WO2010103929A1 - Vibration motor and portable apparatus - Google Patents

Vibration motor and portable apparatus Download PDF

Info

Publication number
WO2010103929A1
WO2010103929A1 PCT/JP2010/052926 JP2010052926W WO2010103929A1 WO 2010103929 A1 WO2010103929 A1 WO 2010103929A1 JP 2010052926 W JP2010052926 W JP 2010052926W WO 2010103929 A1 WO2010103929 A1 WO 2010103929A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
vibration motor
coil
magnetic pole
region
Prior art date
Application number
PCT/JP2010/052926
Other languages
French (fr)
Japanese (ja)
Inventor
佳謙 宍田
英明 宮本
運也 本間
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009056973A external-priority patent/JP2010207731A/en
Priority claimed from JP2009056903A external-priority patent/JP2010213462A/en
Priority claimed from JP2009115432A external-priority patent/JP2010239851A/en
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2010103929A1 publication Critical patent/WO2010103929A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present invention relates to a vibration motor and a portable device including the vibration motor.
  • a vibration motor having a movable part that vibrates by a magnetic field generated by a coil is generally used.
  • Japanese Patent Application Laid-Open No. 2002-200460 discloses a configuration of a vibration actuator.
  • a vibration actuator described in Japanese Patent Application Laid-Open No. 2002-200460 includes a fixed portion, a movable portion composed of a magnet and a yoke, an M-shaped elastic member that holds the movable portion movably with respect to the fixed portion, And a coil interlinking with the magnetic flux of the magnet, and when the current flows through the coil, the movable part linearly moves in the lateral direction (direction perpendicular to the thickness direction of the movable part).
  • a worn portion can be eliminated as compared with a conventional vibration actuator using a brushed motor. Therefore, generation of noise can be suppressed, and a vibration actuator with high operation reliability can be provided.
  • the elastic member can be disposed only on the side surface of the magnet or yoke of the movable part, and cannot be disposed in the region where the coil is inserted. . Therefore, there is a problem that it is difficult to obtain a sufficient amount of vibration because the degree of freedom in design of the elastic member is low and the movement of the movable part cannot be efficiently received by the elastic member.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vibration motor and a portable device that can be thinned and have a high degree of freedom in designing an elastic member. It is to be.
  • a vibration motor includes a fixed portion, a magnet, and a support member provided in a side surface direction of the magnet, and moves relative to the fixed portion.
  • a portable device includes a fixed portion, a movable portion that includes a magnet and a support member provided in a side surface direction of the magnet, and moves relative to the fixed portion, and is disposed opposite to the magnet.
  • a vibration motor including a coil for moving the movable part in a direction in which the support member is provided and an elastic member provided between the fixed part and the support member, the support member facing the magnet and the coil.
  • the vibration motor of the present invention can be thinned and can increase the degree of freedom in designing the elastic member.
  • the portable device of the present invention is equipped with the vibration motor, it is possible to reduce the thickness and increase the amount of vibration.
  • FIG. 4 is a cross-sectional view taken along line 200-200 in FIG.
  • FIG. 4 is a cross-sectional view taken along line 250-250 in FIG.
  • FIG. 9 It is a top view for demonstrating the structure of the spring with a plate of a vibration motor. It is sectional drawing of FIG. It is the front view which looked at FIG. 9 from the direction of the arrow. It is sectional drawing for demonstrating the drive method of a vibration motor. It is sectional drawing for demonstrating the drive method of a vibration motor. It is sectional drawing for demonstrating the drive method of a vibration motor. It is a modification of a spring with a plate. It is the other modification of a spring with a plate. It is the other modification of a spring with a plate. It is a figure which shows the magnetic flux in case the bottom face of a magnet has a substantially the same area as the inner wall bottom face of a cylindrical yoke.
  • FIG. 1 It is a figure which shows a magnetic flux in case the bottom face of a magnet has an area smaller than the inner wall bottom face of a cylindrical yoke. It is a disassembled perspective view for demonstrating the structure of the movable part of the vibration motor which concerns on 2nd Embodiment of this invention. It is sectional drawing for demonstrating the drive method of a vibration motor. It is sectional drawing for demonstrating the drive method of a vibration motor. It is sectional drawing for demonstrating the drive method of a vibration motor. It is sectional drawing for demonstrating the drive method of a vibration motor. It is sectional drawing for demonstrating the internal structure of the vibration motor which concerns on 3rd Embodiment of this invention. It is sectional drawing for demonstrating the internal structure of the vibration motor which concerns on 3rd Embodiment of this invention.
  • FIG. 28 is a cross-sectional view taken along line 350-350 in FIG. It is sectional drawing for demonstrating the drive method of a vibration motor. It is sectional drawing for demonstrating the drive method of a vibration motor. It is sectional drawing for demonstrating the drive method of a vibration motor. It is sectional drawing for demonstrating the drive method of a vibration motor. It is a disassembled perspective view for demonstrating the structure of the vibration motor which concerns on 4th Embodiment of this invention. It is a top view for demonstrating the internal structure of the vibration motor which concerns on 5th Embodiment of this invention.
  • FIG. 34 is a cross-sectional view taken along line 400-400 in FIG.
  • FIG. 34 is a cross-sectional view taken along line 450-450 in FIG. It is a top view of the planar coil formed in the upper layer of the coil board
  • FIG. 39 is a cross-sectional view taken along line 500-500 in FIG. 38.
  • FIG. 39 is a cross-sectional view taken along line 550-550 in FIG. 38.
  • FIG. 45 is a cross-sectional view taken along line 600-600 in FIG. 44.
  • vibration motor (Vibration motor) (First embodiment) The configuration of the vibration motor 1 according to the first embodiment of the present invention will be described with reference to FIGS.
  • the vibration motor 1 includes a movable portion 2, a coil substrate 3, a spring 4 with a plate, an upper housing 5 a, and a lower housing 5 b.
  • the upper casing 5a and the lower casing 5b form a rectangular parallelepiped casing 5 by being combined so as to close each other's opening.
  • a movable part 2, a coil substrate 3, and a dished spring 4 are accommodated in the housing 5.
  • the vibration motor 1 is configured to cause the movable part 2 to reciprocate in the casing 5 by passing an electric current through the coil substrate 3, and to vibrate by receiving the movement of the movable part 2 by the countersunk spring 4 and the casing 5. .
  • the movable portion 2 includes a magnet 6, a cylindrical yoke 7, and a side yoke 8.
  • the cylindrical yoke 7 and the side yoke 8 having a function as a magnetic shield cover the magnet 6, thereby preventing the magnetic flux of the magnet 6 from leaking outside the movable portion 2.
  • the magnet 6 is a rectangular parallelepiped member made of a magnetic material, and includes two regions 61 and 62 having a pair of magnetic poles in the thickness direction, and a neutral region 63 made of a magnetic material between the regions 61 and 62. Including. Here, in the regions 61 and 62, the magnetic poles are opposite to each other.
  • the magnet 6 may be formed by magnetizing a single magnetic material so as to include the regions 61 and 62 and the neutral region 63, or a magnet that is not magnetized between the two magnets. You may form by adhering on both sides of material.
  • the cylindrical yoke 7 is a rectangular parallelepiped member made of a material having a small coercive force and a large magnetic permeability, and a hollow is formed in the longitudinal direction thereof.
  • the cylindrical yoke 7 is configured to face the coil substrate 3 (coil layers 3 b and 3 c) and the magnet 6.
  • the material constituting the cylindrical yoke 7 permalloy, carbon steel, ordinary steel, silicon steel, ferritic stainless steel, permendur, martensitic stainless steel, precipitation hardening stainless steel and the like are suitable.
  • the cylindrical yoke 7 is made of a material having a high magnetic permeability, it is possible to confine more surrounding magnetic flux lines.
  • the bottom surface of the magnet 6 and the bottom surface of the inner wall of the cylindrical yoke 7 have substantially the same area. Due to the magnetic attraction acting between the magnet 6 and the cylindrical yoke 7, the magnet 6 becomes the bottom surface of the inner wall of the cylindrical yoke 7. It is fixed to. At this time, the magnet 6 is fixed to the cylindrical yoke 7 so that the regions 61 and 62 and the neutral region 63 of the magnet 6 extend in a direction perpendicular to the opening surface of the cylindrical yoke 7. In addition, in order to strengthen fixation between the magnet 6 and the cylindrical yoke 7, you may make it adhere
  • the side yoke 8 is made of the same material as that of the cylindrical yoke 7, and includes a side region 8 a disposed so as to close a portion where the magnet 6 is provided in both opening surfaces of the cylindrical yoke 7. And a bottom surface region 8b disposed so as to cover the bottom surface of the outer wall of the cylindrical yoke 7.
  • the height of the side surface region 8 a is formed below the upper end of the side surface of the magnet 6 so as not to contact the coil substrate 3 due to the movement of the movable portion 2.
  • the side yoke 8, the magnet 6 and the cylindrical yoke 7 are fixed using an adhesive.
  • the coil substrate 3 is a rectangular substrate, and is inserted from the opening surface of the cylindrical yoke 7 along the longitudinal direction of the coil substrate 3.
  • the coil substrate 3 is fixed to the housing 5 by sandwiching both ends on the short side of the coil substrate 3 between the upper housing 5a and the lower housing 5b.
  • the coil substrate 3 and the magnetic pole surface of the magnet 6 are arranged so as to be parallel inside the cylindrical yoke 7.
  • the term “parallel” includes not only a state of being parallel to each other but also a state of being deviated from a parallel state to the extent that the movable portion 2 does not interfere with the reciprocating movement.
  • the planar coil 9 is formed in a two-layer spiral shape inside the coil substrate 3.
  • the coil substrate 3 has a four-layer structure, and the coil layers 3b and 3c in which the planar coil 9 is embedded, and the insulating layers 3a and 3d provided on both surfaces thereof. It consists of and.
  • the insulating layers 3a and 3d insulate the planar coil 9 provided on the coil layers 3b and 3c from the outside.
  • the planar coil 9 includes an upper layer coil 91 (see FIG. 6) wound counterclockwise in a substantially rectangular shape from the electrode pad 10a toward the central portion of the coil substrate 3 in the coil layer 3a, and a coil layer 3b
  • the lower layer coil 92 (see FIG. 7) wound in a substantially rectangular shape counterclockwise from the center of the substrate 3 toward the electrode pad 10b.
  • the upper coil 91 and the lower coil 92 of the planar coil 9 are connected at the center of the coil substrate 3.
  • the coil layers 3b and 3c are arranged so as to intersect with the magnetic flux of the magnet 6. Moreover, the coil layers 3b and 3c are arrange
  • the planar coil 9 has regions 9A and 9B including a plurality of coil wires extending in the longitudinal direction of the coil substrate 3 in the coil layers 3b and 3c. Each region is formed so that a current flows in the same direction. Further, both ends of the planar coil 9 are connected to a drive current supply circuit (not shown) via electrode pads 10a and 10b, and current is supplied from the drive current supply circuit in the direction of arrow A or B. The drive current supply circuit switches the direction of the current supplied to the planar coil 9 at a predetermined cycle.
  • the disc-attached spring 4 is made of a nonmagnetic material, and the two plate springs 4 a and 4 b and the tray 4 c are integrally formed.
  • the plate-attached spring 4 mounts the movable portion 2 on the tray 4c, supports both side surfaces in the moving direction of the movable portion 2 with plate springs 4a and 4b, and receives the movement of the movable portion 2.
  • SUS301, 304 etc. are suitable as a material which comprises the spring 4 with a plate.
  • the two leaf springs 4 a and 4 b include fixed portions 4 d and 4 e that are fixed to the lower housing 5 b and support portions 4 f and 4 g that support the movable portion 2.
  • the support portions 4f and 4g have one bending point 4X and 4Y between the lower housing 5b and the movable portion 2 in order to catch the movement of the movable portion 2.
  • the support portions 4 f and 4 g are arranged so as to be positioned on the moving direction including the center of gravity A of the movable portion 2, and the height thereof is matched to the height of the movable portion 2. Designed.
  • the height of the upper ends of the fixing portions 4d and 4e is lower than the height of the upper ends of the support portions 4f and 4g, as shown in FIG. This is because, when the coil substrate 3 is disposed, if the heights of the upper ends of the fixing portions 4d and 4e are the same as the supporting portions 4f and 4g, the fixing portions 4d and 4e and the coil substrate 3 come into contact with each other. Because. Therefore, the fixing portions 4 d and 4 e are designed to have a height that does not contact the coil substrate 3.
  • the lower ends of the tray 4c and the support portions 4f and 4g are fixed to the fixed portions 4d and 4e so that the tray 4c and the support portions 4f and 4g do not come into contact with the bottom surface of the inner wall of the lower housing 5b. It is comprised so that it may come to a position higher than a lower end. That is, the countersunk spring 4 holds the movable part 2 in a state of floating from the bottom surface of the inner wall of the lower housing 5b. Moreover, since the movable part 2 is mounted, the saucer 4c has substantially the same shape as the bottom surface of the movable part 2.
  • the tray-attached spring 4 is divided into two trays 4 c, a plate spring 4 a is connected to one tray 4 c, and a plate spring 4 b is connected to the other tray 4 c. Yes.
  • Each component constitutes a plate spring 4 with a plate by being fixed to the bottom surface of the movable portion 2.
  • a current is supplied to the planar coil 9 of the coil substrate 3 from the drive current supply circuit via the electrode pad 10a in the direction A shown in FIG.
  • a current flows from the back side to the near side, that is, the Z2 direction along the longitudinal direction of the coil substrate 3 as shown in FIG.
  • a current flows from the front side to the back side, that is, the Z1 direction along the longitudinal direction of the coil substrate 3.
  • the direction of the magnetic field generated between the N-pole surface 6A and the S-pole surface 6B of the surface of the magnet 6 facing the coil substrate 3 is the same as the coil on the N-pole surface 6A from the surface of the N-pole surface 6A.
  • the direction is toward the substrate 3, that is, the Y1 direction.
  • the direction is from the coil substrate 3 toward the south pole surface 6B, that is, the Y2 direction.
  • the magnetic field generated between the N-pole surface 6A and the S-pole surface 6B of the magnet 6 is orthogonal to the direction of current flow in the regions 9A and 9B of the planar coil 9.
  • the current flowing through the region 9A of the planar coil 9 receives a force in the X2 direction from the magnetic field on the N-pole surface 6A of the magnet 6. Further, the current flowing through the region 9B of the planar coil 9 receives a force in the X2 direction from the magnetic field on the south pole surface 6B of the magnet 6. That is, a force in the X2 direction acts on the coil substrate 3.
  • the magnet 6 receives a force in the X1 direction by reaction. Therefore, the movable part 2 moves in the X1 direction as shown in FIG. At this time, since the movable portion 2 is supported by the leaf spring 4b of the disc spring 4 in the X1 direction, the leaf spring 4b bends and receives the movement of the movable portion 2.
  • the drive current supply circuit switches the direction of the current supplied to the planar coil 9 to the B direction shown in FIG.
  • a current flows in the area 9A of the planar coil 9 from the front side to the back side, that is, in the Z1 direction along the longitudinal direction of the coil substrate 3 as shown in FIG.
  • a current flows in the region 9B of the planar coil 9 from the back side to the front side, that is, the Z2 direction along the longitudinal direction of the coil substrate 3.
  • the current flowing through the region 9A of the planar coil 9 receives a force in the X1 direction from the magnetic field on the N-pole surface 6A of the magnet 6. Further, the current flowing through the region 9B of the planar coil 9 receives a force in the X1 direction from the magnetic field on the south pole surface 6B of the magnet 6. Thereby, the movable part 2 moves to X2 direction, as shown in FIG. At this time, since the movable portion 2 is supported by the plate spring 4a of the disc spring 4 in the X2 direction, the plate spring 4a is bent and receives the movement of the movable portion 2.
  • the vibration motor 1 reciprocates the movable portion 2 in the X1 direction and the X2 direction by switching the direction of the current supplied to the planar coil 9 by the drive current supply circuit. At this time, by adjusting the timing at which the drive current supply circuit supplies current to the planar coil 9, the movable part 2 can resonate and a large amount of vibration can be obtained.
  • the current flowing through the region 9B is a magnetic field on the N pole surface 6A.
  • the force in the X1 direction is applied to the magnet 6, and the force in the X2 direction acts on the magnet 6. That is, a force acts in a direction opposite to the direction in which the movable part 2 tries to move, and the vibration amount of the vibration motor 1 decreases.
  • the magnet 6 has a width of the neutral region 63 so that the N pole surface 6A of the magnet 6 does not overlap the region 9B of the planar coil 9 when the movable part 2 is moved to the maximum in the X1 direction. It has been adjusted. Since the neutral region 63 is not magnetized, the force for moving the magnet 6 in the X2 direction does not act even if it is opposed to the region 9B. Similarly, when the movable part 2 is moved to the maximum in the X2 direction, the neutral region 63 of the magnet 6 has a width so that the S pole surface 6B of the magnet 6 and the region 9A of the planar coil 9 do not overlap. It has been adjusted. Therefore, the width of the neutral region 63 is determined by the relationship between the magnet 6 and the planar coil 9.
  • the vibration motor 1 moves the movable part 2 along the coil substrate 3. Thereby, it is not necessary to provide the movement space of the movable part 2 in the thickness direction, and the entire apparatus can be thinned.
  • the leaf springs 4 a and 4 b are provided on the side surface of the cylindrical yoke 7 in the moving direction (between the lower housing 5 b and the cylindrical yoke 7). Accordingly, the leaf springs 4a and 4b can be arranged without worrying about the portion where the coil substrate 3 is inserted, and the degree of freedom in design can be improved. That is, the installation positions of the leaf springs 4a and 4b can be freely set, and the leaf springs 4a and 4b having a sufficient height can be used. Therefore, the vibration motor 1 can efficiently receive the movement of the movable portion 2 and can increase the amount of vibration.
  • the vibration motor 1 is disposed such that the leaf springs 4 a and 4 b are positioned on the moving direction including the center of gravity A of the movable portion 2. Thereby, since the leaf
  • the cylindrical yoke 7 has a function as a magnetic shield. Therefore, since the magnetic flux generated by the magnet 6 passes through the cylindrical yoke 7, the magnetic path can be shortened as compared with the case where the cylindrical yoke 7 is not provided. Therefore, the magnetic force acting on the planar coil 9 is increased, and the amount of vibration of the vibration motor 1 can be increased.
  • the vibration motor 1 is disposed so as to block a portion where the magnet 6 is provided in both opening surfaces of the cylindrical yoke 7 and is disposed so as to cover the bottom surface of the outer wall of the cylindrical yoke 7.
  • a yoke 8 is provided.
  • the cylindrical yoke 7 and the side yoke 8 cover portions of the magnet 6 other than the surface facing the coil substrate 3. Thereby, since it can suppress that the magnetic flux which the magnet 6 produces leaks outside the movable part 2, the operating efficiency of the vibration motor 1 can be improved and the amount of vibrations can be increased.
  • the magnet 6 of the vibration motor 1 is formed so as to include two regions 61 and 62 having a pair of magnetic poles in the thickness direction, and a neutral region 63 made of a magnetic material between the regions 61 and 62. In the regions 61 and 62, the magnetic poles are opposite to each other. Thereby, since the downward magnetic flux which the magnet 6 produces can be reduced, the magnetic flux leakage to the downward direction in the vibration motor 1 can be suppressed. As a result, the operating efficiency of the vibration motor 1 can be increased, and the amount of vibration can be increased.
  • the neutral region 63 of the magnet 6 is designed so that the region 9B of the planar coil 9 and the N pole surface 6A of the magnet 6 do not overlap when the magnet 6 is moved to the maximum in the X1 direction.
  • the region 9A of the planar coil 9 and the south pole surface 6B of the magnet 6 are designed not to overlap each other.
  • the dished spring 4 of the vibration motor 1 is configured such that the lower ends of the tray 4c and the support portions 4f and 4g are positioned higher than the lower ends of the fixed portions 4d and 4e. Accordingly, since the movable portion 2 is held in a state of floating from the inner wall bottom surface of the lower housing 5b, when the movable portion 2 moves, the movable portion 2 is interposed between the tray 4c and the inner wall bottom surface of the lower housing 5b. Friction can be prevented from occurring. Therefore, since the movable part 2 can be moved efficiently, the vibration amount of the vibration motor 1 can be increased.
  • the vibration motor 1 of the present embodiment has been described.
  • the vibration motor of the present invention is not limited to the above-described configuration, and various modifications are possible within the scope of the claims. is there. Below, the modification of the vibration motor 1 and its effect are demonstrated.
  • the cylindrical yoke 7 is used as the “support member” of the present invention, but the present invention is not limited to this.
  • the “support member” of the present invention is provided in the side surface direction of the magnet 6, as long as it faces the magnet 6 and the coil substrate 3.
  • planar coil 9 is used as the “coil” of the present invention, but the present invention is not limited to the planar coil, and a coil having a thickness in the thickness direction may be used.
  • the leaf springs 4a and 4b are used as the “elastic member” of the present invention.
  • the present invention is not limited to the leaf spring, and an elastic member having another configuration such as a torsion spring may be used.
  • the size is preferably close to the height of the movable portion 2 in order to increase the spring constant.
  • the leaf springs 4a and 4b are arranged so as to be positioned on the moving direction including the center of gravity A of the movable part 2, but the movable part 2 is not necessarily on the moving direction including the center of gravity A. As long as it is provided in the moving direction. Further, in the present embodiment, the leaf springs are provided on both side surfaces in the moving direction of the movable part 2, but a configuration in which the leaf springs are provided only on one side surface in the moving direction of the movable part 2 may be employed. In addition, two or more leaf springs may be provided on both side surfaces in the moving direction of the movable portion 2.
  • the plate spring 4 is formed integrally with the plate springs 4a and 4b and the tray 4c, but may be configured such that the tray 4c is not provided.
  • the countersunk spring 4 is made of a nonmagnetic material, but may be made of a magnetic material. In this case, since the countersunk spring 4 has a function as a magnetic shield, the magnetic flux generated by the magnet 6 can be further prevented from leaking out of the vibration motor 1. Therefore, it is possible to increase the operation efficiency of the vibration motor 1 and increase the vibration amount.
  • the tray spring 4 in the assembly stage of the vibration motor 1, is divided into two trays 4c.
  • One plate 4c has a plate spring 4a and the other tray 4c has a plate.
  • the spring 4b is connected, the present invention is not limited to this. In other words, the plate spring 4 with a plate may be one that has already been integrated in the assembly stage of the vibration motor 1.
  • the movable part 2 has a configuration in which the magnet 6 is fixed to the bottom surface of the inner wall of the cylindrical yoke 7, but the present invention is not limited to this. That is, the movable portion 2 may have a configuration in which the magnet 6 is mounted on the side yoke 8 and the side yoke 8 is fixed to the bottom of the inner wall of the cylindrical yoke 7. Moreover, the lower end of the cylindrical yoke 7 may protrude from the opening surface, and the side surface of the magnet 6 may be covered by being bent. In this case, since it is not necessary to provide the side yoke 8, the number of parts can be reduced, and the entire apparatus can be thinned.
  • the height of the side region 8a of the side yoke 8 is formed below the upper end of the side surface of the magnet 6, but the present invention is not limited to this.
  • the height of the side surface region 8 a is configured to protrude from the upper end of the side surface of the magnet 6. If it is not necessary to make the vibration motor 1 thin, it is possible to prevent the coil substrate 3 and the side surface region 8a from coming into contact with each other even when the side surface region 8a is increased. Furthermore, it is possible to further suppress leakage of the magnetic flux generated by the magnet 6 to the outside of the movable portion 2 by increasing the side surface region 8a.
  • the height of the side surface region 8 a is substantially the same as the upper end of the side surface of the magnet 6.
  • the magnetic path of the magnetic flux formed between the N pole surface 6A and the S pole surface 6B of the magnet 6 and the end of the side yoke 8 can be made the shortest. Therefore, the magnetic force acting on the planar coil 9 is further increased, and the vibration amount of the vibration motor 1 can be increased.
  • the side yoke 8 is made of the same material as the cylindrical yoke 7, but a different material may be used. In this case, since the side yoke 8 is farther away from the magnet 6 than the cylindrical yoke 7, a material having a high magnetic permeability even in a low magnetic field, such as permalloy, is preferably used.
  • the positional relationship between the magnet 6 and the planar coil 9 is such that when the magnet 6 is moved to the maximum in the X1 direction, the region 9B and the S pole surface 6B are larger than the area where the region 9B and the N pole surface 6A overlap.
  • the areas 9A and N are larger than the area where the area 9A and the S pole face 6B overlap. You may design so that the area where 6 A of pole surfaces overlap may become larger.
  • the positional relationship between the magnet 6 and the planar coil 9 is adjusted by adjusting the width of the neutral region 63 of the magnet 6. This may be performed by adjusting the elastic force, the distance between the region 9A and the region 9B of the planar coil 9, the length of the tubular yoke 7 in the short direction, and the like.
  • the countersunk spring 4 is further provided between the first fixing parts 403 and 404 fixed to the lower housing 5b and the support parts 405 and 406, as shown in FIG.
  • Leaf springs 401 and 402 formed with second fixing portions 407 and 408 fixed to the lower housing 5b may be used.
  • the second fixing portions 407 and 408 are not necessarily fixed to the lower housing 5b, and may be bent between the second fixing portions 407 and 408 and the support portions 405 and 406. Good.
  • the plate spring 4 has plate springs 409, 410 which are similar to the plate springs 4a, 4b inside the plate springs 4a, 4b and do not have a joint with the tray 4c. May be provided.
  • the plate spring 4 has a shape similar to the plate springs 401 and 402 inside the plate springs 401 and 402 shown in FIG. 15, and does not have a joint portion with the tray 4c.
  • the structure provided with the springs 411 and 412 may be sufficient.
  • the leaf springs 409 and 410 may be provided outside the leaf springs 4a and 4b.
  • the leaf springs 411 and 412 may be provided outside the leaf springs 401 and 402. Good.
  • the spring constant can be increased without increasing the thickness of the leaf spring by adopting a configuration having two fixing portions or by overlapping two leaf springs.
  • the resonance frequency can be increased without lowering the fatigue resistance of the leaf spring, so that the vibration amount of the vibration motor 1 can be increased.
  • the bottom surface of the magnet 6 has substantially the same area as the bottom surface of the inner wall of the cylindrical yoke 7, but the present invention is not limited to this, and the bottom surface of the magnet 6 is the same as that of the cylindrical yoke 7. It is good also as a structure which has an area smaller than an inner wall bottom face. As shown in FIGS. 18 and 19, the magnetic path of the magnetic flux generated by the magnet 6 can be shortened by reducing the area of the bottom surface of the magnet 6.
  • the magnetic force which acts on the planar coil 9 becomes large, and the vibration amount of the vibration motor 1 can be increased. Further, by reducing the area of the bottom surface of the magnet 6, the distance between the magnet 6 and the side surfaces of the upper housing 5 a and the lower housing 5 b is increased, so that the amount of magnetic flux leaking to the outside of the vibration motor 1 is reduced. Can be reduced.
  • the magnet 6 is compared with the case where the cylindrical yoke 7 made of a magnetic material having high thermal conductivity and the magnet 6 are in contact with each other. It is possible to suppress the transmission of heat. Since the magnetic force of the magnet 6 decreases when heat is applied, the above configuration can suppress thermal demagnetization of the magnet 6.
  • the air between the side surface of the magnet 6 and the inner wall side surface of the cylindrical yoke 7 can be made to flow by moving the movable portion 2. Therefore, the heat generated by passing a current through the planar coil 9 is efficiently radiated to the outside of the cylindrical yoke 7. As a result, the heat of the planar coil 9 is transmitted to the magnet 6 and the magnetic force of the magnet 6 can be suppressed from decreasing. At this time, by increasing the height of the cylindrical yoke 7, the amount of air flowing inside the cylindrical yoke 7 can be increased, and heat can be radiated more efficiently.
  • the magnetic flux of the magnet 6 can be prevented from entering the cylindrical yoke 7 before penetrating the planar coil 9. Therefore, the magnetic force acting on the planar coil 9 is increased, and the amount of vibration of the vibration motor 1 can be increased.
  • the area of the bottom surface of the magnet 6 is related to the force that moves the magnet 6, it is necessary to determine the optimum value from the relationship between the magnitude of magnetic flux leakage of the magnet 6 and the force that moves it.
  • the vibration motor 21 includes a movable portion 22, a coil substrate 3, a spring 4 with a plate, an upper housing 5a, and a lower housing 5b. That is, the vibration motor 21 is different in the configuration of the movable part from the vibration motor 1 of the first embodiment.
  • the movable portion 22 includes magnets 6 and 26, a cylindrical yoke 7, and side yokes 8 and 28.
  • the magnet 26 has the same configuration as the magnet 6 and is fixed to the upper surface of the inner wall of the cylindrical yoke 7 so as to face the magnet 6 with the coil substrate 3 interposed therebetween. Since magnetic attraction acts between the magnet 26 and the cylindrical yoke 7, the magnet 26 is fixed to the upper surface of the inner wall of the cylindrical yoke 7 by this magnetic attraction.
  • the magnet 26 is fixed to the cylindrical yoke 7 so that the regions 61 and 62 and the neutral region 63 of the magnet 26 extend in a direction perpendicular to the opening surface of the cylindrical yoke 7. ing.
  • the N pole surface 6A of the magnet 6 and the S pole surface 26B of the magnet 26 face each other
  • the S pole surface 6B of the magnet 6 and the N pole surface 26A of the magnet 26 face each other.
  • the side yoke 28 is made of the same material as that of the cylindrical yoke 7, and includes a side region 28 a disposed so as to close a portion where the magnet 26 is provided in both opening surfaces of the cylindrical yoke 7. And an upper surface region 28b arranged to cover the upper surface of the outer wall of the cylindrical yoke 7.
  • the side yoke 28, the magnet 26 and the cylindrical yoke 7 are fixed using an adhesive.
  • the magnet 26 is provided, so that a magnetic flux is formed between the magnet 6 and the magnet 26.
  • a magnetic field is formed between the N pole surface 6A and the S pole surface 26B.
  • the direction of the magnetic field formed between the N pole face 6A and the S pole face 26B is the direction from the N pole face 6A toward the S pole face 26B, that is, the Y1 direction.
  • the S pole surface 6B of the magnet 6 and the N pole surface 26A of the magnet 26 face each other, a magnetic field is formed between the S pole surface 6B and the N pole surface 26A.
  • the direction of the magnetic field formed between the S pole face 6B and the N pole face 26A is the direction from the N pole face 26A toward the S pole face 6B, that is, the Y2 direction.
  • a current is supplied to the planar coil 9 of the coil substrate 3 in the A direction shown in FIG. 6 or the B direction shown in FIG. 7 by the drive current supply circuit via the electrode pads 10a and 10b.
  • the current flowing through the regions 9A and 9B of the planar coil 9 receives a force from the magnetic field formed between the magnet 6 and the magnet 26, and as shown in FIGS. Move in the X2 direction.
  • the vibration motor 21 reciprocally moves the movable portion 22 in the X1 direction and the X2 direction by switching the direction of the current supplied to the planar coil 9 by the drive current supply circuit on the same principle as in the first embodiment. Let it vibrate.
  • the vibration motor 21 includes two magnets 6 and 26 arranged to face each other with the coil substrate 3 interposed therebetween.
  • the N pole surface 6A of the magnet 6 faces the S pole surface 26B of the magnet 26, and the S pole surface 6B of the magnet 6 faces the N pole surface 26A of the magnet 26.
  • a magnetic flux is formed between the N pole face 6A and the S pole face 26B and between the N pole face 26A and the S pole face 6B, so that only one magnet is provided.
  • the magnetic path can be shortened. Therefore, the magnetic force between the magnet 6 and the magnet 26 becomes strong, and the vibration amount of the vibration motor can be increased.
  • the remaining effects of the vibration motor 21 are the same as those of the vibration motor 1 of the first embodiment.
  • the vibration motor 31 includes a movable part 32, a coil substrate 33, a spring 4 with a plate, an upper housing 5a, and a lower housing 5b. That is, the vibration motor 31 is different from the vibration motor 1 of the first embodiment in the configuration of the movable part and the coil substrate.
  • the movable portion 32 includes a magnet 36, a cylindrical yoke 7, and a side yoke 8.
  • the magnet 36 is a rectangular parallelepiped member made of a magnetic material, and is magnetized so as to have a pair of magnetic poles in the thickness direction.
  • the magnet 36 is arranged such that the length in the short direction is shorter than the length in the short direction of the inner wall surface of the cylindrical yoke 7 and the center of gravity is positioned at the center in the short direction of the cylindrical yoke 7.
  • the side surface of the magnet 36 and the inner wall surface of the cylindrical yoke 7 are arranged at a predetermined interval.
  • the coil substrate 33 is a rectangular substrate and is inserted from the opening surface of the cylindrical yoke 7 along the longitudinal direction of the coil substrate 33.
  • two coils 39 and 40 formed in a two-layered spiral shape are formed in the coil substrate 33 in order along the short direction of the coil substrate 33. Has been.
  • the coil substrate 33 has a four-layer structure, and coil layers 33b and 33c in which planar coils 39 and 40 are embedded, and insulating layers 33a provided on both surfaces thereof. , 33d.
  • the insulating layers 33a and 33d insulate the planar coils 39 and 40 provided on the coil layers 33b and 33c from the outside.
  • the planar coils 39 and 40 are composed of upper layer coils 391 and 401 wound in opposite directions from the electrode pads 10c and 10d in opposite directions, and in the coil layer 33c, electrodes are formed from the spiral center of the upper layer coil.
  • the lower layer coils 392 and 402 are wound in opposite directions in a substantially rectangular shape toward the pads 10e and 10f.
  • the upper coil 391 and the lower coil 392 of the planar coil 39 are connected at the center of the spiral.
  • the upper coil 401 and the lower coil 402 of the planar coil 40 are also connected at the center of the spiral.
  • the planar coils 39 and 40 have regions E to G including a plurality of coil wires extending along the longitudinal direction of the coil substrate 33 in the coil layers 33b and 33c, and current flows in the same direction for each region. It is formed to flow. Specifically, the coil wires in the regions F and G are formed so that current flows in the same direction, and the coil wire in the region E and the coil wires in the regions F and G flow in the opposite directions. Is formed.
  • both ends of the planar coils 39, 40 are connected to the drive current supply circuit via the electrode pads 10c, 10d, 10e, 10f, respectively, and current is supplied in the direction of arrow A or B from the drive current supply circuit.
  • the drive current supply circuit switches the direction of the current supplied to the planar coils 39 and 40 at a predetermined cycle. Since the other configuration of the coil substrate 33 is the same as that of the coil substrate 3 of the first embodiment, the description thereof is omitted.
  • the magnet 36 is magnetized with the N pole on the top surface and the S pole on the bottom surface.
  • the movable part 32 is first moved in the X1 direction.
  • the direction of the magnetic field on the N pole face is the direction from the surface of the N pole face toward the coil substrate 33, that is, the Y1 direction. Therefore, the current flowing through the region E of the planar coils 39 and 40 overlapping the N pole surface of the magnet 36 receives a force in the X2 direction from the magnetic field of the magnet 36. That is, a force in the X2 direction acts on the coil substrate 33.
  • the magnet 36 receives a force in the X1 direction due to the reaction. Therefore, the movable part 32 moves in the X1 direction as shown in FIG.
  • the drive current supply circuit switches the direction of the current supplied to the planar coils 39 and 40 to the B direction shown in FIG.
  • a current flows from the front side to the back side, that is, the Z1 direction along the longitudinal direction of the coil substrate 33.
  • the current flowing through the region E of the planar coils 39 and 40 overlapping the N pole surface of the magnet 36 receives a force in the X1 direction from the magnetic field of the magnet 36.
  • the movable part 32 moves to X2 direction, as shown in FIG.
  • the movable part 32 when the movable part 32 is moved to the maximum in the X1 direction, if the area where the magnet 36 and the region G overlap is larger than the area where the magnet 36 and the region E overlap, the current flowing through the region E
  • the force in the X1 direction that the current flowing in the region G receives from the magnetic field of the magnet 36 is larger than the force in the X2 direction that the magnetic field receives from the magnetic field of the magnet 36. Therefore, a force acts in a direction opposite to the direction in which the movable part 32 is about to move, and the vibration amount of the vibration motor 31 is reduced.
  • the positional relationship between the magnet 36 and the regions E to G of the planar coils 39 and 40 is greater than the area where the magnet 36 and the region G overlap when the movable part 32 is moved to the maximum in the X1 direction.
  • the area where 36 and the region E overlap is designed to be larger.
  • the magnet 36 and the region E overlap so that the area where the magnet 36 and the region E overlap is larger than the area where the magnet 36 and the region F overlap.
  • the positional relationship between the areas E to G of the planar coils 39 and 40 are set.
  • the vibration motor 31 reciprocates the movable portion 32 in the X1 direction and the X2 direction by switching the direction of the current supplied to the planar coils 39 and 40 by the drive current supply circuit.
  • the driving method of the present embodiment is movable by the attractive force and repulsive force generated between the planar coils 39, 40 and the magnet 36 in order to generate magnetic fields in opposite directions when current is supplied to the planar coils 39, 40. It can be said that the part 32 is reciprocated in the X1 direction and the X2 direction.
  • the vibration motor 31 includes a planar coil 33 including a planar coil 39 and a planar coil 40 that apply magnetic fields in opposite directions to the magnetic pole surface of the magnet 6. Thereby, even if the magnetic pole surface facing the coil substrate 33 of the magnet 6 has a single polarity, the movable portion 32 can be reciprocated, so that the manufacturing cost can be reduced. .
  • the vibration motor 31 includes the magnet 36 whose length in the short direction is shorter than the length in the short direction of the inner wall surface of the cylindrical yoke 7.
  • the entire apparatus can be reduced in weight, and the operation efficiency of the vibration motor 31 can be increased.
  • the other effects of the vibration motor 31 are the same as those of the vibration motor 1 of the first embodiment.
  • the vibration motor 41 includes a movable portion 42, a coil substrate 3, a spring 44 with a plate, an upper housing 5a, and a lower housing 5b.
  • the vibration motor 41 is configured by omitting the side yoke 8 from the movable portion 42 by using a spring 44 with a plate having a function as a magnetic shield instead of the side yoke 8.
  • the movable part 42 includes the magnet 6 and the cylindrical yoke 7.
  • the plate-attached spring 44 is made of a magnetic material, and plate springs 44a and 44b, a tray 44c, and a yoke portion 44d are integrally formed. SUS631, 632, spring steel, carbon steel, carbon tool steel, etc. are suitable as the material constituting the spring 44 with a plate.
  • the yoke portion 44d is provided in a direction perpendicular to the tray 44c at the end of the tray 44c in the short direction. Specifically, the yoke portion 44d is formed so as to block a portion where the magnet 6 is provided in both opening surfaces of the cylindrical yoke 7 when the movable portion 42 is mounted on the tray 44c. The height of the yoke portion 44d is formed below the upper end of the magnet 6 so as not to come into contact with the coil substrate 3 due to the movement of the movable portion.
  • the vibration motor 41 does not include the side yoke 8 and uses a countersunk spring 44 having a function as a magnetic shield. As a result, the entire vibration motor 41 can be reduced in thickness because the side yoke 8 is not provided.
  • the other effects of the vibration motor 41 are the same as those of the vibration motor 1 of the first embodiment.
  • the movable part is moved in a direction perpendicular to the direction in which the coil substrate is inserted into the cylindrical yoke.
  • the coil substrate is inserted into the cylindrical yoke. It is the structure which moves a movable part along a direction.
  • the moving direction of the movable part is made different by changing the direction of the magnet and the coil substrate of the movable part of the first embodiment by 90 degrees.
  • the vibration motor 51 includes a movable portion 52, a coil substrate 3, a spring 54 with a plate, an upper housing 5a, and a lower housing 5b.
  • the movable part 52 includes a magnet 6, a cylindrical yoke 7, and a side yoke 8.
  • the movable part 52 fixes the magnet 6 in the cylindrical yoke 7.
  • the direction differs from the movable part 2 by 90 degrees. That is, in the movable portion 52, the magnet 6 is placed on the bottom surface of the inner wall of the cylindrical yoke 7 so that the regions 61 and 62 and the neutral region 63 (see FIG. 2) of the magnet 6 extend in parallel with the opening surface of the cylindrical yoke 7. It is fixed.
  • the planar coil 9 formed on the coil substrate 3 has regions 9C and 9D including a plurality of coil wires extending along the short direction of the coil substrate 3, as shown in FIGS. Each is formed such that current flows in the same direction.
  • the positional relationship between the magnet 6 and the planar coil 9 is such that the regions 9C and 9D of the planar coil 9 and the N-polar surface 6A and the S-polar surface 6B of the magnet 6 overlap each other as shown in FIG. Is arranged.
  • the plate-attached spring 54 has two plate springs 54a and 54b and a tray 54c formed integrally.
  • the plate-attached spring 54 mounts the movable portion 52 on the tray 54c, supports both side surfaces of the movable portion 52 in the moving direction by sandwiching the plate springs 54a and 54b, and receives the movement of the movable portion 52.
  • Both side surfaces in the moving direction of the movable portion 52 are opening surfaces of the cylindrical yoke 7, and side surface regions 8 a of the side yokes 8 arranged so as to close the portions where the magnets 6 are provided on the opening surfaces. Is provided. Therefore, the leaf springs 54 a and 54 b support the side surface region 8 a and the height thereof is designed so as not to contact the coil substrate 3.
  • the other structure of the spring 54 with a plate is the same as that of the spring 4 with a plate of 1st Embodiment, description is abbreviate
  • the driving method of the vibration motor 51 is the same as the driving method of the vibration motor 1 of the first embodiment, and the current flowing in the regions 9C and 9D of the planar coil 9 is on the N-pole surface 6A and the S-pole surface 6B of the magnet 6.
  • the movable portion 52 moves along the longitudinal direction of the coil substrate 3. Since the side surface in the moving direction of the movable portion 52 is the opening surface of the cylindrical yoke 7, the movable portion 52 can move without the inner wall side surface of the cylindrical yoke 7 colliding with the coil substrate 3.
  • the vibration motor 51 moves the movable portion 52 along the direction in which the coil substrate 3 is inserted into the cylindrical yoke 7.
  • the moving distance of the movable part is increased compared to the case where the movable part is moved in a direction perpendicular to the insertion direction of the coil substrate into the cylindrical yoke as in the first to fourth embodiments. It is possible to increase the amount of vibration.
  • the vibration motor 61 changes the moving direction of the movable part by making the arrangement directions of the two planar coils formed on the coil substrate different from those of the vibration motor 31 of the third embodiment.
  • the vibration motor 61 includes a movable portion 62, a coil substrate 63, a countersunk spring 54, an upper housing 5a, and a lower housing 5b.
  • the movable part 62 includes a magnet 66, a cylindrical yoke 7, and a side yoke 8.
  • the magnet 66 is magnetized so as to have a pair of magnetic poles in the thickness direction, similarly to the magnet 36 of the third embodiment, but the length in the short direction is short of the inner wall surface of the cylindrical yoke 7. It is configured to be substantially the same as the length in the hand direction.
  • the coil substrate 63 is a rectangular substrate in which two spiral spiral two-layer coils 69 and 70 are formed.
  • the planar coils 69 and 70 are formed in order along the longitudinal direction of the coil substrate 63. Since the other configuration of the coil substrate 63 is the same as that of the coil substrate 33 of the third embodiment, the description thereof is omitted.
  • the driving method of the vibration motor 61 is the same as that of the vibration motor 31 of the third embodiment.
  • the current flowing through the planar coils 69 and 70 receives a force from the magnetic field of the magnet 36, so that the movable portion 62 moves.
  • the planar coils 69 and 70 are formed in order along the longitudinal direction of the coil substrate 63, the movable portion 62 is disposed in the longitudinal direction of the coil substrate 63, that is, the direction in which the coil substrate 63 is inserted into the cylindrical yoke 7. Move along.
  • the vibration motor according to the present embodiment includes a movable portion 72, a coil substrate 3, a countersunk spring 4, an upper housing 5a, and a lower housing 5b. That is, the vibration motor of the present embodiment is different from the vibration motor 1 of the first embodiment in the configuration of the movable part.
  • the movable portion 72 includes the magnet 6, the cylindrical yoke 7, and the auxiliary yoke 80.
  • the auxiliary yoke 80 is made of the same material as that of the cylindrical yoke 7 and is provided so as to cover the side surface of the magnet 6. That is, the movable portion 72 omits the side yoke 8 by using the auxiliary yoke 80 having a function as a magnetic shield instead of the side yoke 8.
  • a cutting portion 80 a is provided in order to make it easy to attach the auxiliary yoke 80 to the magnet 6, a cutting portion 80 a is provided.
  • the end of the cut portion 80a of the auxiliary yoke 80 may be in a state where a gap is left on the neutral region 63 of the magnet 6 or may be connected. Even if a gap is formed between the auxiliary yoke 80 on the neutral region 63, the neutral region 63 is not magnetized, so that the magnetic flux generated by the magnet 6 hardly leaks out from the gap
  • the magnet 6 provided with the auxiliary yoke 80 is fixed to the bottom surface of the inner wall of the cylindrical yoke 7.
  • the other structure of the movable part 72 is the same as the movable part 2 of 1st Embodiment, description is abbreviate
  • the driving method of the vibration motor of the present embodiment is the same as that of the vibration motor 1 of the first embodiment, description thereof is omitted.
  • the vibration motor of this embodiment does not include the side yoke 8 but includes the auxiliary yoke 80 that functions as a magnetic shield. As a result, the entire vibration motor can be reduced in thickness because the side yoke 8 is not provided.
  • the side surface of the magnet 6 is covered with the auxiliary yoke 80 made of a magnetic material. Therefore, it can further suppress that the magnetic flux which the magnet 6 produces leaks outside the vibration motor. Therefore, the operating efficiency of the vibration motor can be increased, and the amount of vibration can be increased.
  • the vibration motor of the present embodiment the area of the bottom surface of the magnet 6 is smaller than the area of the bottom surface of the inner wall of the cylindrical yoke 7 by the amount provided with the auxiliary yoke 80. Therefore, as shown in the modification (n) of the first embodiment, the vibration motor of this embodiment can shorten the magnetic path of the magnetic flux generated by the magnet 6 and can increase the amount of vibration. . Furthermore, since the auxiliary yoke 80 is provided compared with the case where the area of the bottom surface of the magnet 6 is simply reduced, the movable portion 72 can be made heavier. Therefore, it is possible to further increase the vibration amount of the vibration motor.
  • the vibration motor of this embodiment by providing the auxiliary yoke 80, the magnetic resistance of the magnetic circuit formed by the magnet 6 and the cylindrical yoke 7 can be reduced. Thereby, the permeance coefficient of a magnetic circuit can be increased and the heat resistance of the magnet 6 can be improved. Therefore, even when heat is applied to the magnet 6 from the outside at the time of manufacturing the vibration motor or when heat generated from the planar coil 9 is applied, it is possible to suppress a decrease in the magnetic force of the magnet 6. .
  • the auxiliary yoke 80 has a configuration in which the cutting portion 80a is provided.
  • the present invention is not limited to this, and may have a configuration in which no cutting portion is provided.
  • the auxiliary yoke 80 is made of a magnetic material, but the present invention is not limited to this, and may be made of a nonmagnetic material. In this case, there is no effect of confining the magnetic flux generated by the magnet 6 in the auxiliary yoke 80 and further suppressing leakage of the magnetic flux to the outside of the vibration motor, but the area of the bottom surface of the magnet 6 is reduced and the movable part Can be made heavy.
  • a material constituting the auxiliary yoke 80 it is preferable to use a non-ferrous metal having a specific gravity larger than that of iron such as tungsten in order to make the movable part heavy.
  • auxiliary yoke 80 has been described as an example applied to the configuration of the first embodiment in the present embodiment, it can also be suitably applied to the configurations of the second to sixth embodiments.
  • the mobile phone 100 includes the vibration motor 1 according to the first embodiment, a display unit 101, and a CPU 102.
  • the vibration motor 1 is for vibrating the mobile phone 100. As shown in FIG. 45, the vibration motor 1 is fixed to the surface opposite to the side on which the display unit 101 is disposed in the mobile phone 100. .
  • the display unit 101 is configured by a touch panel panel, and is for the user to operate the mobile phone 100 by pressing a button unit 101 a displayed on the display unit 101.
  • the CPU 102 controls various functions of the mobile phone 100. When the CPU 102 detects that the button unit 101a is pressed or when the manner mode is set when a call is received, The vibration motor 1 is controlled to vibrate.
  • the mobile phone 100 can be thinned, and is equipped with the vibration motor 1 of the first embodiment having a high degree of design freedom for the leaf springs 4a and 4b. As a result, it is possible to reduce the thickness of the entire apparatus and to obtain a sufficient amount of vibration that can be recognized by the user.
  • the vibration motor 1 of the first embodiment is mounted on a mobile phone.
  • the vibration motor 1 is mounted on another mobile device such as a PDA. It may be.
  • the vibration motor 1 is preferably used in a portable device using a touch panel.
  • the vibration motor 1 of the first embodiment has been described, but it is needless to say that the vibration motors of the second to seventh embodiments can also be mounted appropriately.

Abstract

A vibration motor configured in such a manner that the vibration motor is thin and that an elastic member has high degree of design freedom. A vibration motor (1) is provided with: fixed sections (5, 5a, 5b); a movable section (2) including a magnet (6) and a support member (7) which is provided in the direction of a side face of the magnet and moving relative to the fixed sections; a coil (9) provided so as to face the magnet and used to move the movable section in the direction in which the support member is provided; and an elastic member (4) provided between the support member and the fixed sections. The support member faces the magnet and the coil.

Description

振動モータおよび携帯機器Vibration motor and portable device

 本発明は、振動モータおよび振動モータを備えた携帯機器に関する。

The present invention relates to a vibration motor and a portable device including the vibration motor.

 近年、PDAや携帯電話機等の携帯機器の小型化により、携帯機器を振動させるための装置にも小型化が要求されている。このような装置は、小型化に伴い振動量の低下が問題となる。携帯機器を振動させるための装置としては、一般に、コイルが発生する磁界により振動する可動部を備えた振動モータが用いられている。

In recent years, due to miniaturization of portable devices such as PDAs and mobile phones, miniaturization of devices for vibrating portable devices is also required. Such a device has a problem of a decrease in vibration amount as it is miniaturized. As a device for vibrating a portable device, a vibration motor having a movable part that vibrates by a magnetic field generated by a coil is generally used.

 従来の振動モータとして、特開2002-200460号公報には振動アクチュエータの構成が開示されている。

As a conventional vibration motor, Japanese Patent Application Laid-Open No. 2002-200460 discloses a configuration of a vibration actuator.

 特開2002-200460号公報に記載された振動アクチュエータは、固定部と、マグネットおよびヨークから構成される可動部と、可動部を固定部に対して可動自在に保持するM字型の弾性部材と、マグネットの磁束と鎖交するコイルとを備えており、コイルに電流を流すことにより可動部が横方向(可動部の厚み方向とは垂直な方向)に直線移動する。

A vibration actuator described in Japanese Patent Application Laid-Open No. 2002-200460 includes a fixed portion, a movable portion composed of a magnet and a yoke, an M-shaped elastic member that holds the movable portion movably with respect to the fixed portion, And a coil interlinking with the magnetic flux of the magnet, and when the current flows through the coil, the movable part linearly moves in the lateral direction (direction perpendicular to the thickness direction of the movable part).

 上記構成により、ブラシ付きモータを用いた従来の振動アクチュエータと比較して、摩耗部分をなくすことができる。そのため、ノイズの発生を抑制することができ、動作信頼性の高い振動アクチュエータを提供することができる。

With the above configuration, a worn portion can be eliminated as compared with a conventional vibration actuator using a brushed motor. Therefore, generation of noise can be suppressed, and a vibration actuator with high operation reliability can be provided.

特開2002-200460号公報Japanese Patent Laid-Open No. 2002-200460

 しかしながら、特開2002-200460号公報に記載された振動アクチュエータでは、可動部の磁石やヨークの側面にしか弾性部材を配置することができず、コイルが挿入される領域には配置することができない。そのため、弾性部材の設計自由度が低く、弾性部材により可動部の移動を効率良く受け止めることができないために、十分な振動量を得ることが困難であるという問題点がある。

However, in the vibration actuator described in Japanese Patent Application Laid-Open No. 2002-200460, the elastic member can be disposed only on the side surface of the magnet or yoke of the movable part, and cannot be disposed in the region where the coil is inserted. . Therefore, there is a problem that it is difficult to obtain a sufficient amount of vibration because the degree of freedom in design of the elastic member is low and the movement of the movable part cannot be efficiently received by the elastic member.

 本発明は、上記のような課題を解決するためになされたものであり、その目的は、薄型化を図ることが可能であるとともに、弾性部材の設計自由度が高い振動モータおよび携帯機器を提供することである。

The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vibration motor and a portable device that can be thinned and have a high degree of freedom in designing an elastic member. It is to be.

 上記目的を達成するために、この発明の第1の局面による振動モータは、固定部と、磁石およびこの磁石の側面方向に設けられた支持部材を含み、固定部に対して相対的に移動する可動部と、磁石と対向して配置され、可動部を支持部材が設けられている方向に移動させるためのコイルと、固定部と支持部材との間に設けられた弾性部材とを備え、支持部材は、磁石およびコイルに面することを特徴としている。

To achieve the above object, a vibration motor according to a first aspect of the present invention includes a fixed portion, a magnet, and a support member provided in a side surface direction of the magnet, and moves relative to the fixed portion. A movable part, a coil arranged opposite to the magnet, for moving the movable part in the direction in which the support member is provided, and an elastic member provided between the fixed part and the support member, The member is characterized by facing the magnet and the coil.

 この発明の第2の局面による携帯機器は、固定部と、磁石および磁石の側面方向に設けられた支持部材を含み固定部に対して相対的に移動する可動部と、磁石と対向して配置され可動部を支持部材が設けられている方向に移動させるためのコイルと、固定部と支持部材との間に設けられた弾性部材とを含み、支持部材が磁石およびコイルと面する振動モータを備える。

A portable device according to a second aspect of the present invention includes a fixed portion, a movable portion that includes a magnet and a support member provided in a side surface direction of the magnet, and moves relative to the fixed portion, and is disposed opposite to the magnet. A vibration motor including a coil for moving the movable part in a direction in which the support member is provided and an elastic member provided between the fixed part and the support member, the support member facing the magnet and the coil. Prepare.

 本発明の振動モータは、上記構成により、薄型化を図ることが可能であるとともに、弾性部材の設計自由度を高めることが可能である。

With the above configuration, the vibration motor of the present invention can be thinned and can increase the degree of freedom in designing the elastic member.

 また、本発明の携帯機器は、上記振動モータを搭載しているために、薄型化を図るとともに、振動量を増大させることが可能となる。

Moreover, since the portable device of the present invention is equipped with the vibration motor, it is possible to reduce the thickness and increase the amount of vibration.

本発明の第1実施形態に係る振動モータの構成を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the structure of the vibration motor which concerns on 1st Embodiment of this invention. 振動モータの可動部の構成を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the structure of the movable part of a vibration motor. 振動モータの内部構造を説明するための上面図である。It is a top view for demonstrating the internal structure of a vibration motor. 図3の200-200線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line 200-200 in FIG. 図3の250-250線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line 250-250 in FIG. 振動モータのコイル基板の上層に形成された平面コイルの上面図である。It is a top view of the planar coil formed in the upper layer of the coil board | substrate of a vibration motor. コイル基板の下層に形成された平面コイルの上面図である。It is a top view of the planar coil formed in the lower layer of a coil board | substrate. コイル基板の断面図である。It is sectional drawing of a coil board | substrate. 振動モータの皿付きバネの構成を説明するための上面図である。It is a top view for demonstrating the structure of the spring with a plate of a vibration motor. 図9の断面図である。It is sectional drawing of FIG. 図9を矢印の方向から見た正面図である。It is the front view which looked at FIG. 9 from the direction of the arrow. 振動モータの駆動方法を説明するための断面図である。It is sectional drawing for demonstrating the drive method of a vibration motor. 振動モータの駆動方法を説明するための断面図である。It is sectional drawing for demonstrating the drive method of a vibration motor. 振動モータの駆動方法を説明するための断面図である。It is sectional drawing for demonstrating the drive method of a vibration motor. 皿付きバネの変形例である。It is a modification of a spring with a plate. 皿付きバネのその他の変形例である。It is the other modification of a spring with a plate. 皿付きバネのその他の変形例である。It is the other modification of a spring with a plate. 磁石の底面が筒型ヨークの内壁底面と略同一の面積を有する場合の磁束を示す図である。It is a figure which shows the magnetic flux in case the bottom face of a magnet has a substantially the same area as the inner wall bottom face of a cylindrical yoke. 磁石の底面が筒型ヨークの内壁底面よりも小さい面積を有する場合の磁束を示す図である。It is a figure which shows a magnetic flux in case the bottom face of a magnet has an area smaller than the inner wall bottom face of a cylindrical yoke. 本発明の第2実施形態に係る振動モータの可動部の構成を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the structure of the movable part of the vibration motor which concerns on 2nd Embodiment of this invention. 振動モータの駆動方法を説明するための断面図である。It is sectional drawing for demonstrating the drive method of a vibration motor. 振動モータの駆動方法を説明するための断面図である。It is sectional drawing for demonstrating the drive method of a vibration motor. 振動モータの駆動方法を説明するための断面図である。It is sectional drawing for demonstrating the drive method of a vibration motor. 本発明の第3実施形態に係る振動モータの内部構造を説明するための断面図である。It is sectional drawing for demonstrating the internal structure of the vibration motor which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る振動モータの内部構造を説明するための断面図である。It is sectional drawing for demonstrating the internal structure of the vibration motor which concerns on 3rd Embodiment of this invention. 振動モータのコイル基板の上層に形成された平面コイルの上面図である。It is a top view of the planar coil formed in the upper layer of the coil board | substrate of a vibration motor. コイル基板の下層に形成された平面コイルの上面図である。It is a top view of the planar coil formed in the lower layer of a coil board | substrate. 図27の350-350線に沿った断面図である。FIG. 28 is a cross-sectional view taken along line 350-350 in FIG. 振動モータの駆動方法を説明するための断面図である。It is sectional drawing for demonstrating the drive method of a vibration motor. 振動モータの駆動方法を説明するための断面図である。It is sectional drawing for demonstrating the drive method of a vibration motor. 振動モータの駆動方法を説明するための断面図である。It is sectional drawing for demonstrating the drive method of a vibration motor. 本発明の第4実施形態に係る振動モータの構成を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the structure of the vibration motor which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る振動モータの内部構造を説明するための上面図である。It is a top view for demonstrating the internal structure of the vibration motor which concerns on 5th Embodiment of this invention. 図33の400-400線に沿った断面図である。FIG. 34 is a cross-sectional view taken along line 400-400 in FIG. 図33の450-450線に沿った断面図である。FIG. 34 is a cross-sectional view taken along line 450-450 in FIG. 振動モータのコイル基板の上層に形成された平面コイルの上面図である。It is a top view of the planar coil formed in the upper layer of the coil board | substrate of a vibration motor. コイル基板の下層に形成された平面コイルの上面図である。It is a top view of the planar coil formed in the lower layer of a coil board | substrate. 本発明の第6実施形態に係る振動モータの内部構造を説明するための上面図である。It is a top view for demonstrating the internal structure of the vibration motor which concerns on 6th Embodiment of this invention. 図38の500-500線に沿った断面図である。FIG. 39 is a cross-sectional view taken along line 500-500 in FIG. 38. 図38の550-550線に沿った断面図である。FIG. 39 is a cross-sectional view taken along line 550-550 in FIG. 38. 振動モータのコイル基板の上層に形成された平面コイルの上面図である。It is a top view of the planar coil formed in the upper layer of the coil board | substrate of a vibration motor. コイル基板の下層に形成された平面コイルの上面図である。It is a top view of the planar coil formed in the lower layer of a coil board | substrate. 本発明の第7実施形態に係る振動モータの可動部の構成を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the structure of the movable part of the vibration motor which concerns on 7th Embodiment of this invention. 本発明に係る携帯電話機について説明するための上面図である。It is a top view for demonstrating the mobile telephone which concerns on this invention. 図44の600-600線に沿った断面図である。FIG. 45 is a cross-sectional view taken along line 600-600 in FIG. 44.

(振動モータ)

 (第1実施形態) 

 本発明の第1実施形態に係る振動モータ1の構成について、図1~図11を参照して説明する。

(Vibration motor)

(First embodiment)

The configuration of the vibration motor 1 according to the first embodiment of the present invention will be described with reference to FIGS.

 図1に示すように、振動モータ1は、可動部2と、コイル基板3と、皿付きバネ4と、上側筐体5aと、下側筐体5bとから構成されている。上側筐体5aおよび下側筐体5bは、互いの開口部を塞ぐように組み合わせることにより直方体の筐体5を形成する。筐体5の内部には、可動部2、コイル基板3および皿付きバネ4が収容されている。振動モータ1は、コイル基板3に電流を流すことにより、筐体5内において可動部2を往復移動させ、皿付きバネ4および筐体5により可動部2の移動を受け止めて振動する構成である。

As shown in FIG. 1, the vibration motor 1 includes a movable portion 2, a coil substrate 3, a spring 4 with a plate, an upper housing 5 a, and a lower housing 5 b. The upper casing 5a and the lower casing 5b form a rectangular parallelepiped casing 5 by being combined so as to close each other's opening. A movable part 2, a coil substrate 3, and a dished spring 4 are accommodated in the housing 5. The vibration motor 1 is configured to cause the movable part 2 to reciprocate in the casing 5 by passing an electric current through the coil substrate 3, and to vibrate by receiving the movement of the movable part 2 by the countersunk spring 4 and the casing 5. .

 図2に示すように、可動部2は、磁石6と、筒型ヨーク7と、側面用ヨーク8とから構成されている。磁気シールドとしての機能を有する筒型ヨーク7および側面用ヨーク8が磁石6を覆うことにより、磁石6の磁束が可動部2の外部に漏出することを抑制している。

As shown in FIG. 2, the movable portion 2 includes a magnet 6, a cylindrical yoke 7, and a side yoke 8. The cylindrical yoke 7 and the side yoke 8 having a function as a magnetic shield cover the magnet 6, thereby preventing the magnetic flux of the magnet 6 from leaking outside the movable portion 2.

 磁石6は、磁性材料から構成された直方体の部材であり、その厚み方向に一対の磁極を有する2つの領域61、62と、領域61、62の間に磁性材料からなる中性領域63とを含む。ここで、領域61、62は、互いに磁極が逆方向となっている。

The magnet 6 is a rectangular parallelepiped member made of a magnetic material, and includes two regions 61 and 62 having a pair of magnetic poles in the thickness direction, and a neutral region 63 made of a magnetic material between the regions 61 and 62. Including. Here, in the regions 61 and 62, the magnetic poles are opposite to each other.

 なお、磁石6は、単一の磁性材料に対して領域61、62および中性領域63を含むように着磁することによって形成してもよいし、2つの磁石の間に磁化されていない磁性材料を挟んで接着することによって形成してもよい。

The magnet 6 may be formed by magnetizing a single magnetic material so as to include the regions 61 and 62 and the neutral region 63, or a magnet that is not magnetized between the two magnets. You may form by adhering on both sides of material.

 筒型ヨーク7は、保磁力が小さく透磁率が大きい材料によって構成された直方体の部材であり、その長手方向に中空が形成されている。そして、筒型ヨーク7は、コイル基板3(コイル層3b、3c)と磁石6とに面するように構成されている。筒型ヨーク7を構成する材料としては、パーマロイ、炭素鋼、普通鋼、珪素鋼、フェライト系ステンレス、パーメンジュール、マルテンサイト系ステンレス、析出硬化系ステンレス等が好適である。このように、筒型ヨーク7は透磁率が大きい材料から構成されているので、周囲の磁束線をより多くその内部に閉じこめることができる。

The cylindrical yoke 7 is a rectangular parallelepiped member made of a material having a small coercive force and a large magnetic permeability, and a hollow is formed in the longitudinal direction thereof. The cylindrical yoke 7 is configured to face the coil substrate 3 (coil layers 3 b and 3 c) and the magnet 6. As the material constituting the cylindrical yoke 7, permalloy, carbon steel, ordinary steel, silicon steel, ferritic stainless steel, permendur, martensitic stainless steel, precipitation hardening stainless steel and the like are suitable. Thus, since the cylindrical yoke 7 is made of a material having a high magnetic permeability, it is possible to confine more surrounding magnetic flux lines.

 磁石6の底面と筒型ヨーク7の内壁底面とは略同一の面積を有しており、磁石6と筒型ヨーク7との間に働く磁気引力により、磁石6は筒型ヨーク7の内壁底面に固定されている。このとき、磁石6の領域61、62および中性領域63が筒型ヨーク7の開口面とは垂直な方向に延びるように、磁石6は筒型ヨーク7に固定されている。なお、磁石6と筒型ヨーク7との間の固定をより強固するために、接着剤を用いて接着させてもよい。

The bottom surface of the magnet 6 and the bottom surface of the inner wall of the cylindrical yoke 7 have substantially the same area. Due to the magnetic attraction acting between the magnet 6 and the cylindrical yoke 7, the magnet 6 becomes the bottom surface of the inner wall of the cylindrical yoke 7. It is fixed to. At this time, the magnet 6 is fixed to the cylindrical yoke 7 so that the regions 61 and 62 and the neutral region 63 of the magnet 6 extend in a direction perpendicular to the opening surface of the cylindrical yoke 7. In addition, in order to strengthen fixation between the magnet 6 and the cylindrical yoke 7, you may make it adhere | attach using an adhesive agent.

 側面用ヨーク8は、筒型ヨーク7と同一の材料によって構成されており、筒型ヨーク7の両開口面のうち、磁石6が設けられている部分を塞ぐように配置された側面領域8aと、筒型ヨーク7の外壁底面を覆うように配置された底面領域8bとを含んでいる。側面領域8aの高さは、可動部2の移動によりコイル基板3と接触しないように、磁石6の側面の上端よりも下側に形成されている。なお、側面用ヨーク8と、磁石6および筒型ヨーク7とは、接着剤を用いて固定されている。

The side yoke 8 is made of the same material as that of the cylindrical yoke 7, and includes a side region 8 a disposed so as to close a portion where the magnet 6 is provided in both opening surfaces of the cylindrical yoke 7. And a bottom surface region 8b disposed so as to cover the bottom surface of the outer wall of the cylindrical yoke 7. The height of the side surface region 8 a is formed below the upper end of the side surface of the magnet 6 so as not to contact the coil substrate 3 due to the movement of the movable portion 2. The side yoke 8, the magnet 6 and the cylindrical yoke 7 are fixed using an adhesive.

 図3~図5に示すように、コイル基板3は、矩形状の基板であり、筒型ヨーク7の開口面からコイル基板3の長手方向に沿って挿入されている。コイル基板3の短辺側の両端部が上側筐体5aおよび下側筐体5bで挟まれることにより、コイル基板3は筐体5に固定されている。コイル基板3と磁石6の磁極面とは、筒型ヨーク7の内部で平行になるように配置されている。ここで、平行とは、互いに平行な状態だけでなく、可動部2が往復移動する際の妨げにならない程度に平行な状態からずれた状態を含んでいる。

As shown in FIGS. 3 to 5, the coil substrate 3 is a rectangular substrate, and is inserted from the opening surface of the cylindrical yoke 7 along the longitudinal direction of the coil substrate 3. The coil substrate 3 is fixed to the housing 5 by sandwiching both ends on the short side of the coil substrate 3 between the upper housing 5a and the lower housing 5b. The coil substrate 3 and the magnetic pole surface of the magnet 6 are arranged so as to be parallel inside the cylindrical yoke 7. Here, the term “parallel” includes not only a state of being parallel to each other but also a state of being deviated from a parallel state to the extent that the movable portion 2 does not interfere with the reciprocating movement.

 図6および図7に示すように、平面コイル9は、コイル基板3の内部に2層の渦巻状に形成されている。

As shown in FIGS. 6 and 7, the planar coil 9 is formed in a two-layer spiral shape inside the coil substrate 3.

 具体的には、コイル基板3は、図8に示すように、4層構造となっており、平面コイル9が埋設されたコイル層3b、3cと、その両面に設けられた絶縁層3a、3dとから構成されている。絶縁層3a、3dは、コイル層3b、3cに設けられた平面コイル9を外部から絶縁している。平面コイル9は、コイル層3aにおいて、電極パッド10aからコイル基板3の中心部に向かって略矩形状に反時計回りに巻かれた上層コイル91(図6参照)と、コイル層3bにおいて、コイル基板3の中心部から電極パッド10bに向かって略矩形状に反時計回りに巻かれた下層コイル92(図7参照)とから構成されている。平面コイル9の上層コイル91および下層コイル92は、コイル基板3の中心部において接続されている。また、コイル層3bおよび3cは、磁石6の磁束と錯交するように配置されている。また、コイル層3bおよび3cは、重なるように配置されている。

Specifically, as shown in FIG. 8, the coil substrate 3 has a four-layer structure, and the coil layers 3b and 3c in which the planar coil 9 is embedded, and the insulating layers 3a and 3d provided on both surfaces thereof. It consists of and. The insulating layers 3a and 3d insulate the planar coil 9 provided on the coil layers 3b and 3c from the outside. The planar coil 9 includes an upper layer coil 91 (see FIG. 6) wound counterclockwise in a substantially rectangular shape from the electrode pad 10a toward the central portion of the coil substrate 3 in the coil layer 3a, and a coil layer 3b The lower layer coil 92 (see FIG. 7) wound in a substantially rectangular shape counterclockwise from the center of the substrate 3 toward the electrode pad 10b. The upper coil 91 and the lower coil 92 of the planar coil 9 are connected at the center of the coil substrate 3. The coil layers 3b and 3c are arranged so as to intersect with the magnetic flux of the magnet 6. Moreover, the coil layers 3b and 3c are arrange | positioned so that it may overlap.

 また、平面コイル9は、図6、図7に示すように、コイル層3b、3cにおいて、コイル基板3の長手方向に沿って延びる複数のコイル線を含む領域9A、9Bを有しており、領域ごとに同じ方向に電流が流れるように形成されている。また、平面コイル9は、その両端が電極パッド10a、10bを介して図示しない駆動電流供給回路に接続されており、駆動電流供給回路から矢印A方向またはB方向に電流が供給される。駆動電流供給回路は、所定の周期で平面コイル9に供給する電流の方向を切り替える。

Further, as shown in FIGS. 6 and 7, the planar coil 9 has regions 9A and 9B including a plurality of coil wires extending in the longitudinal direction of the coil substrate 3 in the coil layers 3b and 3c. Each region is formed so that a current flows in the same direction. Further, both ends of the planar coil 9 are connected to a drive current supply circuit (not shown) via electrode pads 10a and 10b, and current is supplied from the drive current supply circuit in the direction of arrow A or B. The drive current supply circuit switches the direction of the current supplied to the planar coil 9 at a predetermined cycle.

 図9に示すように、皿付きバネ4は、非磁性材料から構成されており、2つの板バネ4a、4bと、受皿4cとが一体的に形成されている。皿付きバネ4は、受皿4c上に可動部2を搭載し、可動部2の移動方向における両側面を板バネ4a、4bによって挟みこんで支持し、可動部2の移動を受け止めるものである。皿付きバネ4を構成する材料としては、SUS301、304等が好適である。

As shown in FIG. 9, the disc-attached spring 4 is made of a nonmagnetic material, and the two plate springs 4 a and 4 b and the tray 4 c are integrally formed. The plate-attached spring 4 mounts the movable portion 2 on the tray 4c, supports both side surfaces in the moving direction of the movable portion 2 with plate springs 4a and 4b, and receives the movement of the movable portion 2. SUS301, 304 etc. are suitable as a material which comprises the spring 4 with a plate.

 2つの板バネ4a、4bは、下側筐体5bに固定される固定部4d、4eと、可動部2を支持する支持部4f、4gとを含んでいる。支持部4f、4gは、可動部2の移動を受け止めるために、下側筐体5bと可動部2との間で1つの屈曲点4X、4Yを有している。また、支持部4f、4gは、図10に示すように、可動部2の重心Aを含む移動方向上に位置するように配置されており、その高さは可動部2の高さに合わせて設計されている。

The two leaf springs 4 a and 4 b include fixed portions 4 d and 4 e that are fixed to the lower housing 5 b and support portions 4 f and 4 g that support the movable portion 2. The support portions 4f and 4g have one bending point 4X and 4Y between the lower housing 5b and the movable portion 2 in order to catch the movement of the movable portion 2. Further, as shown in FIG. 10, the support portions 4 f and 4 g are arranged so as to be positioned on the moving direction including the center of gravity A of the movable portion 2, and the height thereof is matched to the height of the movable portion 2. Designed.

 一方、固定部4d、4eの上端の高さは、図11に示すように、支持部4f、4gの上端の高さよりも低くなっている。これは、コイル基板3が配置された場合、固定部4d、4eの上端の高さを支持部4f、4gと同一にしていると、固定部4d、4eとコイル基板3とが接触してしまうためである。そのため、固定部4d、4eは、コイル基板3と接触しない高さに設計されている。

On the other hand, the height of the upper ends of the fixing portions 4d and 4e is lower than the height of the upper ends of the support portions 4f and 4g, as shown in FIG. This is because, when the coil substrate 3 is disposed, if the heights of the upper ends of the fixing portions 4d and 4e are the same as the supporting portions 4f and 4g, the fixing portions 4d and 4e and the coil substrate 3 come into contact with each other. Because. Therefore, the fixing portions 4 d and 4 e are designed to have a height that does not contact the coil substrate 3.

 また、可動部2の移動に伴い、受皿4cおよび支持部4f、4gが下側筐体5bの内壁底面と接触しないように、受皿4cおよび支持部4f、4gの下端が固定部4d、4eの下端よりも高い位置にくるように構成されている。すなわち、皿付きバネ4は、下側筐体5bの内壁底面から浮いた状態で可動部2を保持する。また、受皿4cは、可動部2が搭載されるために、可動部2の底面と略同一の形状を有している。

Further, with the movement of the movable portion 2, the lower ends of the tray 4c and the support portions 4f and 4g are fixed to the fixed portions 4d and 4e so that the tray 4c and the support portions 4f and 4g do not come into contact with the bottom surface of the inner wall of the lower housing 5b. It is comprised so that it may come to a position higher than a lower end. That is, the countersunk spring 4 holds the movable part 2 in a state of floating from the bottom surface of the inner wall of the lower housing 5b. Moreover, since the movable part 2 is mounted, the saucer 4c has substantially the same shape as the bottom surface of the movable part 2.

 なお、振動モータ1の組み立て段階において、皿付きバネ4は、受皿4cが2つに分かれており、一方の受皿4cには板バネ4aが、他方の受皿4cには板バネ4bが接続されている。各部品は、可動部2の底面に固定されることにより皿付き板バネ4を構成する。

In the assembly stage of the vibration motor 1, the tray-attached spring 4 is divided into two trays 4 c, a plate spring 4 a is connected to one tray 4 c, and a plate spring 4 b is connected to the other tray 4 c. Yes. Each component constitutes a plate spring 4 with a plate by being fixed to the bottom surface of the movable portion 2.

 次に、振動モータ1の駆動方法について、図12~図14を参照して説明する。ここでは、可動部2をまずX1方向に移動させる場合について説明する。

Next, a method for driving the vibration motor 1 will be described with reference to FIGS. Here, a case where the movable part 2 is first moved in the X1 direction will be described.

 振動モータ1を駆動する場合、コイル基板3の平面コイル9に、駆動電流供給回路より電極パッド10aを介して、図6に示すA方向に電流が供給される。これにより、平面コイル9の領域9Aには、図12に示すように、コイル基板3の長手方向に沿って紙面奥側から手前側、すなわちZ2方向に電流が流れる。また、平面コイル9の領域9Bには、コイル基板3の長手方向に沿って紙面手前側から奥側、すなわちZ1方向に電流が流れる。

When the vibration motor 1 is driven, a current is supplied to the planar coil 9 of the coil substrate 3 from the drive current supply circuit via the electrode pad 10a in the direction A shown in FIG. Thereby, in the area 9A of the planar coil 9, a current flows from the back side to the near side, that is, the Z2 direction along the longitudinal direction of the coil substrate 3 as shown in FIG. Further, in the region 9B of the planar coil 9, a current flows from the front side to the back side, that is, the Z1 direction along the longitudinal direction of the coil substrate 3.

 ここで、磁石6のコイル基板3と対向する面のN極面6AとS極面6Bとの間において発生する磁界の向きは、N極面6A上においては、N極面6Aの表面からコイル基板3に向かった方向、すなわちY1方向となる。また、S極面6B上においては、コイル基板3からS極面6Bに向かった方向、すなわちY2方向となる。このように、磁石6のN極面6AとS極面6Bとの間において発生する磁界は、平面コイル9の領域9A、9Bの電流の流れる方向と直交することとなる。

Here, the direction of the magnetic field generated between the N-pole surface 6A and the S-pole surface 6B of the surface of the magnet 6 facing the coil substrate 3 is the same as the coil on the N-pole surface 6A from the surface of the N-pole surface 6A. The direction is toward the substrate 3, that is, the Y1 direction. On the south pole surface 6B, the direction is from the coil substrate 3 toward the south pole surface 6B, that is, the Y2 direction. Thus, the magnetic field generated between the N-pole surface 6A and the S-pole surface 6B of the magnet 6 is orthogonal to the direction of current flow in the regions 9A and 9B of the planar coil 9.

 そのため、平面コイル9の領域9Aを流れる電流は、磁石6のN極面6A上の磁界からX2方向への力を受ける。また、平面コイル9の領域9Bを流れる電流は、磁石6のS極面6B上の磁界からX2方向への力を受ける。すなわち、コイル基板3には、X2方向への力が作用する。

Therefore, the current flowing through the region 9A of the planar coil 9 receives a force in the X2 direction from the magnetic field on the N-pole surface 6A of the magnet 6. Further, the current flowing through the region 9B of the planar coil 9 receives a force in the X2 direction from the magnetic field on the south pole surface 6B of the magnet 6. That is, a force in the X2 direction acts on the coil substrate 3.

 しかし、コイル基板3は上側筐体5aおよび下側筐体5bにより固定されているので、磁石6は反作用によりX1方向への力を受けることになる。したがって、可動部2は、図13に示すように、X1方向に移動する。このとき、可動部2は、X1方向において皿付きバネ4の板バネ4bに支持されているために、板バネ4bが撓んで可動部2の移動を受け止める。

However, since the coil substrate 3 is fixed by the upper housing 5a and the lower housing 5b, the magnet 6 receives a force in the X1 direction by reaction. Therefore, the movable part 2 moves in the X1 direction as shown in FIG. At this time, since the movable portion 2 is supported by the leaf spring 4b of the disc spring 4 in the X1 direction, the leaf spring 4b bends and receives the movement of the movable portion 2.

 次に、駆動電流供給回路は、平面コイル9に供給する電流の向きを、図7に示すB方向に切り替える。これにより、平面コイル9の領域9Aには、図14に示すように、コイル基板3の長手方向に沿って紙面手前側から奥側、すなわちZ1方向に電流が流れる。また、平面コイル9の領域9Bには、コイル基板3の長手方向に沿って紙面奥側から手前側、すなわちZ2方向に電流が流れる。

Next, the drive current supply circuit switches the direction of the current supplied to the planar coil 9 to the B direction shown in FIG. As a result, a current flows in the area 9A of the planar coil 9 from the front side to the back side, that is, in the Z1 direction along the longitudinal direction of the coil substrate 3 as shown in FIG. Further, a current flows in the region 9B of the planar coil 9 from the back side to the front side, that is, the Z2 direction along the longitudinal direction of the coil substrate 3.

 そのため、平面コイル9の領域9Aを流れる電流は、磁石6のN極面6A上の磁界からX1方向への力を受ける。また、平面コイル9の領域9Bを流れる電流は、磁石6のS極面6B上の磁界からX1方向への力を受ける。これにより、可動部2は、図14に示すように、X2方向に移動する。このとき、可動部2は、X2方向において皿付きバネ4の板バネ4aに支持されているために、板バネ4aが撓んで可動部2の移動を受け止める。

Therefore, the current flowing through the region 9A of the planar coil 9 receives a force in the X1 direction from the magnetic field on the N-pole surface 6A of the magnet 6. Further, the current flowing through the region 9B of the planar coil 9 receives a force in the X1 direction from the magnetic field on the south pole surface 6B of the magnet 6. Thereby, the movable part 2 moves to X2 direction, as shown in FIG. At this time, since the movable portion 2 is supported by the plate spring 4a of the disc spring 4 in the X2 direction, the plate spring 4a is bent and receives the movement of the movable portion 2.

 以上のように、振動モータ1は、駆動電流供給回路により平面コイル9に供給する電流の方向を切り替えることにより、可動部2をX1方向およびX2方向に往復移動させる。このとき、駆動電流供給回路が平面コイル9に電流を供給するタイミングを調節することにより、可動部2を共振させることができ、大きな振動量を得ることが可能である。

As described above, the vibration motor 1 reciprocates the movable portion 2 in the X1 direction and the X2 direction by switching the direction of the current supplied to the planar coil 9 by the drive current supply circuit. At this time, by adjusting the timing at which the drive current supply circuit supplies current to the planar coil 9, the movable part 2 can resonate and a large amount of vibration can be obtained.

 なお、可動部2をX1方向に最大に移動させたとき、磁石6のN極面6Aが平面コイル9の領域9Bと重畳してしまうと、領域9Bを流れる電流がN極面6A上の磁界からX1方向の力を受け、磁石6にX2方向への力が作用してしまう。すなわち、可動部2が移動しようとする方向とは逆方向に力が作用し、振動モータ1の振動量が低下してしまう。

If the N pole surface 6A of the magnet 6 overlaps the region 9B of the planar coil 9 when the movable part 2 is moved to the maximum in the X1 direction, the current flowing through the region 9B is a magnetic field on the N pole surface 6A. The force in the X1 direction is applied to the magnet 6, and the force in the X2 direction acts on the magnet 6. That is, a force acts in a direction opposite to the direction in which the movable part 2 tries to move, and the vibration amount of the vibration motor 1 decreases.

 そこで、磁石6は、可動部2をX1方向に最大に移動させたとき、磁石6のN極面6Aが平面コイル9の領域9Bと重畳することがないように、中性領域63の幅が調節されている。中性領域63は磁化されていないので、領域9Bと対向したとしても、磁石6をX2方向へ移動させるための力は作用しない。また、可動部2をX2方向に最大に移動させた場合も同様に、磁石6のS極面6Bと平面コイル9の領域9Aとが重畳しないように、磁石6の中性領域63の幅が調節されている。したがって、中性領域63の幅は、磁石6と平面コイル9との関係で決定される。

Therefore, the magnet 6 has a width of the neutral region 63 so that the N pole surface 6A of the magnet 6 does not overlap the region 9B of the planar coil 9 when the movable part 2 is moved to the maximum in the X1 direction. It has been adjusted. Since the neutral region 63 is not magnetized, the force for moving the magnet 6 in the X2 direction does not act even if it is opposed to the region 9B. Similarly, when the movable part 2 is moved to the maximum in the X2 direction, the neutral region 63 of the magnet 6 has a width so that the S pole surface 6B of the magnet 6 and the region 9A of the planar coil 9 do not overlap. It has been adjusted. Therefore, the width of the neutral region 63 is determined by the relationship between the magnet 6 and the planar coil 9.

 以下に、本実施形態の振動モータ1の効果について説明する。

Below, the effect of the vibration motor 1 of this embodiment is demonstrated.

 (1)振動モータ1は、可動部2をコイル基板3に沿って移動させている。これにより、可動部2の移動スペースをその厚み方向に設ける必要がなく、装置全体を薄型化することが可能である。

(1) The vibration motor 1 moves the movable part 2 along the coil substrate 3. Thereby, it is not necessary to provide the movement space of the movable part 2 in the thickness direction, and the entire apparatus can be thinned.

 (2)振動モータ1は、板バネ4a、4bが筒型ヨーク7の移動方向の側面(下側筐体5bと筒型ヨーク7との間)に設けられている。これにより、コイル基板3が挿入された部分を気にすることなく、板バネ4a、4bを配置することができ、設計自由度を向上させることができる。すなわち、板バネ4a、4bの設置位置を自由に設定でき、また、十分な高さを有する板バネ4a、4bを用いることが可能である。そのため、振動モータ1は、可動部2の移動を効率良く受け止めることができ、振動量を増大させることができる。

(2) In the vibration motor 1, the leaf springs 4 a and 4 b are provided on the side surface of the cylindrical yoke 7 in the moving direction (between the lower housing 5 b and the cylindrical yoke 7). Accordingly, the leaf springs 4a and 4b can be arranged without worrying about the portion where the coil substrate 3 is inserted, and the degree of freedom in design can be improved. That is, the installation positions of the leaf springs 4a and 4b can be freely set, and the leaf springs 4a and 4b having a sufficient height can be used. Therefore, the vibration motor 1 can efficiently receive the movement of the movable portion 2 and can increase the amount of vibration.

 (3)振動モータ1は、板バネ4a、4bが可動部2の重心Aを含む移動方向上に位置するように配置されている。これにより、板バネ4a、4bが可動部2の移動を効率良く受け止めることができるため、振動モータ1の振動量を増大させることができる。

(3) The vibration motor 1 is disposed such that the leaf springs 4 a and 4 b are positioned on the moving direction including the center of gravity A of the movable portion 2. Thereby, since the leaf | plate springs 4a and 4b can receive the movement of the movable part 2 efficiently, the vibration amount of the vibration motor 1 can be increased.

 (4)振動モータ1は、筒型ヨーク7が磁気シールドとしての機能を有している。これにより、磁石6が生じる磁束が筒型ヨーク7内を通過するため、筒型ヨーク7が設けられていない場合と比較して、磁路を短くすることができる。そのため、平面コイル9に作用する磁力が大きくなり、振動モータ1の振動量を増大させることができる。

(4) In the vibration motor 1, the cylindrical yoke 7 has a function as a magnetic shield. Thereby, since the magnetic flux generated by the magnet 6 passes through the cylindrical yoke 7, the magnetic path can be shortened as compared with the case where the cylindrical yoke 7 is not provided. Therefore, the magnetic force acting on the planar coil 9 is increased, and the amount of vibration of the vibration motor 1 can be increased.

 (5)振動モータ1は、筒型ヨーク7の両開口面のうち、磁石6が設けられている部分を塞ぐよう配置されるとともに、筒型ヨーク7の外壁底面を覆うように配置された側面用ヨーク8を備えている。これにより、磁石6のN極面6A、S極面6Bと、側面用ヨーク8の端部との間で磁束が形成されるため、側面用ヨーク8が設けられていない場合と比較して、磁路を短くすることができる。そのため、平面コイル9に作用する磁力が大きくなり、振動モータ1の振動量を増大させることができる。

(5) The vibration motor 1 is disposed so as to block a portion where the magnet 6 is provided in both opening surfaces of the cylindrical yoke 7 and is disposed so as to cover the bottom surface of the outer wall of the cylindrical yoke 7. A yoke 8 is provided. As a result, a magnetic flux is formed between the N-pole surface 6A and the S-pole surface 6B of the magnet 6 and the end portion of the side yoke 8, so that compared to the case where the side yoke 8 is not provided, The magnetic path can be shortened. Therefore, the magnetic force acting on the planar coil 9 is increased, and the amount of vibration of the vibration motor 1 can be increased.

 (6)振動モータ1は、筒型ヨーク7および側面用ヨーク8により、磁石6のコイル基板3と対向する面以外の部分を覆っている。これにより、磁石6が生じる磁束が可動部2の外部に漏出することを抑制することができるため、振動モータ1の動作効率を高めることができ、振動量を増大させることが可能である。

(6) In the vibration motor 1, the cylindrical yoke 7 and the side yoke 8 cover portions of the magnet 6 other than the surface facing the coil substrate 3. Thereby, since it can suppress that the magnetic flux which the magnet 6 produces leaks outside the movable part 2, the operating efficiency of the vibration motor 1 can be improved and the amount of vibrations can be increased.

 (7)振動モータ1の磁石6は、その厚み方向に一対の磁極を有する2つの領域61、62と、領域61、62の間に磁性材料からなる中性領域63とを含むように形成されており、領域61、62には互いに磁極が逆方向となっている。これにより、磁石6が生じる下方向の磁束を低減することができるため、振動モータ1における下方向への磁束漏れを抑制することができる。その結果、振動モータ1の動作効率を高めることができ、振動量を増大させることができる。

(7) The magnet 6 of the vibration motor 1 is formed so as to include two regions 61 and 62 having a pair of magnetic poles in the thickness direction, and a neutral region 63 made of a magnetic material between the regions 61 and 62. In the regions 61 and 62, the magnetic poles are opposite to each other. Thereby, since the downward magnetic flux which the magnet 6 produces can be reduced, the magnetic flux leakage to the downward direction in the vibration motor 1 can be suppressed. As a result, the operating efficiency of the vibration motor 1 can be increased, and the amount of vibration can be increased.

 (8)磁石6の中性領域63は、磁石6をX1方向に最大に移動させた場合に、平面コイル9の領域9Bと磁石6のN極面6Aとが重畳しないように設計されており、磁石6をX2方向に最大に移動させた場合に、平面コイル9の領域9Aと磁石6のS極面6Bとが重畳しないように設計されている。これにより、可動部2をX1、X2方向に最大に移動させた場合、可動部2が移動しようとする方向とは逆方向に力が作用することを防止することができる。そのため、振動モータ1の振動量を増大させることができる。

(8) The neutral region 63 of the magnet 6 is designed so that the region 9B of the planar coil 9 and the N pole surface 6A of the magnet 6 do not overlap when the magnet 6 is moved to the maximum in the X1 direction. When the magnet 6 is moved to the maximum in the X2 direction, the region 9A of the planar coil 9 and the south pole surface 6B of the magnet 6 are designed not to overlap each other. Thereby, when the movable part 2 is moved to the maximum in the X1 and X2 directions, it is possible to prevent a force from acting in the direction opposite to the direction in which the movable part 2 is about to move. Therefore, the vibration amount of the vibration motor 1 can be increased.

 (9)振動モータ1の皿付きバネ4は、受皿4cおよび支持部4f、4gの下端が、固定部4d、4eの下端よりも高い位置にくるように構成されている。これにより、可動部2は下側筐体5bの内壁底面からは浮上した状態で保持されるために、可動部2が移動した場合に受皿4cと下側筐体5bの内壁底面との間に摩擦が生じることを防止することができる。そのため、可動部2を効率良く移動させることができるために、振動モータ1の振動量を増大させることができる。

(9) The dished spring 4 of the vibration motor 1 is configured such that the lower ends of the tray 4c and the support portions 4f and 4g are positioned higher than the lower ends of the fixed portions 4d and 4e. Accordingly, since the movable portion 2 is held in a state of floating from the inner wall bottom surface of the lower housing 5b, when the movable portion 2 moves, the movable portion 2 is interposed between the tray 4c and the inner wall bottom surface of the lower housing 5b. Friction can be prevented from occurring. Therefore, since the movable part 2 can be moved efficiently, the vibration amount of the vibration motor 1 can be increased.

 以上のように、本実施形態の振動モータ1の構成について説明してきたが、本発明の振動モータは上述した構成に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。以下に、振動モータ1の変形例およびその効果について説明する。

As described above, the configuration of the vibration motor 1 of the present embodiment has been described. However, the vibration motor of the present invention is not limited to the above-described configuration, and various modifications are possible within the scope of the claims. is there. Below, the modification of the vibration motor 1 and its effect are demonstrated.

 (a)本実施形態では、本発明の「支持部材」として筒型ヨーク7を用いているが、本発明はこれに限られない。すなわち、本発明の「支持部材」は、磁石6の側面方向に設けられており、磁石6およびコイル基板3と面していればよい。

(A) In this embodiment, the cylindrical yoke 7 is used as the “support member” of the present invention, but the present invention is not limited to this. In other words, the “support member” of the present invention is provided in the side surface direction of the magnet 6, as long as it faces the magnet 6 and the coil substrate 3.

 (b)本実施形態では、本発明の「コイル」として平面コイル9を用いているが、平面コイルに限られず、その厚み方向に厚みのあるコイルを用いてもよい。

(B) In the present embodiment, the planar coil 9 is used as the “coil” of the present invention, but the present invention is not limited to the planar coil, and a coil having a thickness in the thickness direction may be used.

 (c)本実施形態では、本発明の「弾性部材」として板バネ4a、4bを用いているが、板バネに限られず、ねじりバネ等の他の構成の弾性部材を用いてもよい。ただし、どのような構成の弾性部材を用いるとしても、バネ定数を大きくするために、そのサイズは可動部2の高さに近い方が好ましい。

(C) In this embodiment, the leaf springs 4a and 4b are used as the “elastic member” of the present invention. However, the present invention is not limited to the leaf spring, and an elastic member having another configuration such as a torsion spring may be used. However, whatever size elastic member is used, the size is preferably close to the height of the movable portion 2 in order to increase the spring constant.

 (d)本実施形態では、板バネ4a、4bが可動部2の重心Aを含む移動方向上に位置するように配置されているが、重心Aを含む移動方向上でなくとも、可動部2の移動方向に設けられていればよい。また、本実施形態では、可動部2の移動方向における両側面に板バネが設けられているが、可動部2の移動方向における一方の側面にのみ設けられている構成であってもよい。また、可動部2の移動方向における両側面において、それぞれ2つ以上の板バネが設けられている構成であってもかまわない。

(D) In the present embodiment, the leaf springs 4a and 4b are arranged so as to be positioned on the moving direction including the center of gravity A of the movable part 2, but the movable part 2 is not necessarily on the moving direction including the center of gravity A. As long as it is provided in the moving direction. Further, in the present embodiment, the leaf springs are provided on both side surfaces in the moving direction of the movable part 2, but a configuration in which the leaf springs are provided only on one side surface in the moving direction of the movable part 2 may be employed. In addition, two or more leaf springs may be provided on both side surfaces in the moving direction of the movable portion 2.

 (e)本実施形態では、皿付きバネ4は板バネ4a、4bと受皿4cとが一体的に形成されているが、受皿4cが設けられていない構成であってもかまわない。

(E) In the present embodiment, the plate spring 4 is formed integrally with the plate springs 4a and 4b and the tray 4c, but may be configured such that the tray 4c is not provided.

 (f)本実施形態では、皿付きバネ4は非磁性材料から構成されているが、磁性材料から構成されていてもよい。この場合、皿付きバネ4は磁気シールドとしての機能を有するために、磁石6が生じる磁束が振動モータ1の外部に漏出することをさらに抑制することができる。そのため、振動モータ1の動作効率を高め、振動量を増大させることが可能である。

(F) In the present embodiment, the countersunk spring 4 is made of a nonmagnetic material, but may be made of a magnetic material. In this case, since the countersunk spring 4 has a function as a magnetic shield, the magnetic flux generated by the magnet 6 can be further prevented from leaking out of the vibration motor 1. Therefore, it is possible to increase the operation efficiency of the vibration motor 1 and increase the vibration amount.

 (g)本実施形態では、振動モータ1の組み立て段階において、皿付きバネ4は、受皿4cが2つに分かれており、一方の受皿4cには板バネ4aが、他方の受皿4cには板バネ4bが接続されている構成であるが、本発明はこれに限られない。すなわち、皿付き板バネ4は、振動モータ1の組み立て段階において、既に一体となった構成のものを用いてもよい。

(G) In the present embodiment, in the assembly stage of the vibration motor 1, the tray spring 4 is divided into two trays 4c. One plate 4c has a plate spring 4a and the other tray 4c has a plate. Although the spring 4b is connected, the present invention is not limited to this. In other words, the plate spring 4 with a plate may be one that has already been integrated in the assembly stage of the vibration motor 1.

 (h)本実施形態では、コイル基板3の磁石6と対向する面には何も設けられていないが、コイル基板3表面の摩擦係数よりも低い摩擦係数を有する低摩擦層が形成されていてもよい。これにより、可動部2が移動する場合、コイル基板3と磁石6との摩擦によるエネルギーの損失を抑制できる。そのため、可動部2を効率的に移動させることができ、振動モータ1の振動量を増加させることが可能である。

(H) In this embodiment, nothing is provided on the surface of the coil substrate 3 facing the magnet 6, but a low friction layer having a friction coefficient lower than the friction coefficient of the surface of the coil substrate 3 is formed. Also good. Thereby, when the movable part 2 moves, the loss of energy due to the friction between the coil substrate 3 and the magnet 6 can be suppressed. Therefore, the movable part 2 can be moved efficiently, and the vibration amount of the vibration motor 1 can be increased.

 (i)本実施形態では、可動部2は筒型ヨーク7の内壁底面に磁石6が固定されている構成であるが、本発明はこれに限られない。すなわち、可動部2は、側面用ヨーク8に磁石6を搭載し、側面用ヨーク8が筒型ヨーク7の内壁底面に固定されている構成であってもよい。また、筒型ヨーク7の下端が開口面から突出しており、折り曲げることにより磁石6の側面を覆うような構成であってもかまわない。この場合、側面用ヨーク8を設ける必要が無くなるため、部品数を低減することができ、装置全体を薄型化することが可能である。

(I) In this embodiment, the movable part 2 has a configuration in which the magnet 6 is fixed to the bottom surface of the inner wall of the cylindrical yoke 7, but the present invention is not limited to this. That is, the movable portion 2 may have a configuration in which the magnet 6 is mounted on the side yoke 8 and the side yoke 8 is fixed to the bottom of the inner wall of the cylindrical yoke 7. Moreover, the lower end of the cylindrical yoke 7 may protrude from the opening surface, and the side surface of the magnet 6 may be covered by being bent. In this case, since it is not necessary to provide the side yoke 8, the number of parts can be reduced, and the entire apparatus can be thinned.

 (j)本実施形態では、側面用ヨーク8の側面領域8aの高さは、磁石6の側面の上端よりも下側に形成されているが、本発明はこれに限られない。

(J) In this embodiment, the height of the side region 8a of the side yoke 8 is formed below the upper end of the side surface of the magnet 6, but the present invention is not limited to this.

 例えば、振動モータ1を薄型化する必要が無い場合には、側面領域8aの高さを、磁石6の側面の上端よりも突出した構成とすることが好ましい。振動モータ1を薄型化する必要がなければ、側面領域8aを高くしたとしても、可動部2の移動によりコイル基板3と側面領域8aとが接触することは防止することができる。さらに、側面領域8aを高くすることにより、磁石6が生じる磁束が可動部2の外部に漏出することをさらに抑制することができる。

For example, when it is not necessary to reduce the thickness of the vibration motor 1, it is preferable that the height of the side surface region 8 a is configured to protrude from the upper end of the side surface of the magnet 6. If it is not necessary to make the vibration motor 1 thin, it is possible to prevent the coil substrate 3 and the side surface region 8a from coming into contact with each other even when the side surface region 8a is increased. Furthermore, it is possible to further suppress leakage of the magnetic flux generated by the magnet 6 to the outside of the movable portion 2 by increasing the side surface region 8a.

 また、振動モータ1の振動量を本実施形態よりもさらに増大させたい場合には、側面領域8aの高さを、磁石6の側面の上端と略同一とすることが好ましい。これにより、磁石6のN極面6A、S極面6Bと、側面用ヨーク8の端部との間で形成される磁束の磁路を最短とすることができる。そのため、平面コイル9に作用する磁力がさらに大きくなり、振動モータ1の振動量を増大させることができる。

Further, when it is desired to further increase the vibration amount of the vibration motor 1 as compared with the present embodiment, it is preferable that the height of the side surface region 8 a is substantially the same as the upper end of the side surface of the magnet 6. Thereby, the magnetic path of the magnetic flux formed between the N pole surface 6A and the S pole surface 6B of the magnet 6 and the end of the side yoke 8 can be made the shortest. Therefore, the magnetic force acting on the planar coil 9 is further increased, and the vibration amount of the vibration motor 1 can be increased.

 (k)本実施形態では、側面用ヨーク8を筒型ヨーク7と同一の材料によって構成しているが、異なる材料を用いてもよい。この場合、側面用ヨーク8は筒型ヨーク7よりも磁石6からの距離が遠いために、低磁界でも透磁率の高い材料、例えば、パーマロイ等が好適に用いられる。

(K) In the present embodiment, the side yoke 8 is made of the same material as the cylindrical yoke 7, but a different material may be used. In this case, since the side yoke 8 is farther away from the magnet 6 than the cylindrical yoke 7, a material having a high magnetic permeability even in a low magnetic field, such as permalloy, is preferably used.

 (l)本実施形態では、磁石6と平面コイル9との位置関係が、磁石6をX1方向に最大に移動させた場合に、平面コイル9の領域9Bと磁石6のN極面6Aとが重畳しないように設計されており、磁石6をX2方向に最大に移動させた場合に、平面コイル9の領域9Aと磁石6のS極面6Bとが重畳しないように設計されているが、本発明はこれに限られない。

(L) In the present embodiment, when the positional relationship between the magnet 6 and the planar coil 9 is such that the magnet 6 is moved to the maximum in the X1 direction, the region 9B of the planar coil 9 and the N pole surface 6A of the magnet 6 are It is designed not to overlap, and when the magnet 6 is moved to the maximum in the X2 direction, it is designed so that the region 9A of the planar coil 9 and the south pole surface 6B of the magnet 6 do not overlap. The invention is not limited to this.

 例えば、磁石6と平面コイル9との位置関係は、磁石6をX1方向に最大に移動させた場合に、領域9BとN極面6Aとが重畳する面積よりも、領域9BとS極面6Bとが重畳する面積の方が大きくなるように設計されており、磁石6をX2方向に最大に移動させた場合に、領域9AとS極面6Bとが重畳する面積よりも、領域9AとN極面6Aとが重畳する面積の方が大きくなるように設計されていてもよい。

For example, the positional relationship between the magnet 6 and the planar coil 9 is such that when the magnet 6 is moved to the maximum in the X1 direction, the region 9B and the S pole surface 6B are larger than the area where the region 9B and the N pole surface 6A overlap. Are designed to be larger, and when the magnet 6 is moved to the maximum in the X2 direction, the areas 9A and N are larger than the area where the area 9A and the S pole face 6B overlap. You may design so that the area where 6 A of pole surfaces overlap may become larger.

 これにより、可動部2をX1、X2方向に最大に移動させた場合であっても、可動部2が移動しようとする方向に作用する力を、その逆方向に作用する力よりも大きくすることができる。

Thereby, even when the movable part 2 is moved to the maximum in the X1 and X2 directions, the force acting in the direction in which the movable part 2 is about to move is made larger than the force acting in the opposite direction. Can do.

 また、本実施形態では、磁石6と平面コイル9との位置関係の調節を、磁石6の中性領域63の幅を調節することにより行っているが、皿付きバネ4の板バネ4a、4bの弾性力や、平面コイル9の領域9Aと領域9Bとの間隔や、筒型ヨーク7の短手方向の長さ等を調節することにより行ってもよい。

In the present embodiment, the positional relationship between the magnet 6 and the planar coil 9 is adjusted by adjusting the width of the neutral region 63 of the magnet 6. This may be performed by adjusting the elastic force, the distance between the region 9A and the region 9B of the planar coil 9, the length of the tubular yoke 7 in the short direction, and the like.

 (m)皿付きバネ4の板バネ4a、4bの構成は、図15~図17に示すような種々の構成に変更可能である。

(M) The configuration of the leaf springs 4a and 4b of the disc spring 4 can be changed to various configurations as shown in FIGS.

 皿付きバネ4は、板バネ4a、4bの代わりに、図15に示すように、下側筐体5bに固定された第1固定部403、404と支持部405、406との間に、さらに下側筐体5bに固定された第2固定部407、408が形成された板バネ401、402を用いてもよい。なお、第2固定部407、408は必ずしも下側筐体5bに固定されている必要はなく、第2固定部407、408と支持部405、406との間で屈曲している構成であればよい。

Instead of the plate springs 4a and 4b, the countersunk spring 4 is further provided between the first fixing parts 403 and 404 fixed to the lower housing 5b and the support parts 405 and 406, as shown in FIG. Leaf springs 401 and 402 formed with second fixing portions 407 and 408 fixed to the lower housing 5b may be used. The second fixing portions 407 and 408 are not necessarily fixed to the lower housing 5b, and may be bent between the second fixing portions 407 and 408 and the support portions 405 and 406. Good.

 また、皿付きバネ4は、図16に示すように、板バネ4a、4bの内側に、板バネ4a、4bと相似形状であって、受皿4cとの接合部を有しない板バネ409、410が設けられた構成であってもよい。

Further, as shown in FIG. 16, the plate spring 4 has plate springs 409, 410 which are similar to the plate springs 4a, 4b inside the plate springs 4a, 4b and do not have a joint with the tray 4c. May be provided.

 また、皿付きバネ4は、図17に示すように、図15に示す板バネ401、402の内側に、板バネ401、402と相似形状であって、受皿4cとの接合部を有しない板バネ411、412が設けられた構成であってもよい。

As shown in FIG. 17, the plate spring 4 has a shape similar to the plate springs 401 and 402 inside the plate springs 401 and 402 shown in FIG. 15, and does not have a joint portion with the tray 4c. The structure provided with the springs 411 and 412 may be sufficient.

 なお、図16において、板バネ409、410は板バネ4a、4bの外側に設けられていてもよく、図17において、板バネ411、412は板バネ401、402の外側に設けられていてもよい。

In FIG. 16, the leaf springs 409 and 410 may be provided outside the leaf springs 4a and 4b. In FIG. 17, the leaf springs 411 and 412 may be provided outside the leaf springs 401 and 402. Good.

 このように、固定部を2箇所有する構成としたり、2つの板バネを重ねることにより、板バネの膜厚を厚くすることなく、バネ定数を大きくすることができる。これにより、板バネの疲労耐性を低下させることなく、共振周波数を高めることができるため、振動モータ1の振動量を増大させることが可能である。

As described above, the spring constant can be increased without increasing the thickness of the leaf spring by adopting a configuration having two fixing portions or by overlapping two leaf springs. As a result, the resonance frequency can be increased without lowering the fatigue resistance of the leaf spring, so that the vibration amount of the vibration motor 1 can be increased.

 (n)本実施形態では、磁石6の底面は筒型ヨーク7の内壁底面と略同一の面積を有しているが、本発明はこれに限られず、磁石6の底面が筒型ヨーク7の内壁底面よりも小さい面積を有する構成としてもよい。図18、図19に示すように、磁石6の底面の面積を小さくすることにより、磁石6が生じる磁束の磁路を短くすることができる。

(N) In this embodiment, the bottom surface of the magnet 6 has substantially the same area as the bottom surface of the inner wall of the cylindrical yoke 7, but the present invention is not limited to this, and the bottom surface of the magnet 6 is the same as that of the cylindrical yoke 7. It is good also as a structure which has an area smaller than an inner wall bottom face. As shown in FIGS. 18 and 19, the magnetic path of the magnetic flux generated by the magnet 6 can be shortened by reducing the area of the bottom surface of the magnet 6.

 これにより、平面コイル9に作用する磁力が大きくなり、振動モータ1の振動量を増大させることができる。また、磁石6の底面の面積を小さくすることにより、磁石6と上側筐体5aおよび下側筐体5bの側面との距離が大きくなるために、振動モータ1の外部に漏出する磁束の量を低減させることができる。

Thereby, the magnetic force which acts on the planar coil 9 becomes large, and the vibration amount of the vibration motor 1 can be increased. Further, by reducing the area of the bottom surface of the magnet 6, the distance between the magnet 6 and the side surfaces of the upper housing 5 a and the lower housing 5 b is increased, so that the amount of magnetic flux leaking to the outside of the vibration motor 1 is reduced. Can be reduced.

 さらに、上記構成により、磁石6の側面と筒型ヨーク7の内壁側面との間に隙間が形成される。そのため、振動モータ1の製造時に外部から熱を加えた場合、熱伝導率の高い磁性材料から構成されている筒型ヨーク7と磁石6とが接触している場合と比較して、磁石6に熱が伝わることを抑制することができる。磁石6の磁力は熱が加わると低下してしまうため、上記構成により磁石6の熱減磁を抑制することができる。

Further, with the above configuration, a gap is formed between the side surface of the magnet 6 and the inner wall side surface of the cylindrical yoke 7. Therefore, when heat is applied from the outside at the time of manufacturing the vibration motor 1, the magnet 6 is compared with the case where the cylindrical yoke 7 made of a magnetic material having high thermal conductivity and the magnet 6 are in contact with each other. It is possible to suppress the transmission of heat. Since the magnetic force of the magnet 6 decreases when heat is applied, the above configuration can suppress thermal demagnetization of the magnet 6.

 また、上記構成により、可動部2を移動させることにより、磁石6の側面と筒型ヨーク7の内壁側面との間の空気を流動させることができる。そのため、平面コイル9に電流を流すことにより生じた熱は、効率良く筒型ヨーク7の外部へと放熱される。その結果、平面コイル9の熱が磁石6に伝わり、磁石6の磁力が低下してしまうことを抑制することができる。なお、このとき筒型ヨーク7の高さを高くすることにより、筒型ヨーク7の内部を流れる空気の量を増大させることができ、より効率良く放熱することができる。

In addition, with the above configuration, the air between the side surface of the magnet 6 and the inner wall side surface of the cylindrical yoke 7 can be made to flow by moving the movable portion 2. Therefore, the heat generated by passing a current through the planar coil 9 is efficiently radiated to the outside of the cylindrical yoke 7. As a result, the heat of the planar coil 9 is transmitted to the magnet 6 and the magnetic force of the magnet 6 can be suppressed from decreasing. At this time, by increasing the height of the cylindrical yoke 7, the amount of air flowing inside the cylindrical yoke 7 can be increased, and heat can be radiated more efficiently.

 また、上記構成により、磁石6の磁束が、平面コイル9を貫く前に筒型ヨーク7に入ってしまうことを抑制することができる。そのため、平面コイル9に作用する磁力が大きくなり、振動モータ1の振動量を増大させることができる。

Further, with the above configuration, the magnetic flux of the magnet 6 can be prevented from entering the cylindrical yoke 7 before penetrating the planar coil 9. Therefore, the magnetic force acting on the planar coil 9 is increased, and the amount of vibration of the vibration motor 1 can be increased.

 なお、磁石6の底面の面積は、磁石6を移動させる力に関係しているために、磁石6の磁束漏れの大きさと移動させる力との関係から、最適値を決定する必要がある。

Since the area of the bottom surface of the magnet 6 is related to the force that moves the magnet 6, it is necessary to determine the optimum value from the relationship between the magnitude of magnetic flux leakage of the magnet 6 and the force that moves it.

 (第2実施形態)

 次に、図20を参照して、本発明の第2実施形態に係る振動モータ21の構成について説明する。振動モータ21は、可動部22と、コイル基板3と、皿付きバネ4と、上側筐体5aと、下側筐体5bとから構成されている。すなわち、振動モータ21は、第1実施形態の振動モータ1と比較して、可動部の構成が異なっている。

(Second Embodiment)

Next, with reference to FIG. 20, the structure of the vibration motor 21 which concerns on 2nd Embodiment of this invention is demonstrated. The vibration motor 21 includes a movable portion 22, a coil substrate 3, a spring 4 with a plate, an upper housing 5a, and a lower housing 5b. That is, the vibration motor 21 is different in the configuration of the movable part from the vibration motor 1 of the first embodiment.

 なお、第1実施形態の振動モータ1と同一の機能を有する構成要素については、同一の符号を付して説明は省略する。

In addition, about the component which has the same function as the vibration motor 1 of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

 可動部22は、磁石6、26と、筒型ヨーク7と、側面用ヨーク8、28とから構成されている。

The movable portion 22 includes magnets 6 and 26, a cylindrical yoke 7, and side yokes 8 and 28.

 磁石26は、磁石6と同一の構成であり、コイル基板3を挟んで磁石6と対向して、筒型ヨーク7の内壁上面に固定されている。磁石26と筒型ヨーク7との間には磁気引力が働くため、磁石26は筒型ヨーク7の内壁上面にこの磁気引力により固定されている。ここで、磁石26は、磁石6と同様に、磁石26の領域61、62および中性領域63が筒型ヨーク7の開口面とは垂直な方向に延びるように、筒型ヨーク7に固定されている。これにより、磁石6のN極面6Aと磁石26のS極面26Bとが対向し、磁石6のS極面6Bと磁石26のN極面26Aとが対向する。

The magnet 26 has the same configuration as the magnet 6 and is fixed to the upper surface of the inner wall of the cylindrical yoke 7 so as to face the magnet 6 with the coil substrate 3 interposed therebetween. Since magnetic attraction acts between the magnet 26 and the cylindrical yoke 7, the magnet 26 is fixed to the upper surface of the inner wall of the cylindrical yoke 7 by this magnetic attraction. Here, similarly to the magnet 6, the magnet 26 is fixed to the cylindrical yoke 7 so that the regions 61 and 62 and the neutral region 63 of the magnet 26 extend in a direction perpendicular to the opening surface of the cylindrical yoke 7. ing. Thereby, the N pole surface 6A of the magnet 6 and the S pole surface 26B of the magnet 26 face each other, and the S pole surface 6B of the magnet 6 and the N pole surface 26A of the magnet 26 face each other.

 側面用ヨーク28は、筒型ヨーク7と同一の材料によって構成されており、筒型ヨーク7の両開口面のうち、磁石26が設けられている部分を塞ぐように配置された側面領域28aと、筒型ヨーク7の外壁上面を覆うように配置された上面領域28bとを含んでいる。なお、側面用ヨーク28と、磁石26および筒型ヨーク7とは、接着剤を用いて固定されている。

The side yoke 28 is made of the same material as that of the cylindrical yoke 7, and includes a side region 28 a disposed so as to close a portion where the magnet 26 is provided in both opening surfaces of the cylindrical yoke 7. And an upper surface region 28b arranged to cover the upper surface of the outer wall of the cylindrical yoke 7. The side yoke 28, the magnet 26 and the cylindrical yoke 7 are fixed using an adhesive.

 次に、振動モータ21の駆動方法について、図21~図23を参照して説明する。

Next, a method for driving the vibration motor 21 will be described with reference to FIGS.

 振動モータ21では、第1実施形態と異なり磁石26が設けられているため、磁石6と磁石26との間で磁束が形成される。具体的には、磁石6のN極面6Aと磁石26のS極面26Bとが対向しているために、N極面6AとS極面26Bとの間に磁界が形成される。ここで、N極面6AとS極面26Bとの間に形成される磁界の向きは、N極面6AからS極面26Bに向かった方向、すなわちY1方向となる。また、磁石6のS極面6Bと磁石26のN極面26Aとが対向しているために、S極面6BとN極面26Aとの間に磁界が形成される。ここで、S極面6BとN極面26Aとの間に形成される磁界の向きは、N極面26AからS極面6Bに向かった方向、すなわちY2方向となる。

In the vibration motor 21, unlike the first embodiment, the magnet 26 is provided, so that a magnetic flux is formed between the magnet 6 and the magnet 26. Specifically, since the N pole surface 6A of the magnet 6 and the S pole surface 26B of the magnet 26 face each other, a magnetic field is formed between the N pole surface 6A and the S pole surface 26B. Here, the direction of the magnetic field formed between the N pole face 6A and the S pole face 26B is the direction from the N pole face 6A toward the S pole face 26B, that is, the Y1 direction. Further, since the S pole surface 6B of the magnet 6 and the N pole surface 26A of the magnet 26 face each other, a magnetic field is formed between the S pole surface 6B and the N pole surface 26A. Here, the direction of the magnetic field formed between the S pole face 6B and the N pole face 26A is the direction from the N pole face 26A toward the S pole face 6B, that is, the Y2 direction.

 振動モータ21を駆動する場合、コイル基板3の平面コイル9に、駆動電流供給回路により電極パッド10a、10bを介して図6に示すA方向または図7に示すB方向に電流が供給される。これにより、平面コイル9の領域9A、9Bを流れる電流が磁石6と磁石26との間に形成された磁界により力を受け、図22および図23に示すように、可動部22がX1方向およびX2方向に移動する。

When driving the vibration motor 21, a current is supplied to the planar coil 9 of the coil substrate 3 in the A direction shown in FIG. 6 or the B direction shown in FIG. 7 by the drive current supply circuit via the electrode pads 10a and 10b. As a result, the current flowing through the regions 9A and 9B of the planar coil 9 receives a force from the magnetic field formed between the magnet 6 and the magnet 26, and as shown in FIGS. Move in the X2 direction.

 このように、振動モータ21は、第1実施形態と同様の原理で、駆動電流供給回路により平面コイル9に供給する電流の方向を切り替えることにより、可動部22をX1方向およびX2方向に往復移動させて振動する。

Thus, the vibration motor 21 reciprocally moves the movable portion 22 in the X1 direction and the X2 direction by switching the direction of the current supplied to the planar coil 9 by the drive current supply circuit on the same principle as in the first embodiment. Let it vibrate.

 以下に、第2実施形態の振動モータ21の効果について説明する。

Below, the effect of the vibration motor 21 of 2nd Embodiment is demonstrated.

 (10)振動モータ21は、コイル基板3を挟んで対向して配置された2つの磁石6、26を備えている。そして、磁石6のN極面6Aは磁石26のS極面26Bと対向しており、磁石6のS極面6Bは磁石26のN極面26Aと対向している。これにより、N極面6AとS極面26Bとの間およびN極面26AとS極面6Bとの間で磁束が形成されるために、磁石が1つしか設けられていない場合と比較して、磁路を短くすることができる。そのため、磁石6と磁石26との間の磁力が強くなり、振動モータの振動量を増大させることができる。なお、振動モータ21のその他の効果は、第1実施形態の振動モータ1と同一である。

(10) The vibration motor 21 includes two magnets 6 and 26 arranged to face each other with the coil substrate 3 interposed therebetween. The N pole surface 6A of the magnet 6 faces the S pole surface 26B of the magnet 26, and the S pole surface 6B of the magnet 6 faces the N pole surface 26A of the magnet 26. As a result, a magnetic flux is formed between the N pole face 6A and the S pole face 26B and between the N pole face 26A and the S pole face 6B, so that only one magnet is provided. Thus, the magnetic path can be shortened. Therefore, the magnetic force between the magnet 6 and the magnet 26 becomes strong, and the vibration amount of the vibration motor can be increased. The remaining effects of the vibration motor 21 are the same as those of the vibration motor 1 of the first embodiment.

 (第3実施形態)

 次に、本発明の第3実施形態に係る振動モータ31の構成について、図24~図28を参照して説明する。なお、第1実施形態の振動モータ1と同一の機能を有する構成要素については、同一の符号を付して説明は省略する。

(Third embodiment)

Next, the configuration of the vibration motor 31 according to the third embodiment of the present invention will be described with reference to FIGS. In addition, about the component which has the same function as the vibration motor 1 of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

 振動モータ31は、可動部32と、コイル基板33と、皿付きバネ4と、上側筐体5aと、下側筐体5bとから構成されている。すなわち、振動モータ31は、第1実施形態の振動モータ1と比較して、可動部およびコイル基板の構成が相違している。

The vibration motor 31 includes a movable part 32, a coil substrate 33, a spring 4 with a plate, an upper housing 5a, and a lower housing 5b. That is, the vibration motor 31 is different from the vibration motor 1 of the first embodiment in the configuration of the movable part and the coil substrate.

 可動部32は、図24、図25に示すように、磁石36と、筒型ヨーク7と、側面用ヨーク8とから構成されている。磁石36は、磁性材料から構成された直方体の部材であり、その厚み方向に一対の磁極を有するように着磁されている。また、磁石36は、その短手方向の長さが筒型ヨーク7の内壁面の短手方向の長さよりも短く、その重心が筒型ヨーク7の短手方向の中心に位置するように配置されている。つまり、磁石36の側面と、筒型ヨーク7の内壁面とは、所定の間隔を隔てて配置されている。

As shown in FIGS. 24 and 25, the movable portion 32 includes a magnet 36, a cylindrical yoke 7, and a side yoke 8. The magnet 36 is a rectangular parallelepiped member made of a magnetic material, and is magnetized so as to have a pair of magnetic poles in the thickness direction. The magnet 36 is arranged such that the length in the short direction is shorter than the length in the short direction of the inner wall surface of the cylindrical yoke 7 and the center of gravity is positioned at the center in the short direction of the cylindrical yoke 7. Has been. That is, the side surface of the magnet 36 and the inner wall surface of the cylindrical yoke 7 are arranged at a predetermined interval.

 コイル基板33は、矩形状の基板であり、筒型ヨーク7の開口面からコイル基板33の長手方向に沿って挿入されている。また、コイル基板33の内部には、図26~図28に示すように、2層の渦巻状に形成された2つのコイル39、40が、コイル基板33の短手方向に沿って順番に形成されている。

The coil substrate 33 is a rectangular substrate and is inserted from the opening surface of the cylindrical yoke 7 along the longitudinal direction of the coil substrate 33. In addition, as shown in FIGS. 26 to 28, two coils 39 and 40 formed in a two-layered spiral shape are formed in the coil substrate 33 in order along the short direction of the coil substrate 33. Has been.

 具体的には、コイル基板33は、図28に示すように、4層構造となっており、平面コイル39、40が埋設されたコイル層33b、33cと、その両面に設けられた絶縁層33a、33dとから構成されている。絶縁層33a、33dは、コイル層33b、33cに設けられた平面コイル39、40を外部から絶縁している。

Specifically, as shown in FIG. 28, the coil substrate 33 has a four-layer structure, and coil layers 33b and 33c in which planar coils 39 and 40 are embedded, and insulating layers 33a provided on both surfaces thereof. , 33d. The insulating layers 33a and 33d insulate the planar coils 39 and 40 provided on the coil layers 33b and 33c from the outside.

 平面コイル39、40は、コイル層33bにおいて、電極パッド10c、10dから略矩形状に互いに逆方向に巻かれた上層コイル391、401と、コイル層33cにおいて、上層コイルの渦巻きの中心部から電極パッド10e、10fに向かって略矩形状に互いに逆方向に巻かれた下層コイル392、402とから構成されている。平面コイル39の上層コイル391および下層コイル392は、渦巻きの中心部において接続されている。また、平面コイル40の上層コイル401および下層コイル402も、渦巻きの中心部において接続されている。

In the coil layer 33b, the planar coils 39 and 40 are composed of upper layer coils 391 and 401 wound in opposite directions from the electrode pads 10c and 10d in opposite directions, and in the coil layer 33c, electrodes are formed from the spiral center of the upper layer coil. The lower layer coils 392 and 402 are wound in opposite directions in a substantially rectangular shape toward the pads 10e and 10f. The upper coil 391 and the lower coil 392 of the planar coil 39 are connected at the center of the spiral. The upper coil 401 and the lower coil 402 of the planar coil 40 are also connected at the center of the spiral.

 また、平面コイル39、40は、コイル層33b、33cにおいて、コイル基板33の長手方向に沿って延びる複数のコイル線を含む領域E~Gを有しており、領域ごとに同じ方向に電流が流れるように形成されている。具体的には、領域F、Gのコイル線には同じ方向に電流が流れるように形成されており、領域Eのコイル線と領域F、Gのコイル線とは逆方向に電流が流れるように形成されている。

The planar coils 39 and 40 have regions E to G including a plurality of coil wires extending along the longitudinal direction of the coil substrate 33 in the coil layers 33b and 33c, and current flows in the same direction for each region. It is formed to flow. Specifically, the coil wires in the regions F and G are formed so that current flows in the same direction, and the coil wire in the region E and the coil wires in the regions F and G flow in the opposite directions. Is formed.

 また、平面コイル39、40は、その両端が電極パッド10c、10d、10e、10fを介して駆動電流供給回路にそれぞれ接続されており、駆動電流供給回路から矢印AまたはB方向に電流が供給される。駆動電流供給回路は、所定の周期で平面コイル39、40に供給する電流の方向を切り替える。なお、コイル基板33のその他の構成については、第1実施形態のコイル基板3と同一であるので説明は省略する。

Further, both ends of the planar coils 39, 40 are connected to the drive current supply circuit via the electrode pads 10c, 10d, 10e, 10f, respectively, and current is supplied in the direction of arrow A or B from the drive current supply circuit. The The drive current supply circuit switches the direction of the current supplied to the planar coils 39 and 40 at a predetermined cycle. Since the other configuration of the coil substrate 33 is the same as that of the coil substrate 3 of the first embodiment, the description thereof is omitted.

 次に、振動モータ31の駆動方法について、図29~図31を参照して説明する。なお、図29~図31において磁石36は、上面がN極に、下面がS極に着磁されている。ここでは、可動部32をまずX1方向に移動させる場合について説明する。

Next, a method for driving the vibration motor 31 will be described with reference to FIGS. In FIGS. 29 to 31, the magnet 36 is magnetized with the N pole on the top surface and the S pole on the bottom surface. Here, a case where the movable part 32 is first moved in the X1 direction will be described.

 振動モータ31を駆動する場合、コイル基板33の平面コイル39、40には、駆動電流供給回路により図26に示す矢印Aの方向に電流が供給される。これにより、平面コイル39、40の領域Eには、図29に示すように、コイル基板33の長手方向に沿って紙面奥側から手前側、すなわちZ2方向に電流が流れる。また、平面コイル39、40の領域F、Gには、コイル基板3の長手方向に沿って紙面手前側から奥側、すなわちZ1方向に電流が流れる。

When the vibration motor 31 is driven, current is supplied to the planar coils 39 and 40 of the coil substrate 33 in the direction of arrow A shown in FIG. 26 by the drive current supply circuit. Thereby, in the area E of the planar coils 39 and 40, as shown in FIG. 29, a current flows from the back side to the front side, that is, the Z2 direction along the longitudinal direction of the coil substrate 33. Further, current flows in the regions F and G of the planar coils 39 and 40 from the front side to the back side, that is, in the Z1 direction along the longitudinal direction of the coil substrate 3.

 ここで、磁石36が発生する磁界はN極からS極へ向かうため、N極面上の磁界の向きはN極面の表面からコイル基板33に向かった方向、すなわちY1方向となる。そのため、磁石36のN極面と重畳している平面コイル39、40の領域Eを流れる電流は、磁石36の磁界からX2方向への力を受ける。すなわち、コイル基板33には、X2方向への力が作用する。

Here, since the magnetic field generated by the magnet 36 goes from the N pole to the S pole, the direction of the magnetic field on the N pole face is the direction from the surface of the N pole face toward the coil substrate 33, that is, the Y1 direction. Therefore, the current flowing through the region E of the planar coils 39 and 40 overlapping the N pole surface of the magnet 36 receives a force in the X2 direction from the magnetic field of the magnet 36. That is, a force in the X2 direction acts on the coil substrate 33.

 しかし、コイル基板33は上側筐体5aおよび下側筐体5bにより固定されているので、磁石36は反作用によりX1方向への力を受けることになる。したがって、可動部32は、図30に示すように、X1方向に移動する。

However, since the coil substrate 33 is fixed by the upper housing 5a and the lower housing 5b, the magnet 36 receives a force in the X1 direction due to the reaction. Therefore, the movable part 32 moves in the X1 direction as shown in FIG.

 次に、駆動電流供給回路は、平面コイル39、40に供給する電流の向きを、図27に示すB方向に切り替える。これにより、平面コイル39、40の領域Eには、図31に示すように、コイル基板33の長手方向に沿って紙面手前側から奥側、すなわちZ1方向に電流が流れる。また、平面コイル39、40の領域F、Gには、コイル基板33の長手方向に沿って紙面奥側から手前側、すなわちZ2方向に電流が流れる。

Next, the drive current supply circuit switches the direction of the current supplied to the planar coils 39 and 40 to the B direction shown in FIG. Thereby, in the area E of the planar coils 39, 40, as shown in FIG. 31, a current flows from the front side to the back side, that is, the Z1 direction along the longitudinal direction of the coil substrate 33. Further, current flows in the regions F and G of the planar coils 39 and 40 from the back side to the front side, that is, the Z2 direction along the longitudinal direction of the coil substrate 33.

 そのため、磁石36のN極面と重畳している平面コイル39、40の領域Eを流れる電流は、磁石36の磁界からX1方向への力を受ける。これにより、可動部32は、図31に示すように、X2方向に移動する。

Therefore, the current flowing through the region E of the planar coils 39 and 40 overlapping the N pole surface of the magnet 36 receives a force in the X1 direction from the magnetic field of the magnet 36. Thereby, the movable part 32 moves to X2 direction, as shown in FIG.

 ここで、可動部32をX1方向に最大に移動させた場合に、磁石36と領域Eとが重畳する面積よりも磁石36と領域Gと重畳する面積の方が大きくなると、領域Eを流れる電流が磁石36の磁界から受けるX2方向への力よりも、領域Gを流れる電流が磁石36の磁界から受けるX1方向への力の方が大きくなってしまう。したがって、可動部32が移動しようとする方向とは逆方向に力が作用し、振動モータ31の振動量が低下してしまう。

Here, when the movable part 32 is moved to the maximum in the X1 direction, if the area where the magnet 36 and the region G overlap is larger than the area where the magnet 36 and the region E overlap, the current flowing through the region E The force in the X1 direction that the current flowing in the region G receives from the magnetic field of the magnet 36 is larger than the force in the X2 direction that the magnetic field receives from the magnetic field of the magnet 36. Therefore, a force acts in a direction opposite to the direction in which the movable part 32 is about to move, and the vibration amount of the vibration motor 31 is reduced.

 そこで、磁石36と平面コイル39、40の領域E~Gとの位置関係は、可動部32をX1方向に最大に移動させた場合に、磁石36と領域Gとが重畳する面積よりも、磁石36と領域Eとが重畳する面積の方が大きくなるように設計されている。また、可動部32をX2方向に移動させた場合も同様に、磁石36と領域Fとが重畳する面積よりも、磁石36と領域Eとが重畳する面積の方が大きくなるように、磁石36と平面コイル39、40の領域E~Gとの位置関係が設定されている。

Therefore, the positional relationship between the magnet 36 and the regions E to G of the planar coils 39 and 40 is greater than the area where the magnet 36 and the region G overlap when the movable part 32 is moved to the maximum in the X1 direction. The area where 36 and the region E overlap is designed to be larger. Similarly, when the movable portion 32 is moved in the X2 direction, similarly, the magnet 36 and the region E overlap so that the area where the magnet 36 and the region E overlap is larger than the area where the magnet 36 and the region F overlap. And the positional relationship between the areas E to G of the planar coils 39 and 40 are set.

 以上のように、振動モータ31は、駆動電流供給回路により平面コイル39、40に供給する電流の方向を切り替えることにより、可動部32をX1方向およびX2方向に往復移動させる。

As described above, the vibration motor 31 reciprocates the movable portion 32 in the X1 direction and the X2 direction by switching the direction of the current supplied to the planar coils 39 and 40 by the drive current supply circuit.

 また、本実施形態の駆動方法は、平面コイル39、40に電流を供給すると互いに逆向きの磁界を発生させるために、平面コイル39、40と磁石36との間に生じる引力および斥力により、可動部32をX1方向およびX2方向に往復移動させているともいえる。

The driving method of the present embodiment is movable by the attractive force and repulsive force generated between the planar coils 39, 40 and the magnet 36 in order to generate magnetic fields in opposite directions when current is supplied to the planar coils 39, 40. It can be said that the part 32 is reciprocated in the X1 direction and the X2 direction.

 以下に、第3実施形態の振動モータ31の効果について説明する。

Below, the effect of the vibration motor 31 of 3rd Embodiment is demonstrated.

 (11)振動モータ31は、磁石6の磁極面に対して互いに逆方向の磁界を作用させる平面コイル39および平面コイル40を含む平面コイル33を備えている。これにより、磁石6のコイル基板33と対向する磁極面が1つの極性を有する構成であったとしても、可動部32を往復移動させることが可能となるために、製造コストを低減することができる。

(11) The vibration motor 31 includes a planar coil 33 including a planar coil 39 and a planar coil 40 that apply magnetic fields in opposite directions to the magnetic pole surface of the magnet 6. Thereby, even if the magnetic pole surface facing the coil substrate 33 of the magnet 6 has a single polarity, the movable portion 32 can be reciprocated, so that the manufacturing cost can be reduced. .

 (12)振動モータ31は、短手方向の長さが筒型ヨーク7の内壁面の短手方向の長さよりも短い磁石36を備えている。このように、第1実施形態と比較して、体積の小さい磁石36を用いることができるため、装置全体を軽量化でき、振動モータ31の動作効率を高めることができる。

(12) The vibration motor 31 includes the magnet 36 whose length in the short direction is shorter than the length in the short direction of the inner wall surface of the cylindrical yoke 7. Thus, since the magnet 36 having a small volume can be used as compared with the first embodiment, the entire apparatus can be reduced in weight, and the operation efficiency of the vibration motor 31 can be increased.

 なお、振動モータ31のその他の効果は、第1実施形態の振動モータ1と同一である。

The other effects of the vibration motor 31 are the same as those of the vibration motor 1 of the first embodiment.

 (第4実施形態)

 次に、本発明の第4実施形態に係る振動モータ41の構成について、図32を参照して説明する。なお、第1実施形態の振動モータ1と同一の機能を有する構成要素については、同一の符号を付して説明は省略する。

(Fourth embodiment)

Next, the configuration of the vibration motor 41 according to the fourth embodiment of the present invention will be described with reference to FIG. In addition, about the component which has the same function as the vibration motor 1 of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

 振動モータ41は、図32に示すように、可動部42と、コイル基板3と、皿付きバネ44と、上側筐体5aと、下側筐体5bとから構成されている。振動モータ41は、磁気シールドとしての機能を有する皿付きバネ44を側面用ヨーク8の代わりに用いることにより、可動部42から側面用ヨーク8を省略したものである。

As shown in FIG. 32, the vibration motor 41 includes a movable portion 42, a coil substrate 3, a spring 44 with a plate, an upper housing 5a, and a lower housing 5b. The vibration motor 41 is configured by omitting the side yoke 8 from the movable portion 42 by using a spring 44 with a plate having a function as a magnetic shield instead of the side yoke 8.

 可動部42は、磁石6と、筒型ヨーク7とから構成されている。

The movable part 42 includes the magnet 6 and the cylindrical yoke 7.

 皿付きバネ44は、磁性材料から構成されており、板バネ44a、44bと、受皿44cと、ヨーク部44dとが一体的に形成されている。皿付きバネ44を構成する材料としては、SUS631、632、ばね鋼、炭素鋼、炭素工具鋼等が好適である。ヨーク部44dは、受皿44cの短手方向の端部において、受皿44cに対して垂直な方向に設けられている。具体的には、ヨーク部44dは、可動部42を受皿44cに搭載した際に、筒型ヨーク7の両開口面のうち、磁石6が設けられている部分を塞ぐように形成されている。ヨーク部44dの高さは、可動部42の移動によりコイル基板3と接触しないように、磁石6の上端よりも下側に形成されている。

The plate-attached spring 44 is made of a magnetic material, and plate springs 44a and 44b, a tray 44c, and a yoke portion 44d are integrally formed. SUS631, 632, spring steel, carbon steel, carbon tool steel, etc. are suitable as the material constituting the spring 44 with a plate. The yoke portion 44d is provided in a direction perpendicular to the tray 44c at the end of the tray 44c in the short direction. Specifically, the yoke portion 44d is formed so as to block a portion where the magnet 6 is provided in both opening surfaces of the cylindrical yoke 7 when the movable portion 42 is mounted on the tray 44c. The height of the yoke portion 44d is formed below the upper end of the magnet 6 so as not to come into contact with the coil substrate 3 due to the movement of the movable portion.

 なお、皿付きバネ44のその他の構成は、第1実施形態の皿付きバネ4と同一であるので説明は省略する。また、振動モータ41の駆動方法は、第1実施形態の振動モータ1と同一であるので、説明は省略する。

In addition, since the other structure of the spring 44 with a plate is the same as that of the spring 4 with a plate of 1st Embodiment, description is abbreviate | omitted. Further, since the driving method of the vibration motor 41 is the same as that of the vibration motor 1 of the first embodiment, the description thereof is omitted.

 以下に、第4実施形態の振動モータ41の効果について説明する。

Below, the effect of the vibration motor 41 of 4th Embodiment is demonstrated.

 (13)振動モータ41は、側面用ヨーク8を備えておらず、磁気シールドとしての機能を有する皿付きバネ44を用いている。これにより、側面用ヨーク8を備えていない分、振動モータ41全体を薄型化することが可能である。なお、振動モータ41のその他の効果は、第1実施形態の振動モータ1と同一である。

(13) The vibration motor 41 does not include the side yoke 8 and uses a countersunk spring 44 having a function as a magnetic shield. As a result, the entire vibration motor 41 can be reduced in thickness because the side yoke 8 is not provided. The other effects of the vibration motor 41 are the same as those of the vibration motor 1 of the first embodiment.

 (第5実施形態)

 次に、図33~図37を参照して、本発明の第5実施形態に係る振動モータ51の構成について説明する。第1~4実施形態では、コイル基板の筒型ヨークへの挿入方向に対して垂直な方向に可動部を移動させる構成であったが、本実施形態は、コイル基板の筒型ヨークへの挿入方向に沿って可動部を移動させる構成である。振動モータ51では、第1実施形態の可動部の磁石およびコイル基板の向きを90度異ならせることにより、可動部の移動方向を異ならせている。

(Fifth embodiment)

Next, the configuration of the vibration motor 51 according to the fifth embodiment of the present invention will be described with reference to FIGS. In the first to fourth embodiments, the movable part is moved in a direction perpendicular to the direction in which the coil substrate is inserted into the cylindrical yoke. However, in this embodiment, the coil substrate is inserted into the cylindrical yoke. It is the structure which moves a movable part along a direction. In the vibration motor 51, the moving direction of the movable part is made different by changing the direction of the magnet and the coil substrate of the movable part of the first embodiment by 90 degrees.

 なお、第1実施形態の振動モータ1と同一の機能を有する構成要素については、同一の符号を付して説明は省略する。

In addition, about the component which has the same function as the vibration motor 1 of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

 図33~図35に示すように、振動モータ51は、可動部52と、コイル基板3と、皿付きバネ54と、上側筐体5aと、下側筐体5bとから構成されている。

As shown in FIGS. 33 to 35, the vibration motor 51 includes a movable portion 52, a coil substrate 3, a spring 54 with a plate, an upper housing 5a, and a lower housing 5b.

 可動部52は、第1実施形態の可動部2と同様に、磁石6と、筒型ヨーク7と、側面用ヨーク8とから構成されているが、筒型ヨーク7内において磁石6を固定する方向が可動部2とは90度異なっている。すなわち、可動部52では、磁石6の領域61、62および中性領域63(図2参照)が筒型ヨーク7の開口面と平行に延びるように、磁石6が筒型ヨーク7の内壁底面に固定されている。

Like the movable part 2 of the first embodiment, the movable part 52 includes a magnet 6, a cylindrical yoke 7, and a side yoke 8. The movable part 52 fixes the magnet 6 in the cylindrical yoke 7. The direction differs from the movable part 2 by 90 degrees. That is, in the movable portion 52, the magnet 6 is placed on the bottom surface of the inner wall of the cylindrical yoke 7 so that the regions 61 and 62 and the neutral region 63 (see FIG. 2) of the magnet 6 extend in parallel with the opening surface of the cylindrical yoke 7. It is fixed.

 コイル基板3に形成された平面コイル9は、図36、図37に示すように、コイル基板3の短手方向に沿って延びる複数のコイル線を含む領域9C、9Dを有しており、領域ごとに同じ方向に電流が流れるように形成されている。振動モータ51では、磁石6および平面コイル9の位置関係が、図34に示すように、平面コイル9の領域9C、9Dと磁石6のN極面6A、S極面6Bとがそれぞれ重畳するように配置されている。

The planar coil 9 formed on the coil substrate 3 has regions 9C and 9D including a plurality of coil wires extending along the short direction of the coil substrate 3, as shown in FIGS. Each is formed such that current flows in the same direction. In the vibration motor 51, the positional relationship between the magnet 6 and the planar coil 9 is such that the regions 9C and 9D of the planar coil 9 and the N-polar surface 6A and the S-polar surface 6B of the magnet 6 overlap each other as shown in FIG. Is arranged.

 図34に示すように、皿付きバネ54は、2つの板バネ54a、54bと、受皿54cとが一体的に形成されている。皿付きバネ54は、受皿54c上に可動部52を搭載し、可動部52の移動方向における両側面を板バネ54a、54bによって挟みこんで支持し、可動部52の移動を受け止めるものである。

As shown in FIG. 34, the plate-attached spring 54 has two plate springs 54a and 54b and a tray 54c formed integrally. The plate-attached spring 54 mounts the movable portion 52 on the tray 54c, supports both side surfaces of the movable portion 52 in the moving direction by sandwiching the plate springs 54a and 54b, and receives the movement of the movable portion 52.

 可動部52の移動方向における両側面は、筒型ヨーク7の開口面であり、その開口面には磁石6が設けられている部分を塞ぐように配置された側面用ヨーク8の側面領域8aが設けられている。そのため、板バネ54a、54bは、側面領域8aを支持しており、その高さはコイル基板3と接触しないように設計されている。なお、皿付きバネ54のその他の構成は、第1実施形態の皿付きバネ4と同一であるので説明は省略する。

Both side surfaces in the moving direction of the movable portion 52 are opening surfaces of the cylindrical yoke 7, and side surface regions 8 a of the side yokes 8 arranged so as to close the portions where the magnets 6 are provided on the opening surfaces. Is provided. Therefore, the leaf springs 54 a and 54 b support the side surface region 8 a and the height thereof is designed so as not to contact the coil substrate 3. In addition, since the other structure of the spring 54 with a plate is the same as that of the spring 4 with a plate of 1st Embodiment, description is abbreviate | omitted.

 次に、振動モータ51の駆動方法について説明する。

Next, a method for driving the vibration motor 51 will be described.

 振動モータ51の駆動方法は、第1実施形態の振動モータ1の駆動方法と同様であり、平面コイル9の領域9C、9Dに流れる電流が、磁石6のN極面6A上、S極面6B上の磁界から力を受けることにより、可動部52がコイル基板3の長手方向に沿って移動する。可動部52の移動方向における側面は、筒型ヨーク7の開口面であるために、筒型ヨーク7の内壁側面がコイル基板3に衝突することなく、可動部52は移動することができる。

The driving method of the vibration motor 51 is the same as the driving method of the vibration motor 1 of the first embodiment, and the current flowing in the regions 9C and 9D of the planar coil 9 is on the N-pole surface 6A and the S-pole surface 6B of the magnet 6. By receiving a force from the upper magnetic field, the movable portion 52 moves along the longitudinal direction of the coil substrate 3. Since the side surface in the moving direction of the movable portion 52 is the opening surface of the cylindrical yoke 7, the movable portion 52 can move without the inner wall side surface of the cylindrical yoke 7 colliding with the coil substrate 3.

 以下に、第5実施形態の振動モータ51の効果について説明する。

Below, the effect of the vibration motor 51 of 5th Embodiment is demonstrated.

 (14)振動モータ51は、コイル基板3の筒型ヨーク7への挿入方向に沿って可動部52を移動させている。これにより、第1~第4実施形態のように、コイル基板の筒型ヨークへの挿入方向に対して垂直な方向に可動部を移動させる場合と比較して、可動部の移動距離を大きくすることができ、振動量を増大させることが可能である。

(14) The vibration motor 51 moves the movable portion 52 along the direction in which the coil substrate 3 is inserted into the cylindrical yoke 7. As a result, the moving distance of the movable part is increased compared to the case where the movable part is moved in a direction perpendicular to the insertion direction of the coil substrate into the cylindrical yoke as in the first to fourth embodiments. It is possible to increase the amount of vibration.

 (第6実施形態)

 次に、図38~図42を参照して、本発明の第6実施形態に係る振動モータ61の構成について説明する。振動モータ61は、第3実施形態の振動モータ31の構成を、第5実施形態の振動モータ51のように、コイル基板の筒型ヨークへの挿入方向に沿って可動部を移動させる構成に変更したものである。振動モータ61は、第3実施形態の振動モータ31と比較して、コイル基板に形成された2つの平面コイルの配置方向を異ならせることにより、可動部の移動方向を異ならせている。

(Sixth embodiment)

Next, with reference to FIGS. 38 to 42, the structure of the vibration motor 61 according to the sixth embodiment of the present invention will be described. In the vibration motor 61, the configuration of the vibration motor 31 of the third embodiment is changed to a configuration in which the movable portion is moved along the insertion direction of the coil substrate into the cylindrical yoke, like the vibration motor 51 of the fifth embodiment. It is a thing. The vibration motor 61 changes the moving direction of the movable part by making the arrangement directions of the two planar coils formed on the coil substrate different from those of the vibration motor 31 of the third embodiment.

 なお、第3、5実施形態の振動モータ31、51と同一の機能を有する構成要素については、同一の符号を付して説明は省略する。

In addition, about the component which has the same function as the vibration motors 31 and 51 of 3rd, 5th embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

 図38~図40に示すように、振動モータ61は、可動部62と、コイル基板63と、皿付きバネ54と、上側筐体5aと、下側筐体5bとから構成されている。

As shown in FIGS. 38 to 40, the vibration motor 61 includes a movable portion 62, a coil substrate 63, a countersunk spring 54, an upper housing 5a, and a lower housing 5b.

 可動部62は、磁石66と、筒型ヨーク7と、側面用ヨーク8とから構成されている。磁石66は、第3実施形態の磁石36と同様に、その厚み方向に一対の磁極を有するように着磁されているが、その短手方向の長さは筒型ヨーク7の内壁面の短手方向の長さと略同一となるように構成されている。

The movable part 62 includes a magnet 66, a cylindrical yoke 7, and a side yoke 8. The magnet 66 is magnetized so as to have a pair of magnetic poles in the thickness direction, similarly to the magnet 36 of the third embodiment, but the length in the short direction is short of the inner wall surface of the cylindrical yoke 7. It is configured to be substantially the same as the length in the hand direction.

 コイル基板63は、図41、図42に示すように、矩形状の基板であり、内部に2層の渦巻き状の2つの平面コイル69、70が形成されている。平面コイル69、70は、コイル基板63の長手方向に沿って順番に形成されている。なお、コイル基板63のその他の構成は、第3実施形態のコイル基板33と同一であるので説明は省略する。

As shown in FIGS. 41 and 42, the coil substrate 63 is a rectangular substrate in which two spiral spiral two- layer coils 69 and 70 are formed. The planar coils 69 and 70 are formed in order along the longitudinal direction of the coil substrate 63. Since the other configuration of the coil substrate 63 is the same as that of the coil substrate 33 of the third embodiment, the description thereof is omitted.

 振動モータ61の駆動方法は、第3実施形態の振動モータ31と同様であり、平面コイル69、70に流れる電流が、磁石36の磁界から力を受けることにより、可動部62が移動する。ここで、平面コイル69、70はコイル基板63の長手方向に沿って順番に形成されているため、可動部62はコイル基板63の長手方向、すなわちコイル基板63の筒型ヨーク7への挿入方向に沿って移動する。

The driving method of the vibration motor 61 is the same as that of the vibration motor 31 of the third embodiment. The current flowing through the planar coils 69 and 70 receives a force from the magnetic field of the magnet 36, so that the movable portion 62 moves. Here, since the planar coils 69 and 70 are formed in order along the longitudinal direction of the coil substrate 63, the movable portion 62 is disposed in the longitudinal direction of the coil substrate 63, that is, the direction in which the coil substrate 63 is inserted into the cylindrical yoke 7. Move along.

 なお、振動モータ61の効果は、第3、第5実施形態の振動モータ31、51と同一であるので説明は省略する。

Since the effect of the vibration motor 61 is the same as that of the vibration motors 31 and 51 of the third and fifth embodiments, the description thereof is omitted.

 (第7実施形態)

 次に、図43を参照して、本発明の第7実施形態に係る振動モータの構成について説明する。本実施形態の振動モータは、可動部72と、コイル基板3と、皿付きバネ4と、上側筐体5aと、下側筐体5bとから構成されている。すなわち、本実施形態の振動モータは、第1実施形態の振動モータ1と比較して、可動部の構成が異なっている。

(Seventh embodiment)

Next, with reference to FIG. 43, the structure of the vibration motor which concerns on 7th Embodiment of this invention is demonstrated. The vibration motor according to the present embodiment includes a movable portion 72, a coil substrate 3, a countersunk spring 4, an upper housing 5a, and a lower housing 5b. That is, the vibration motor of the present embodiment is different from the vibration motor 1 of the first embodiment in the configuration of the movable part.

 なお、第1実施形態の振動モータ1と同一の機能を有する構成要素については、同一の符号を付して説明は省略する。

In addition, about the component which has the same function as the vibration motor 1 of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

 可動部72は、磁石6と、筒型ヨーク7と、補助ヨーク80とから構成されている。補助ヨーク80は、筒型ヨーク7と同一の材料によって構成されており、磁石6の側面を覆うように設けられている。すなわち、可動部72は、磁気シールドとしての機能を有する補助ヨーク80を側面用ヨーク8の代わりに用いることにより、側面用ヨーク8を省略している。ここで、補助ヨーク80は、磁石6に取り付けやすくするために、切断部80aが設けられている。補助ヨーク80の切断部80aの端部は、磁石6の中性領域63上で隙間を空けた状態であってもよいし、接続されていてもよい。中性領域63上で補助ヨーク80の隙間を空けたとしても、中性領域63は磁化されていないので、磁石6が生じる磁束はこの隙間からはほとんど外部に漏出しない。

The movable portion 72 includes the magnet 6, the cylindrical yoke 7, and the auxiliary yoke 80. The auxiliary yoke 80 is made of the same material as that of the cylindrical yoke 7 and is provided so as to cover the side surface of the magnet 6. That is, the movable portion 72 omits the side yoke 8 by using the auxiliary yoke 80 having a function as a magnetic shield instead of the side yoke 8. Here, in order to make it easy to attach the auxiliary yoke 80 to the magnet 6, a cutting portion 80 a is provided. The end of the cut portion 80a of the auxiliary yoke 80 may be in a state where a gap is left on the neutral region 63 of the magnet 6 or may be connected. Even if a gap is formed between the auxiliary yoke 80 on the neutral region 63, the neutral region 63 is not magnetized, so that the magnetic flux generated by the magnet 6 hardly leaks out from the gap.

 補助ヨーク80が設けられた磁石6は、筒型ヨーク7の内壁底面に固定される。なお、可動部72のその他の構成は、第1実施形態の可動部2と同一であるので説明は省略する。また、本実施形態の振動モータの駆動方法は、第1実施形態の振動モータ1と同一であるので、説明は省略する。

The magnet 6 provided with the auxiliary yoke 80 is fixed to the bottom surface of the inner wall of the cylindrical yoke 7. In addition, since the other structure of the movable part 72 is the same as the movable part 2 of 1st Embodiment, description is abbreviate | omitted. Further, since the driving method of the vibration motor of the present embodiment is the same as that of the vibration motor 1 of the first embodiment, description thereof is omitted.

 以下に、第7実施形態の振動モータの効果について説明する。

The effects of the vibration motor of the seventh embodiment will be described below.

 (15)本実施形態の振動モータは、側面用ヨーク8を備えておらず、磁気シールドとしての機能を有する補助ヨーク80を備えている。これにより、側面用ヨーク8を備えていない分、振動モータ全体を薄型化することが可能である。

(15) The vibration motor of this embodiment does not include the side yoke 8 but includes the auxiliary yoke 80 that functions as a magnetic shield. As a result, the entire vibration motor can be reduced in thickness because the side yoke 8 is not provided.

 (16)本実施形態の振動モータでは、磁石6の側面を磁性材料からなる補助ヨーク80で覆っている。これにより、磁石6が生じる磁束が振動モータの外部に漏出することをさらに抑制することができる。そのため、振動モータの動作効率を高めることができ、振動量を増大させることが可能である。

(16) In the vibration motor of this embodiment, the side surface of the magnet 6 is covered with the auxiliary yoke 80 made of a magnetic material. Thereby, it can further suppress that the magnetic flux which the magnet 6 produces leaks outside the vibration motor. Therefore, the operating efficiency of the vibration motor can be increased, and the amount of vibration can be increased.

 (17)本実施形態の振動モータでは、磁石6の底面の面積は、補助ヨーク80を備えている分だけ筒型ヨーク7の内壁底面の面積よりも小さくなる。そのため、本実施形態の振動モータは、第1実施形態の変形例(n)に示すように、磁石6が生じる磁束の磁路を短くすることができ、振動量を増大させることが可能である。さらに、単に磁石6の底面の面積を小さくする場合と比較して、補助ヨーク80を備えているために、可動部72を重くすることができる。そのため、振動モータの振動量をさらに増大させることが可能である。

(17) In the vibration motor of the present embodiment, the area of the bottom surface of the magnet 6 is smaller than the area of the bottom surface of the inner wall of the cylindrical yoke 7 by the amount provided with the auxiliary yoke 80. Therefore, as shown in the modification (n) of the first embodiment, the vibration motor of this embodiment can shorten the magnetic path of the magnetic flux generated by the magnet 6 and can increase the amount of vibration. . Furthermore, since the auxiliary yoke 80 is provided compared with the case where the area of the bottom surface of the magnet 6 is simply reduced, the movable portion 72 can be made heavier. Therefore, it is possible to further increase the vibration amount of the vibration motor.

 (18)本実施形態の振動モータでは、補助ヨーク80を備えることにより、磁石6および筒型ヨーク7から形成される磁気回路の磁気抵抗を低下させることができる。これにより、磁気回路のパーミアンス係数を増大させることができ、磁石6の耐熱性を向上させることができる。そのため、磁石6に対し、振動モータの製造時に外部から熱を加えられた場合または平面コイル9から発生する熱が加えられた場合においても、磁石6の磁力が低下することを抑制することができる。

(18) In the vibration motor of this embodiment, by providing the auxiliary yoke 80, the magnetic resistance of the magnetic circuit formed by the magnet 6 and the cylindrical yoke 7 can be reduced. Thereby, the permeance coefficient of a magnetic circuit can be increased and the heat resistance of the magnet 6 can be improved. Therefore, even when heat is applied to the magnet 6 from the outside at the time of manufacturing the vibration motor or when heat generated from the planar coil 9 is applied, it is possible to suppress a decrease in the magnetic force of the magnet 6. .

 なお、本実施形態では、補助ヨーク80は切断部80aが設けられた構成であるが、本発明はこれに限られず、切断部が設けられていない構成であってもかまわない。

In the present embodiment, the auxiliary yoke 80 has a configuration in which the cutting portion 80a is provided. However, the present invention is not limited to this, and may have a configuration in which no cutting portion is provided.

 また、本実施形態では、補助ヨーク80は磁性材料から構成されているが、本発明はこれに限られず、非磁性材料から構成されていてもよい。この場合、磁石6が生じる磁束を補助ヨーク80内に閉じこめ、磁束が振動モータの外部に漏出することをさらに抑制するという効果は有しないが、磁石6の底面の面積を小さくするとともに、可動部を重くすることが可能となる。補助ヨーク80を構成する材料としては、可動部を重くするために、タングステン等の鉄より比重の大きい非鉄金属を用いることが好ましい。

In the present embodiment, the auxiliary yoke 80 is made of a magnetic material, but the present invention is not limited to this, and may be made of a nonmagnetic material. In this case, there is no effect of confining the magnetic flux generated by the magnet 6 in the auxiliary yoke 80 and further suppressing leakage of the magnetic flux to the outside of the vibration motor, but the area of the bottom surface of the magnet 6 is reduced and the movable part Can be made heavy. As a material constituting the auxiliary yoke 80, it is preferable to use a non-ferrous metal having a specific gravity larger than that of iron such as tungsten in order to make the movable part heavy.

 また、補助ヨーク80は、本実施形態では第1実施形態の構成に適用した例について説明したが、第2~第6実施形態の構成にも好適に適用することができる。

Further, although the auxiliary yoke 80 has been described as an example applied to the configuration of the first embodiment in the present embodiment, it can also be suitably applied to the configurations of the second to sixth embodiments.

(携帯電話機)

 次に、本発明に係る携帯電話機について図44および図45を参照して説明する。

(Mobile phone)

Next, a mobile phone according to the present invention will be described with reference to FIGS.

 携帯電話機100は、図44および図45に示すように、第1実施形態の振動モータ1と、表示部101と、CPU102とを備えている。

As shown in FIGS. 44 and 45, the mobile phone 100 includes the vibration motor 1 according to the first embodiment, a display unit 101, and a CPU 102.

 振動モータ1は、携帯電話機100を振動させるためのものであり、図45に示すように、携帯電話機100の内部において、表示部101が配置された側とは反対側の面に固定されている。表示部101は、タッチパネル方式のパネルにより構成されており、ユーザが表示部101に表示されたボタン部101aを押圧することにより携帯電話100を操作するためのものである。そして、CPU102は、携帯電話機100の種々の機能を制御するものであり、ボタン部101aが押圧されたことを検知した場合や、電話を着信した際にマナーモードに設定されている場合等に、振動モータ1が振動するように制御している。

The vibration motor 1 is for vibrating the mobile phone 100. As shown in FIG. 45, the vibration motor 1 is fixed to the surface opposite to the side on which the display unit 101 is disposed in the mobile phone 100. . The display unit 101 is configured by a touch panel panel, and is for the user to operate the mobile phone 100 by pressing a button unit 101 a displayed on the display unit 101. The CPU 102 controls various functions of the mobile phone 100. When the CPU 102 detects that the button unit 101a is pressed or when the manner mode is set when a call is received, The vibration motor 1 is controlled to vibrate.

 以下に、本実施形態の携帯電話機100の効果について説明する。

Below, the effect of the mobile phone 100 of this embodiment is demonstrated.

 (19)携帯電話機100は、薄型化を図ることが可能であるとともに、板バネ4a、4bの設計自由度が高い第1実施形態の振動モータ1を搭載している。これにより、装置全体を薄型化すること可能であり、さらに、ユーザが認識できる十分な振動量を得ることが可能である。

(19) The mobile phone 100 can be thinned, and is equipped with the vibration motor 1 of the first embodiment having a high degree of design freedom for the leaf springs 4a and 4b. As a result, it is possible to reduce the thickness of the entire apparatus and to obtain a sufficient amount of vibration that can be recognized by the user.

 なお、本実施形態では、第1実施形態の振動モータ1が携帯電話機に搭載された構成について説明したが、本発明はこれに限られず、振動モータ1はPDA等の他の携帯機器に搭載されていてもよい。特に、タッチパネルを用いた携帯機器において、振動モータ1は好適に用いられる。

In the present embodiment, the configuration in which the vibration motor 1 of the first embodiment is mounted on a mobile phone has been described. However, the present invention is not limited to this, and the vibration motor 1 is mounted on another mobile device such as a PDA. It may be. In particular, the vibration motor 1 is preferably used in a portable device using a touch panel.

 また、本実施形態では、第1実施形態の振動モータ1が搭載される例について説明したが、第2~第7実施形態の振動モータも好適に搭載することができることは言うまでもない。

In this embodiment, the example in which the vibration motor 1 of the first embodiment is mounted has been described, but it is needless to say that the vibration motors of the second to seventh embodiments can also be mounted appropriately.

 本発明は、上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。

The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.

Claims (20)


  1.  固定部(5、5a、5b)と、

     磁石(6、26、36、66)および前記磁石の側面方向に設けられた支持部材(7)を含み、前記固定部に対して相対的に移動する可動部(2、22、32、42、52、62)と、

     前記磁石と対向して配置され、前記可動部を前記支持部材が設けられている方向に移動させるためのコイル(9、39、40、69、70)と、

     前記固定部と前記支持部材との間に設けられた弾性部材(4、44、54)とを備え、

     前記支持部材は、前記磁石および前記コイルと面する、振動モータ。

    A fixing part (5, 5a, 5b);

    A movable part (2, 22, 32, 42, including a magnet (6, 26, 36, 66) and a support member (7) provided in the direction of the side surface of the magnet, which moves relative to the fixed part. 52, 62),

    A coil (9, 39, 40, 69, 70) disposed opposite to the magnet for moving the movable part in the direction in which the support member is provided;

    An elastic member (4, 44, 54) provided between the fixed portion and the support member;

    The support member is a vibration motor that faces the magnet and the coil.

  2.  前記磁石は、前記コイルを挟んで対向して配置された第1磁石(6)および第2磁石(26)を含み、

     前記第1磁石の前記コイルと対向する面が有する極性と、前記第2磁石の前記コイルと対向する面が有する極性とは異なる、請求項1に記載の振動モータ。

    The magnet includes a first magnet (6) and a second magnet (26) disposed to face each other across the coil,

    The vibration motor according to claim 1, wherein a polarity of a surface of the first magnet facing the coil is different from a polarity of a surface of the second magnet facing the coil.

  3.  前記磁石は、前記コイルと対向する面において、第1の極性を有する第1磁極面および前記第1の極性とは異なる第2の極性を有する第2磁極面を含む、請求項1に記載の振動モータ。

    The magnet includes a first magnetic pole surface having a first polarity and a second magnetic pole surface having a second polarity different from the first polarity on a surface facing the coil. Vibration motor.

  4.  前記コイルは、前記磁石の磁極面に対して互いに逆方向の磁界を作用させる第1コイル(39、69)および第2コイル(40、70)を含む、請求項1に記載の振動モータ。

    The vibration motor according to claim 1, wherein the coil includes a first coil (39, 69) and a second coil (40, 70) that cause magnetic fields in opposite directions to act on the magnetic pole surface of the magnet.

  5.  前記コイル(9、39、40、69、70)は、複数の平面コイルを含み、

     前記複数の平面コイルは、互いに接続されているとともに、重なるように配置されている、請求項1に記載の振動モータ。

    The coil (9, 39, 40, 69, 70) includes a plurality of planar coils,

    The vibration motor according to claim 1, wherein the plurality of planar coils are connected to each other and arranged to overlap each other.

  6.  前記支持部材は、前記磁石の前記コイルと対向する面とは反対側の面まで延びて形成されており、磁気シールドとしての機能を有する、請求項1に記載の振動モータ。

    The vibration motor according to claim 1, wherein the support member is formed to extend to a surface opposite to a surface facing the coil of the magnet and has a function as a magnetic shield.

  7.  前記支持部材は、筒型に形成されており、前記磁石は、前記筒型の支持部材の内壁底面に固定されている、請求項1に記載の振動モータ。

    The vibration motor according to claim 1, wherein the support member is formed in a cylindrical shape, and the magnet is fixed to an inner wall bottom surface of the cylindrical support member.

  8.  前記筒型の支持部材の開口面は、前記可動部が移動する方向に設けられている、請求項7に記載の振動モータ。

    The vibration motor according to claim 7, wherein an opening surface of the cylindrical support member is provided in a direction in which the movable portion moves.

  9.  前記磁石の側面と前記支持部材とは、所定の間隔を隔てて配置されている、請求項1に記載の振動モータ。

    The vibration motor according to claim 1, wherein the side surface of the magnet and the support member are arranged at a predetermined interval.

  10.  前記磁石の側面を覆う補助部材をさらに備える、請求項1に記載の振動モータ。

    The vibration motor according to claim 1, further comprising an auxiliary member that covers a side surface of the magnet.

  11.  前記補助部材には、切断部(80a)が設けられている、請求項10に記載の振動モータ。

    The vibration motor according to claim 10, wherein the auxiliary member is provided with a cutting portion (80 a).

  12.  前記磁石は、1対の磁極を有する第1磁極対(61)および第2磁極対(62)を含み、前記第1磁極対および前記第2磁極対は、前記コイルと対向する側において異なる磁極を有しており、前記第1磁極対と前記第2磁極対との間には磁性材料からなる中性領域(63)が形成されている、請求項1に記載の振動モータ。

    The magnet includes a first magnetic pole pair (61) and a second magnetic pole pair (62) having a pair of magnetic poles, and the first magnetic pole pair and the second magnetic pole pair are different from each other on the side facing the coil. The vibration motor according to claim 1, wherein a neutral region (63) made of a magnetic material is formed between the first magnetic pole pair and the second magnetic pole pair.

  13.  前記コイルは、第1の方向へ電流が流れる第1領域および前記第1の方向とは反対方向の第2の方向へ電流が流れる第2領域を含み、

     前記磁石および前記コイルは、前記第1領域を流れる電流が前記第1磁極対に対して移動させる力を与え、前記第2領域を流れる電流が前記第2磁極対に対して移動させる力を与えるように配置されている、請求項12に記載の振動モータ。

    The coil includes a first region in which current flows in a first direction and a second region in which current flows in a second direction opposite to the first direction,

    The magnet and the coil provide a force for the current flowing through the first region to move with respect to the first magnetic pole pair, and the current through the second region provides a force for moving with respect to the second magnetic pole pair. The vibration motor according to claim 12, which is arranged as follows.

  14.  前記磁石と前記コイルとの位置関係は、前記磁石を一の方向に最大に移動させた場合に、前記第1領域と前記第2磁極対とが重畳する面積よりも、前記第1領域と前記第1磁極対とが重畳する面積の方が大きくなり、前記磁石を前記一の方向とは反対の他の方向に最大に移動させた場合に、前記第2領域と前記第1磁極対とが重畳する面積よりも、前記第2領域と前記第2磁極対とが重畳する面積の方が大きくなるように設計されている、請求項13に記載の振動モータ。

    The positional relationship between the magnet and the coil is such that when the magnet is moved to the maximum in one direction, the first region and the second magnetic pole pair are more than the area where the first region and the second magnetic pole pair overlap. When the area where the first magnetic pole pair overlaps is larger, and the magnet is moved to the maximum in another direction opposite to the one direction, the second region and the first magnetic pole pair are The vibration motor according to claim 13, wherein the vibration motor is designed such that an area where the second region and the second magnetic pole pair overlap is larger than an overlapping area.

  15.  前記磁石と前記コイルとの位置関係は、前記磁石を一の方向に最大に移動させた場合に、前記第1領域と前記第2磁極対とが重畳せず、前記磁石を前記一の方向とは反対の他の方向に最大に移動させた場合に、前記第2領域と前記第1磁極対とが重畳しないように設計されている、請求項14に記載の振動モータ。

    The positional relationship between the magnet and the coil is such that when the magnet is moved to the maximum in one direction, the first region and the second magnetic pole pair do not overlap, and the magnet is positioned in the one direction. The vibration motor according to claim 14, wherein the second region and the first magnetic pole pair are designed not to overlap each other when moved to the maximum in the opposite direction.

  16.  前記磁石と前記コイルとの前記位置関係は、前記中性領域の幅により調整されている、請求項14に記載の振動モータ。

    The vibration motor according to claim 14, wherein the positional relationship between the magnet and the coil is adjusted by a width of the neutral region.

  17.  前記磁石と前記コイルとの前記位置関係は、前記弾性部材により調整されている、請求項14に記載の振動モータ。

    The vibration motor according to claim 14, wherein the positional relationship between the magnet and the coil is adjusted by the elastic member.

  18.  前記弾性部材は、前記可動部の前記磁石の磁極面と対応する面を覆う受皿(4c、44c、54c)が一体的に形成された皿付き弾性部材(4、44、54)を含み、

     前記皿付き弾性部材は、磁性材料から構成される、請求項1に記載の振動モータ。

    The elastic member includes a dished elastic member (4, 44, 54) integrally formed with a tray (4c, 44c, 54c) that covers a surface corresponding to the magnetic pole surface of the magnet of the movable part,

    The vibration motor according to claim 1, wherein the dished elastic member is made of a magnetic material.

  19.  前記皿付き弾性部材は、前記磁石の側面を覆うヨーク部(44d)をさらに含む、請求項18に記載の振動モータ。

    The vibration motor according to claim 18, wherein the elastic member with a dish further includes a yoke portion (44 d) that covers a side surface of the magnet.

  20.  固定部(5、5a、5b)と、磁石(6、26、36、66)および前記磁石の側面方向に設けられた支持部材(7)を含み前記固定部に対して相対的に移動する可動部(2、22、32、42、52、62)と、前記磁石と対向して配置され前記可動部を前記支持部材が設けられている方向に移動させるためのコイル(9、39、40、69、70)と、前記固定部と前記支持部材との間に設けられた弾性部材(4、44、54)とを含み、前記支持部材が前記磁石および前記コイルと面する振動モータ(1、21、31、41、51、61)を備える、携帯機器。

    A movable part that includes a fixed part (5, 5a, 5b), a magnet (6, 26, 36, 66) and a support member (7) provided in a side surface direction of the magnet and moves relative to the fixed part. Part (2, 22, 32, 42, 52, 62) and a coil (9, 39, 40, which is arranged to face the magnet and moves the movable part in the direction in which the support member is provided) 69, 70) and an elastic member (4, 44, 54) provided between the fixed part and the support member, the vibration motor (1, 21, 31, 41, 51, 61).
PCT/JP2010/052926 2009-03-10 2010-02-25 Vibration motor and portable apparatus WO2010103929A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-056903 2009-03-10
JP2009056973A JP2010207731A (en) 2009-03-10 2009-03-10 Vibration motor and portable device
JP2009056903A JP2010213462A (en) 2009-03-10 2009-03-10 Vibration motor and portable device
JP2009-056723 2009-03-10
JP2009-056973 2009-03-10
JP2009056723 2009-03-10
JP2009-115432 2009-05-12
JP2009115432A JP2010239851A (en) 2009-03-10 2009-05-12 Vibration motor and portable apparatus

Publications (1)

Publication Number Publication Date
WO2010103929A1 true WO2010103929A1 (en) 2010-09-16

Family

ID=42728219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052926 WO2010103929A1 (en) 2009-03-10 2010-02-25 Vibration motor and portable apparatus

Country Status (1)

Country Link
WO (1) WO2010103929A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117636A (en) * 2011-10-19 2013-05-22 Lg伊诺特有限公司 Linear vibrator
CN105406676A (en) * 2015-11-25 2016-03-16 歌尔声学股份有限公司 Linear vibrating motor
CN109891727A (en) * 2016-10-31 2019-06-14 日本电产科宝株式会社 Linear type vibration motor
CN111921827A (en) * 2019-05-13 2020-11-13 阿尔卑斯阿尔派株式会社 Vibration generating device
US11264881B2 (en) * 2017-06-30 2022-03-01 Nidec Sankyo Corporation Actuator having a contacted part with increased strength for restricting a movable range of a movable body
CN114629325A (en) * 2020-12-14 2022-06-14 日本电产株式会社 Vibration motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361174A (en) * 2001-06-11 2002-12-17 Namiki Precision Jewel Co Ltd Vibration actuator device
JP2006192317A (en) * 2004-12-14 2006-07-27 Tokyo Parts Ind Co Ltd Flat type brushless vibration motor provided with eccentric rotor and electromagnetic acoustic transducer built-in with the motor
JP2007090349A (en) * 2006-12-27 2007-04-12 Matsushita Electric Ind Co Ltd Vibration linear actuator
JP2007130582A (en) * 2005-11-10 2007-05-31 Alps Electric Co Ltd Vibration generator and input-output device using it
JP2007216097A (en) * 2006-02-14 2007-08-30 Omron Corp Vibration generator
WO2009017092A1 (en) * 2007-07-31 2009-02-05 Sanyo Electric Co., Ltd. Electromagnetic transducer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361174A (en) * 2001-06-11 2002-12-17 Namiki Precision Jewel Co Ltd Vibration actuator device
JP2006192317A (en) * 2004-12-14 2006-07-27 Tokyo Parts Ind Co Ltd Flat type brushless vibration motor provided with eccentric rotor and electromagnetic acoustic transducer built-in with the motor
JP2007130582A (en) * 2005-11-10 2007-05-31 Alps Electric Co Ltd Vibration generator and input-output device using it
JP2007216097A (en) * 2006-02-14 2007-08-30 Omron Corp Vibration generator
JP2007090349A (en) * 2006-12-27 2007-04-12 Matsushita Electric Ind Co Ltd Vibration linear actuator
WO2009017092A1 (en) * 2007-07-31 2009-02-05 Sanyo Electric Co., Ltd. Electromagnetic transducer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117636A (en) * 2011-10-19 2013-05-22 Lg伊诺特有限公司 Linear vibrator
CN105406676A (en) * 2015-11-25 2016-03-16 歌尔声学股份有限公司 Linear vibrating motor
CN105406676B (en) * 2015-11-25 2019-01-11 歌尔股份有限公司 A kind of linear vibration motor
CN109891727A (en) * 2016-10-31 2019-06-14 日本电产科宝株式会社 Linear type vibration motor
US11264881B2 (en) * 2017-06-30 2022-03-01 Nidec Sankyo Corporation Actuator having a contacted part with increased strength for restricting a movable range of a movable body
CN111921827A (en) * 2019-05-13 2020-11-13 阿尔卑斯阿尔派株式会社 Vibration generating device
CN111921827B (en) * 2019-05-13 2022-02-11 阿尔卑斯阿尔派株式会社 Vibration generating device
CN114629325A (en) * 2020-12-14 2022-06-14 日本电产株式会社 Vibration motor

Similar Documents

Publication Publication Date Title
JP2010239851A (en) Vibration motor and portable apparatus
CN110087782B (en) Vibration actuator, wearable terminal and incoming call notification function equipment
CN114337179A (en) Vibration actuator and electronic device
WO2010026883A1 (en) Linear motor and portable device provided with linear motor
WO2010103929A1 (en) Vibration motor and portable apparatus
JP2019097228A (en) Vibration actuator and portable device
CN112384308B (en) Vibration actuator and electronic device
CN110875680A (en) Vibration actuator and portable electronic device provided with same
WO2019102704A1 (en) Linear vibration motor and electronic apparatus
JP6803722B2 (en) Linear vibration motor
JPWO2010050285A1 (en) Linear motor and portable device equipped with linear motor
JP2011030370A (en) Vibrating motor
JP2019097229A (en) Vibration actuator and portable device
CN103516119A (en) Linear vibration motor
JP2019097227A (en) Vibration actuator and portable device
WO2010026709A1 (en) Vibration motor and portable terminal device using same
JP2010089061A (en) Vibration motor and portable terminal device using the same
JP2010082508A (en) Vibrating motor and portable terminal using the same
WO2010103831A1 (en) Vibration motor and portable apparatus
JP2010207725A (en) Vibration motor and portable terminal device
JP2010207731A (en) Vibration motor and portable device
CN112865470A (en) Vibrator and electronic apparatus
JP2010099642A (en) Vibration motor and portable digital terminal device using the same
JP2010213462A (en) Vibration motor and portable device
JP2011200752A (en) Vibration motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750683

Country of ref document: EP

Kind code of ref document: A1