and 26 through which the current flows due to the magnetic field generated by the permanent magnet 31, and the reaction force acts on the N pole surface 311a of the first magnet 311 in the direction of the arrow X2 To work.
  • a Lorentz force acts in the direction of the arrow X1 on the left portions of the planar coils 25 and 26, and the reaction force acts on the south pole face 312a of the second magnet 312 in the direction of the arrow X2.
  • the movable portion 3 is linearly moved in the arrow X2 direction.
  • the movable part 3 is linearly moved in the direction of the arrow X1 by the same action as described above.
  • the movable portion 3 is linearly moved alternately in the directions of the arrows X1 and X2 and reciprocated.
  • the magnetic flux generated between the N-pole surface 311a of the first magnet 311 and the S-pole surface 312a of the second magnet 312 is absorbed by the yoke 28 and the base plate 21 and selectively inside the yoke 28 and the base plate 21. Since it passes through, almost no magnetic flux that extends to the outside of the case 23 is generated.
  • the movable part 3 has a force in a direction toward the center along the directions of the arrows Y1 and Y2, respectively, due to the electromagnetic force generated from the current line extending in the X direction among the planar coils 25 and 26, or A force in a direction of pulling outward from the center along the directions of the arrows Y1 and Y2 is applied.
  • the movable part 3 is provided that is movable along the direction (arrow X1 and X2 directions) along the surfaces of the planar coils 25 and 26. Accordingly, it is necessary to provide a moving range (moving space in the vertical direction) of the movable part 3 as compared with the case where the movable part 3 is linearly moved in the vertical direction using a coil having a large thickness in the vertical direction (Z direction). Therefore, the degree of freedom of design for reducing the thickness in that direction can be ensured. As a result, the vibration motor 1 that can be thinned can be provided.
  • the planar coils 25 and 26 were spirally formed so as to be flat along the moving direction of the movable part 3. This eliminates the need to provide a region in the height direction (height direction) due to the coil winding surface, compared to the case where the coil winding surface is arranged in a direction perpendicular to the moving direction of the movable part.
  • the thickness of the yoke-integrated coil portion 24 can be reduced. Therefore, the vibration motor 1 can be thinned.
  • the movable part 3 including the permanent magnet 31 is not provided with a yoke, and the fixed part 2 including the planar coils 25 and 26 is opposed to the movable part 3 on both the upper surface side and the lower surface side thereof.
  • the upper surface side yoke (upper case portion 22 that functions as a yoke) and the lower surface side yoke (the yoke 28 and the base plate 21 that functions as a yoke) are provided.
  • Movable portion 3 is attracted to the upper surface side of movable portion 3 by upper surface side yoke (upper case portion 22 functioning as a yoke) and movable by lower surface side yoke (yoke 28 and base plate 21 functioning as a yoke)
  • the part 3 cancels out at least a part of the force attracted to the lower surface side of the movable part 3.
  • the Q value of the vibration system of the vibration motor 1 can be easily adjusted.
  • the Q value is a dimensionless number that characterizes the vibration state, and is an amount that represents the sustained characteristic of vibration of the resonating system. When the Q value is high, the vibration continues for a long time, and when it is low, the vibration decreases immediately.
  • the planar coils 25 and 26 are provided only on the lower surface side of the movable part 3.
  • the movable part 3 can be easily vibrated, so that the planar coils 25 and 26 are not provided on the upper surface of the movable part 3 but provided only on the lower surface side. In this case, the movable part 3 can be sufficiently vibrated.
  • the spring member 4 is provided with a dish part 41 fixed to the movable part 3 so as to cover the upper surface of the movable part 3, and the dish part 41 is provided with an opening 41a.
  • a magnet cover 33 made of a non-magnetic material is provided on the movable part 3. Thereby, the permanent magnet 31 can be supported by the magnet cover 33 without shielding the magnetic lines of force of the permanent magnet 31.
  • the Q value in the vibration amount-frequency characteristics (relation between the vibration amount of the object (eg, mobile phone) to be vibrated by the vibration motor 1 and the frequency of the input voltage) is reduced (vibration amount
  • the amount of vibration of the object to be vibrated by the vibration motor 1 can be increased. If the Q value is lowered, the amount of vibration does not increase unless an input voltage with an accurate frequency is input as in the case where the Q value is high (if the input voltage deviates slightly from the resonance frequency, the amount of vibration decreases rapidly. Unlike the case), a large amount of vibration can be obtained in a wider frequency band.
  • the movable part 3 was not provided with a yoke, and the fixed part 2 was provided with a yoke.
  • the vibration amount of the target object which the vibration motor 1 vibrates can be enlarged.
  • the vibration motor 1 it is possible to suppress a decrease in the vibration amount even when the Q value is reduced as described above.
  • a space having a width W4 in the X direction is provided in the central portion of the planar coils 25 and 26.
  • the movable part 3 moves in the direction of the arrow X2, it is possible to suppress the Lorentz force acting in the direction of the arrow X2 acting between the left portions of the planar coils 25 and 26 and the N pole surface 311a of the first magnet 311. it can. Thereby, the reaction force of the Lorentz force acting in the arrow X1 direction with respect to the permanent magnet 31 (first magnet 311) can be suppressed. Thus, since the force (reaction force of Lorentz force) acting in the direction opposite to the moving direction of the movable part 3 is suppressed, the driving amount of the movable part 3 can be increased.
  • FIGS. 9 and 10 The simulation results of the example and the comparative example are shown in FIGS. 9 and 10, respectively.
  • the horizontal axis represents the frequency of the input voltage (resonance frequency is f0), and the vertical axis represents the acceleration and vibration amount of the object that the vibration motor vibrates.
  • the frequency width A1 in which the acceleration in the example exceeds g0 is larger than the frequency width A2 in which the acceleration in the comparative example exceeds g0. That is, in the embodiment, by allowing the Q value to be lower than that in the comparative example, the allowable range of deviation of the input voltage with respect to the resonance frequency f0 is larger than that in the comparative example. This means that even when manufacturing errors and assembly errors of vibration motor parts occur, the embodiment has less variation between products than the comparative example (the ratio of obtaining desired performance is higher). Show.
  • the maximum width of the vibration amount deviation corresponding to the allowable width of the input frequency (frequency of the input voltage) is B1 in the example, but B2 larger than B1 in the comparative example. That is, in the example, the maximum error of the vibration amount between products is B1, and in the comparative example, the maximum error is B2. Therefore, in the comparative example in which the maximum error of the vibration amount is large, in order not to cause the movable part to collide with the case, the distance between the inner walls of the case (the distance between the side surfaces in the X direction of the upper case part 22 (see FIG. 1)). It needs to be designed to be larger. In the embodiment, since the maximum error of the vibration amount is small, the distance between the inner walls of the case can be designed to be small. As a result, it is considered that the size of the vibration motor can be reduced.
  • the vibration motor 101 includes a fixed portion 2 (case 23 and yoke-integrated coil portion 24), a movable portion 103, and a spring member 104 made of a nonmagnetic material (for example, SUS304). It has.
  • the movable portion 103 includes a permanent magnet 31, a weight 32, and a magnet cover 133 made of a nonmagnetic material (for example, phosphor bronze).
  • the structure other than the magnet cover 133 and the spring member 104 is the same as that of the vibration motor 1 according to the first embodiment.
  • FIGS. 11 and 13 four protrusions 133 a that protrude upward are formed on the upper surface of the magnet cover 133.
  • Two rectangular openings 141 a are formed in a region corresponding to the protruding portion 133 a of the plate portion 141 of the spring member 104. That is, as shown in FIG. 12, in a state where the magnet cover 133 and the plate portion 141 of the spring member 104 are bonded, the protruding portion 133 a of the magnet cover 133 is connected to the plate portion 141 through the opening 141 a of the plate portion 141. It protrudes above the upper surface.
  • the dish portion 141 is an example of the “attachment portion” in the present invention.
  • the magnet cover 133 has a side surface portion 133b that covers the side surface of the weight 32 in the X direction.
  • a sliding portion 133c is formed at the lower end of the side surface portion 133b.
  • the sliding portion 133c protrudes downward from the lower surfaces of the permanent magnet 31 and the weight 32.
  • the sliding part 133c is formed by being bent so that the lower end of the side part 133b is in the substantially horizontal direction.
  • the spring member 104 includes spring portions 142 and 143 in addition to the plate portion 141.
  • the spring portion 142 is in contact with the first portion 142a that contacts the side surface in the X direction of the magnet cover 133, the elastic deformation portion 142c having the folded portion 142b, and the side surface in the X direction of the upper case portion 22. It has the 2nd part 142d which touches, and the 3rd part 142e which contact
  • the elastic deformation portion 142c is separated from the side surface 133b of the magnet cover 133 with a bent portion 142f positioned near the center in the Y direction as a starting point.
  • the elastic deformation portion 142c is separated from the side surface of the upper case portion 22 from the second portion 142d toward the elastic deformation portion 142c, starting from a bent portion 142g located in the vicinity of the center portion in the Y direction.
  • the spring member 104 is bent along the shape of the side surface of the upper case portion 22 from the second portion 142d to the third portion 142e.
  • the third portion 142e and the side surface in the Y direction of the upper case portion 22 are fixed by welding.
  • the spring part 143 has the same configuration as the spring part 142.
  • the spring member 104 supports the movable portion 103 so that the movable portion 103 contacts the base plate 21. That is, the attractive force between the permanent magnet 31 and the upper case portion 22 is configured to be smaller than the attractive force between the permanent magnet 31 and the yoke 28 and the base plate 21 of the yoke-integrated coil portion 24.
  • the spring member 104 moves the movable portion 103 in the vertical direction (Z direction) with a force smaller than the predetermined force. It is configured to support. Thereby, the movable part 103 vibrates while sliding the sliding part 133c of the magnet cover 133 and the rail 21g of the base plate 21.
  • the vibration motor 101 according to the second embodiment of the present invention can obtain the following effects in addition to the effects (1) to (11).
  • the surface (inner surface) of the upper case portion 22 of the case 23 and the movable portion 103 are configured to come into contact with each other via the protruding portion 133a of the magnet cover 133.
  • the surface (inner surface) of the case 23 and the movable portion 103 are configured to contact each other via a rail 21g formed so as to extend along the moving direction of the movable portion 103. With this configuration, the case 23 and the movable part 103 can always be brought into contact with each other via the rail 21g at any position in the movement range due to the vibration of the movable part 103.
  • the surface of the case 23 and the magnet cover 133 are configured to contact each other via the rail 21g. By comprising in this way, it can prevent that the permanent magnet 31 and the case 23 slide. Thereby, since it is possible to prevent the permanent magnet 31 from being worn, the reliability of the vibration motor 1 can be improved.
  • the rail 21g is formed so that the surface of the contact portion of the rail 21g with the movable portion 103 is rounded. With this configuration, the contact area between the rail 21g and the movable portion 103 can be further reduced, and the rail 21g and the movable portion 103 can be smoothly slid.
  • FIG. 14 and FIG. 15 are diagrams for explaining an example of a portable device using the vibration motor according to any one of the first and second embodiments of the present invention.
  • FIG. 15 is a cross-sectional view of a portion including the vibration motor of FIG.
  • the vibration motor 1 (101) can be used for a mobile phone 500 or the like as shown in FIGS.
  • the mobile phone 500 includes a vibration motor 1 (101), a CPU 510 (see FIG. 15), and a display unit 520.
  • the vibration motor 1 (101) is disposed on the surface of the mobile phone 500 opposite to the side where the display unit 520 is disposed.
  • Display unit 520 is configured by a touch panel panel, and is configured to operate cellular phone 500 by pressing button unit 520 a displayed on display unit 520.
  • the vibration motor 1 (101) vibrates when it is detected that the button unit 520a displayed on the display unit 520 is pressed or when the manner mode is set when a call is received. It is controlled by the CPU 510.
  • the following effects can be obtained with the mobile phone 500 including the vibration motor 1 (101) according to the third embodiment of the present invention.
  • the vibration motor 1 (101) As a vibration source, the thickness of the vibration motor 1 (101) can be reduced, so that the mobile phone 500 can be reduced in thickness.
  • the present invention is not limited thereto.
  • three or more rails may be formed.
  • the rail may be formed to extend in a direction inclined by a predetermined angle from the vibration direction of the movable part.
  • the present invention is not limited to this. That is, a rail made of another member may be fixed to the base plate 21 by adhesion or the like.
  • the present invention is not limited to this, and the fluororesin processing may not be performed.
  • the movable member 3 (103) is movably supported by the spring member 4 (104).
  • the present invention is not limited to this, and a coil spring or a rubber member is used. An elastic member other than the leaf spring may be used.
  • the example in which the yoke-integrated coil portion 24 on which the planar coils 25 and 26 are disposed is disposed only on one surface side of the movable portion 3 (103) is shown.
  • the invention is not limited to this, and it may be arranged on both surfaces of the movable portion 3 (103).
  • the driving force of the movable part 3 (103) can be improved.
  • the response time of the movable part 3 (103) time until the movable part 3 (103) reaches a predetermined vibration amount
  • the rail 21g is provided on the base plate 21 and the sliding portion 133a of the magnet cover 133 is slid on the rail 21g.
  • the present invention is not limited to this. That is, like the magnet cover 633 of the vibration motor of the first modified example of the second embodiment shown in FIG. 16, the base plate 21 is provided with a protrusion 633b protruding downward (base plate side) on the sliding portion 633a of the magnet cover 633. It is good also as a structure which does not provide a rail. Also by this, the contact area between the base plate 21 and the magnet cover 133 can be reduced.
  • the present invention is not limited to this, and the vibration motor of the second modification of the second embodiment shown in FIG.
  • the resin 600 may be applied to the inner portion of the folded portion 142b. Thereby, the stress generated in the folded portion 142b by the resin 600 can be dispersed and the load can be reduced, so that the reliability of the spring member 104 can be improved.
  • the spring member 4 (104) is made of non-magnetic SUS. However, since the SUS may become magnetic when the spring member is processed, the magnetic dish portion. In order to prevent the magnetism from being shielded by 41 (141), an opening 41a (141a) is provided. Therefore, if the spring member is a material that does not have magnetism, the spring member need not be provided with an opening.
  • the opening 700a is provided only in the region corresponding to the protrusion, as in the spring member 700 of the vibration motor of the third modification of the second embodiment shown in FIG. It may be formed.
  • the case 23 (base plate 21 and upper case portion 22) is made of a magnetic material and used as a yoke.
  • the present invention is not limited to this. That is, even when the case is made of a non-magnetic material, the case covers the surface of the case (in particular, the upper surface (outer surface or inner surface) and the lower surface (outer surface or inner surface)) of the case.
  • a yoke made of a separate magnetic material may be fixed.
  • the present invention is not limited to this, and the movable member 3 contacts the case 23. You may let them.
  • the Q value of the vibration system of the vibration motor can be lowered by friction between the movable part and the rail. Thereby, the vibration of the movable part can be stabilized and the stop characteristic of the vibration can be improved.
  • the Q value of the vibration system of the vibration motor can be reduced by breaking the balance of the suction force in the vertical direction of the movable part between the yoke and the upper case part without contacting (sliding) the movable part and the rail. Can be lowered.
  • the width W3 in the X direction of the yoke-integrated coil portion 24 is larger than the width W2 in the X direction of the permanent magnet 31 has been described, but the present invention is not limited thereto.
  • the width W3 in the X direction of the yoke-integrated coil portion 24 may be smaller than the width W2 in the X direction of the permanent magnet 31.
  • the permanent magnet 31 is configured by the N pole surface 311a, the S pole surface 312a, the S pole surface 311b, and the N pole surface 312b has been described.
  • the present invention is not limited to this. I can't.
  • the permanent magnet 31 may be composed of only the N pole surface 311a and the S pole surface 312a, and the S pole surface 311b and the N pole surface 312b may not be provided. That is, it is only necessary to provide magnetic pole surfaces magnetized with different magnetism along the surfaces facing the planar coils 25 and 26.
  • the movable portion 3 (103) does not include a yoke (magnetic body) has been described.
  • the present invention is not limited to this, and the movable portion 3 (103) has a yoke ( (Magnetic material) may be disposed.
  • the yoke provided in the movable portion is arranged so as not to be positioned between the permanent magnet and the upper surface side yoke or between the permanent magnet and the lower surface side yoke.
  • the example which provided the magnet cover 33 (133) was shown in the said 1st and 2nd embodiment, this invention is not restricted to this, If the permanent magnet 31 and the weight 32 are assembled
  • the magnet cover may not be provided.

Abstract

Disclosed is a vibration motor wherein a movable part can be easily made to vibrate even with a yoke disposed on a fixed part. The vibration motor (1) is provided with: a movable part (3) containing a permanent magnet (31); planar coils (25 and 26) that are disposed opposite the movable part (3) and that, when power is supplied thereto, generate a magnetic force that moves the movable part (3); and a fixed part (2) including an upper yoke (top case part (22)) and a lower yoke (yoke (28) and base plate (21)) that are disposed opposite the movable part (3), respectively above and below said movable part (3), so as to sandwich the movable part (3) and the planar coils (25, 26).

Description

振動モータVibration motor
 本発明は、永久磁石を含む可動部と、コイルを含む固定部とを備えた振動モータに関する。 The present invention relates to a vibration motor including a movable part including a permanent magnet and a fixed part including a coil.
 従来、永久磁石を含む可動部と、コイルを含む固定部とを備えた振動モータが知られている(たとえば、特許文献1参照)。 Conventionally, a vibration motor including a movable part including a permanent magnet and a fixed part including a coil is known (for example, see Patent Document 1).
 上記特許文献1には、永久磁石を含む可動部と、箱状のケースおよび通電されることにより可動部を移動させる磁力を発生させるコイルを含む固定部とを備えた振動モータが開示されている。上記特許文献1では、可動部には、永久磁石の上面、下面および側面を取り囲むように配置されたヨークが設けられている。永久磁石をヨークにより取り囲むことによって、永久磁石の磁気がヨーク内に閉じ込められて磁気漏れが抑制されるので、永久磁石の磁力を可動部の駆動に有効に用いることが可能である。 Patent Document 1 discloses a vibration motor including a movable part including a permanent magnet, a box-shaped case, and a fixed part including a coil that generates a magnetic force to move the movable part when energized. . In Patent Document 1, the movable part is provided with a yoke disposed so as to surround the upper surface, the lower surface and the side surface of the permanent magnet. By surrounding the permanent magnet with the yoke, the magnetism of the permanent magnet is confined in the yoke and the magnetic leakage is suppressed, so that the magnetic force of the permanent magnet can be effectively used for driving the movable part.
 ここで、磁気漏れを抑制するためには、ヨークを可動部に設けず、固定部に設けることも考えられる。たとえば、上記特許文献1の振動モータにおいて、可動部の永久磁石の上面側のヨークを固定部(ケース)の上面に配置した場合にも、可動部のヨークと固定部のヨークとにより永久磁石の磁気を閉じ込めて磁気漏れを抑制することが可能である。 Here, in order to suppress magnetic leakage, it is conceivable that the yoke is not provided in the movable part but is provided in the fixed part. For example, in the vibration motor disclosed in Patent Document 1, even when the yoke on the upper surface side of the permanent magnet of the movable portion is disposed on the upper surface of the fixed portion (case), the permanent magnet is formed by the yoke of the movable portion and the yoke of the fixed portion. It is possible to confine magnetism and suppress magnetic leakage.
特開2002-200460号公報Japanese Patent Laid-Open No. 2002-200460
 しかしながら、可動部の永久磁石の上面側のヨークを固定部(ケース)の上面に配置した場合には、可動部の永久磁石と固定部のヨークとが引き付けあうので、可動部が固定部のヨーク側(上側)に移動しようとする力が可動部に働いてしまう。この場合、この可動部が上側に移動しようとする力が可動部の振動動作に対して抵抗力として働くので、可動部を振動させにくくなってしまうという問題点がある。 However, when the yoke on the upper surface side of the permanent magnet of the movable part is disposed on the upper surface of the fixed part (case), the permanent magnet of the movable part and the yoke of the fixed part attract each other. The force to move to the side (upper side) acts on the movable part. In this case, since the force that the movable part tries to move upward acts as a resistance force to the vibration operation of the movable part, there is a problem that it becomes difficult to vibrate the movable part.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、ヨークを固定部に配置した場合にも、容易に可動部を振動させることが可能な振動モータを提供することである。 The present invention has been made to solve the above-described problems, and one object of the present invention is to make it possible to easily vibrate the movable portion even when the yoke is disposed on the fixed portion. It is to provide a vibration motor.
 上記目的を達成するために、この発明の一の局面による振動モータは、永久磁石を含む可動部と、可動部に対して対向するように配置され、通電されることにより可動部を移動させる磁力を発生させるコイルと、可動部およびコイルを挟み込むように可動部の上面側と下面側との両方にそれぞれ可動部に対して対向するように配置された上面側ヨークおよび下面側ヨークを含む固定部とを備えている。 In order to achieve the above object, a vibration motor according to one aspect of the present invention includes a movable part including a permanent magnet and a magnetic force that is arranged to face the movable part and moves the movable part when energized. And a fixed portion including a movable portion and an upper surface side yoke and a lower surface side yoke arranged to face the movable portion on both the upper surface side and the lower surface side of the movable portion so as to sandwich the coil. And.
 この発明の一の局面による振動モータでは、上記の構成により、ヨークを固定部に配置した場合にも、容易に可動部を振動させることができる。 In the vibration motor according to one aspect of the present invention, the movable portion can be vibrated easily even when the yoke is disposed on the fixed portion due to the above configuration.
本発明の第1実施形態による振動モータの構造を示す斜視図である。It is a perspective view which shows the structure of the vibration motor by 1st Embodiment of this invention. 図1に示した第1実施形態による振動モータを示す分解斜視図である。It is a disassembled perspective view which shows the vibration motor by 1st Embodiment shown in FIG. 図1に示した第1実施形態による振動モータを示す分解斜視図である。It is a disassembled perspective view which shows the vibration motor by 1st Embodiment shown in FIG. 図1の50-50線に沿った断面図である。FIG. 5 is a cross-sectional view taken along line 50-50 in FIG. 図4の51-51線に沿った断面図である。FIG. 5 is a cross-sectional view taken along line 51-51 in FIG. 図1に示した本発明の第1実施形態による振動モータのコイル部を示す平面図である。It is a top view which shows the coil part of the vibration motor by 1st Embodiment of this invention shown in FIG. 図1に示した本発明の第1実施形態による振動モータのコイル部を示す模式的な断面図である。It is typical sectional drawing which shows the coil part of the vibration motor by 1st Embodiment of this invention shown in FIG. 図1に示した本発明の第1実施形態による振動モータの可動部およびバネ部材を示す分解斜視図である。It is a disassembled perspective view which shows the movable part and spring member of a vibration motor by 1st Embodiment of this invention shown in FIG. 実施例(本発明の第1実施形態)による振動モータの振動特性のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the vibration characteristic of the vibration motor by the Example (1st Embodiment of this invention). 比較例による振動モータの振動特性のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the vibration characteristic of the vibration motor by a comparative example. 本発明の第2実施形態による振動モータを示す分解斜視図である。It is a disassembled perspective view which shows the vibration motor by 2nd Embodiment of this invention. 本発明の第2実施形態による振動モータの図4に対応する断面図である。It is sectional drawing corresponding to FIG. 4 of the vibration motor by 2nd Embodiment of this invention. 本発明の第2実施形態による振動モータの図5に対応する断面図である。It is sectional drawing corresponding to FIG. 5 of the vibration motor by 2nd Embodiment of this invention. 本発明の第3実施形態による携帯電話を示す平面図である。It is a top view which shows the mobile telephone by 3rd Embodiment of this invention. 本発明の第3実施形態による携帯電話を示す断面図である。It is sectional drawing which shows the mobile telephone by 3rd Embodiment of this invention. 本発明の第2実施形態の第1変形例による振動モータの磁石カバーを示す斜視図である。It is a perspective view which shows the magnet cover of the vibration motor by the 1st modification of 2nd Embodiment of this invention. 本発明の第2実施形態の第2変形例による振動モータのバネ部材を示す斜視図である。It is a perspective view which shows the spring member of the vibration motor by the 2nd modification of 2nd Embodiment of this invention. 本発明の第1実施形態の第1変形例による振動モータのバネ部材を示す斜視図である。It is a perspective view which shows the spring member of the vibration motor by the 1st modification of 1st Embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1実施形態)
 まず、図1~図8を参照して、本発明の第1実施形態による振動モータ1(リニア駆動型振動モータ)の構造を説明する。
(First embodiment)
First, the structure of the vibration motor 1 (linear drive vibration motor) according to the first embodiment of the present invention will be described with reference to FIGS.
 本発明の第1実施形態による振動モータ1は、携帯機器(図示せず)などに内蔵され、その携帯機器に振動を付与するための装置である。図1に示すように、振動モータ1は、固定部2と、固定部2に対して振動する可動部3と、可動部3を振動可能に支持するバネ部材4とからなる。 The vibration motor 1 according to the first embodiment of the present invention is a device that is built in a portable device (not shown) or the like and applies vibration to the portable device. As shown in FIG. 1, the vibration motor 1 includes a fixed portion 2, a movable portion 3 that vibrates with respect to the fixed portion 2, and a spring member 4 that supports the movable portion 3 so as to vibrate.
 固定部2は、図2および図3に示すように、ベースプレート(下部ケース部)21および上部ケース部22からなる金属製の箱状のケース23と、ベースプレート21に固定されたヨーク一体型コイル部24とを含んでいる。ベースプレート21および上部ケース部
22は、磁性を有する金属材料(たとえば、SPCC)からなる。
As shown in FIGS. 2 and 3, the fixing portion 2 includes a metal box-like case 23 including a base plate (lower case portion) 21 and an upper case portion 22, and a yoke-integrated coil portion fixed to the base plate 21. 24. The base plate 21 and the upper case portion 22 are made of a magnetic metal material (for example, SPCC).
 ベースプレート21と上部ケース部22とは6箇所の溶接部分23a、23b、23c、23d、23eおよび23f(図1参照)において溶接されることにより固定されている。具体的には、図1~図3に示すように、ベースプレート21のX方向の両端部に、突出部21aが形成されており、上部ケース部22の側面の下端には、ベースプレート21の突出部21aが嵌りこむ切欠部22aが形成されている。この突出部21aと切欠部22aとの嵌合部分において2箇所(溶接部分23aおよび23b)で溶接されている。また、ベースプレート21の側面21bの上端部21cと、上部ケース部22の上面22bのY方向の端部22cとが、ケース23のY方向の両端でそれぞれ2箇所ずつ(溶接部分23c、23d、23eおよび23f)で溶接されている。 The base plate 21 and the upper case portion 22 are fixed by welding at six welding portions 23a, 23b, 23c, 23d, 23e, and 23f (see FIG. 1). Specifically, as shown in FIGS. 1 to 3, protrusions 21a are formed at both ends in the X direction of the base plate 21, and the protrusions of the base plate 21 are formed at the lower ends of the side surfaces of the upper case part 22. A notch 22a into which 21a is fitted is formed. Two portions (welded portions 23a and 23b) are welded at the fitting portion between the protruding portion 21a and the cutout portion 22a. Further, the upper end portion 21c of the side surface 21b of the base plate 21 and the end portion 22c in the Y direction of the upper surface 22b of the upper case portion 22 are respectively provided at two positions at both ends in the Y direction of the case 23 (welded portions 23c, 23d, 23e). And 23f).
 ケース23(ベースプレート21および上部ケース部22)は、磁性材料から構成されることにより、ケース23から外部へ磁気が漏れるのを抑制するための磁気シールド(ヨーク)としての機能を有している。図2~図4に示すように、ベースプレート21の下面には開口部21dが形成されており、ヨーク一体型コイル部24は開口部21d内に嵌め込まれるようにして配置されている。ベースプレート21とヨーク一体型コイル部24とは、2箇所の接着部分において接着されることにより固定されている。具体的には、開口部21dに対応する領域においてベースプレート21の側面21bから曲げ加工により内側に突出する部分21e(図2および図3参照)の下面と、ヨーク一体型コイル部24の上面のY方向の両端部とが線状に接着されている。なお、ベースプレート21および上部ケース部22は、それぞれ、本発明の「下面側ヨーク」および「上面側ヨーク」の一例である。 The case 23 (the base plate 21 and the upper case part 22) has a function as a magnetic shield (yoke) for suppressing the leakage of magnetism from the case 23 to the outside by being made of a magnetic material. As shown in FIGS. 2 to 4, an opening 21d is formed in the lower surface of the base plate 21, and the yoke-integrated coil portion 24 is disposed so as to be fitted into the opening 21d. The base plate 21 and the yoke integrated coil portion 24 are fixed by being bonded at two bonding portions. Specifically, in the region corresponding to the opening 21d, the lower surface of a portion 21e (see FIGS. 2 and 3) that protrudes inwardly from the side surface 21b of the base plate 21 and the upper surface of the yoke-integrated coil unit 24 are Y. Both ends in the direction are linearly bonded. The base plate 21 and the upper case portion 22 are examples of the “lower surface side yoke” and the “upper surface side yoke” of the present invention, respectively.
 また、図2に示すように、ベースプレート21の上面21f(ケース23の下側の内面)には、上方に突出する一対のレール21gがベースプレート21と一体的に設けられている。レール21gは、開口部21dを挟んでX方向の両側の領域のそれぞれに一対ずつ設けられている。一対のレール21gは、ベースプレート21のX方向の端部(突出部21a側の端部)から開口部21dまで、可動部3の振動方向であるX方向に延びるように形成されている。一対のレール21gは、可動部3のY方向の両端部より若干内側部分に対応する位置に配置されている。レール21gの表面は丸みを帯びており、レール21gが延びる方向(X方向)と直交する方向(Y方向)の断面におけるレール21gの表面の形状は、略円弧形状である。 Further, as shown in FIG. 2, a pair of rails 21 g protruding upward is provided integrally with the base plate 21 on the upper surface 21 f of the base plate 21 (the lower inner surface of the case 23). A pair of rails 21g is provided in each of the regions on both sides in the X direction across the opening 21d. The pair of rails 21g is formed so as to extend in the X direction, which is the vibration direction of the movable portion 3, from the end portion of the base plate 21 in the X direction (end portion on the protruding portion 21a side) to the opening portion 21d. The pair of rails 21g are arranged at positions slightly corresponding to the inner side portions from both ends of the movable portion 3 in the Y direction. The surface of the rail 21g is rounded, and the shape of the surface of the rail 21g in the cross section in the direction (Y direction) orthogonal to the direction in which the rail 21g extends (X direction) is a substantially arc shape.
 また、レール21gの表面を含むベースプレート21の表面の全体は、フッ素樹脂加工が施されている。具体的には、ニムフロン処理(ニムフロンは登録商標)が施されている。ニムフロン処理とは、摩擦係数の低いテフロン(ポリテトラフルオロエチレン:PTFE)(テフロンは登録商標)と無電解Niとの双方の特性を併せ持つメッキ処理である。ニムフロン処理は、無電解メッキ液にPTFE粒子を混ぜてメッキすることにより行われる。また、同様にして、上部ケース部22の表面の全体にもニムフロン処理が施されている。 Further, the entire surface of the base plate 21 including the surface of the rail 21g is subjected to fluororesin processing. Specifically, Nimflon treatment (Nimflon is a registered trademark) is applied. The Nimflon treatment is a plating treatment having both characteristics of Teflon (polytetrafluoroethylene: PTFE) (Teflon is a registered trademark) having a low friction coefficient and electroless Ni. The Nimflon treatment is performed by mixing PTFE particles in an electroless plating solution and plating. Similarly, the entire surface of the upper case portion 22 is also treated with Nimflon.
 ヨーク一体型コイル部24は、図6および図7に示すように、2層配線構造からなる扁平形状の平面コイル25および26と、ヨーク一体型コイル部24の下面側に露出した実装用端子27aおよび実装用端子27bを含む配線層27と、磁性材料(たとえば、SPCC、珪素鋼板など)からなるヨーク28とを含んでいる。平面コイル25、26、配線層27およびヨーク28は、絶縁性の樹脂29によって一体的な部品として成形されている。より詳細には、図7に示すように、平面コイル25、ヨーク28が樹脂29aによって一体化されており、樹脂29aの上面および下面にそれぞれ形成された平面コイル26および配線層27が樹脂29bにより覆われている。そして、実装用端子27aおよび実装用端子27bを含む配線層27の一部が、下面側の樹脂29bの開口部29cを介して露出している。平面コイル25および26は、それぞれ、平面的に見て、矩形形状の輪郭を有するとともに、内側から外側に向かってXY面(X方向とY方向とにより形成される面)方向に広がるように渦巻状に形成されている。なお、平面コイル25および26は、それぞれ、本発明の「コイル」の一例である。ヨーク28は、本発明の「下面側ヨーク」の一例である。 As shown in FIGS. 6 and 7, the yoke-integrated coil portion 24 includes flat planar coils 25 and 26 having a two-layer wiring structure, and mounting terminals 27a exposed on the lower surface side of the yoke-integrated coil portion 24. And a wiring layer 27 including the mounting terminals 27b and a yoke 28 made of a magnetic material (for example, SPCC, silicon steel plate, etc.). The planar coils 25, 26, the wiring layer 27 and the yoke 28 are formed as an integral part with an insulating resin 29. More specifically, as shown in FIG. 7, the planar coil 25 and the yoke 28 are integrated with a resin 29a, and the planar coil 26 and the wiring layer 27 formed on the upper and lower surfaces of the resin 29a are made of a resin 29b. Covered. A part of the wiring layer 27 including the mounting terminal 27a and the mounting terminal 27b is exposed through the opening 29c of the resin 29b on the lower surface side. Each of the planar coils 25 and 26 has a rectangular outline in plan view, and spirals so as to spread from the inside toward the outside in the XY plane (surface formed by the X direction and the Y direction). It is formed in a shape. Each of the planar coils 25 and 26 is an example of the “coil” in the present invention. The yoke 28 is an example of the “lower surface side yoke” in the present invention.
 平面コイル25および26は、1本の電流線により電気的に直列接続されている。具体的には、図6に示すように、平面コイル25を構成する第1層目電流線25aは、上側から見た場合に外側から内側に向かって反時計回りに渦巻状に巻回されている。図6および図7に示すように、平面コイル25の第1層目電流線25aの外側の端部は、厚み方向に延びる接続線25bを介してヨーク一体型コイル部24の下面の表面に露出した実装用端子27aに接続されている。 The planar coils 25 and 26 are electrically connected in series by one current line. Specifically, as shown in FIG. 6, the first-layer current line 25a constituting the planar coil 25 is wound spirally counterclockwise from the outside when viewed from above. Yes. As shown in FIGS. 6 and 7, the outer end of the first-layer current line 25a of the planar coil 25 is exposed on the surface of the lower surface of the yoke-integrated coil section 24 through a connecting line 25b extending in the thickness direction. Connected to the mounting terminal 27a.
 図5に示すように、平面コイル26を構成する第2層目電流線26aは、上側から見た場合に内側から外側に向かって反時計回りに渦巻状に巻回されている。図6および図7に示すように、平面コイル26の第2層目電流線26aの外側の端部は、厚み方向(Z方向)に延びる接続線26bを介して実装用端子27bに接続されている。そして、平面コイル25を構成する第1層目電流線25aの内側の端部と、平面コイル26を構成する第2層目電流線26aの内側の端部とが、平面的に見てヨーク一体型コイル部24の中心部分24a近傍において互いに接続されている。 As shown in FIG. 5, the second layer current line 26a constituting the planar coil 26 is wound in a spiral shape counterclockwise from the inside to the outside when viewed from above. As shown in FIGS. 6 and 7, the outer end of the second-layer current line 26a of the planar coil 26 is connected to the mounting terminal 27b via a connection line 26b extending in the thickness direction (Z direction). Yes. The inner end portion of the first layer current line 25a constituting the planar coil 25 and the inner end portion of the second layer current line 26a constituting the planar coil 26 are the same as the yoke when viewed in plan. The body coil portions 24 are connected to each other in the vicinity of the central portion 24a.
 図5および図6に示すように、平面コイル25および26は、中心部分にX方向の幅W4を有する所定のスペースを設けて渦巻状に巻回されている。平面コイル25および26の最外周のX方向の幅W1(図5参照)は、永久磁石31のX方向の幅W2(図8参照)と略等しい。ヨーク一体型コイル部24のX方向の幅W3(図5参照)は、永久磁石31のX方向の幅W2よりも大きい。また、図4に示すように、平面コイル25および26の電流線が巻回された部分の中心線O1およびO2は、後述する第1磁石311の中心線O3および第2磁石312の中心線O4よりも外側に位置している。 As shown in FIGS. 5 and 6, the planar coils 25 and 26 are wound in a spiral shape with a predetermined space having a width W4 in the X direction at the center. The width W1 (see FIG. 5) in the X direction of the outermost periphery of the planar coils 25 and 26 is substantially equal to the width W2 (see FIG. 8) in the X direction of the permanent magnet 31. The width W3 (see FIG. 5) in the X direction of the yoke-integrated coil portion 24 is larger than the width W2 in the X direction of the permanent magnet 31. Further, as shown in FIG. 4, the center lines O1 and O2 of the portions around which the current lines of the planar coils 25 and 26 are wound are a center line O3 of the first magnet 311 and a center line O4 of the second magnet 312 described later. It is located outside.
 可動部3は、図8に示すように、平板状の永久磁石31と、比重の大きい材料(たとえば、タングステン)からなる錘32と、永久磁石31および錘32を覆う非磁性材料(たとえば、りん青銅)の磁石カバー33とからなる。なお、可動部3にはヨーク(磁性体)は含まれていない。永久磁石31は、フェライトやネオジウムなどの強磁性材料からなる永久磁石である。永久磁石31は平面的に見て略矩形状に形成されている。錘32は平面的に見て外形が略矩形状の枠状に形成されているとともに、永久磁石31と略同じ形状の開口部32aを有している。錘32の開口部32a内に永久磁石31が嵌め込まれている。永久磁石31および錘32は略等しい厚みを有している。磁石カバー33は、永久磁石31および錘32の上面の全体と、錘32のX方向の側面の全体と、錘32の下面の一部とを覆うようにして永久磁石31および錘32と一体的に固定されている。磁石カバー33の下面は、永久磁石31および錘32の下面よりも下方に位置している。また、磁石カバー33の表面の全体には、ニムフロン処理が施されている。 As shown in FIG. 8, the movable part 3 includes a flat permanent magnet 31, a weight 32 made of a material having a large specific gravity (for example, tungsten), and a non-magnetic material (for example, phosphorous) that covers the permanent magnet 31 and the weight 32. Bronze) magnet cover 33. The movable part 3 does not include a yoke (magnetic material). The permanent magnet 31 is a permanent magnet made of a ferromagnetic material such as ferrite or neodymium. The permanent magnet 31 is formed in a substantially rectangular shape when seen in a plan view. The weight 32 is formed in a frame shape whose outer shape is substantially rectangular when viewed in a plan view, and has an opening 32 a having substantially the same shape as the permanent magnet 31. A permanent magnet 31 is fitted in the opening 32 a of the weight 32. The permanent magnet 31 and the weight 32 have substantially the same thickness. The magnet cover 33 is integrated with the permanent magnet 31 and the weight 32 so as to cover the entire upper surface of the permanent magnet 31 and the weight 32, the entire side surface in the X direction of the weight 32, and a part of the lower surface of the weight 32. It is fixed to. The lower surface of the magnet cover 33 is located below the lower surfaces of the permanent magnet 31 and the weight 32. Further, the entire surface of the magnet cover 33 is subjected to Nimflon treatment.
 永久磁石31は、図4および図8に示すように、厚み方向(Z方向)に一対の磁極が着磁された第1磁石311および第2磁石312からなる2つの永久磁石により構成されている。具体的には、可動部3の中心線を境界として矢印X1方向側に第1磁石311が配置されるとともに、矢印X2方向側に第2磁石312が配置されるように構成されている。そして、第1磁石311は、ヨーク一体型コイル部24に対向する側をN極に着磁されたN極面311aとし、その反対側をS極に着磁されたS極面311bとしている。また、第2磁石312は、ヨーク一体型コイル部24に対向する側をS極に着磁されたS極面312aとし、その反対側をN極に着磁されたN極面312bとしている。 As shown in FIGS. 4 and 8, the permanent magnet 31 is composed of two permanent magnets including a first magnet 311 and a second magnet 312 in which a pair of magnetic poles are magnetized in the thickness direction (Z direction). . Specifically, the first magnet 311 is arranged on the arrow X1 direction side with the center line of the movable portion 3 as a boundary, and the second magnet 312 is arranged on the arrow X2 direction side. In the first magnet 311, the side facing the yoke-integrated coil unit 24 is an N pole surface 311 a magnetized to N pole, and the opposite side is an S pole surface 311 b magnetized to S pole. In the second magnet 312, the side facing the yoke-integrated coil portion 24 is an S pole surface 312 a magnetized to the S pole, and the opposite side is an N pole surface 312 b magnetized to the N pole.
 また、第1磁石311と第2磁石312とは、ヨーク一体型コイル部24側の表面において、N極面311aとS極面312aとが隣接するとともに、ヨーク一体型コイル部24側と反対側の表面において、S極面311bとN極面312bとが隣接するように配置されている。そして、第1磁石311と第2磁石312とは、それぞれ、互いに隣接するN極面311aおよびS極面312a間による引力と、S極面311bおよびN極面312b間による引力とにより密着した状態で保持されているとともに、接着剤などにより互いに固定されている。 The first magnet 311 and the second magnet 312 are adjacent to the N pole surface 311a and the S pole surface 312a on the surface on the yoke integrated coil portion 24 side, and opposite to the yoke integrated coil portion 24 side. The S pole face 311b and the N pole face 312b are disposed adjacent to each other. The first magnet 311 and the second magnet 312 are in close contact with each other due to the attractive force between the N pole surface 311a and the S pole surface 312a adjacent to each other and the attractive force between the S pole surface 311b and the N pole surface 312b. And are fixed to each other by an adhesive or the like.
 以上により、可動部3は、図4および図5に示すように、永久磁石31の磁極面がヨーク一体型コイル部24と平行になるように対向して配置されている。そして、可動部3は、バネ部材4に支持された状態で、ケース23の内部においてヨーク一体型コイル部24に対して平行な矢印X1およびX2方向に直線移動する。ここで、平行とは、互いに平行な状態だけでなく、可動部3が直線移動する際の妨げにならない程度に平行な状態からずれた状態(所定の角度傾斜した状態)を含んでいる。また、このとき、ケース23のY方向の側面は、可動部3が矢印X1およびX2方向に移動する際のガイドとしての機能を有する。 As described above, as shown in FIGS. 4 and 5, the movable portion 3 is disposed to face the magnetic pole surface of the permanent magnet 31 so as to be parallel to the yoke-integrated coil portion 24. The movable portion 3 is linearly moved in the directions of arrows X1 and X2 parallel to the yoke-integrated coil portion 24 inside the case 23 while being supported by the spring member 4. Here, the term “parallel” includes not only a state parallel to each other but also a state deviated from a parallel state (a state inclined at a predetermined angle) to the extent that the movable portion 3 does not hinder linear movement. At this time, the side surface in the Y direction of the case 23 has a function as a guide when the movable portion 3 moves in the directions of the arrows X1 and X2.
 バネ部材4は、図5および図8に示すように、皿部41と、皿部41の両側に設けられた一対のバネ部42および43とからなる。皿部41、バネ部42および43は、板状の非磁性材料(たとえば、SUS304)からなる。皿部41の下面と磁石カバー33の上面とは接着されることにより固定されている。皿部41の中央部には、矩形状の開口部41aが形成されている。平面的に見て、開口部41aと永久磁石31とは略同じ大きさとなるように構成されている。皿部41を構成するSUS304は基本的に非磁性であるが、加工中に磁性を帯びる場合があるので、皿部により永久磁石31の磁力線がシールドされてしまう場合がある。ここで、この開口部41aを設けることにより、永久磁石31からの磁力線がバネ部材4によりシールドされてしまうことが抑制される。これにより、ヨーク一体型コイル部24のヨーク28およびベースプレート21と永久磁石31との間の吸引力(下向きの吸引力)の全部または一部を、上部ケース部22と永久磁石31との間の吸引力(上向きの吸引力)により相殺している。なお、皿部41は、本発明の「取付部」の一例である。 As shown in FIGS. 5 and 8, the spring member 4 includes a dish part 41 and a pair of spring parts 42 and 43 provided on both sides of the dish part 41. The plate part 41 and the spring parts 42 and 43 are made of a plate-like nonmagnetic material (for example, SUS304). The lower surface of the dish part 41 and the upper surface of the magnet cover 33 are fixed by being bonded. A rectangular opening 41 a is formed at the center of the dish 41. The opening 41a and the permanent magnet 31 are configured to have substantially the same size when viewed in a plan view. The SUS 304 constituting the dish part 41 is basically non-magnetic, but may be magnetized during processing, and thus the magnetic field lines of the permanent magnet 31 may be shielded by the dish part. Here, by providing the opening 41 a, it is possible to suppress the lines of magnetic force from the permanent magnet 31 from being shielded by the spring member 4. Thereby, all or part of the attractive force (downward attractive force) between the yoke 28 and the base plate 21 of the yoke-integrated coil portion 24 and the permanent magnet 31 is reduced between the upper case portion 22 and the permanent magnet 31. It is offset by the suction force (upward suction force). The dish portion 41 is an example of the “attachment portion” in the present invention.
 バネ部42は、図4および図5に示すように、可動部3の矢印X1方向側において磁石カバー33の側面と上部ケース部22の側面とを突っ張るようにして設けられている。また、バネ部材4は、可動部3がケース23(ベースプレート21および上部ケース部22)に当接しないように支持している。すなわち、永久磁石31と上部ケース部22との間の吸引力と、永久磁石31とヨーク一体型コイル部24のヨーク28およびベースプレート21との吸引力とに差があることに起因して可動部3が所定の力で上方向または下方向に引っ張られる場合にも、バネ部材4は、その可動部3に加わる上下方向の吸引力よりも大きい力(可動部3に加わる上下方向の吸引力に耐える強度)により可動部3を上下方向に支持するように構成されている。 As shown in FIGS. 4 and 5, the spring portion 42 is provided so as to stretch the side surface of the magnet cover 33 and the side surface of the upper case portion 22 on the arrow X1 direction side of the movable portion 3. The spring member 4 supports the movable portion 3 so as not to contact the case 23 (the base plate 21 and the upper case portion 22). That is, the movable portion is caused by the difference between the attractive force between the permanent magnet 31 and the upper case portion 22 and the attractive force between the permanent magnet 31 and the yoke 28 and the base plate 21 of the yoke-integrated coil portion 24. Even when 3 is pulled upward or downward with a predetermined force, the spring member 4 has a force larger than the vertical suction force applied to the movable portion 3 (the vertical suction force applied to the movable portion 3). The movable part 3 is configured to be supported in the vertical direction by the strength to withstand.
 より具体的には、バネ部42は、皿部41と一体的に形成された第1部分42aと、第1部分42aおよび上部ケース部22に溶接された第2部分42bとを含んでいる。第1部分42aおよび第2部分42bは板バネである。第1部分42aは、矢印Y1方向の端部において磁石カバー33の側面と面状に当接しており、矢印Y2方向の端部が磁石カバー33の側面から離間するように湾曲している。第2部分42bは、矢印Y1方向の端部において上部ケース部22の矢印X1方向の側面と面状に当接しており、矢印Y2方向の端部が上部ケース部22の矢印X1方向の側面から離間するように湾曲している。第1部分42aの矢印Y2方向の端部と第2部分42bの矢印Y2方向の端部とは面接触した状態で溶接されている。また、バネ部43は、バネ部42と同様の構成を有しており、第1部分42aおよび第2部分42bと同様の構造を有する第1部分43aおよび第2部分43bを含んでいる。上記の構成により、バネ部42および43は、可動部3を互いに逆方向に付勢し合うように構成されている。 More specifically, the spring part 42 includes a first part 42 a formed integrally with the dish part 41, and a second part 42 b welded to the first part 42 a and the upper case part 22. The first portion 42a and the second portion 42b are leaf springs. The first portion 42a is in contact with the side surface of the magnet cover 33 at the end in the arrow Y1 direction, and is curved so that the end in the arrow Y2 direction is separated from the side surface of the magnet cover 33. The second portion 42b is in planar contact with the side surface in the arrow X1 direction of the upper case portion 22 at the end portion in the arrow Y1 direction, and the end portion in the arrow Y2 direction is from the side surface in the arrow X1 direction of the upper case portion 22. It is curved to be separated. The end portion in the arrow Y2 direction of the first portion 42a and the end portion in the arrow Y2 direction of the second portion 42b are welded in a surface contact state. The spring portion 43 has a configuration similar to that of the spring portion 42, and includes a first portion 43a and a second portion 43b having the same structure as the first portion 42a and the second portion 42b. With the above configuration, the spring portions 42 and 43 are configured to bias the movable portion 3 in opposite directions.
 また、振動モータ1は、たとえば、携帯機器のマザーボードに形成された端子(図示せず)に実装用端子27aおよび27bが半田付けされることにより、携帯機器に固定的に取り付けられる。 The vibration motor 1 is fixedly attached to the portable device by soldering the mounting terminals 27a and 27b to terminals (not shown) formed on the mother board of the portable device, for example.
 次に、図4~図6を参照して、本発明の第1実施形態による振動モータ1の動作を説明する。 Next, the operation of the vibration motor 1 according to the first embodiment of the present invention will be described with reference to FIGS.
 まず、実装用端子27aおよび27bを介して、平面コイル25および26を構成する電流線に駆動電流が供給される。これにより、可動部3のN極面311aおよびS極面312a間において発生する上下方向の磁界と直交する方向(矢印Y1およびY2方向)の電流が平面コイル25および平面コイル26に流れる。この際、平面コイル25および平面コイル26の中央部分(渦巻の中心部分)よりも平面的に見て矢印X1方向側の部分(以下、右側部分)に流れる電流の向きと、中央部分よりも矢印X2方向側の部分(以下、左側部分)に流れる電流の向きは逆である。そして、永久磁石31が作る磁界により、電流が流れる平面コイル25および26の右側部分に対して矢印X1方向にローレンツ力が働き、その反力が第1磁石311のN極面311aに矢印X2方向に働く。同時に、平面コイル25および26の左側部分に対して矢印X1方向にローレンツ力が働き、その反力が第2磁石312のS極面312aに矢印X2方向に働く。以上により、可動部3が矢印X2方向に直線移動される。 First, a drive current is supplied to the current lines constituting the planar coils 25 and 26 via the mounting terminals 27a and 27b. Thereby, a current in a direction (arrow Y1 and Y2 directions) perpendicular to the vertical magnetic field generated between the N pole surface 311a and the S pole surface 312a of the movable part 3 flows in the planar coil 25 and the planar coil 26. At this time, the direction of the current flowing in the portion on the arrow X1 direction side (hereinafter referred to as the right portion) when viewed in plan from the central portion of the planar coil 25 and the planar coil 26 (the central portion of the spiral), and the arrow from the central portion. The direction of the current flowing through the portion on the X2 direction side (hereinafter, the left portion) is opposite. The Lorentz force acts in the direction of the arrow X1 on the right side portions of the planar coils 25 and 26 through which the current flows due to the magnetic field generated by the permanent magnet 31, and the reaction force acts on the N pole surface 311a of the first magnet 311 in the direction of the arrow X2 To work. At the same time, a Lorentz force acts in the direction of the arrow X1 on the left portions of the planar coils 25 and 26, and the reaction force acts on the south pole face 312a of the second magnet 312 in the direction of the arrow X2. As described above, the movable portion 3 is linearly moved in the arrow X2 direction.
 そして、所定時間後、反対方向の駆動電流を供給することによって、上記と同様の作用により、可動部3が矢印X1方向に直線移動される。このようにして、所定の周波数で駆動電流の方向を切り替えることによって、可動部3は、矢印X1方向と矢印X2方向とに交互に直線移動されて往復運動される。この際、第1磁石311のN極面311aと第2磁石312のS極面312aとの間に発生する磁束は、ヨーク28およびベースプレート21に吸収されてヨーク28およびベースプレート21内を選択的に通過するので、ケース23の外側にまで及ぶ磁束はほとんど発生しない。また、第1磁石311のS極面311bと第2磁石312のN極面312bとの間に発生する大部分の磁束は、上部ケース部22に吸収されて上部ケース部22内を選択的に通過するので、ケース23の外側にまで及ぶ磁束はほとんど発生しない。 Then, after a predetermined time, by supplying a drive current in the opposite direction, the movable part 3 is linearly moved in the direction of the arrow X1 by the same action as described above. In this way, by switching the direction of the drive current at a predetermined frequency, the movable portion 3 is linearly moved alternately in the directions of the arrows X1 and X2 and reciprocated. At this time, the magnetic flux generated between the N-pole surface 311a of the first magnet 311 and the S-pole surface 312a of the second magnet 312 is absorbed by the yoke 28 and the base plate 21 and selectively inside the yoke 28 and the base plate 21. Since it passes through, almost no magnetic flux that extends to the outside of the case 23 is generated. Further, most of the magnetic flux generated between the S pole surface 311b of the first magnet 311 and the N pole surface 312b of the second magnet 312 is absorbed by the upper case portion 22 and selectively inside the upper case portion 22. Since it passes through, almost no magnetic flux that extends to the outside of the case 23 is generated.
 また、このとき、可動部3には、平面コイル25および26のうち、X方向に延びる電流線から発生する電磁力により、それぞれ、矢印Y1およびY2方向に沿った中心に向かう方向の力、または、中心から矢印Y1およびY2方向に沿った外側に引っ張る方向の力が加えられている。 At this time, the movable part 3 has a force in a direction toward the center along the directions of the arrows Y1 and Y2, respectively, due to the electromagnetic force generated from the current line extending in the X direction among the planar coils 25 and 26, or A force in a direction of pulling outward from the center along the directions of the arrows Y1 and Y2 is applied.
 本発明の第1実施形態による振動モータ1では、以下の効果を得ることができる。 In the vibration motor 1 according to the first embodiment of the present invention, the following effects can be obtained.
 (1)横振動(矢印X1およびX2方向の振動)の振動モータ1を構成することによって、縦振動(上下方向(Z方向)の振動)の振動モータに比べて薄型化を図りやすい。 (1) By constructing the vibration motor 1 of lateral vibration (vibration in the directions of arrows X1 and X2), it is easy to reduce the thickness as compared with the vibration motor of vertical vibration (vibration in the vertical direction (Z direction)).
 (2)平面コイル25および26の表面に沿った方向(矢印X1およびX2方向)に沿って移動可能な可動部3を設けた。これによって、上下方向(Z方向)に厚みが大きいコイルを用いて上下方向に可動部3を直線移動させる場合に比べて、可動部3の移動範囲(上下方向への移動空間)を設ける必要がないので、その方向の厚みを小さくするための設計の自由度を確保することができる。その結果、薄型化を図ることが可能な振動モータ1を提供することができる。 (2) The movable part 3 is provided that is movable along the direction (arrow X1 and X2 directions) along the surfaces of the planar coils 25 and 26. Accordingly, it is necessary to provide a moving range (moving space in the vertical direction) of the movable part 3 as compared with the case where the movable part 3 is linearly moved in the vertical direction using a coil having a large thickness in the vertical direction (Z direction). Therefore, the degree of freedom of design for reducing the thickness in that direction can be ensured. As a result, the vibration motor 1 that can be thinned can be provided.
 (3)平面コイル25および26を可動部3の移動方向に沿って扁平状になるように渦巻状にした。これによって、コイルの巻き面が可動部の移動方向に対して直交する方向に配置される場合に比べて、コイルの巻き面による高さ方向(高さ方向)への領域を設ける必要がなくなり、ヨーク一体型コイル部24の厚みを小さくすることができる。したがって、振動モータ1の薄型化を図ることができる。 (3) The planar coils 25 and 26 were spirally formed so as to be flat along the moving direction of the movable part 3. This eliminates the need to provide a region in the height direction (height direction) due to the coil winding surface, compared to the case where the coil winding surface is arranged in a direction perpendicular to the moving direction of the movable part. The thickness of the yoke-integrated coil portion 24 can be reduced. Therefore, the vibration motor 1 can be thinned.
 (4)永久磁石31を含む可動部3にヨークを設けず、平面コイル25および26を含む固定部2に、可動部3の上面側と下面側との両方にそれぞれ可動部3に対して対向するように配置された上面側ヨーク(ヨークとして機能する上部ケース部22)および下面側ヨーク(ヨーク28およびヨークとして機能するベースプレート21)を設けた。このように構成することによって、可動部3の永久磁石31と上部ケース部22との間の吸引力(上方向の吸引力)と、可動部3の永久磁石31とヨーク28およびベースプレート21との間の吸引力(下方向の吸引力)とのバランスを取ることができる。これにより、ヨークを固定部2に配置したことに起因して可動部3に加わる上下方向の力を小さくすることができる。これにより、ヨークを固定部2に配置した場合にも、容易に可動部3を振動させることができる。 (4) The movable part 3 including the permanent magnet 31 is not provided with a yoke, and the fixed part 2 including the planar coils 25 and 26 is opposed to the movable part 3 on both the upper surface side and the lower surface side thereof. The upper surface side yoke (upper case portion 22 that functions as a yoke) and the lower surface side yoke (the yoke 28 and the base plate 21 that functions as a yoke) are provided. With this configuration, the attractive force (upward attractive force) between the permanent magnet 31 of the movable portion 3 and the upper case portion 22, the permanent magnet 31 of the movable portion 3, the yoke 28, and the base plate 21 It is possible to balance the suction force (downward suction force). As a result, it is possible to reduce the vertical force applied to the movable portion 3 due to the fact that the yoke is disposed on the fixed portion 2. Thereby, even when the yoke is arranged on the fixed portion 2, the movable portion 3 can be easily vibrated.
 (5)上面側ヨーク(ヨークとして機能する上部ケース部22)により可動部3が可動部3の上面側に吸引される力と、下面側ヨーク(ヨーク28およびヨークとして機能するベースプレート21)により可動部3が可動部3の下面側に吸引される力の少なくとも一部とを相殺している。このように構成することによって、可動部3に加わる上下方向の力を容易に調整することができる。これにより、振動モータ1の振動系のQ値を容易に調整することができる。ここで、Q値とは、振動状態を特徴付ける無次元数で、共振する系の振動の持続特性を表す量である。Q値が高いと振動が長く続き、低いと振動がすぐに減少する。 (5) Movable portion 3 is attracted to the upper surface side of movable portion 3 by upper surface side yoke (upper case portion 22 functioning as a yoke) and movable by lower surface side yoke (yoke 28 and base plate 21 functioning as a yoke) The part 3 cancels out at least a part of the force attracted to the lower surface side of the movable part 3. By comprising in this way, the force of the up-down direction added to the movable part 3 can be adjusted easily. Thereby, the Q value of the vibration system of the vibration motor 1 can be easily adjusted. Here, the Q value is a dimensionless number that characterizes the vibration state, and is an amount that represents the sustained characteristic of vibration of the resonating system. When the Q value is high, the vibration continues for a long time, and when it is low, the vibration decreases immediately.
 (6)平面コイル25および26を、可動部3の下面側のみに設けた。第1実施形態では、上記効果(4)で述べたように、容易に可動部3を振動させることができるので、平面コイル25および26を可動部3の上面に設けずに下面側のみに設けた場合にも、十分に可動部3を振動させることができる。 (6) The planar coils 25 and 26 are provided only on the lower surface side of the movable part 3. In the first embodiment, as described in the above effect (4), the movable part 3 can be easily vibrated, so that the planar coils 25 and 26 are not provided on the upper surface of the movable part 3 but provided only on the lower surface side. In this case, the movable part 3 can be sufficiently vibrated.
 (7)バネ部材4に、可動部3の上面を覆うように可動部3に固定される皿部41を設け、皿部41に開口部41aを設けた。これにより、皿部41が磁性体である場合であっても、開口部41aを介して永久磁石31の磁力線を上部ケース部22側に通すことができる。これにより、可動部3の上面を皿部41により覆った場合にも、上部ケース部22と永久磁石31との間の吸引力(上方向の吸引力)が減少することを抑制することができる。これにより、可動部3の上方向の吸引力と下方向の吸引力とのバランスが崩れることを抑制することができる。 (7) The spring member 4 is provided with a dish part 41 fixed to the movable part 3 so as to cover the upper surface of the movable part 3, and the dish part 41 is provided with an opening 41a. Thereby, even if it is a case where the plate part 41 is a magnetic body, the magnetic force line of the permanent magnet 31 can be passed to the upper case part 22 side through the opening part 41a. Thereby, even when the upper surface of the movable part 3 is covered with the dish part 41, it is possible to suppress a reduction in the attractive force (upward attractive force) between the upper case part 22 and the permanent magnet 31. . As a result, it is possible to suppress the balance between the upward suction force and the downward suction force of the movable part 3 from being lost.
 (8)可動部3に非磁性体からなる磁石カバー33を設けた。これにより、永久磁石31の磁力線がシールドされることなく永久磁石31を磁石カバー33により支持することができる。 (8) A magnet cover 33 made of a non-magnetic material is provided on the movable part 3. Thereby, the permanent magnet 31 can be supported by the magnet cover 33 without shielding the magnetic lines of force of the permanent magnet 31.
 (9)振動モータ1の構成により、振動量-周波数特性(振動モータ1が振動させる対象物(たとえば、携帯電話)の振動量と入力電圧の周波数との関係)におけるQ値を低く(振動量が大きくなる周波数帯を大きく)しながら、振動モータ1が振動させる対象物の振動量を増加させることができる。Q値を低くすることにより、Q値が高い場合のように正確な周波数の入力電圧を入力しなければ振動量が大きくならない場合(入力電圧が共振周波数から少しずれると振動量が急激に減少する場合)と異なり、より広い周波数帯で大きい振動量を得ることができる。これにより、振動モータ1の部品の製造誤差、組立誤差などにより実際の共振周波数(f0)が設計値からずれてしまった場合にも、十分な振動量を得ることができる。また、Q値を小さくすることができるので、共振状態から振動が停止するまでの時間を小さくすることができる。これにより、振動モータ1の停止特性を向上させることができる。 (9) Due to the configuration of the vibration motor 1, the Q value in the vibration amount-frequency characteristics (relation between the vibration amount of the object (eg, mobile phone) to be vibrated by the vibration motor 1 and the frequency of the input voltage) is reduced (vibration amount The amount of vibration of the object to be vibrated by the vibration motor 1 can be increased. If the Q value is lowered, the amount of vibration does not increase unless an input voltage with an accurate frequency is input as in the case where the Q value is high (if the input voltage deviates slightly from the resonance frequency, the amount of vibration decreases rapidly. Unlike the case), a large amount of vibration can be obtained in a wider frequency band. As a result, a sufficient amount of vibration can be obtained even when the actual resonance frequency (f0) deviates from the design value due to manufacturing errors or assembly errors of components of the vibration motor 1. Further, since the Q value can be reduced, the time from the resonance state until the vibration stops can be reduced. Thereby, the stop characteristic of the vibration motor 1 can be improved.
 (10)可動部3にヨークを設けず、固定部2にヨークを設けた。このように構成することによって、ローレンツ力のみならず、永久磁石31と固定部2のヨーク(ヨーク28、ベースプレート21および上部ケース部22)との間の吸引力を可動部3の振動に寄与させることができる。これにより、振動モータ1が振動させる対象物の振動量を大きくすることができる。振動モータ1では、上記のようにQ値を小さくした場合にも、振動量が減少することを抑制することができる。 (10) The movable part 3 was not provided with a yoke, and the fixed part 2 was provided with a yoke. With this configuration, not only the Lorentz force but also the attractive force between the permanent magnet 31 and the yoke (the yoke 28, the base plate 21 and the upper case portion 22) of the fixed portion 2 contributes to the vibration of the movable portion 3. be able to. Thereby, the vibration amount of the target object which the vibration motor 1 vibrates can be enlarged. In the vibration motor 1, it is possible to suppress a decrease in the vibration amount even when the Q value is reduced as described above.
 (11)平面コイル25および26の中心部分にX方向の幅W4を有するスペースを設けた。これにより、可動部3が矢印X1方向に移動する際、平面コイル25および26の右側部分と第2磁石312のS極面312aとの間に作用する矢印X1方向に働くローレンツ力を抑制することができる。これにより、永久磁石31(第2磁石312)に対して矢印X2方向に働くローレンツ力の反力を抑制することができる。また、可動部3が矢印X2方向に移動する際、平面コイル25および26の左側部分と第1磁石311のN極面311aとの間に作用する矢印X2方向に働くローレンツ力を抑制することができる。これにより、永久磁石31(第1磁石311)に対して矢印X1方向に働くローレンツ力の反力を抑制することができる。このように、可動部3の移動方向と反対方向に働く力(ローレンツ力の反力)が抑制されるので、可動部3の駆動量を増加させることができる。 (11) A space having a width W4 in the X direction is provided in the central portion of the planar coils 25 and 26. Thereby, when the movable part 3 moves in the arrow X1 direction, the Lorentz force acting in the arrow X1 direction acting between the right side portions of the planar coils 25 and 26 and the S pole surface 312a of the second magnet 312 is suppressed. Can do. Thereby, the reaction force of the Lorentz force acting on the permanent magnet 31 (second magnet 312) in the arrow X2 direction can be suppressed. Further, when the movable part 3 moves in the direction of the arrow X2, it is possible to suppress the Lorentz force acting in the direction of the arrow X2 acting between the left portions of the planar coils 25 and 26 and the N pole surface 311a of the first magnet 311. it can. Thereby, the reaction force of the Lorentz force acting in the arrow X1 direction with respect to the permanent magnet 31 (first magnet 311) can be suppressed. Thus, since the force (reaction force of Lorentz force) acting in the direction opposite to the moving direction of the movable part 3 is suppressed, the driving amount of the movable part 3 can be increased.
 次に、上記(9)の効果を検証したシミュレーションについて説明する。 Next, a simulation for verifying the effect (9) will be described.
 このシミュレーションでは、実施例として、可動部にヨークを設けずに固定部の上下に磁性体(ヨーク)を配置した上記第1実施形態の構造を用いてQ値を小さくしたモデル(実施例)を想定した。比較例として、上記特許文献1のように可動部に永久磁石を囲うヨークを設けたモデル(比較例)を想定した。そして、実施例および比較例について、振動特性を検証した。 In this simulation, as an example, a model (example) in which the Q value is reduced by using the structure of the first embodiment in which the movable body is not provided with a yoke and magnetic bodies (yokes) are arranged above and below the fixed portion. Assumed. As a comparative example, a model (comparative example) in which a yoke surrounding a permanent magnet is provided on a movable part as in Patent Document 1 described above. And the vibration characteristic was verified about the Example and the comparative example.
 実施例および比較例のシミュレーション結果をそれぞれ図9および図10に示す。図9および図10では、横軸が入力電圧の周波数(共振周波数がf0)であり、縦軸が振動モータが振動させる対象物の加速度および振動量である。実施例では、可動部の上下方向の吸引力を調節することにより可動部の振動に対する抵抗力を付与することによりQ値を小さく(Q値=10)している。その一方、比較例では、可動部に上下方向の力が働かず、可動部の振動に対する抵抗力が小さいので、Q値が大きく(Q値=40)なっている。 The simulation results of the example and the comparative example are shown in FIGS. 9 and 10, respectively. 9 and 10, the horizontal axis represents the frequency of the input voltage (resonance frequency is f0), and the vertical axis represents the acceleration and vibration amount of the object that the vibration motor vibrates. In the embodiment, the Q value is reduced (Q value = 10) by adjusting the suction force in the vertical direction of the movable part to apply the resistance force against the vibration of the movable part. On the other hand, in the comparative example, since the force in the vertical direction does not act on the movable part and the resistance force against the vibration of the movable part is small, the Q value is large (Q value = 40).
 実施例および比較例について、加速度が所定の値g0を上回るように振動モータを駆動する場合について考察する。 Considering the case of driving the vibration motor so that the acceleration exceeds the predetermined value g0 for the example and the comparative example.
 図9および図10に示すように、実施例における加速度がg0を上回る周波数幅A1は、比較例における加速度がg0を上回る周波数幅A2よりも大きくなっている。すなわち、実施例では比較例よりもQ値を下げることにより、入力電圧の共振周波数f0に対するずれの許容幅が比較例よりも大きくなっている。これは、振動モータの部品の製造誤差および組立誤差が生じた場合にも、実施例の方が比較例よりも製品間のバラツキが小さくなる(所望の性能を得られる割合が高くなる)ことを示している。 9 and 10, the frequency width A1 in which the acceleration in the example exceeds g0 is larger than the frequency width A2 in which the acceleration in the comparative example exceeds g0. That is, in the embodiment, by allowing the Q value to be lower than that in the comparative example, the allowable range of deviation of the input voltage with respect to the resonance frequency f0 is larger than that in the comparative example. This means that even when manufacturing errors and assembly errors of vibration motor parts occur, the embodiment has less variation between products than the comparative example (the ratio of obtaining desired performance is higher). Show.
 また、入力周波数(入力電圧の周波数)の許容幅に対応する振動量のずれの最大幅は、実施例がB1であるのに対して比較例はB1より大きいB2である。すなわち、実施例では、製品間における振動量の最大誤差がB1であり、比較例では最大誤差がB2となることを示している。したがって、振動量の最大誤差が大きい比較例では、可動部をケースに衝突させないためには、ケースの内壁間の距離(上部ケース部22のX方向の側面間の距離(図1参照))をより大きくとるように設計する必要がある。実施例では、振動量の最大誤差が小さいので、ケースの内壁間の距離を小さく設計することができる。その結果、振動モータのサイズを小さくすることが可能であると考えられる。 Further, the maximum width of the vibration amount deviation corresponding to the allowable width of the input frequency (frequency of the input voltage) is B1 in the example, but B2 larger than B1 in the comparative example. That is, in the example, the maximum error of the vibration amount between products is B1, and in the comparative example, the maximum error is B2. Therefore, in the comparative example in which the maximum error of the vibration amount is large, in order not to cause the movable part to collide with the case, the distance between the inner walls of the case (the distance between the side surfaces in the X direction of the upper case part 22 (see FIG. 1)). It needs to be designed to be larger. In the embodiment, since the maximum error of the vibration amount is small, the distance between the inner walls of the case can be designed to be small. As a result, it is considered that the size of the vibration motor can be reduced.
 (第2実施形態)
 次に、図11~図13を参照して、第2実施形態による振動モータ101の構造について説明する。この第2実施形態では、可動部3がケース23に当接(摺動)しない上記第1実施形態と異なり、可動部103がケース23に当接(摺動)する例について説明する。
(Second Embodiment)
Next, the structure of the vibration motor 101 according to the second embodiment will be described with reference to FIGS. In the second embodiment, an example in which the movable portion 103 contacts (slids) the case 23 will be described, unlike the first embodiment in which the movable portion 3 does not contact (slide) the case 23.
 図11~図13に示すように、振動モータ101は、固定部2(ケース23およびヨーク一体型コイル部24)と、可動部103と、非磁性材料(たとえば、SUS304)からなるバネ部材104とを備えている。可動部103は、永久磁石31と、錘32と、非磁性材料(たとえば、りん青銅)からなる磁石カバー133とを含んでいる。磁石カバー133およびバネ部材104の構造以外の構造については、上記第1実施形態による振動モータ1と同様である。 As shown in FIGS. 11 to 13, the vibration motor 101 includes a fixed portion 2 (case 23 and yoke-integrated coil portion 24), a movable portion 103, and a spring member 104 made of a nonmagnetic material (for example, SUS304). It has. The movable portion 103 includes a permanent magnet 31, a weight 32, and a magnet cover 133 made of a nonmagnetic material (for example, phosphor bronze). The structure other than the magnet cover 133 and the spring member 104 is the same as that of the vibration motor 1 according to the first embodiment.
 図11および図13に示すように、磁石カバー133の上面に上方に突出する突出部133aが4つ形成されている。バネ部材104の皿部141の突出部133aに対応する領域には2つの矩形状の開口部141aが形成されている。すなわち、図12に示すように、磁石カバー133とバネ部材104の皿部141とが接着された状態で、磁石カバー133の突出部133aが皿部141の開口部141aを介して皿部141の上面よりも上方に突出している。これにより、可動部103が上部ケース部22に引っ張られて上部ケース部22側に移動した場合にも、可動部103と上部ケース部22とは突出部133aを介して(4つの突出部133aの先端部の4点で)当接するように構成されている。なお、皿部141は、本発明の「取付部」の一例である。 As shown in FIGS. 11 and 13, four protrusions 133 a that protrude upward are formed on the upper surface of the magnet cover 133. Two rectangular openings 141 a are formed in a region corresponding to the protruding portion 133 a of the plate portion 141 of the spring member 104. That is, as shown in FIG. 12, in a state where the magnet cover 133 and the plate portion 141 of the spring member 104 are bonded, the protruding portion 133 a of the magnet cover 133 is connected to the plate portion 141 through the opening 141 a of the plate portion 141. It protrudes above the upper surface. Thereby, even when the movable part 103 is pulled by the upper case part 22 and moves to the upper case part 22 side, the movable part 103 and the upper case part 22 are connected via the protrusions 133a (of the four protrusions 133a). It is configured to abut (at four points on the tip). The dish portion 141 is an example of the “attachment portion” in the present invention.
 また、図12に示すように、磁石カバー133は、錘32のX方向の側面を覆う側面部133bを有している。側面部133bの下端には、永久磁石31および錘32の下面よりも下方に突出する摺動部133cが形成されている。摺動部133cは、側面部133bの下端が外側に略水平方向となるように曲げられることにより形成されている。 As shown in FIG. 12, the magnet cover 133 has a side surface portion 133b that covers the side surface of the weight 32 in the X direction. A sliding portion 133c is formed at the lower end of the side surface portion 133b. The sliding portion 133c protrudes downward from the lower surfaces of the permanent magnet 31 and the weight 32. The sliding part 133c is formed by being bent so that the lower end of the side part 133b is in the substantially horizontal direction.
 また、図11および図13に示すように、バネ部材104は、皿部141に加えて、バネ部142および143を含んでいる。バネ部142は、磁石カバー133のX方向の側面と面状に当接する第1部分142aと、折り返し部142bを有する弾性変形部142cと、上部ケース部22のX方向の側面と面状に当接する第2部分142dと、上部ケース部22のY方向の側面と面状に当接する第3部分142eとを有している。第1部分142aから弾性変形部142cに向かって、Y方向の中央部近傍に位置する折曲部142fを起点にして弾性変形部142cが磁石カバー133の側面133bから離間している。同様に、第2部分142dから弾性変形部142cに向かって、Y方向の中央部近傍に位置する折曲部142gを起点にして弾性変形部142cが上部ケース部22の側面から離間している。また、バネ部材104は、第2部分142dから第3部分142eにかけて上部ケース部22の側面の形状に沿って折り曲げられている。第3部分142eと上部ケース部22のY方向の側面とは溶接されることにより固定されている。また、バネ部143は、バネ部142と同様の構成を有している。 11 and 13, the spring member 104 includes spring portions 142 and 143 in addition to the plate portion 141. The spring portion 142 is in contact with the first portion 142a that contacts the side surface in the X direction of the magnet cover 133, the elastic deformation portion 142c having the folded portion 142b, and the side surface in the X direction of the upper case portion 22. It has the 2nd part 142d which touches, and the 3rd part 142e which contact | abuts the side surface of the Y direction of the upper case part 22 planarly. From the first portion 142a toward the elastic deformation portion 142c, the elastic deformation portion 142c is separated from the side surface 133b of the magnet cover 133 with a bent portion 142f positioned near the center in the Y direction as a starting point. Similarly, the elastic deformation portion 142c is separated from the side surface of the upper case portion 22 from the second portion 142d toward the elastic deformation portion 142c, starting from a bent portion 142g located in the vicinity of the center portion in the Y direction. The spring member 104 is bent along the shape of the side surface of the upper case portion 22 from the second portion 142d to the third portion 142e. The third portion 142e and the side surface in the Y direction of the upper case portion 22 are fixed by welding. Further, the spring part 143 has the same configuration as the spring part 142.
 図12に示すように、バネ部材104は、可動部103がベースプレート21に当接するように可動部103を支持している。すなわち、永久磁石31と上部ケース部22との間の吸引力が、永久磁石31とヨーク一体型コイル部24のヨーク28およびベースプレート21との吸引力よりも小さくなるように構成されている。この吸引力の差に起因して可動部103が所定の力で下方向に引っ張られる場合に、バネ部材104は、その所定の力よりも小さい力により可動部103を上下方向(Z方向)に支持するように構成されている。これにより、可動部103は、磁石カバー133の摺動部133cとベースプレート21のレール21gとを摺動させながら振動する。 As shown in FIG. 12, the spring member 104 supports the movable portion 103 so that the movable portion 103 contacts the base plate 21. That is, the attractive force between the permanent magnet 31 and the upper case portion 22 is configured to be smaller than the attractive force between the permanent magnet 31 and the yoke 28 and the base plate 21 of the yoke-integrated coil portion 24. When the movable portion 103 is pulled downward with a predetermined force due to the difference in the suction force, the spring member 104 moves the movable portion 103 in the vertical direction (Z direction) with a force smaller than the predetermined force. It is configured to support. Thereby, the movable part 103 vibrates while sliding the sliding part 133c of the magnet cover 133 and the rail 21g of the base plate 21.
 本発明の第2実施形態による振動モータ101では、上記(1)~(11)の効果に加え、以下の効果を得ることができる。 The vibration motor 101 according to the second embodiment of the present invention can obtain the following effects in addition to the effects (1) to (11).
 (12)ケース23のヨーク28が配置されている側の表面(内面)と可動部103とは、レール21gを介して当接するように構成されている。このように構成することによって、ケース23(ベースプレート21)と可動部103とが摺動した場合にも、ベースプレート21の内面と可動部103とが面状に接触する場合と異なり、接触面積を小さくすることができるので、ベースプレート21と可動部103との間の摩擦力を低減させることができる。これにより、可動部103の振動量が低下することを抑制することができる。 (12) The surface (inner surface) of the case 23 on the side where the yoke 28 is disposed and the movable portion 103 are configured to abut via the rail 21g. With this configuration, even when the case 23 (base plate 21) and the movable portion 103 slide, the contact area is reduced unlike the case where the inner surface of the base plate 21 and the movable portion 103 are in planar contact. Therefore, the frictional force between the base plate 21 and the movable part 103 can be reduced. Thereby, it can suppress that the vibration amount of the movable part 103 falls.
 (13)ケース23の上部ケース部22の表面(内面)と可動部103とは、磁石カバー133の突出部133aを介して当接するように構成されている。このように構成することによって、ケース23(上部ケース部22)と可動部103とが摺動した場合にも、上部ケース部22の内面と可動部103とが面状に接触する場合と異なり、接触面積を小さくすることができるので、上部ケース部22と可動部103との間の摩擦力を低減させることができる。これにより、可動部103の振動量が低下することを抑制することができる。 (13) The surface (inner surface) of the upper case portion 22 of the case 23 and the movable portion 103 are configured to come into contact with each other via the protruding portion 133a of the magnet cover 133. By comprising in this way, even when the case 23 (upper case part 22) and the movable part 103 slide, unlike the case where the inner surface of the upper case part 22 and the movable part 103 contact in a planar shape, Since the contact area can be reduced, the frictional force between the upper case portion 22 and the movable portion 103 can be reduced. Thereby, it can suppress that the vibration amount of the movable part 103 falls.
 (14)ケース23の表面(内面)と可動部103とを、可動部103の移動方向に沿って延びるように形成されたレール21gを介して当接するように構成している。このように構成することによって、可動部103の振動による移動範囲のどの位置においても、常にケース23と可動部103とをレール21gを介して当接させることができる。 (14) The surface (inner surface) of the case 23 and the movable portion 103 are configured to contact each other via a rail 21g formed so as to extend along the moving direction of the movable portion 103. With this configuration, the case 23 and the movable part 103 can always be brought into contact with each other via the rail 21g at any position in the movement range due to the vibration of the movable part 103.
 (15)ケース23の表面と磁石カバー133とを、レール21gを介して当接するように構成している。このように構成することによって、永久磁石31とケース23とが摺動することを防止することができる。これにより、永久磁石31が磨耗することを防止することができるので、振動モータ1の信頼性を向上させることができる。 (15) The surface of the case 23 and the magnet cover 133 are configured to contact each other via the rail 21g. By comprising in this way, it can prevent that the permanent magnet 31 and the case 23 slide. Thereby, since it is possible to prevent the permanent magnet 31 from being worn, the reliability of the vibration motor 1 can be improved.
 (16)レール21gの可動部103との当接部分の表面が丸みを帯びるようにレール21gを形成している。このように構成することによって、レール21gと可動部103との接触面積をより減少させることができるとともに、滑らかにレール21gと可動部103とを摺動させることができる。 (16) The rail 21g is formed so that the surface of the contact portion of the rail 21g with the movable portion 103 is rounded. With this configuration, the contact area between the rail 21g and the movable portion 103 can be further reduced, and the rail 21g and the movable portion 103 can be smoothly slid.
 (17)レール21gを含むベースプレート21の表面の全体、上部ケース部22の表面の全体および突出部133aを含む磁石カバー133の表面の全体にフッ素樹脂加工を施している。このように構成することによって、レール21gと磁石カバー133との間の摩擦係数および突出部133aと上部ケース部22との間の摩擦係数を低減させることができる。これにより、ケース23と可動部103とが摺動した場合にも、摩擦により可動部103の運動エネルギーが低下することを抑制することができる。したがって、可動部103の振動量が減少することを抑制することができる。 (17) The entire surface of the base plate 21 including the rail 21g, the entire surface of the upper case portion 22, and the entire surface of the magnet cover 133 including the protruding portion 133a are subjected to fluororesin processing. By comprising in this way, the friction coefficient between the rail 21g and the magnet cover 133 and the friction coefficient between the protrusion part 133a and the upper case part 22 can be reduced. Thereby, even when the case 23 and the movable part 103 slide, it can suppress that the kinetic energy of the movable part 103 falls by friction. Therefore, it is possible to suppress a decrease in the vibration amount of the movable portion 103.
 (第3実施形態)
 図14および図15は、それぞれ、本発明の第1および第2実施形態のいずれかによる振動モータを用いた携帯機器の一例を説明するための図である。なお、図15は、図14の振動モータを含む部分の一断面である。
(Third embodiment)
FIG. 14 and FIG. 15 are diagrams for explaining an example of a portable device using the vibration motor according to any one of the first and second embodiments of the present invention. FIG. 15 is a cross-sectional view of a portion including the vibration motor of FIG.
 本発明の第1および第2実施形態のいずれかによる振動モータ1(101)は、図14および図15に示すように、携帯電話500などに用いることが可能である。携帯電話500は、振動モータ1(101)と、CPU510(図15参照)と、表示部520とを備えている。振動モータ1(101)は、携帯電話500の表示部520が配置された側とは反対側の面に配置されている。表示部520は、タッチパネル方式のパネルにより構成され、表示部520に表示されたボタン部520aを押圧することにより携帯電話500を操作するように構成されている。そして、振動モータ1(101)は、表示部520に表示されたボタン部520aが押圧されたことを検知した場合や電話を着信した際にマナーモードに設定されている場合などに振動するようにCPU510で制御される。 The vibration motor 1 (101) according to any of the first and second embodiments of the present invention can be used for a mobile phone 500 or the like as shown in FIGS. The mobile phone 500 includes a vibration motor 1 (101), a CPU 510 (see FIG. 15), and a display unit 520. The vibration motor 1 (101) is disposed on the surface of the mobile phone 500 opposite to the side where the display unit 520 is disposed. Display unit 520 is configured by a touch panel panel, and is configured to operate cellular phone 500 by pressing button unit 520 a displayed on display unit 520. The vibration motor 1 (101) vibrates when it is detected that the button unit 520a displayed on the display unit 520 is pressed or when the manner mode is set when a call is received. It is controlled by the CPU 510.
 本発明の第3実施形態による振動モータ1(101)を備えた携帯電話500では、以下の効果を得ることができる。 The following effects can be obtained with the mobile phone 500 including the vibration motor 1 (101) according to the third embodiment of the present invention.
 (18)上記の振動モータ1(101)を振動源として備えることによって、上記振動モータ1(101)が薄型化される分、携帯電話500の薄型化を図ることができる。 (18) By providing the vibration motor 1 (101) as a vibration source, the thickness of the vibration motor 1 (101) can be reduced, so that the mobile phone 500 can be reduced in thickness.
 (19)上記の振動モータ1(101)を備えることによって、振動モータ1(101)からの磁束漏れが抑制されている分、携帯電話500に鉄などの強磁性体が近づいた場合でも、それによる振動モータ1(101)の動作への影響を軽減することができる。 (19) Since the magnetic flux leakage from the vibration motor 1 (101) is suppressed by providing the vibration motor 1 (101), even when a ferromagnetic material such as iron approaches the mobile phone 500, The influence on the operation of the vibration motor 1 (101) due to can be reduced.
 なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.
 たとえば、上記第1および第2実施形態では、ベースプレート21に一対のレール21gを可動部3の振動方向に沿って延びるように形成した例を示したが、本発明はこれに限られない。たとえば、レールは3本以上形成してもよい。また、レールを可動部の振動方向から所定の角度傾いた方向に延びるように形成してもよい。 For example, in the first and second embodiments described above, an example in which the pair of rails 21g are formed on the base plate 21 so as to extend along the vibration direction of the movable portion 3, but the present invention is not limited thereto. For example, three or more rails may be formed. Further, the rail may be formed to extend in a direction inclined by a predetermined angle from the vibration direction of the movable part.
 また、上記第1および第2実施形態では、ベースプレート21にレール21gを一体的に形成した例を示したが、本発明はこれに限られない。すなわち、ベースプレート21に別部材からなるレールを接着などにより固定してもよい。 In the first and second embodiments, the example in which the rail 21g is integrally formed with the base plate 21 has been shown, but the present invention is not limited to this. That is, a rail made of another member may be fixed to the base plate 21 by adhesion or the like.
 また、上記第1および第2実施形態では、レール21gの表面にフッ素樹脂加工を施した例を示したが、本発明はこれに限らず、フッ素樹脂加工を施さなくてもよい。 Further, in the first and second embodiments, the example in which the surface of the rail 21g is subjected to the fluororesin processing is shown, but the present invention is not limited to this, and the fluororesin processing may not be performed.
 また、上記第1および第2実施形態では、バネ部材4(104)により可動部3(103)を移動可能に支持する例を示したが、本発明はこれに限らず、コイルバネまたはゴム部材などの板バネ以外の弾性部材であってもよい。 In the first and second embodiments, the movable member 3 (103) is movably supported by the spring member 4 (104). However, the present invention is not limited to this, and a coil spring or a rubber member is used. An elastic member other than the leaf spring may be used.
 また、上記第1および第2実施形態では、平面コイル25および26が配置されたヨーク一体型コイル部24を可動部3(103)の一方の表面側にのみ配置する例を示したが、本発明はこれに限らず、可動部3(103)の両側の表面にそれぞれ配置してもよい。これにより、可動部3(103)の両側から駆動されるので、可動部3(103)の駆動力を向上させることができる。その結果、可動部3(103)の応答時間(可動部3(103)が所定の振動量に達するまでの時間)を短縮させることができる。 Further, in the first and second embodiments, the example in which the yoke-integrated coil portion 24 on which the planar coils 25 and 26 are disposed is disposed only on one surface side of the movable portion 3 (103) is shown. The invention is not limited to this, and it may be arranged on both surfaces of the movable portion 3 (103). Thereby, since it drives from the both sides of the movable part 3 (103), the driving force of the movable part 3 (103) can be improved. As a result, the response time of the movable part 3 (103) (time until the movable part 3 (103) reaches a predetermined vibration amount) can be shortened.
 また、上記第2実施形態では、ベースプレート21にレール21gを設け、レール21g上と磁石カバー133の摺動部133aとを摺動させる例を示したが、本発明はこれに限られない。すなわち、図16に示す第2実施形態の第1変形例の振動モータの磁石カバー633のように、磁石カバー633の摺動部633aに下方(ベースプレート側)に突出する突起633bを設け、ベースプレート21にレールを設けない構成としてもよい。これによっても、ベースプレート21と磁石カバー133との接触面積を小さくすることができる。 In the second embodiment, the rail 21g is provided on the base plate 21 and the sliding portion 133a of the magnet cover 133 is slid on the rail 21g. However, the present invention is not limited to this. That is, like the magnet cover 633 of the vibration motor of the first modified example of the second embodiment shown in FIG. 16, the base plate 21 is provided with a protrusion 633b protruding downward (base plate side) on the sliding portion 633a of the magnet cover 633. It is good also as a structure which does not provide a rail. Also by this, the contact area between the base plate 21 and the magnet cover 133 can be reduced.
 また、上記第2実施形態では、折り返し部142bを有するバネ部材104を用いた例を示したが、本発明はこれに限らず、図17に示す第2実施形態の第2変形例の振動モータのバネ部材のように、折り返し部142bの内側部分に樹脂600を塗布してもよい。これにより、樹脂600により折り返し部142bに生じる応力を分散させて負荷を軽減させることができるので、バネ部材104の信頼性を向上させることができる。 In the second embodiment, the example using the spring member 104 having the folded portion 142b is shown. However, the present invention is not limited to this, and the vibration motor of the second modification of the second embodiment shown in FIG. Like the spring member, the resin 600 may be applied to the inner portion of the folded portion 142b. Thereby, the stress generated in the folded portion 142b by the resin 600 can be dispersed and the load can be reduced, so that the reliability of the spring member 104 can be improved.
 また、上記第1および第2実施形態では、バネ部材4(104)の皿部41(141)に開口部41a(141a)を設けた例を示したが、本発明はこれに限られない。第1および第2実施形態では、バネ部材4(104)を非磁性のSUSから構成しているが、バネ部材の加工時にSUSが磁性を帯びてしまう場合があるため、磁性を帯びた皿部41(141)により磁気がシールドされてしまうことを抑制するために開口部41a(141a)を設けた。したがって、バネ部材が磁性を帯びることがない材料であれば、バネ部材に開口部を設けなくてもよい。第2実施形態のように突出部を設ける場合には、図18に示す第2実施形態の第3変形例の振動モータのバネ部材700のように、突出部に対応する領域のみに開口700aを形成してもよい。 In the first and second embodiments, the example in which the opening 41a (141a) is provided in the plate 41 (141) of the spring member 4 (104) is shown, but the present invention is not limited to this. In the first and second embodiments, the spring member 4 (104) is made of non-magnetic SUS. However, since the SUS may become magnetic when the spring member is processed, the magnetic dish portion. In order to prevent the magnetism from being shielded by 41 (141), an opening 41a (141a) is provided. Therefore, if the spring member is a material that does not have magnetism, the spring member need not be provided with an opening. When the protrusion is provided as in the second embodiment, the opening 700a is provided only in the region corresponding to the protrusion, as in the spring member 700 of the vibration motor of the third modification of the second embodiment shown in FIG. It may be formed.
 また、上記第1および第2実施形態では、ケース23および磁石カバー33(133)にニムフロン処理を行った例を示したが、本発明はこれに限られない。すなわち、通常のテフロンコーティング(ライニング)処理を行ってもよい。また、フッ素樹脂加工としては、PTFEのみならず、他のフッ素樹脂でもよい。 In the first and second embodiments, an example in which the case 23 and the magnet cover 33 (133) are subjected to the Nimflon treatment has been shown, but the present invention is not limited to this. That is, normal Teflon coating (lining) treatment may be performed. Moreover, as fluororesin processing, not only PTFE but other fluororesins may be used.
 また、上記第1および第2実施形態では、ケース23(ベースプレート21および上部ケース部22)を磁性材料から構成してヨークとして用いた例を示したが、本発明はこれに限られない。すなわち、ケースを非磁性材料から構成した場合であっても、ケースの表面(特に、ケースの上側の表面(外面または内面)と、下側の表面(外面または内面))を覆うようにケースと別体の磁性材料からなるヨークを固定してもよい。 In the first and second embodiments, the case 23 (base plate 21 and upper case portion 22) is made of a magnetic material and used as a yoke. However, the present invention is not limited to this. That is, even when the case is made of a non-magnetic material, the case covers the surface of the case (in particular, the upper surface (outer surface or inner surface) and the lower surface (outer surface or inner surface)) of the case. A yoke made of a separate magnetic material may be fixed.
 また、上記第1実施形態では、可動部3がケース23に当接しないようにバネ部材4により支持する例を示したが、本発明はこれに限らず、可動部3をケース23に当接させてもよい。可動部をケース(レール)に当接(摺動)させることにより、可動部とレールとの摩擦によって振動モータの振動系のQ値を下げることができる。これにより、可動部の振動を安定させることができるとともに、振動の停止特性を向上させることができる。また、可動部とレールとを当接(摺動)させなくとも、ヨークおよび上部ケース部との間の可動部の上下方向の吸引力のバランスを崩すことにより、振動モータの振動系のQ値を下げることができる。 In the first embodiment, the example in which the movable member 3 is supported by the spring member 4 so as not to contact the case 23 is shown. However, the present invention is not limited to this, and the movable member 3 contacts the case 23. You may let them. By bringing the movable part into contact (sliding) with the case (rail), the Q value of the vibration system of the vibration motor can be lowered by friction between the movable part and the rail. Thereby, the vibration of the movable part can be stabilized and the stop characteristic of the vibration can be improved. Further, the Q value of the vibration system of the vibration motor can be reduced by breaking the balance of the suction force in the vertical direction of the movable part between the yoke and the upper case part without contacting (sliding) the movable part and the rail. Can be lowered.
 また、第1および第2実施形態では、ヨーク一体型コイル部24のX方向の幅W3を永久磁石31のX方向の幅W2よりも大きくした例を示したが、本発明はこれに限らず、ヨーク一体型コイル部24のX方向の幅W3を永久磁石31のX方向の幅W2よりも小さくしてもよい。 In the first and second embodiments, the example in which the width W3 in the X direction of the yoke-integrated coil portion 24 is larger than the width W2 in the X direction of the permanent magnet 31 has been described, but the present invention is not limited thereto. The width W3 in the X direction of the yoke-integrated coil portion 24 may be smaller than the width W2 in the X direction of the permanent magnet 31.
 また、第1および第2実施形態では、永久磁石31を、N極面311a、S極面312a、S極面311bおよびN極面312bにより構成する例を示したが、本発明はこれに限られない。たとえば、永久磁石31をN極面311aおよびS極面312aのみから構成し、S極面311bおよびN極面312bは設けないようにしてもよい。つまり、平面コイル25および26に対向する面に沿って、互いに異なる磁性に着磁された磁極面が設けられていればよい。 In the first and second embodiments, the example in which the permanent magnet 31 is configured by the N pole surface 311a, the S pole surface 312a, the S pole surface 311b, and the N pole surface 312b has been described. However, the present invention is not limited to this. I can't. For example, the permanent magnet 31 may be composed of only the N pole surface 311a and the S pole surface 312a, and the S pole surface 311b and the N pole surface 312b may not be provided. That is, it is only necessary to provide magnetic pole surfaces magnetized with different magnetism along the surfaces facing the planar coils 25 and 26.
 また、上記第1および第2実施形態では、可動部3(103)がヨーク(磁性体)を含まない例を説明したが、本発明はこれに限らず、可動部3(103)にヨーク(磁性体)を配置してもよい。この場合、可動部に設けるヨークを、永久磁石と上面側ヨークとの間または永久磁石と下面側ヨークとの間に位置しないように配置することが好ましい。 In the first and second embodiments, the example in which the movable portion 3 (103) does not include a yoke (magnetic body) has been described. However, the present invention is not limited to this, and the movable portion 3 (103) has a yoke ( (Magnetic material) may be disposed. In this case, it is preferable that the yoke provided in the movable portion is arranged so as not to be positioned between the permanent magnet and the upper surface side yoke or between the permanent magnet and the lower surface side yoke.
 また、上記第1および第2実施形態では、磁石カバー33(133)を設けた例を示したが、本発明はこれに限らず、永久磁石31および錘32が一体物として組み付けられていれば磁石カバーを設けなくてもよい。 Moreover, although the example which provided the magnet cover 33 (133) was shown in the said 1st and 2nd embodiment, this invention is not restricted to this, If the permanent magnet 31 and the weight 32 are assembled | attached as an integral object. The magnet cover may not be provided.
1、101 振動モータ
2 固定部
21 ベースプレート(下面側ヨーク)
22 上部ケース部(上面側ヨーク)
23 ケース
24 ヨーク一体型コイル部
25、26 平面コイル(コイル)
28 ヨーク(下面側ヨーク)
3、103 可動部
31 永久磁石
33、133 磁石カバー
4、104 バネ部材
41、141 皿部(取付部)
1, 101 Vibration motor 2 Fixing part 21 Base plate (lower side yoke)
22 Upper case (upper side yoke)
23 Case 24 Yoke-integrated coil section 25, 26 Planar coil (coil)
28 Yoke (lower side yoke)
3, 103 Movable part 31 Permanent magnet 33, 133 Magnet cover 4, 104 Spring member 41, 141 Dish part (attachment part)

Claims (5)

  1.  永久磁石を含む可動部と、
     前記可動部に対して対向するように配置され、通電されることにより前記可動部を移動させる磁力を発生させるコイルと、
     前記可動部および前記コイルを挟み込むように前記可動部の上面側と下面側との両方にそれぞれ前記可動部に対して対向するように配置された上面側ヨークおよび下面側ヨークを含む固定部とを備えた、振動モータ。
    A movable part including a permanent magnet;
    A coil that is arranged to face the movable part and generates a magnetic force that moves the movable part when energized;
    A fixed portion including an upper surface side yoke and a lower surface side yoke disposed on both the upper surface side and the lower surface side of the movable portion so as to face the movable portion so as to sandwich the movable portion and the coil, respectively. Equipped with vibration motor.
  2.  前記上面側ヨークにより前記可動部が前記可動部の上面側に吸引される力は、前記下面側ヨークにより前記可動部が前記可動部の下面側に吸引される力の少なくとも一部を相殺するように働く、請求項1に記載の振動モータ。 The force with which the movable part is attracted to the upper surface side of the movable part by the upper surface side yoke cancels out at least a part of the force with which the movable part is attracted to the lower surface side of the movable part by the lower surface side yoke. The vibration motor according to claim 1, which acts on the motor.
  3.  前記コイルは、前記可動部の上面側および下面側のいずれか一方に配置されている、請求項1または2に記載の振動モータ。 The vibration motor according to claim 1 or 2, wherein the coil is disposed on either the upper surface side or the lower surface side of the movable portion.
  4.  前記可動部を前記コイルの上面に沿った方向に移動可能に支持するバネ部材をさらに備え、
     前記バネ部材は、前記可動部の上面を覆うように前記可動部に固定される取付部を含み、
     前記取付部は、開口部を有する、請求項3に記載の振動モータ。
    A spring member that movably supports the movable part in a direction along the upper surface of the coil;
    The spring member includes an attachment portion fixed to the movable portion so as to cover an upper surface of the movable portion,
    The vibration motor according to claim 3, wherein the attachment portion has an opening.
  5.  前記可動部は、前記永久磁石を支持するとともに非磁性体からなる磁石カバーを含む、請求項1~4のいずれか1項に記載の振動モータ。 The vibration motor according to any one of claims 1 to 4, wherein the movable part includes a magnet cover that supports the permanent magnet and is made of a nonmagnetic material.
PCT/JP2010/062356 2009-07-27 2010-07-22 Vibration motor WO2011013570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009173948A JP2011030370A (en) 2009-07-27 2009-07-27 Vibrating motor
JP2009-173948 2009-07-27

Publications (1)

Publication Number Publication Date
WO2011013570A1 true WO2011013570A1 (en) 2011-02-03

Family

ID=43529228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062356 WO2011013570A1 (en) 2009-07-27 2010-07-22 Vibration motor

Country Status (2)

Country Link
JP (1) JP2011030370A (en)
WO (1) WO2011013570A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017009B1 (en) * 2015-07-09 2016-10-26 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Linear vibration motor
JP2017136592A (en) * 2017-03-29 2017-08-10 ミネベアミツミ株式会社 Vibration generator
CN111313647A (en) * 2020-03-02 2020-06-19 瑞声科技(新加坡)有限公司 Linear motor
CN111542402A (en) * 2018-02-01 2020-08-14 安达满纳米奇精密宝石有限公司 Linear vibration actuator

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590463B2 (en) 2011-09-22 2017-03-07 Minebea Co., Ltd. Vibration generator moving vibrator by magnetic field generated by coil and holder used in vibration-generator
KR101844003B1 (en) * 2011-09-30 2018-03-30 주식회사 이엠텍 Linear vibrator
JP6253157B2 (en) * 2014-11-14 2017-12-27 アルプス電気株式会社 Vibration generator
CN204392052U (en) * 2015-01-16 2015-06-10 瑞声光电科技(常州)有限公司 Vibrating motor
JP2017017875A (en) * 2015-07-01 2017-01-19 日本電産コパル株式会社 Linear vibration motor
JP6479557B2 (en) * 2015-04-28 2019-03-06 日本電産コパル株式会社 Linear vibration motor
WO2016167299A1 (en) * 2015-04-17 2016-10-20 日本電産コパル株式会社 Linear vibration motor
JP6378127B2 (en) * 2015-04-17 2018-08-22 日本電産コパル株式会社 Linear vibration motor
CN204810103U (en) * 2015-07-08 2015-11-25 瑞声光电科技(常州)有限公司 Oscillating motor
JP6702820B2 (en) * 2015-10-16 2020-06-03 日本電産コパル株式会社 Vibration motor
CN205356112U (en) * 2015-12-30 2016-06-29 瑞声光电科技(常州)有限公司 Vibration motor
JP6236134B2 (en) * 2016-11-10 2017-11-22 ミネベアミツミ株式会社 Vibration generator
JP6346688B2 (en) * 2017-03-28 2018-06-20 ミネベアミツミ株式会社 Vibration generator
JP6438103B2 (en) * 2017-10-27 2018-12-12 ミネベアミツミ株式会社 Vibration generator
JP6918904B2 (en) * 2018-04-17 2021-08-11 ミネベアミツミ株式会社 Vibration generator
JP6681426B2 (en) * 2018-04-17 2020-04-15 ミネベアミツミ株式会社 Vibration generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197601A (en) * 1998-01-09 1999-07-27 Star Micronics Co Ltd Portable electronic apparatus
JP2002200460A (en) * 2000-11-06 2002-07-16 Sony Corp Vibration actuator and electronic equipment which has vibration actuator
JP2009095139A (en) * 2007-10-09 2009-04-30 Nippon Densan Corp Electric motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197601A (en) * 1998-01-09 1999-07-27 Star Micronics Co Ltd Portable electronic apparatus
JP2002200460A (en) * 2000-11-06 2002-07-16 Sony Corp Vibration actuator and electronic equipment which has vibration actuator
JP2009095139A (en) * 2007-10-09 2009-04-30 Nippon Densan Corp Electric motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017009B1 (en) * 2015-07-09 2016-10-26 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Linear vibration motor
JP2017136592A (en) * 2017-03-29 2017-08-10 ミネベアミツミ株式会社 Vibration generator
CN111542402A (en) * 2018-02-01 2020-08-14 安达满纳米奇精密宝石有限公司 Linear vibration actuator
CN111542402B (en) * 2018-02-01 2022-04-26 安达满纳米奇精密宝石有限公司 Linear vibration actuator
CN111313647A (en) * 2020-03-02 2020-06-19 瑞声科技(新加坡)有限公司 Linear motor
WO2021174560A1 (en) * 2020-03-02 2021-09-10 瑞声声学科技(深圳)有限公司 Linear motor
CN111313647B (en) * 2020-03-02 2022-07-05 瑞声科技(新加坡)有限公司 Linear motor

Also Published As

Publication number Publication date
JP2011030370A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
WO2011013570A1 (en) Vibration motor
US10610893B2 (en) Vibration actuator and portable device
US20110169347A1 (en) Linear motor and portable device provided with linear motor
CN106575912B (en) Linear vibration motor
US20110204732A1 (en) Linear motor and mobile device having linear motor
US10610894B2 (en) Vibration actuator and portable device
JP2018019458A (en) Vibration motor
JP2019122101A (en) Vibration actuator and portable equipment
JP2010239851A (en) Vibration motor and portable apparatus
US10610892B2 (en) Vibration actuator and portable device
WO2019102704A1 (en) Linear vibration motor and electronic apparatus
CN107171526B (en) Linear vibration motor
CN103516119A (en) Linear vibration motor
WO2018079251A1 (en) Linear vibration motor
KR102202568B1 (en) Vibration generating devices and electronic devices
US20170354992A1 (en) Linear vibration motor
JP2010082501A (en) Linear motor and portable apparatus equipped with linear motor
CN106655695B (en) Linear vibration motor
WO2010103929A1 (en) Vibration motor and portable apparatus
JP2010069470A (en) Linear motor and portable apparatus equipped with linear motor
US11309780B2 (en) Vibration motor
CN106655696B (en) Linear vibration motor
JP2010029037A (en) Linear motor and portable device provided with linear motor
JP2010051163A (en) Linear motor
CN111921827B (en) Vibration generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804316

Country of ref document: EP

Kind code of ref document: A1