WO2019102704A1 - Linear vibration motor and electronic apparatus - Google Patents

Linear vibration motor and electronic apparatus Download PDF

Info

Publication number
WO2019102704A1
WO2019102704A1 PCT/JP2018/034961 JP2018034961W WO2019102704A1 WO 2019102704 A1 WO2019102704 A1 WO 2019102704A1 JP 2018034961 W JP2018034961 W JP 2018034961W WO 2019102704 A1 WO2019102704 A1 WO 2019102704A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
coil
vibration motor
linear vibration
mover
Prior art date
Application number
PCT/JP2018/034961
Other languages
French (fr)
Japanese (ja)
Inventor
片田 好紀
大祐 福田
Original Assignee
日本電産コパル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル株式会社 filed Critical 日本電産コパル株式会社
Publication of WO2019102704A1 publication Critical patent/WO2019102704A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present invention relates to a linear vibration motor and an electronic device provided with the linear vibration motor.
  • a vibration motor (or vibration actuator) is incorporated in a portable electronic device, widely used as a device for transmitting a signal such as an incoming call or an alarm to a portable person by vibration, and it is used in wearable electronic devices worn and carried by a portable person. Has become an essential device.
  • the vibration motor is a device that realizes haptics (skin sensory feedback) in a human interface such as a touch panel.
  • a linear vibration motor that can generate relatively large vibrations due to linear reciprocating vibration of the mover has attracted attention.
  • a conventional linear vibration motor includes a mover integrally including a weight and two magnets, a leaf spring that vibratably supports the mover, and a mover.
  • the coil has a coil facing the magnet on one side in a direction intersecting with the vibration direction, and the mover is reciprocally vibrated by the Lorentz force when the coil is energized.
  • the two magnets are formed in a flat rectangular parallelepiped shape, and the plane side of one of the magnets is an N pole, whereas the plane side of the other magnet is an S pole.
  • the magnetic flux of the magnet integrated with the mover may leak out of the case and adversely affect external devices (for example, a transceiver, a SIM card, etc.). Therefore, it is conceivable to magnetically shield the case by using a magnetic material, but in such a case, the magnet is magnetically attracted to the case, and the mover oscillates in the cross direction with respect to the desired vibration direction, It may cause contact noise or vibration noise.
  • the present invention comprises the following composition.
  • a mover integrally including a weight and a coil, an elastic body that vibratably supports the mover, and a first magnet facing the coil on one side in a direction intersecting with the vibration direction of the mover;
  • the second magnet facing the coil on the other side in the same cross direction and a magnetic member for fixing each magnet are provided, and the mover is vibrated by the magnetic force generated when the coil is energized.
  • Linear vibration motor integrally including a weight and a coil, an elastic body that vibratably supports the mover, and a first magnet facing the coil on one side in a direction intersecting with the vibration direction of the mover;
  • the second magnet facing the coil on the other side in the same cross direction and a magnetic member for fixing each magnet are provided, and the mover is vibrated by the magnetic force generated when the coil is energized.
  • Linear vibration motor Linear vibration motor.
  • the linear vibration motor 1 includes a mover 10 integrally including a weight 11 and a coil 12, an elastic body 20 that vibratably supports the mover 10, and a mover 10.
  • a first magnet 30 facing the end face of the coil 12 on one side orthogonal to the vibration direction (the X direction according to the illustrated example) and a coil 12 end face on the other side of the orthogonal direction
  • magnetic members 51 and 52 which fix the first and second magnets 30 and 40 from both sides in the orthogonal direction, and flexible to supply power to the coil 12 Power supply wiring 60 and a cover member 70 covering these members, and when the coil 12 is energized, the mover 10 is reciprocated linearly in one axial direction due to the magnetic force generated.
  • the mover 10 is formed by integrally fixing the coil 12 to the weight 11.
  • the weight 11 is made of a metal material (for example, tungsten) having a high specific gravity, and according to the illustrated example, is formed in a frame shape elongated in the vibration direction. And the hollow part 11a which opened one side and the other side of the thickness direction orthogonal to a vibration direction is provided in the planar view center side of this weight 11. As shown in FIG. Moreover, the coil fixing
  • the first magnet 30 is inserted into the opening on one side and the second magnet 40 is inserted into the opening on the other side, and weights around the first magnet 30 and the second magnet 40 A space for vibrating the body 11 is secured (see FIGS. 2 to 4).
  • the first magnet 30 and the second magnet 40 are inserted into the hollow portion 11a in a non-contact state with play in the vibration direction.
  • Each coil fixing portion 11 b is a concave portion formed in the side wall of the weight 11, and the side end of the coil 12 is mounted.
  • the coil 12 is a flat air core coil in which one half side 12a and the other half side 12b sandwiching the air core are disposed on both sides in the vibration direction, and the central axis thereof is in the thickness direction of the weight 11 It fixes and fixes to the approximate center of the vibration direction and thickness direction of the weight 11 so as to substantially match. More specifically, the coil 12 is provided in the form of a bridge across the hollow portion 11a, and one end side and the other end side thereof are respectively fitted to the coil fixing portions 11b of the weight 11 and fixed by adhesion.
  • Each elastic body 20 is a plate spring in which an elastically bendable plate is formed in a predetermined bending shape, and according to an example shown in FIG. 4, fixed to the outer surface of the weight 11 near the end in the vibration direction Connecting pieces that connect the one end sides of the fastening pieces 21 and 22, and the fastening pieces 22 fastened to the inner surface of the side wall 72 (or 73) of the cover member 70; And is formed in a U-shape in plan view along the end side of the weight 11 in the vibration direction.
  • the elastic body 20 elastically bends and deforms a bent portion between the fastening piece 21 and the connecting piece 23 and a bending portion between the connecting piece 23 and the fastening piece 22.
  • the first magnet 30 has a magnet piece 31 in which one magnetic pole (for example, the N pole) is opposed to one half side 12a of the coil 12 (the left half side according to FIG. 2)
  • the magnetic pole (for example, S pole) is comprised from the magnet piece 32 which made the other half part side 12b (according to FIG. 2 right half part side) of the coil 12 be opposite.
  • the two magnet pieces 31 and 32 are permanent magnets of the same shape and of the same material, and are disposed at intervals in the vibration direction so that the magnetic poles are reverse as described above.
  • the magnet pieces 31 and 32 are adhered and fixed to the coil side surface of the magnetic member 51 with a predetermined clearance between the magnet pieces 31 and 32 and the end surface of the coil 12.
  • the second magnet 40 is disposed point-wise so that the direction of the magnetic pole is reversed with respect to the first magnet 30 in the cross direction to the vibration direction (the thickness direction of the weight 11 according to the illustrated example). It consists of the two magnet pieces 41 and 42 (refer FIG. 2).
  • the magnet pieces 41 and 42 are the same members as the magnet pieces 31 and 32, and a predetermined clearance is secured between the magnet pieces 31 and 32, and the magnet pieces 41 and 42 are adhered and fixed to the coil side surface of the magnetic member 52.
  • the magnetic members 51 and 52 are flat plate-like magnetic materials (iron, magnetic stainless steel, etc.) covering the surfaces of the first magnet 30 and the second magnet 40 on the opposite coil side (in other words, the opposite side to the coil side) While increasing the magnetic force of each of the magnets 30 and 40 and preventing the magnetic flux from leaking to the side opposite to the coil.
  • the surface of the one magnetic member 51 on the side opposite to the coil is adhered and fixed to the inner surface of the cover member 70.
  • the other magnetic member 52 is fixed to cover the opening of the cover member 70 and also functions as a case member.
  • the feed wiring 60 is a flexible electric wiring material for supplying power to the coil 12, and according to a preferred example of the present embodiment, a tape-like flexible wiring substrate (TAB (Tape Automated Bonding) and (It may be called).
  • TAB Tap-like flexible wiring substrate
  • the feed wiring 60 is provided along one elastic body 20 (a plate spring) so as to be bent along with the vibration of the mover 10. According to an example shown in FIG. 4 and FIG. 5, the feed wire 60 is superimposed in a substantially L shape on the outer surfaces of the fastening piece 21 and the connecting piece 23 of the elastic body 20. The other end side terminal is exposed to the outside from between the cover portion 51 and the base portion 52.
  • the cover member 70 is formed in a box shape with a lower opening, and has a rectangular top wall 71, side walls 72 and 73 projecting downward from both ends of the top wall 71, and front and rear of the top wall 71. It has a front wall 74 and a rear wall 75 protruding downward from the end.
  • the cover member 70 is connected to the peripheral end of the magnetic member 52 so as to cover the above-described members.
  • the mover 10 in an initial state in which the coil 12 is not energized, the mover 10 is biased approximately equally by the elastic members 20 on both sides, and is positioned approximately at the center of the cover member 70. Therefore, as shown in FIG. 6A, the half side 12a of the coil 12 is positioned between the magnet piece 31 of the first magnet 30 and the magnet piece 42 of the second magnet 40, and The other half 12 b of the coil 12 is positioned between the magnet piece 32 of the first magnet 30 and the magnet piece 41 of the second magnet 40.
  • the mover 10 reciprocates in the X direction and the anti-X direction by the magnetic action between the coil 12 and the first magnet 30 and the second magnet 40. Vibrate.
  • the magnetic flux generated during the reciprocation is magnetically shielded by the magnetic members 51 and 52 and hardly leaks to the outside.
  • the half-portion side 12a of the coil 12 includes one magnet piece 31 or 42 and the other magnet piece 32 or 41 in the vibration direction.
  • the direction of the magnetic lines of force M3 between the magnet pieces 31 and 32 on both sides of the first magnet 30 is the X direction with respect to the direction (anti-Y direction) of the current flowing through the half side 12a. Therefore, a Lorentz force in the Z direction is generated on the half side 12a, but the direction of the magnetic line of force M4 between the magnet pieces 41 and 42 on both sides of the second magnet 40 is the anti-X direction.
  • An anti-Z direction Lorentz force is also generated on the side 12a, and these two opposite Lorentz forces are offset. Therefore, the mover 10 can be prevented from swinging in the Z direction or the anti-Z direction while moving in the one direction.
  • the linear vibration motor 1 configured as described above, it is possible to reduce the leakage magnetic flux, and in addition, it is possible to suppress the swing of the mover 10 in the direction crossing the desired vibration direction. Can be smoothly reciprocated in a straight line, and the movement of the mover 10 can be stabilized and the noise can be reduced.
  • FIG. 7 exemplifies a portable information terminal 100 as an electronic device provided with the linear vibration motor 1 according to the embodiment of the present invention.
  • the portable information terminal 100 is configured to vibrate the linear vibration motor 1 according to the reception of an external signal, the touch operation of a touch operation panel (including a touch display), etc., and the leakage of magnetic flux from the linear vibration motor 1 In addition to reducing adverse effects on the handset and SIM card, it is possible to reduce noise and noise when the linear vibration motor 1 vibrates.
  • a wearable computer a tablet personal computer, a game machine, or the like may be used other than the illustrated example.
  • each of the 1st magnet 30 and the 2nd magnet 40 was comprised by two magnet pieces, as another example, it is like the linear vibration motor 2 shown in FIG. It is also possible to replace the first magnet 30 and the second magnet 40 with a first magnet 30 'and a second magnet 40' consisting of a single piece of magnet, respectively.
  • the first magnet 30 ′ is an integral permanent magnet having an N pole on one end side in the vibration direction and an S pole on the other end side, and ensures a predetermined clearance with the end face of the coil 12. And adhesively fixed to the magnetic member 51.
  • the second magnet 40 ' is a permanent magnet having the same shape and the same material as the first magnet 30', and is disposed point-symmetrically to reverse the direction of the magnetic pole with respect to the first magnet 30 '.
  • the magnetic member 52 is adhesively fixed to the magnetic member 52 while maintaining a predetermined clearance with the coil 12.
  • the electric power feeding wiring 60 was overlap
  • the linear vibration motor 3 shown in FIG. 9 is obtained by replacing the power supply wiring 60 in the linear vibration motor 1 with a power supply wiring 60 ′.
  • the feed wiring 60 ' is an L-shaped flexible wiring substrate (TAB) similar to the feed wiring 60, and the thickness direction of the weight 11 (in the reverse Z direction according to FIG. 9) with respect to one elastic body 20. ) Is provided so as to be bent and deformed at the shifted position. Therefore, according to the linear vibration motor 3, interference of the power supply wiring 60 'with the elastic body 20 can be reduced, and noise reduction and durability can be improved.
  • the power supply wiring 60 in the linear vibration motor 1 is replaced with a power supply wiring 60 ′ ′.
  • the feed wiring 60 ′ ′ is formed of a flexible wiring substrate (TAB), a connection piece 61 ′ ′ along the side surface of the weight 11 and having one end electrically connected to the coil 12, and the connection piece 61 ′ ′.
  • the first extending piece portion 62 ′ ′ bent in a substantially L shape and extended to the other end side, and the first extending piece portion 62 ′ ′ further bent in a substantially V shape and extended And a second extension piece 63 ′ ′.
  • the feed wiring 60 ′ ′ is provided so as to be bent and deformed at a position shifted to the thickness direction of the weight 11 (anti-Z direction according to FIG. 10) with respect to one elastic body 20.
  • the terminal on the end side of the mounting piece 63 ′ ′ is exposed to the outside. Therefore, according to the linear vibration motor 3, the interference of the feed wire 60 ′ ′ with the elastic body 20 can be reduced, and the feed wire 60 ′ ′ is the first extended piece portion 62 ′ ′ and the second extended piece portion 63. And so on, which can further improve quietness, durability, and the like.
  • the elastic body 20 is a plate spring as a particularly preferable aspect.
  • rubber, a coil spring, or the like can be used as another example of the elastic body 20.
  • the magnetic member 51 on the first magnet 30 side is formed in a flat plate shape, but as another example, the magnetic member 51 is omitted, and the cover member 70 is formed of a magnetic material.
  • the first magnet 30 may be bonded and fixed to the inner surface of the top wall 71 of the cover member 70.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

The present invention reduces a leakage magnetic flux and suppresses swinging of a movable element in the intersecting direction with respect to a desired vibration direction. The present invention is provided with: a movable element 10 integrally having a weight body 11 and a coil 12; an elastic body 20 that supports the movable element 10 such that the movable element can vibrate; a first magnet 30 that faces the coil 12 on one side in the intersecting direction with respect to the vibrating direction of the movable element 10; a second magnet 40 that faces the coil 12 on the other side in the intersecting direction; and magnetic members 51, 52 that fix the magnets, respectively. The movable element 10 is vibrated due to a magnetic force that is generated when the coil 12 is energized.

Description

リニア振動モータ及び電子機器Linear vibration motor and electronic equipment
 本発明は、リニア振動モータ、及びこのリニア振動モータを備えた電子機器に関するものである。 The present invention relates to a linear vibration motor and an electronic device provided with the linear vibration motor.
 振動モータ(或いは振動アクチュエータ)は、携帯電子機器に内蔵され、着信やアラームなどの信号発生等を振動によって携帯者に伝える装置として広く普及しており、携帯者が身につけて持ち運ぶウエアラブル電子機器においては、不可欠な装置になっている。また、振動モータは、タッチパネルなどのヒューマン・インターフェイスにおけるハプティクス(皮膚感覚フィードバック)を実現する装置である。 A vibration motor (or vibration actuator) is incorporated in a portable electronic device, widely used as a device for transmitting a signal such as an incoming call or an alarm to a portable person by vibration, and it is used in wearable electronic devices worn and carried by a portable person. Has become an essential device. The vibration motor is a device that realizes haptics (skin sensory feedback) in a human interface such as a touch panel.
 このような振動モータについて各種の形態が開発されている中で、可動子の直線的な往復振動によって比較的大きな振動を発生させることができるリニア振動モータが注目されている。
 従来のリニア振動モータには、例えば特許文献1に記載されるように、錘体及び二つのマグネットを一体的に備えた可動子と、この可動子を振動可能に支持する板バネと、可動子の振動方向に対する交差方向の一方側でマグネットに対向するコイルとを具備し、コイルに通電した際のローレンツ力により、可動子を往復振動させるようにしたものがある。前記二つのマグネットは、扁平な直方体状に形成され、その一方のマグネットの平面側がN極であるのに対し、他方のマグネットの同平面側がS極になっている。
While various forms of such vibration motors have been developed, a linear vibration motor that can generate relatively large vibrations due to linear reciprocating vibration of the mover has attracted attention.
For example, as described in Patent Document 1, a conventional linear vibration motor includes a mover integrally including a weight and two magnets, a leaf spring that vibratably supports the mover, and a mover. The coil has a coil facing the magnet on one side in a direction intersecting with the vibration direction, and the mover is reciprocally vibrated by the Lorentz force when the coil is energized. The two magnets are formed in a flat rectangular parallelepiped shape, and the plane side of one of the magnets is an N pole, whereas the plane side of the other magnet is an S pole.
特開2017-18958号公報JP 2017-18958 A
 ところで、上記従来のリニア振動モータでは、可動子と一体のマグネットの磁束が、ケース外に漏れて、外部の機器(例えば送受信機やSIMカード)等に悪影響を与える可能性がある。そこで、ケースを磁性材にして磁気シールドすることが考えられるが、このようにした場合には、マグネットがケースに磁気吸引されて、可動子が所望とする振動方向に対し交差方向へ振れて、当接音や振動音の原因となる場合がある。
 また、上記従来のリニア振動モータでは、振動に伴う可動子の移動によりマグネットがコイルに対し偏った位置になると、コイルの電流方向に対し、この電流方向に直交するマグネットの磁力線方向が変わるため、振動方向に対する交差方向のローレンツ力が発生し、このローレンツ力により可動子が前記交差方向へ振れて、静音性や耐久性を損ねてしまう場合がある。
By the way, in the above-mentioned conventional linear vibration motor, the magnetic flux of the magnet integrated with the mover may leak out of the case and adversely affect external devices (for example, a transceiver, a SIM card, etc.). Therefore, it is conceivable to magnetically shield the case by using a magnetic material, but in such a case, the magnet is magnetically attracted to the case, and the mover oscillates in the cross direction with respect to the desired vibration direction, It may cause contact noise or vibration noise.
Further, in the conventional linear vibration motor described above, when the magnet is displaced with respect to the coil due to the movement of the mover accompanying the vibration, the direction of magnetic force lines of the magnet orthogonal to the current direction changes with respect to the current direction of the coil A Lorentz force in the cross direction with respect to the vibration direction is generated, and the Lorentz force may cause the mover to move in the cross direction, which may impair the noise reduction and the durability.
 このような課題を解決するために、本発明は以下の構成を具備するものである。
 錘体及びコイルを一体的に有する可動子と、前記可動子を振動可能に支持する弾性体と、前記可動子の振動方向に対する交差方向の一方側で前記コイルに対向する第一のマグネットと、同交差方向の他方側で前記コイルに対向する第二のマグネットと、各マグネットを固定する磁性部材とを具備し、前記コイルに通電した際に生じる磁気力により前記可動子を振動させるようにしたリニア振動モータ。
In order to solve such a subject, the present invention comprises the following composition.
A mover integrally including a weight and a coil, an elastic body that vibratably supports the mover, and a first magnet facing the coil on one side in a direction intersecting with the vibration direction of the mover; The second magnet facing the coil on the other side in the same cross direction and a magnetic member for fixing each magnet are provided, and the mover is vibrated by the magnetic force generated when the coil is energized. Linear vibration motor.
本発明に係るリニア振動モータの一例を示す分解斜視図である。It is an exploded perspective view showing an example of a linear vibration motor concerning the present invention. 同リニア振動モータを短手方向の中央部で切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the linear vibration motor in the center part of the transversal direction. 同リニア振動モータを長手方向の中央部で切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the linear vibration motor in the center part of the longitudinal direction. 同リニア振動モータについてカバー部材及び磁性部材を外した状態を示す平面図である。It is a top view which shows the state which removed the cover member and the magnetic member about the linear vibration motor. 同リニア振動モータについてカバー部材及び磁性部材を外した状態を示す斜視図である。It is a perspective view which shows the state which removed the cover member and the magnetic member about the linear vibration motor. 同リニア振動モータの作用を示す模式図であり、(a)は初期状態を示し、(b)は可動子(コイル)が移動した状態を示す。It is a schematic diagram which shows the effect | action of the linear vibration motor, (a) shows an initial state, (b) shows the state which the needle | mover (coil) moved. 電子機器の一例を示す斜視図である。It is a perspective view which shows an example of an electronic device. 本発明に係るリニア振動モータの他例について、作用を示す模式図であり、(a)は初期状態を示し、(b)は可動子(コイル)が移動した状態を示す。About the other example of the linear vibration motor which concerns on this invention, it is a schematic diagram which shows an effect | action, (a) shows an initial state, (b) shows the state which the needle | mover (coil) moved. 本発明に係るリニア振動モータの他例についてカバー部材及び磁性部材を外した状態を示す斜視図である。It is a perspective view which shows the state which removed the cover member and the magnetic member about the other example of the linear vibration motor which concerns on this invention. 本発明に係るリニア振動モータの他例についてカバー部材及び磁性部材を外した状態を示す斜視図である。It is a perspective view which shows the state which removed the cover member and the magnetic member about the other example of the linear vibration motor which concerns on this invention.
 以下、図面を参照して本発明の実施形態を説明する。以下の説明で異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals in different drawings denote portions having the same functions, and redundant description in each drawing will be appropriately omitted.
 リニア振動モータ1は、図1~図6に示すように、錘体11及びコイル12を一体的に有する可動子10と、可動子10を振動可能に支持する弾性体20と、可動子10の振動方向(図示例によればX方向)に対する直交方向(図示例によればZ方向)の一方側でコイル12端面に対向する第一のマグネット30と、同直交方向の他方側でコイル12端面に対向する第二のマグネット40と、前記直交方向において第一及び第二のマグネット30,40を間に置いてその両側から固定する磁性部材51,52と、コイル12に電力を供給する可撓性の給電配線60と、これらの部材を覆うカバー部材70とを具備し、コイル12に通電した際に生じる磁気力により可動子10を一軸方向へ直線的に往復振動させる。 As shown in FIGS. 1 to 6, the linear vibration motor 1 includes a mover 10 integrally including a weight 11 and a coil 12, an elastic body 20 that vibratably supports the mover 10, and a mover 10. A first magnet 30 facing the end face of the coil 12 on one side orthogonal to the vibration direction (the X direction according to the illustrated example) and a coil 12 end face on the other side of the orthogonal direction And magnetic members 51 and 52 which fix the first and second magnets 30 and 40 from both sides in the orthogonal direction, and flexible to supply power to the coil 12 Power supply wiring 60 and a cover member 70 covering these members, and when the coil 12 is energized, the mover 10 is reciprocated linearly in one axial direction due to the magnetic force generated.
 可動子10は、錘体11にコイル12を一体的に固定してなる。 The mover 10 is formed by integrally fixing the coil 12 to the weight 11.
 錘体11は、比重の高い金属材料(例えば、タングステン)からなり、図示例によれば振動方向へ長尺な枠状に形成される。そして、この錘体11の平面視中央側には、振動方向に直交する厚み方向の一方側と他方側を開口した中空部11aが設けられる。また、錘体11を構成する両側の側壁には、コイル固定部11bが形成される。 The weight 11 is made of a metal material (for example, tungsten) having a high specific gravity, and according to the illustrated example, is formed in a frame shape elongated in the vibration direction. And the hollow part 11a which opened one side and the other side of the thickness direction orthogonal to a vibration direction is provided in the planar view center side of this weight 11. As shown in FIG. Moreover, the coil fixing | fixed part 11b is formed in the side wall of the both sides which comprise the weight 11. As shown in FIG.
 中空部11aは、一方側の開口に第一のマグネット30を挿入するとともに他方側の開口に第二のマグネット40を挿入し、これら第一のマグネット30及び第二のマグネット40の周囲に、錘体11を振動させるための空間を確保している(図2~図4参照)。
 第一のマグネット30及び第二のマグネット40は、中空部11a内に、振動方向の遊びを有する非接触状態で挿入される。
In the hollow portion 11a, the first magnet 30 is inserted into the opening on one side and the second magnet 40 is inserted into the opening on the other side, and weights around the first magnet 30 and the second magnet 40 A space for vibrating the body 11 is secured (see FIGS. 2 to 4).
The first magnet 30 and the second magnet 40 are inserted into the hollow portion 11a in a non-contact state with play in the vibration direction.
 コイル固定部11bは、錘体11の一方と他方の側壁にそれぞれ位置するように、二つ設けられる。各コイル固定部11bは、錘体11の側壁に形成された凹状に切欠部であり、コイル12の側端側を載置している。 Two coil fixing portions 11 b are provided so as to be respectively positioned on one side wall and the other side wall of the weight 11. Each coil fixing portion 11 b is a concave portion formed in the side wall of the weight 11, and the side end of the coil 12 is mounted.
 コイル12は、空芯部を挟む片半部側12aと他半部側12bを、振動方向の両側に配設した扁平状の空芯コイルであり、その中心軸を錘体11の厚み方向に略一致させて、錘体11の振動方向及び厚み方向の中央寄りに止着固定されている。
 詳細に説明すれば、コイル12は、中空部11aを跨る架橋状に設けられるとともに、その一端側と他端側が、それぞれ、錘体11の各コイル固定部11bに嵌め合わせられ接着固定される。
The coil 12 is a flat air core coil in which one half side 12a and the other half side 12b sandwiching the air core are disposed on both sides in the vibration direction, and the central axis thereof is in the thickness direction of the weight 11 It fixes and fixes to the approximate center of the vibration direction and thickness direction of the weight 11 so as to substantially match.
More specifically, the coil 12 is provided in the form of a bridge across the hollow portion 11a, and one end side and the other end side thereof are respectively fitted to the coil fixing portions 11b of the weight 11 and fixed by adhesion.
 弾性体20は、可動子10の振動方向の一端側と他端側に、平面視上において点対称に二つ設けられる。
 各弾性体20は、弾性的に撓み可能な板材を所定の曲げ形状に形成した板バネであり、図4に示す一例によれば、錘体11の振動方向端部寄りの外側面に止着された止着片部21と、カバー部材70の側壁部72(又は73)内面に止着された止着片部22と、これら止着片部21,22の一端側を連結する連結片部23とを有し、錘体11の振動方向の端部側に沿う平面視コ字状に形成されている。
 この弾性体20は、止着片部21と連結片部23の間の曲げ部分、及び連結片部23と止着片部22の間の曲げ部分を、弾性的に撓ませて変形する。
Two elastic bodies 20 are provided point-symmetrically in a plan view on one end side and the other end side of the movable element 10 in the vibration direction.
Each elastic body 20 is a plate spring in which an elastically bendable plate is formed in a predetermined bending shape, and according to an example shown in FIG. 4, fixed to the outer surface of the weight 11 near the end in the vibration direction Connecting pieces that connect the one end sides of the fastening pieces 21 and 22, and the fastening pieces 22 fastened to the inner surface of the side wall 72 (or 73) of the cover member 70; And is formed in a U-shape in plan view along the end side of the weight 11 in the vibration direction.
The elastic body 20 elastically bends and deforms a bent portion between the fastening piece 21 and the connecting piece 23 and a bending portion between the connecting piece 23 and the fastening piece 22.
 第一のマグネット30は、一方の磁極(例えばN極)を、コイル12の片半部側12a(図2によれば左半部側)に対向させたマグネット片31と、反対向きの他方の磁極(例えばS極)をコイル12の他半部側12b(図2によれば右半部側)に対向させたマグネット片32とから構成される。
 二つのマグネット片31,32は、同形状かつ同材質の永久磁石であり、振動方向に間隔を置いて、上記のように磁極が逆向きになるように配設される。そして、これらマグネット片31,32は、コイル12の端面との間に所定のクリアランスを確保して、磁性部材51のコイル側面に接着固定されている。
The first magnet 30 has a magnet piece 31 in which one magnetic pole (for example, the N pole) is opposed to one half side 12a of the coil 12 (the left half side according to FIG. 2) The magnetic pole (for example, S pole) is comprised from the magnet piece 32 which made the other half part side 12b (according to FIG. 2 right half part side) of the coil 12 be opposite.
The two magnet pieces 31 and 32 are permanent magnets of the same shape and of the same material, and are disposed at intervals in the vibration direction so that the magnetic poles are reverse as described above. The magnet pieces 31 and 32 are adhered and fixed to the coil side surface of the magnetic member 51 with a predetermined clearance between the magnet pieces 31 and 32 and the end surface of the coil 12.
 また、第二のマグネット40は、振動方向に対する交差方向(図示例によれば錘体11の厚み方向)において、第一のマグネット30に対し磁極の向きを逆にするように点対象に配設された二つのマグネット片41,42から構成される(図2参照)。
 これらマグネット片41,42は、マグネット片31,32と同部材であり、コイル12との間に所定のクリアランスを確保して、磁性部材52のコイル側面に接着固定されている。
Further, the second magnet 40 is disposed point-wise so that the direction of the magnetic pole is reversed with respect to the first magnet 30 in the cross direction to the vibration direction (the thickness direction of the weight 11 according to the illustrated example). It consists of the two magnet pieces 41 and 42 (refer FIG. 2).
The magnet pieces 41 and 42 are the same members as the magnet pieces 31 and 32, and a predetermined clearance is secured between the magnet pieces 31 and 32, and the magnet pieces 41 and 42 are adhered and fixed to the coil side surface of the magnetic member 52.
 磁性部材51,52は、それぞれ、第一のマグネット30と第二のマグネット40の反コイル側(換言すれば、コイル側に対する反対側)の面を覆う平板状の磁性材(鉄や磁性ステンレス等)であり、各マグネット30,40の磁力を増大するとともに、磁束が反コイル側へ漏洩するのを阻む。
 一方の磁性部材51は、その反コイル側の面がカバー部材70の内面に接着固定されている。
 他方の磁性部材52は、カバー部材70の開口部を覆って固定され、ケース部材としても機能する。
The magnetic members 51 and 52 are flat plate-like magnetic materials (iron, magnetic stainless steel, etc.) covering the surfaces of the first magnet 30 and the second magnet 40 on the opposite coil side (in other words, the opposite side to the coil side) While increasing the magnetic force of each of the magnets 30 and 40 and preventing the magnetic flux from leaking to the side opposite to the coil.
The surface of the one magnetic member 51 on the side opposite to the coil is adhered and fixed to the inner surface of the cover member 70.
The other magnetic member 52 is fixed to cover the opening of the cover member 70 and also functions as a case member.
 また、給電配線60は、コイル12に電力を供給する可撓性の電気配線材であり、本実施の形態の好ましい一例によれば、テープ状のフレキシブル配線用基板(TAB(Tape Automated Bonding)と呼称される場合がある。)を用いている。
 この給電配線60は、可動子10の振動に伴い撓むように、一方の弾性体20(板バネ)に沿って設けられる。図4及び図5に示す一例によれば、給電配線60は、弾性体20の止着片部21及び連結片部23の外面に略L字状に重ね合わせられ、その一端側端子がコイル12に電気的に接続されるとともに、他端側端子が、カバー部51と基部52の間から外部に露出される。
Further, the feed wiring 60 is a flexible electric wiring material for supplying power to the coil 12, and according to a preferred example of the present embodiment, a tape-like flexible wiring substrate (TAB (Tape Automated Bonding) and (It may be called).
The feed wiring 60 is provided along one elastic body 20 (a plate spring) so as to be bent along with the vibration of the mover 10. According to an example shown in FIG. 4 and FIG. 5, the feed wire 60 is superimposed in a substantially L shape on the outer surfaces of the fastening piece 21 and the connecting piece 23 of the elastic body 20. The other end side terminal is exposed to the outside from between the cover portion 51 and the base portion 52.
 カバー部材70は、下方を開口した箱状に形成され、矩形状の天壁部71と、この天壁部71の両側端から下方へ突出する側壁部72,73と、天壁部71の前後端部から下方へ突出する前壁部74及び後壁部75とを有する。
 このカバー部材70は、上述した各部材を覆うようにして、磁性部材52の周端部に接続されている。
The cover member 70 is formed in a box shape with a lower opening, and has a rectangular top wall 71, side walls 72 and 73 projecting downward from both ends of the top wall 71, and front and rear of the top wall 71. It has a front wall 74 and a rear wall 75 protruding downward from the end.
The cover member 70 is connected to the peripheral end of the magnetic member 52 so as to cover the above-described members.
 次に上記構成のリニア振動モータ1について、その特徴的な作用効果を詳細に説明する。
 先ず、コイル12が通電されていない初期状態では、可動子10は、両側の弾性体20により略均等に付勢され、カバー部材70内の略中央に位置する。このため、図6(a)に示すように、第一のマグネット30のマグネット片31と第二のマグネット40のマグネット片42の間には、コイル12の片半部側12aが位置し、第一のマグネット30のマグネット片32と第二のマグネット40のマグネット片41の間には、同コイル12の他半部側12bが位置する。
Next, the characteristic operation and effect of the linear vibration motor 1 having the above-described configuration will be described in detail.
First, in an initial state in which the coil 12 is not energized, the mover 10 is biased approximately equally by the elastic members 20 on both sides, and is positioned approximately at the center of the cover member 70. Therefore, as shown in FIG. 6A, the half side 12a of the coil 12 is positioned between the magnet piece 31 of the first magnet 30 and the magnet piece 42 of the second magnet 40, and The other half 12 b of the coil 12 is positioned between the magnet piece 32 of the first magnet 30 and the magnet piece 41 of the second magnet 40.
 前記初期状態において、コイル12に交流電力が供給されると、コイル12と第一のマグネット30及び第二のマグネット40との間の磁気作用により、可動子10がX方向と反X方向へ往復振動する。
 この往復振動中に発生する磁束は、磁性部材51,52により磁気シールドされ、外部へは漏洩し難い。
In the initial state, when AC power is supplied to the coil 12, the mover 10 reciprocates in the X direction and the anti-X direction by the magnetic action between the coil 12 and the first magnet 30 and the second magnet 40. Vibrate.
The magnetic flux generated during the reciprocation is magnetically shielded by the magnetic members 51 and 52 and hardly leaks to the outside.
 詳細に説明すれば、図6(a)に示すように、コイル12に一方向の電流が流れた際、コイル12の片半部側12aの電流の向き(反Y方向)と、マグネット片31とマグネット片42の間の磁力線M1の向きとの関係、及びコイル12の他半部側12bの電流の向き(Y方向)と、マグネット片32とマグネット片41の間の磁力線M2の向きとの関係により、コイル12にX方向のローレンツ力が発生し、可動子10がX方向へ移動する。コイル12に逆方向の電流が流れた際には、可動子10の移動方向が逆になる。 More specifically, as shown in FIG. 6A, when a current in one direction flows through the coil 12, the direction (anti-Y direction) of the current on the half side 12a of the coil 12 and the magnet piece 31 And the direction of the line of magnetic force M1 between the magnet pieces 42 and the direction (Y direction) of the current on the other half 12b of the coil 12 and the direction of the line of magnetic force M2 between the magnet pieces 32 and 41 According to the relationship, Lorentz force in the X direction is generated in the coil 12, and the mover 10 moves in the X direction. When a current in the reverse direction flows through the coil 12, the moving direction of the mover 10 is reversed.
 前述したコイル12の一方向への移動中、図6(b)に示すように、コイル12の片半部側12aが、振動方向の一方のマグネット片31,42と他方のマグネット片32,41との間に位置すると、この片半部側12aを流れる電流の向き(反Y方向)に対し、第一のマグネット30の両側のマグネット片31,32間の磁力線M3の向きがX方向であるため、片半部側12aにはZ方向のローレンツ力が発生するが、第二のマグネット40の両側のマグネット片41,42間の磁力線M4の向きが反X方向であるため、同片半部側12aには反Z方向のローレンツ力も発生し、これら二つの逆向きのローレンツ力が相殺される。したがって、可動子10が、前記一方向への移動中にZ方向又は反Z方向へ振れるのを防ぐことができる。 During movement of the coil 12 in one direction as described above, as shown in FIG. 6B, the half-portion side 12a of the coil 12 includes one magnet piece 31 or 42 and the other magnet piece 32 or 41 in the vibration direction. And the direction of the magnetic lines of force M3 between the magnet pieces 31 and 32 on both sides of the first magnet 30 is the X direction with respect to the direction (anti-Y direction) of the current flowing through the half side 12a. Therefore, a Lorentz force in the Z direction is generated on the half side 12a, but the direction of the magnetic line of force M4 between the magnet pieces 41 and 42 on both sides of the second magnet 40 is the anti-X direction. An anti-Z direction Lorentz force is also generated on the side 12a, and these two opposite Lorentz forces are offset. Therefore, the mover 10 can be prevented from swinging in the Z direction or the anti-Z direction while moving in the one direction.
 よって、上記構成のリニア振動モータ1によれば、漏洩磁束を低減することができ、その上、可動子10が所望とする振動方向に対し交差する方向へ振れるのを抑制して、可動子10をスムーズに直線状に往復振動させることができ、ひいては、可動子10の動作を安定させて、静音化することができる。 Therefore, according to the linear vibration motor 1 configured as described above, it is possible to reduce the leakage magnetic flux, and in addition, it is possible to suppress the swing of the mover 10 in the direction crossing the desired vibration direction. Can be smoothly reciprocated in a straight line, and the movement of the mover 10 can be stabilized and the noise can be reduced.
 次に、リニア振動モータ1を備えた電子機器について説明する。
 図7は、本発明の実施形態に係るリニア振動モータ1を備えた電子機器として、携帯情報端末100を例示している。
 この携帯情報端末100は、外部信号の受信や、タッチ操作パネル(タッチディスプレイを含む)のタッチ操作等に応じてリニア振動モータ1を振動させるように構成され、リニア振動モータ1からの磁束漏洩による送受機やSIMカードへの悪影響を軽減することができる上、リニア振動モータ1の振動時のノイズや騒音等を低減することができる。
Next, an electronic device provided with the linear vibration motor 1 will be described.
FIG. 7 exemplifies a portable information terminal 100 as an electronic device provided with the linear vibration motor 1 according to the embodiment of the present invention.
The portable information terminal 100 is configured to vibrate the linear vibration motor 1 according to the reception of an external signal, the touch operation of a touch operation panel (including a touch display), etc., and the leakage of magnetic flux from the linear vibration motor 1 In addition to reducing adverse effects on the handset and SIM card, it is possible to reduce noise and noise when the linear vibration motor 1 vibrates.
 なお、リニア振動モータ1が搭載される電子機器の他例としては、ウェアラブルコンピュータや、タブレットパソコン、ゲーム機等、図示例以外のものとすることも可能である。 In addition, as another example of the electronic device on which the linear vibration motor 1 is mounted, a wearable computer, a tablet personal computer, a game machine, or the like may be used other than the illustrated example.
 また、上記構成のリニア振動モータ1では、第一のマグネット30と第二のマグネット40の各々を、二つのマグネット片により構成したが、他例としては、図8に示すリニア振動モータ2のように、第一のマグネット30と第二のマグネット40を、それぞれ、単一のマグネット片からなる第一のマグネット30’と第二のマグネット40’に置換することも可能である。 Moreover, in the linear vibration motor 1 of the said structure, although each of the 1st magnet 30 and the 2nd magnet 40 was comprised by two magnet pieces, as another example, it is like the linear vibration motor 2 shown in FIG. It is also possible to replace the first magnet 30 and the second magnet 40 with a first magnet 30 'and a second magnet 40' consisting of a single piece of magnet, respectively.
 第一のマグネット30’は、振動方向の一端側にN極を有するとともに他端側にS極を有する一体状の永久磁石であり、コイル12の端面との間に所定のクリアランスを確保して、磁性部材51に接着固定されている。
 また、第二のマグネット40’は、第一のマグネット30’と同形状かつ同材質の永久磁石であり、第一のマグネット30’に対し磁極の向きを逆にするように点対称に配設され、コイル12との間に所定のクリアランスを確保して、磁性部材52に接着固定されている。
The first magnet 30 ′ is an integral permanent magnet having an N pole on one end side in the vibration direction and an S pole on the other end side, and ensures a predetermined clearance with the end face of the coil 12. And adhesively fixed to the magnetic member 51.
The second magnet 40 'is a permanent magnet having the same shape and the same material as the first magnet 30', and is disposed point-symmetrically to reverse the direction of the magnetic pole with respect to the first magnet 30 '. The magnetic member 52 is adhesively fixed to the magnetic member 52 while maintaining a predetermined clearance with the coil 12.
 よって、リニア振動モータ2によれば、リニア振動モータ1と同様に、磁性部材51,52によって磁束漏洩を低減できる上、図8(a)(b)に示すように、Z方向と反Z方向のローレンツ力を相殺して、可動子10をスムーズに直線状に往復振動させることができる。 Therefore, according to the linear vibration motor 2, similarly to the linear vibration motor 1, magnetic flux leakage can be reduced by the magnetic members 51 and 52, and as shown in FIGS. 8 (a) and 8 (b) The Lorentz force can be offset to move the mover 10 back and forth smoothly and linearly.
 また、上記構成のリニア振動モータ1では、給電配線60を弾性体20に重ね合わせたが、他例としては、図9に示すリニア振動モータ3や、図10に示すリニア振動モータ4のように、給電配線を構成することが可能である。 Moreover, in the linear vibration motor 1 of the said structure, although the electric power feeding wiring 60 was overlap | superposed on the elastic body 20, as another example, like the linear vibration motor 3 shown in FIG. 9, and the linear vibration motor 4 shown in FIG. It is possible to configure the feed wiring.
 図9に示すリニア振動モータ3は、リニア振動モータ1における給電配線60を給電配線60’に置換したものである。
 給電配線60’は、上記給電配線60と同様のL字状のフレキシブル配線用基板(TAB)であり、一方の弾性体20に対し、錘体11の厚み方向(図9によれば反Z方向)へずれた位置で撓み変形するように設けられる。
 よって、リニア振動モータ3によれば、給電配線60’が弾性体20に干渉するのを低減し、静音性及び耐久性等を向上することができる。
The linear vibration motor 3 shown in FIG. 9 is obtained by replacing the power supply wiring 60 in the linear vibration motor 1 with a power supply wiring 60 ′.
The feed wiring 60 'is an L-shaped flexible wiring substrate (TAB) similar to the feed wiring 60, and the thickness direction of the weight 11 (in the reverse Z direction according to FIG. 9) with respect to one elastic body 20. ) Is provided so as to be bent and deformed at the shifted position.
Therefore, according to the linear vibration motor 3, interference of the power supply wiring 60 'with the elastic body 20 can be reduced, and noise reduction and durability can be improved.
 また、図10に示すリニア振動モータ4は、リニア振動モータ1における給電配線60を給電配線60”に置換したものである。
 給電配線60”は、フレキシブル配線用基板(TAB)から形成され、錘体11の側面に沿うとともにその一端側がコイル12に電気的に接続された接続片部61”と、接続片部61”の他端側に略L字状に曲げられて延設された第一の延設片部62”と、さらに第一の延設片部62”に対し略V字状に曲げられて延設された第二の延設片部63”とを備える。
 そして、この給電配線60”は、一方の弾性体20に対し、錘体11の厚み方向(図10によれば反Z方向)へずれた位置で撓み変形するように設けられ、第二の延設片部63”の端側の端子を外部に露出している。
 よって、リニア振動モータ3によれば、給電配線60”が弾性体20に干渉するのを低減できる上、給電配線60”を第一の延設片部62”及び第二の延設片部63”等でより柔軟に撓ませることができ、ひいては、静音性及び耐久性等をより向上することができる。
Further, in the linear vibration motor 4 shown in FIG. 10, the power supply wiring 60 in the linear vibration motor 1 is replaced with a power supply wiring 60 ′ ′.
The feed wiring 60 ′ ′ is formed of a flexible wiring substrate (TAB), a connection piece 61 ′ ′ along the side surface of the weight 11 and having one end electrically connected to the coil 12, and the connection piece 61 ′ ′. The first extending piece portion 62 ′ ′ bent in a substantially L shape and extended to the other end side, and the first extending piece portion 62 ′ ′ further bent in a substantially V shape and extended And a second extension piece 63 ′ ′.
The feed wiring 60 ′ ′ is provided so as to be bent and deformed at a position shifted to the thickness direction of the weight 11 (anti-Z direction according to FIG. 10) with respect to one elastic body 20. The terminal on the end side of the mounting piece 63 ′ ′ is exposed to the outside.
Therefore, according to the linear vibration motor 3, the interference of the feed wire 60 ′ ′ with the elastic body 20 can be reduced, and the feed wire 60 ′ ′ is the first extended piece portion 62 ′ ′ and the second extended piece portion 63. And so on, which can further improve quietness, durability, and the like.
 なお、上記実施の形態では、特に好ましい態様として、弾性体20を板バネとしたが、この弾性体20の他例としては、ゴムや、コイルスプリング等を用いることも可能である。 In the above embodiment, the elastic body 20 is a plate spring as a particularly preferable aspect. However, as another example of the elastic body 20, rubber, a coil spring, or the like can be used.
 また、上記実施の形態では、第一のマグネット30側の磁性部材51を平板状に形成したが、他例としては、この磁性部材51を省いて、カバー部材70を磁性材料から形成し、このカバー部材70の天壁部71の内面に第一のマグネット30を接着固定した態様とすることも可能である。 In the above embodiment, the magnetic member 51 on the first magnet 30 side is formed in a flat plate shape, but as another example, the magnetic member 51 is omitted, and the cover member 70 is formed of a magnetic material. The first magnet 30 may be bonded and fixed to the inner surface of the top wall 71 of the cover member 70.
 以上、本発明の実施の形態について詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 As mentioned above, although the embodiment of the present invention has been described in detail, the specific configuration is not limited to these embodiments, and even if there is a design change or the like within the scope of the present invention. Included in the invention. In addition, the respective embodiments described above can be combined with each other by utilizing the techniques of each other unless there is a contradiction or a problem in particular in the purpose, the configuration, and the like.
 1,2,3,4:リニア振動モータ
 10:可動子
 11:錘体
 11a:中空部
 12:コイル
 12a:片半部側
 12b:他半部側
 20:弾性体
 30,30’:第一のマグネット
 40,40’:第二のマグネット
 51,52:磁性部材
 60,60’,60”:給電配線
 70:カバー部材
1, 2, 3, 4: linear vibration motor 10: mover 11: weight 11a: hollow 12: coil 12a: one half side 12b: other half side 20: elastic body 30, 30 ': first Magnet 40, 40 ': Second magnet 51, 52: Magnetic member 60, 60', 60 ": Feeding wire 70: Cover member

Claims (7)

  1.  錘体及びコイルを一体的に有する可動子と、前記可動子を振動可能に支持する弾性体と、前記可動子の振動方向に対する交差方向の一方側で前記コイルに対向する第一のマグネットと、同交差方向の他方側で前記コイルに対向する第二のマグネットと、各マグネットを固定する磁性部材とを具備し、前記コイルに通電した際に生じる磁気力により前記可動子を振動させるようにしたリニア振動モータ。 A mover integrally including a weight and a coil, an elastic body that vibratably supports the mover, and a first magnet facing the coil on one side in a direction intersecting with the vibration direction of the mover; The second magnet facing the coil on the other side in the same cross direction and a magnetic member for fixing each magnet are provided, and the mover is vibrated by the magnetic force generated when the coil is energized. Linear vibration motor.
  2.  前記磁性部材は、前記交差方向において前記第一及び第二のマグネットを間に置いた両側に設けられていることを特徴とする請求項1記載のリニア振動モータ。 The linear vibration motor according to claim 1, wherein the magnetic members are provided on both sides of the first magnet and the second magnet in the cross direction.
  3.  前記コイルは、空芯部を挟む片半部側と他半部側を、前記振動方向の両側に配設した空芯コイルであり、
     前記第一のマグネットと前記第二のマグネットの各々は、一方の磁極を前記片半部側に対向させるとともに、反対向きの磁極を前記他半部側に対向させていることを特徴とする請求項1又は2記載のリニア振動モータ。
    The coil is an air core coil in which one half side and the other half side sandwiching the air core are disposed on both sides in the vibration direction,
    Each of the first magnet and the second magnet is characterized in that one magnetic pole is made to face the one half side, and the oppositely facing magnetic pole is made to face the other half side. The linear vibration motor according to Item 1 or 2.
  4.  前記錘体には、前記交差方向の一方側と他方側を開口した中空部が設けられ、
     前記中空部は、一方側の開口に前記第一のマグネットを挿入するとともに他方側の開口に前記第二のマグネットを挿入し、これら第一のマグネット及び第二のマグネットの周囲に、前記錘体を振動させるための空間を確保していることを特徴とする請求項1~3何れか1項記載のリニア振動モータ。
    The weight is provided with a hollow portion opened on one side and the other side in the cross direction,
    In the hollow portion, the first magnet is inserted into the opening on one side and the second magnet is inserted into the opening on the other side, and the weight body is surrounded around the first magnet and the second magnet The linear vibration motor according to any one of claims 1 to 3, wherein a space for vibrating the motor is secured.
  5.  前記コイルに電力を供給する可撓性の給電配線を備え、
     前記給電配線は、前記可動子の振動に伴い撓むように、一端側端子が前記コイルに電気的に接続されるとともに、他端側端子が外部に露出されることを特徴とする請求項1~4何れか1項記載のリニア振動モータ。
    A flexible feed line for supplying power to the coil;
    5. The power supply wiring according to claim 1, wherein the one end side terminal is electrically connected to the coil and the other end side terminal is exposed to the outside so that the power supply wiring bends with the vibration of the mover. The linear vibration motor according to any one of the above.
  6.  前記弾性体が板バネであり、前記給電配線は、前記板バネに沿って設けられていることを特徴とする請求項5記載のリニア振動モータ。 The linear vibration motor according to claim 5, wherein the elastic body is a plate spring, and the feeding wire is provided along the plate spring.
  7.  請求項1~6何れか1項記載のリニア振動モータを備えた電子機器。 An electronic apparatus comprising the linear vibration motor according to any one of claims 1 to 6.
PCT/JP2018/034961 2017-11-22 2018-09-21 Linear vibration motor and electronic apparatus WO2019102704A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017224513A JP7079590B2 (en) 2017-11-22 2017-11-22 Linear vibration motors and electronic devices
JP2017-224513 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019102704A1 true WO2019102704A1 (en) 2019-05-31

Family

ID=66630661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034961 WO2019102704A1 (en) 2017-11-22 2018-09-21 Linear vibration motor and electronic apparatus

Country Status (2)

Country Link
JP (1) JP7079590B2 (en)
WO (1) WO2019102704A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110868038A (en) * 2019-08-13 2020-03-06 浙江省东阳市东磁诚基电子有限公司 Spring sheet type horizontal linear motor structure
CN110957880A (en) * 2019-12-26 2020-04-03 浙江省东阳市东磁诚基电子有限公司 Small linear motor structure and implementation method thereof
CN112234789A (en) * 2019-12-10 2021-01-15 天津富禄通信技术有限公司 Single-shaft direction horizontal linear vibration motor
WO2021253749A1 (en) * 2020-06-17 2021-12-23 池州市弘港科技电子有限公司 Miniature super bass dual-drive low-frequency vibrator
CN114583914A (en) * 2020-11-30 2022-06-03 日本电产株式会社 Linear actuator
CN114629325A (en) * 2020-12-14 2022-06-14 日本电产株式会社 Vibration motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213461503U (en) * 2020-09-28 2021-06-15 瑞声科技(新加坡)有限公司 Linear motor
CN214228101U (en) * 2020-12-30 2021-09-17 歌尔股份有限公司 Linear vibration motor and electronic apparatus
CN217216887U (en) * 2022-03-29 2022-08-16 瑞声光电科技(常州)有限公司 Multifunctional sounding device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110133577A1 (en) * 2008-08-18 2011-06-09 In Ho Lee Horizontal linear vibration device
US20130082546A1 (en) * 2011-09-30 2013-04-04 Samsung Electro-Mechanics Co., Ltd. Linear vibration motor
JP2015057041A (en) * 2013-09-12 2015-03-23 ビュルケルト ヴェルケ ゲーエムベーハーBuerkert Werke GmbH Electrodynamic actuator
US20170288521A1 (en) * 2016-03-29 2017-10-05 Jinlong Machinery & Electronics Co., Ltd Linear motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110133577A1 (en) * 2008-08-18 2011-06-09 In Ho Lee Horizontal linear vibration device
US20130082546A1 (en) * 2011-09-30 2013-04-04 Samsung Electro-Mechanics Co., Ltd. Linear vibration motor
JP2015057041A (en) * 2013-09-12 2015-03-23 ビュルケルト ヴェルケ ゲーエムベーハーBuerkert Werke GmbH Electrodynamic actuator
US20170288521A1 (en) * 2016-03-29 2017-10-05 Jinlong Machinery & Electronics Co., Ltd Linear motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110868038A (en) * 2019-08-13 2020-03-06 浙江省东阳市东磁诚基电子有限公司 Spring sheet type horizontal linear motor structure
CN112234789A (en) * 2019-12-10 2021-01-15 天津富禄通信技术有限公司 Single-shaft direction horizontal linear vibration motor
CN112234789B (en) * 2019-12-10 2022-09-20 天津富禄通信技术有限公司 Single-shaft direction horizontal linear vibration motor
CN110957880A (en) * 2019-12-26 2020-04-03 浙江省东阳市东磁诚基电子有限公司 Small linear motor structure and implementation method thereof
CN110957880B (en) * 2019-12-26 2021-11-09 浙江省东阳市东磁诚基电子有限公司 Small linear motor structure and implementation method thereof
WO2021253749A1 (en) * 2020-06-17 2021-12-23 池州市弘港科技电子有限公司 Miniature super bass dual-drive low-frequency vibrator
CN114583914A (en) * 2020-11-30 2022-06-03 日本电产株式会社 Linear actuator
CN114583914B (en) * 2020-11-30 2024-04-19 日本电产株式会社 Linear actuator
CN114629325A (en) * 2020-12-14 2022-06-14 日本电产株式会社 Vibration motor

Also Published As

Publication number Publication date
JP7079590B2 (en) 2022-06-02
JP2019093336A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2019102704A1 (en) Linear vibration motor and electronic apparatus
CN110266171B (en) Vibration motor
US10610893B2 (en) Vibration actuator and portable device
US10886828B2 (en) Vibration actuator and portable device
US12046975B2 (en) Vibration actuator and electronic apparatus
JP6803722B2 (en) Linear vibration motor
US10610894B2 (en) Vibration actuator and portable device
CN110875680B (en) Vibration actuator and portable electronic device provided with same
US10610892B2 (en) Vibration actuator and portable device
WO2016114384A1 (en) Vibrating actuator
JP2019201486A (en) Linear vibration motor and electronic equipment
JP2010239851A (en) Vibration motor and portable apparatus
WO2019044127A1 (en) Linear vibration motor and electronic apparatus
CN113131707A (en) Vibration actuator and electronic device
JP2019106837A (en) Linear vibration motor
US20190165662A1 (en) Linear vibration motor
JP2020121277A (en) Actuator and electronic apparatus
JP2010207731A (en) Vibration motor and portable device
JP2010207725A (en) Vibration motor and portable terminal device
JP2017064581A (en) Linear vibration motor
WO2019130683A1 (en) Linear vibration motor and electronic equipment
JP2019009872A (en) Linear vibration motor and electronic apparatus
JP2010213462A (en) Vibration motor and portable device
CN115333319A (en) Vibration exciter
CN114337180A (en) Vibration actuator and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882016

Country of ref document: EP

Kind code of ref document: A1