WO2011013193A1 - Egrクーラー用フェライト系ステンレス鋼およびegrクーラー - Google Patents

Egrクーラー用フェライト系ステンレス鋼およびegrクーラー Download PDF

Info

Publication number
WO2011013193A1
WO2011013193A1 PCT/JP2009/063370 JP2009063370W WO2011013193A1 WO 2011013193 A1 WO2011013193 A1 WO 2011013193A1 JP 2009063370 W JP2009063370 W JP 2009063370W WO 2011013193 A1 WO2011013193 A1 WO 2011013193A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr cooler
brazing
stainless steel
ferritic stainless
less
Prior art date
Application number
PCT/JP2009/063370
Other languages
English (en)
French (fr)
Inventor
学 奥
中村 定幸
芳明 堀
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to EP09847785.4A priority Critical patent/EP2460899A4/en
Priority to KR1020127000631A priority patent/KR20120036959A/ko
Priority to KR1020167026760A priority patent/KR20160119255A/ko
Priority to US13/382,375 priority patent/US20120111529A1/en
Priority to CN2009801606251A priority patent/CN102471840A/zh
Priority to PCT/JP2009/063370 priority patent/WO2011013193A1/ja
Publication of WO2011013193A1 publication Critical patent/WO2011013193A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/11Manufacture or assembly of EGR systems; Materials or coatings specially adapted for EGR systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/029Other particular headers or end plates with increasing or decreasing cross-section, e.g. having conical shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to the ferritic stainless steel used as a member which comprises an EGR cooler, and the EGR cooler comprised using the member.
  • EGR exhaust Gas Recirculation exhaust gas recirculation
  • the EGR cooler In the EGR system, a device for cooling the exhaust gas to a temperature at which it can be circulated is required. This is the EGR cooler.
  • FIG. 1 and 2 schematically illustrate the structure of a general EGR cooler.
  • a section partitioned by two partition plates is provided in a part of the exhaust gas flow path formed by the outer cylinder, and a heat exchanger that releases heat to the cooling water is configured in the section.
  • This section partitioned by the partition plate is referred to herein as a “heat exchange section”.
  • a vent pipe is joined to the partition plate at a location where a hole is provided, and exhaust gas flows through the vent pipe in the heat exchange section. Cooling water flows around the vent pipe.
  • the EGR cooler is composed of a metal member such as an outer cylinder, a partition plate, a vent pipe, or a fin in the vent pipe, and these members are joined by brazing.
  • the exhaust gas temperature on the side where the heat exchange section is entered may reach a maximum of about 800 ° C.
  • the temperature on the outlet side may reach a maximum of about 200 ° C. Therefore, Cu brazing used for assembling a general heat exchanger has durability. Run short. Accordingly, Ni brazing (BNi-5, BNi-6, etc. of JIS Z3265) that is excellent in high temperature oxidation resistance and high temperature strength is applied to the EGR cooler.
  • the metal member constituting the EGR cooler is required to have the following characteristics.
  • Ni brazing property is good.
  • (3) Corrosion resistance to LLC (long life coolant; for example, ethylene glycol) is good. This is because LLC is usually added to the cooling water of EGR.
  • High temperature strength and high temperature oxidation resistance are good. This is because the EGR cooler is exposed to high-temperature exhaust gas.
  • (5) Good corrosion resistance against condensation of condensed water This is because in the EGR cooler, condensation tends to occur near the exhaust gas outlet side during operation, and condensation tends to occur at the exhaust gas contact location after operation.
  • austenitic stainless steel represented by SUS304 and SUS316 is mainly used as the metal member constituting the EGR cooler.
  • austenitic stainless steel has a large coefficient of thermal expansion, the oxide scale generated at high temperature is liable to peel off during cooling and flow into the engine, or thermal fatigue failure due to repeated heating and cooling is likely to occur. Further improvement in high temperature strength is also desired.
  • the material cost is high because a large amount of expensive Ni is contained.
  • ferritic stainless steel has a thermal expansion coefficient smaller than that of austenitic steel, and the material cost is generally lower than that of austenitic steel.
  • Ferritic stainless steel is frequently used for exhaust manifolds and mufflers that constitute the exhaust gas path.
  • it is necessary to expose the material to a high temperature such as 1100 ° C. or higher. At such high temperatures, ferritic stainless steel usually causes coarsening of crystal grains and tends to reduce toughness.
  • Patent Document 1 discloses ferritic stainless steel for heat exchangers with good brazing properties. However, as for brazing, Cu brazing is assumed, and improvement of Ni brazing and suppression of crystal grain coarsening at that time are not intended.
  • the present invention is to provide a ferritic stainless steel suitable as an EGR cooler member used for Ni brazing, and an EGR cooler using the same.
  • the above purpose is, in mass%, C: 0.03% or less, Si: more than 0.1 to 3%, Mn: 0.1 to 2%, Cr: 10 to 25%, Nb: 0.3 to 0.3. 8%, N: 0.03% or less, preferably the total content of C and N is 0.01% or more, and other if necessary, (A) A range of 4% or less in total of at least one of Mo, Cu, V and W; (B) a range of one or more of Ti, Al and Zr in a total range of 0.3% or less, (C) at least one of Ni and Co in a total range of 5% or less, (D) a range in which at least one of REM (rare earth element) and Ca is 0.2% or less in total; And is achieved by a ferritic stainless steel for an EGR cooler member, which is selectively contained in each of the remaining Fe and unavoidable impurities.
  • the present invention provides an EGR cooler having a structure in which a steel member made of the above steel is held as a constituent member and at least the member is joined to another member by Ni brazing.
  • the member include an outer cylinder, a partition plate, a vent pipe, and a fin attached to the vent pipe.
  • an EGR cooler having a structure in which a steel material made of the above steel is held in a member that comes into contact with both automobile exhaust gas and cooling water and at least the member is joined to another member by Ni brazing is provided.
  • the member that contacts both the automobile exhaust gas and the cooling water include an outer cylinder, a partition plate, and a vent pipe.
  • ferritic stainless steel having good Ni brazing and toughness is provided.
  • an EGR cooler having higher high-temperature strength, less oxide scale peeling, and lower material cost than a conventional EGR cooler using austenitic stainless steel as a member is realized.
  • the figure which illustrated the structure of the EGR cooler typically.
  • the figure which illustrated typically the structure of the type of EGR cooler which has a fin in a vent pipe.
  • the components may be exposed to a high temperature of 700 ° C. or higher and a maximum of about 800 ° C. In this case, especially for ferritic steel types, a measure for preventing a decrease in high-temperature strength is important.
  • Ni brazing is maintained at a high temperature of about 1050 to 1150 ° C., component design for suppressing coarsening of crystal grains is important.
  • ferritic stainless steel exhibits a higher strength level than austenitic stainless steel in a medium temperature range from room temperature to about 600 ° C.
  • the strength level decreases greatly at high temperatures such as 700 ° C. or higher.
  • Nb addition is effective as a technique for preventing such a decrease in high-temperature strength. That is, the high temperature strength is remarkably improved by adding about 0.2% by mass of Nb to ferritic stainless steel.
  • the improvement of the high temperature strength by Nb is mainly due to “solid solution Nb”. Therefore, in ferritic stainless steel used for high temperature applications, in order to ensure a sufficient amount of solute Nb, component design is usually made to reduce the C and N contents as much as possible.
  • Nb carbide / nitride Nb carbide / nitride
  • the pinning effect is also considered to contribute greatly. Therefore, in the component design in the steel of the present invention, it is rather advantageous to secure the C and N contents to some extent. Specifically, it is more effective to set the total content of C and N to 0.01% by mass or more.
  • the pinning effect by precipitates such as Fe 2 Nb (Laves) and Fe 3 NbC (M6X) is also considered to act effectively on suppressing the grain coarsening. Suppressing the coarsening of crystal grains is particularly effective in preventing a decrease in low temperature toughness.
  • alloy components other than Nb As for alloy components other than Nb, it was found that each element of Mo, Cu, V, and W also contributes to improvement of high-temperature strength as the amount of solid solution increases. Ni and Co were also found to be extremely effective in suppressing toughness degradation when the crystal grains were slightly coarsened. On the other hand, it has been clarified that Ti, Al, Zr, REM, and Ca have a factor that deteriorates the flow (wetting property) of the Ni brazing material on the surface of the steel material when Ni brazing is performed. This is thought to be due to the fact that oxides of these elements are likely to be formed on the steel surface during heating of the Ni brazing. However, there is no problem if the content of these elements is regulated to an appropriate range as described later.
  • C and N are elements that form Nb carbide / nitride when combined with Nb.
  • Nb is consumed by these precipitates and the solid solution Nb is reduced, the effect of improving the high temperature strength and the effect of suppressing the coarsening of the crystal grains due to the solid solution Nb are inhibited. Therefore, in the present invention, the C content needs to be limited to 0.03% by mass or less, and is preferably 0.025% by mass or less. Moreover, it is necessary to restrict N content to 0.03 mass% or less, and it is preferable that it is 0.025 mass% or less.
  • the pinning effect by Nb carbide / nitride can also contribute to the suppression of grain coarsening during Ni brazing. Therefore, it is advantageous to secure a certain amount of C and N.
  • the total content of C and N is 0.01% by mass or more.
  • Si is an element that improves high-temperature oxidation characteristics.
  • excessive Si content hardens the ferrite phase and causes deterioration of workability.
  • Ni brazing property wetting property with Ni brazing material
  • the Si content is limited to the range of more than 0.1 to 3% by mass, and more preferably in the range of 0.3 to 2.5% by mass.
  • the upper limit can be regulated to 1.5% by mass.
  • Mn is an element that improves high-temperature oxidation characteristics, particularly scale peel resistance. However, excessive addition promotes the formation of an austenite phase at high temperatures.
  • the Mn content is specified in the range of 0.1 to 2% by mass.
  • Cr has the effect of stabilizing the oxidation resistance at high temperatures. For this purpose, it is necessary to secure a Cr content of 10% by mass or more. However, excessive Cr content impairs manufacturability and workability of the steel material. Therefore, the Cr content is limited to a range of 25% by mass or less.
  • Nb is an important element in the present invention and, as described above, effectively acts to increase the high-temperature strength and suppress the grain coarsening during Ni brazing.
  • the solid solution strengthening of Nb largely contributes, but the precipitation strengthening by Nb carbide / nitride finely dispersed in the ferrite matrix is also effective for improving the high temperature strength.
  • the pinning effect by Nb carbide / nitride works effectively together with the solid solution strengthening of Nb. In order to fully exhibit these actions, it is important to secure the Nb content at 0.3 mass% or more after restricting the C and N contents to the above ranges.
  • the Nb content in order to suppress the coarsening of crystal grains during Ni brazing, it is effective to increase the Nb content, and it is preferable to set the Nb content to 0.4% or more or even 0.5% or more.
  • the Nb content is limited to a range of 0.8% by mass or less.
  • Mo, Cu, V, and W also contribute to improvement of high temperature strength mainly by solid solution strengthening. Therefore, one or more of these elements can be contained as necessary. In particular, it is more effective to secure a total content of these elements of 0.05% by mass or more. However, when these elements are added excessively, the hot workability is adversely affected. Moreover, it becomes a factor which inhibits low temperature toughness. As a result of various studies, when adding one or more of Mo, Cu, V, and W, the total content needs to be suppressed to 4% by mass or less.
  • Ti and Zr combine with C and N to form fine precipitates, which are dispersed in the steel, thereby exhibiting an effect of improving the high temperature strength.
  • Al exhibits the effect of improving the high temperature oxidation characteristics. Therefore, one or more of these elements can be contained as necessary. However, if any of these elements is contained in a large amount, it causes a decrease in hot workability and surface quality characteristics. Moreover, since it is an element which forms a strong oxide film on the steel material surface, the flow of Ni brazing may be deteriorated by the oxide film.
  • it is necessary to suppress the total content to 0.3% by mass or less. In particular, it is effective to set the total content in the range of 0.03 to 0.3% by mass, and more preferably 0.03 to 0.25% by mass.
  • Ni and Co are remarkably effective in suppressing toughness deterioration when crystal grains are slightly coarsened by Ni brazing. These elements are also advantageous for improving the high temperature strength. Therefore, it is possible to contain one or more of these elements as required, and it is more effective to secure a total content of Ni and Co of 0.5% by mass or more. However, excessive addition of Ni and Co is not preferable because it causes formation of an austenite phase in a high temperature range. When adding 1 or more types of Ni and Co, it is necessary to suppress the total content of Ni and Co to the range of 5 mass% or less.
  • REM rare earth element
  • Ca are elements that improve high-temperature oxidation characteristics like Al, and in the present invention, one or more of them can be added as necessary. In particular, it is more effective to secure a total content of REM and Ca of 0.01% by mass or more. However, if it is added in a large amount, the manufacturability is lowered due to a decrease in toughness. Therefore, when adding 1 or more types of REM and Ca, it is necessary to suppress the total content to the range of 0.2 mass% or less.
  • the ferritic stainless steel having the above composition has no problem with respect to the corrosion resistance against snow melting salt, the corrosion resistance against LLC, and the corrosion resistance against condensed water compared to the austenitic steel types used in conventional EGR coolers. Was confirmed.
  • the high temperature strength (0.2% proof stress) and scale peel resistance in the exhaust gas environment are improved over the austenitic steel grade.
  • Ferritic stainless steel having the above composition is made into a steel plate by a normal method, and is processed into members such as an outer cylinder, a partition plate, a vent pipe, and a fin attached to the vent pipe constituting the EGR cooler. These members are joined by Ni brazing, and an EGR cooler is constructed. It is not necessary that all the constituent members of the EGR cooler are made of the steel of the present invention. However, the steel member of the present invention has sufficiently secured corrosion resistance to LLC, and at the same time, improved high temperature oxidation characteristics in exhaust gas environment, resistance to crystal grain coarsening during Ni brazing, and wettability. It is a thing. For this reason, it is particularly effective to use the steel of the present invention for a member that contacts both automobile exhaust gas and cooling water and is subjected to Ni brazing. Examples of such a member include an outer cylinder, a partition plate, and a vent pipe.
  • the steel having the chemical composition shown in Table 1 was melted, and the resulting steel ingot was hot-forged into a round bar and a plate to be processed into a round bar having a diameter of 15 mm and a plate having a thickness of 30 mm.
  • the round bar was subjected to a solution treatment at a holding temperature set in the range of 1000 to 1100 ° C.
  • the sheet is hot rolled into a hot rolled sheet having a thickness of 4 mm, annealed, and then cold rolled to a thickness of 1.5 mm, and then the holding temperature is set within a range of 1000 to 1100 ° C.
  • the final annealing was performed.
  • B4 and B5 are austenitic stainless steels.
  • a high-temperature tensile test piece having a parallel part diameter of 10 mm was prepared from the round bar after solution treatment, a high-temperature tensile test at 700 ° C. was performed in accordance with JIS G056, and a 0.2% yield strength was measured. Since those having a 0.2% proof stress at 700 ° C. of 100 N / mm 2 or more exhibit characteristics superior to those of conventional austenitic steel types as EGR coolers, those having such characteristics were determined to be acceptable.
  • Ni brazing (wetting) Two 10 mm ⁇ 20 mm ⁇ 1.5 mm brazing specimens were cut out from each cold rolled annealed plate. One of the test pieces was placed horizontally, and a paste-like Ni solder was applied to the entire surface of the test piece with a thickness of 0.5 mm. A test piece / Ni brazing / test piece three-layered laminate was formed by stacking another test piece thereon, and placed in a vacuum furnace while keeping it horizontal. Heated for minutes. Take out the laminate after cooling, observe the surface of the test piece that was superposed on the upper surface (the one that was not coated with Ni brazing), and divide the area wetted with Ni brazing by the total area of the test piece surface Thus, the Ni brazing coverage was determined.
  • Ni brazing rate of 50% or more was evaluated as A, 20% or more and less than 50% was evaluated as B, and less than 20% was evaluated as C.
  • the Ni brazing filler used was a 19 mass% Cr-10 mass% Si-71 mass% Ni composition (equivalent to BNi-5 in JIS Z3265).
  • the ferritic stainless steel of the present invention has a much smaller coefficient of thermal expansion than the austenitic stainless steels of Comparative Examples B4 and B5, 0.2% proof stress at 700 ° C. and repeated cycles. It was also superior in high-temperature oxidation characteristics. Further, it was confirmed that the Ni-brazing property (wetting property), the resistance against coarsening of crystal grains, and the low temperature toughness were sufficiently satisfactory as an EGR cooler member.
  • Comparative Example B1 has a high C content and a low Nb content, so that the amount of dissolved Nb is insufficient, high temperature strength (0.2% proof stress at 700 ° C.), and resistance to coarsening of crystal grains. Inferior to Moreover, since the Mn content was high, an austenite phase was generated at a high temperature, and it was considered that this was partly transformed into a martensite phase, and the low temperature toughness was inferior. Although B2 had a low Nb content, since the C and N contents were also relatively low, the solid solution Nb content was adequately secured and the high-temperature strength (0.2% yield strength at 700 ° C.) was good.
  • B3 had an excessive Ti content, an oxide film was likely to be formed on the surface during Ni brazing, and the Ni brazing property was inferior. Moreover, it was inferior to low-temperature toughness because the total content of Mo, Cu, V, and W was too high.
  • B4 and B5 are austenitic stainless steels and have a high coefficient of thermal expansion. High temperature strength (0.2% proof stress at 700 ° C.) was also lower than other ferritic steel types. In addition, due to the high coefficient of thermal expansion, the scale easily peeled off in repeated cycles, and the mass change became a large negative value. B6 had an excessively high total content of Ti, Al, and Zr, so that an oxide film was liable to be formed on the surface during Ni brazing, resulting in poor Ni brazing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Niろう付けに供されるEGRクーラー部材として好適なフェライト系ス テンレス鋼、およびそれを用いたEGRクーラーを提供する。 質量%で、C:0.03%以下、Si:0.1超え~3%、Mn:0.1~2%、Cr:10~25%、Nb:0.3~0.8%、N:0.03%以下を含み、その他必要に応じて、(a)Mo、Cu、VおよびWの1種以上を合計4%以下の範囲、(b)Ti、AlおよびZrの1種以上を合計0.3%以下の範囲、(c)NiおよびCoの1種以上を合計5%以下の範囲、(d)REM(希土類元素)およびCaの1種以上を合計0.2%以下の範囲、でそれぞれ選択的に含有し、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼を用いて、Niろう付けにて接合した構造を有するEGRクーラーを得る。

Description

EGRクーラー用フェライト系ステンレス鋼およびEGRクーラー
 本発明は、EGRクーラーを構成ずる部材として用いるフェライト系ステンレス鋼および、その部材を用いて構成されるEGRクーラーに関する。
 自動車をはじめとする内燃機関搭載車両では、排ガス中のNOX低減や燃費向上を目的として、EGR(Exhaust Gas Recirculation;排気ガス再循環)の手法が採用されることがある。これは、内燃機関から排出された排ガスの一部を取り出し、内燃機関の吸気側から再度吸気させる技術であり、主としてディーゼル機関で普及してきたが、近年ではガソリン機関にも適用されるようになってきた。
 EGRシステムにおいては、排ガスを循環可能な温度まで冷却する装置が必要となる。これがEGRクーラーである。
 図1、図2に、一般的なEGRクーラーの構造を模式的に例示する。外筒で構成される排ガス流路の一部に2枚の仕切り板で仕切られたセクションが設けられ、そのセクションでは冷却水に熱を逃がす熱交換器が構成されている。仕切り板で仕切られたこのセクションをここでは「熱交換セクション」と呼ぶ。仕切り板には穴を設けた箇所に通気管が接合されており、熱交換セクションでは通気管の中を排ガスが流れる。通気管の周囲には冷却水が流れるようになっている。通気管は金属製の単なるパイプで構成されるタイプ(図1)や、管の内部にフィンを設けたタイプ(図2)などがある。
 EGRクーラーは、外筒、仕切り板、通気管、あるいはさらに通気管内のフィンといった金属部材で構成され、それらの部材はろう付けによって接合される。ただし、熱交換セクション入り側の排ガス温度は最高800℃程度、出側の温度は最高200℃程度に達することがあるので、一般的な熱交換器の組み立てに使用されるCuろうでは耐久性が不足する。そこで、EGRクーラーには耐高温酸化性および高温強度に優れるNiろう(JIS Z3265のBNi-5、BNi-6など)が適用される。
 EGRクーラーを構成する金属部材には、以下のような特性が要求される。
(1)Niろう付け性が良好であること。
(2)融雪塩に対する耐食性が良好であること。EGRクーラーはエンジンルーム内に設置され、路面にまかれた融雪塩が付着しやすい環境にあるからである。
(3)LLC(ロングライフクーラント;例えばエチレングリコール)に対する耐食性が良好であること。EGRの冷却水には通常LLCが添加されるからである。
(4)高温強度と耐高温酸化性が良好であること。EGRクーラーは高温の排ガスに曝されるからである。
(5)凝結水の結露に対する耐食性が良好であること。EGRクーラーにおいては、運転中は排ガス出側付近に結露が生じやすく、また運転後は排ガス接触箇所に結露が生じやすいからである。
特開平7-292446号公報 特開2003-193205号公報
 上記の要求特性から、現在、EGRクーラーを構成する金属部材にはSUS304、SUS316に代表されるオーステナイト系ステンレス鋼が主として使用されている。しかし、オーステナイト系ステンレス鋼は熱膨張係数が大きいため、高温で生成した酸化スケールが冷却時に剥離してエンジン内に流入したり、加熱・冷却の繰り返しによる熱疲労破壊が生じたりしやすい。高温強度についても更なる改善が望まれる。また、高価なNiを多量に含有するため材料コストも高い。
 一方、フェライト系ステンレス鋼は熱膨張係数がオーステナイト系鋼種よりも小さく、また、材料コストも一般にオーステナイト系鋼種より安価である。排ガス経路を構成するエキゾーストマニホールドやマフラーなどにはフェライト系ステンレス鋼が多用されている。しかし、Niろう付けを施す場合には材料を例えば1100℃以上といった高温に曝す必要がある。このような高温では、通常、フェライト系ステンレス鋼は結晶粒の粗大化を起こし、靭性の低下を招きやすい。
 上記特許文献1には、ろう付け性の良い熱交換器用フェライト系ステンレス鋼が開示されている。しかし、ろう付け性については、Cuろう付けを想定しており、Niろう付け性の改善や、その際の結晶粒粗大化の抑制については意図されていない。
 本発明は、Niろう付けに供されるEGRクーラー部材として好適なフェライト系ステンレス鋼、およびそれを用いたEGRクーラーを提供しようというものである。
 上記目的は、質量%で、C:0.03%以下、Si:0.1超え~3%、Mn:0.1~2%、Cr:10~25%、Nb:0.3~0.8%、N:0.03%以下を含み、好ましくはCとNの合計含有量が0.01%以上であり、その他必要に応じて、
(a)Mo、Cu、VおよびWの1種以上を合計4%以下の範囲、
(b)Ti、AlおよびZrの1種以上を合計0.3%以下の範囲、
(c)NiおよびCoの1種以上を合計5%以下の範囲、
(d)REM(希土類元素)およびCaの1種以上を合計0.2%以下の範囲、
でそれぞれ選択的に含有し、残部Feおよび不可避的不純物からなるEGRクーラー部材用フェライト系ステンレス鋼によって達成される。
 また本発明では、上記の鋼からなる鋼材を、構成部材に持ち、少なくともその部材を他の部材にNiろう付けにて接合した構造を有するEGRクーラーが提供される。当該部材としては、例えば外筒、仕切り板、通気管、通気管の中に取り付けられるフィンなどが挙げられる。
 さらに、上記の鋼からなる鋼材を、自動車排ガスおよび冷却水の両方に接触する部材に持ち、少なくともその部材を他の部材にNiろう付けにて接合した構造を有するEGRクーラーが提供される。自動車排ガスおよび冷却水の両方に接触する部材としては、例えば外筒、仕切り板、通気管などが挙げられる。
 本発明によれば、Niろう付け性および靭性の良好なフェライト系ステンレス鋼が提供された。この鋼を用いることにより、オーステナイト系ステンレス鋼を部材に用いた従来のEGRクーラーに比べ、より高温強度が高く、酸化スケールの剥離が少なく、かつ材料コストの低いEGRクーラーが実現される。
EGRクーラーの構造を模式的に例示した図。 通気管内にフィンを有するタイプのEGRクーラーの構造を模式的に例示した図。
 上述のように、EGRクーラーの耐久性を向上させるためには熱膨張係数のより小さいフェライト系鋼種の採用が有利となる。しかし、EGRクーラーの使用環境では、その構成部材が700℃以上、最高800℃程度の高温に曝されることがある。この場合、特にフェライト系鋼種では高温強度の低下を防止する対策が重要となる。また、Niろう付けに際しては1050~1150℃程度の高温に保持されることから、結晶粒の粗大化を抑制するための成分設計が重要である。
 一般にフェライト系ステンレス鋼は、常温から600℃程度までの中温域においてはオーステナイト系ステンレス鋼よりも高い強度レベルを呈する。しかし、700℃以上といった高温域では強度レベルの低下が大きくなる。このような高温強度の低下を防止するための手法として、Nb添加が有効であることが知られている。すなわち、フェライト系ステンレス鋼にNbを0.2質量%程度添加することにより高温強度は著しく改善される。Nbによる高温強度の向上は、主として「固溶Nb」によるものである。したがって、高温用途に使用するフェライト系ステンレス鋼では、固溶Nb量を十分に確保するために、通常C、Nの含有量をできるだけ低減するような成分設計がなされている。
 一方、フェライト系ステンレス鋼の結晶粒粗大化を抑制するためにも、固溶Nbは有効に作用すると考えられる。ところが、発明者らの研究によれば、Niろう付け温度での結晶粒粗大化を抑止するためには、0.2質量%程度のNb添加では不十分なことが分かってきた。種々のNiろう材を用いた詳細な検討の結果、0.3質量%以上のNb含有量を確保することが重要であることが明らかになった。
 Nb添加による結晶粒粗大化の抑制は、固溶Nbによる粗大化抑制作用の他に、Nb炭化物、Nb窒化物またはNb炭窒化物(これらをまとめて「Nb炭化物・窒化物」と呼ぶ)によるピン止め効果も大きく寄与するものと考えられる。したがって本発明の鋼における成分設計では、C、N含有量をある程度確保する方がむしろ有利になる。具体的にはCとNの合計含有量を0.01質量%以上とすることがより効果的である。また、Nb含有量を十分に確保することにより、Fe2Nb(Laves)や、Fe3NbC(M6X)などの析出物によるピン止め効果も結晶粒粗大化の抑制に有効に作用すると考えられる。
 結晶粒の粗大化が抑制されることによって特に低温靭性の低下防止に効果がある。
 Nb以外の合金成分については、Mo、Cu、V、Wの各元素も固溶量が増大するに従って高温強度の向上に寄与することがわかった。またNi、Coは、結晶粒が若干粗大化した場合における靱性低下の抑制に極めて有効であることがわかった。一方、Ti、Al、Zr、REM、Caは、Niろう付けを行う際に、鋼材表面におけるNiろう材の流れ(濡れ性)を悪くする要因を有していることが明らかになった。これは、Niろう付けの加熱時に、鋼材表面にこれらの元素の酸化物が形成されやすいことが原因ではないかと考えられる。ただし、後述のようにこれらの元素の含有量を適正範囲に規制すれば問題はない。
 本発明はこのような知見に基づいて完成したものである。以下に、各合金成分について説明する。
 C、Nは、Nbとの複合添加において、Nb炭化物・窒化物を形成する元素である。これらの析出物によってNbが消費され固溶Nbが減少すると、固溶Nbによる高温強度の向上効果および結晶粒粗大化の抑制効果が阻害される。したがって、本発明ではC含有量は0.03質量%以下に制限する必要があり、0.025質量%以下であることが好ましい。また、N含有量も0.03質量%以下に制限する必要があり、0.025質量%以下であることが好ましい。
 ただし、Niろう付け時の結晶粒粗大化の抑制については、前述のようにNb炭化物・窒化物によるピン止め効果も寄与しうる。したがって、ある程度のC、N含有量を確保することが有利である。種々検討の結果、CとNの合計含有量を0.01質量%以上とすることが望ましい。個々の元素については、C:0.005質量%以上、N:0.005質量%以上を確保することがより好ましい。
 Siは、高温酸化特性を改善させる元素である。しかし、過剰のSi含有はフェライト相を硬質化させ、加工性劣化の要因となる。また、Niろう付け性(Niろう材との濡れ性)を劣化させる。種々検討の結果、Si含有量は0.1超え~3質量%の範囲に制限され、0.3~2.5質量%の範囲とすることがより好ましい。上限は1.5質量%に規制することもできる。
 Mnは、高温酸化特性、特に耐スケール剥離性を改善させる元素である。しかし、過剰に添加すると高温でのオーステナイト相の生成を助長させる。本発明ではNiろう付け温度でオーステナイト相が生成しないフェライト単相系の成分組成とすることが望ましい。種々検討の結果、Mn含有量は0.1~2質量%の範囲に規定する。
 Crは、高温における耐酸化特性を安定させる作用を有する。そのためには10質量%以上のCr含有量を確保する必要がある。しかし、過剰のCr含有は製造性および鋼材の加工性を阻害する。したがって、Cr含有量は25質量%以下の範囲に制限される。
 Nbは、本発明において重要な元素であり、上述のように、高温強度の上昇とNiろう付け時の結晶粒粗大化の抑制に有効に作用する。高温強度の向上に関しては、主としてNbの固溶強化が大きく寄与するが、フェライトマトリクス中に微細に分散したNb炭化物・窒化物による析出強化も高温強度の向上に有効である。結晶粒粗大化の抑制に関しては、Nbの固溶強化とともに、Nb炭化物・窒化物によるピン止め効果が有効に作用する。これらの作用を十分に発揮させるためには、C、N含有量を前記の範囲に規制した上で、Nb含有量を0.3質量%以上確保することが重要である。特にNiろう付け時の結晶粒粗大化を抑制するためにはNb含有量を高めることが効果的であり、0.4%以上あるいはさらに0.5%以上のNb含有量とすることが好ましい。ただし、Nb含有量が多くなると、熱間加工性や鋼材の表面品質特性に悪影響を及ぼすようになる。したがって、Nb含有量は0.8質量%以下の範囲に制限される。
 Mo、Cu、V、Wも、主として固溶強化により高温強度の向上に寄与する。したがって、必要に応じてこれらの元素の1種以上を含有させることができる。特に、これらの元素の合計含有量を0.05質量%以上確保することがより効果的である。しかし、これらの元素を過剰に添加すると熱間加工性に悪影響を及ぼすようになる。また、低温靭性を阻害する要因にもなる。種々検討の結果、Mo、Cu、V、Wの1種以上を添加する場合は、その合計含有量を4質量%以下に抑える必要がある。
 Ti、Al、Zrのうち、Ti、ZrはCやNと結合して微細析出物を形成し、これが鋼中に分散することにより高温強度を向上させる作用を呈する。Alは高温酸化特性を改善する作用を呈する。したがって、必要に応じてこれらの元素の1種以上を含有させることができる。しかし、これらの元素はいずれも、多量に含有させると熱間加工性や表面品質特性の低下を招く要因となる。また、鋼材表面に強固な酸化皮膜を形成する元素であるから、その酸化皮膜によりNiろうの流れが悪くなることがある。検討の結果、Ti、Al、Zrの1種以上を添加する場合は、その合計含有量を0.3質量%以下に抑える必要がある。特に、その合計含有量を0.03~0.3質量%の範囲とすることが効果的であり、0.03~0.25質量%とすることがより好ましい。
 Ni、Coは、Niろう付けによって結晶粒が若干粗大化した場合において、靭性低下の抑制に著しく効果がある。また、これらの元素は高温強度の向上にも有利である。したがって、必要に応じてこれらの元素の1種以上を含有させることができ、特にNi、Coの合計含有量を0.5質量%以上確保することがより効果的である。しかし、Ni、Coの過剰添加は、高温域でのオーステナイト相の生成を招くので好ましくない。Ni、Coの1種以上を添加する場合は、NiとCoの合計含有量を5質量%以下の範囲に抑える必要がある。
 REM(希土類元素)、Caは、Alと同様に高温酸化特性を向上させる元素であり、本発明では必要に応じてこれらの1種以上を添加することができる。特にREM、Caの合計含有量を0.01質量%以上確保することがより効果的である。しかし、多量に添加すると靱性低下等により製造性が低下する。したがって、REM、Caの1種以上を添加する場合は、その合計含有量を0.2質量%以下の範囲に抑える必要がある。
 以上の組成を有するフェライト系ステンレス鋼は、融雪塩に対する耐食性、LLCに対する耐食性、および凝結水に対する耐食性については、従来のEGRクーラーに使用されているオーステナイト系鋼種と比べ、問題のないレベルであることが確認された。排ガス環境における高温強度(0.2%耐力)および耐スケール剥離性については、オーステナイト系鋼種よりも改善されている。
 上記組成のフェライト系ステンレス鋼は、通常の方法により鋼板とされ、EGRクーラーを構成する外筒、仕切り板、通気管、通気管の中に取り付けられるフィンなどの部材に加工される。これら部材は、Niろう付けにより接合され、EGRクーラーが構築される。EGRクーラーの構成部材の必ずしも全てを本発明の鋼で構成する必要はない。ただし、本発明の鋼からなる部材は、LLCに対する耐食性が十分に確保されているとともに、排ガス環境における高温酸化特性と、Niろう付け時の結晶粒粗大化に対する抵抗力および濡れ性が同時に改善されたものである。このため、特に自動車排ガスおよび冷却水の両方に接触し、かつNiろう付けが施される部材に本発明の鋼を使用することが効果的である。
そのような部材としては、例えば外筒、仕切り板、通気管が挙げられる。
 表1に示す化学組成の鋼を溶製し、得られた鋼塊を丸棒および板に熱間鍛造することにより、直径15mmの丸棒と、板厚30mmの板に加工した。丸棒には保持温度を1000~1100℃の範囲内に設定して溶体化処理を施した。板は熱間圧延にて板厚4mmの熱延板とし、これに焼鈍を施したのち、冷間圧延にて板厚1.5mmとし、次いで保持温度を1000~1100℃の範囲内に設定して最終焼鈍を施した。なお、B4、B5はオーステナイト系ステンレス鋼である。
Figure JPOXMLDOC01-appb-T000001
 得られた鋼材を用いて以下の特性を調べた。
〔熱膨張係数〕
 溶体化処理後の丸棒から5mm角×50mm長さの試験片を作製し、熱膨張測定装置にセットして昇温速度2℃/分にて常温(25℃)から700℃までの平均熱膨張係数を求めた。
〔700℃における0.2%耐力〕
 溶体化処理後の丸棒から平行部の直径が10mmの高温引張試験片を作製し、JIS G056に準拠して700℃の高温引張試験を実施し、0.2%耐力を測定した。700℃における0.2%耐力が100N/mm2以上であるものはEGRクーラーとして従来のオーステナイト系鋼種を上回る特性を呈することから、ここではそのような特性を具備するものを合格と判定した。
〔繰り返しサイクルでの高温酸化特性〕
 冷延焼鈍板から25mm×35mm×1.5mmの試料を切り出し、全面を#400湿式研磨仕上とした高温酸化試験片を作製した。この試験片について、EGRクーラー部材としての繰り返し使用を模擬して、大気+60℃飽和水蒸気の雰囲気において「900℃×25分加熱→常温で10分間放冷」のサイクルを1000サイクル実施し、試験片の試験前と試験後の質量変化(プラスは増加、マイナスは減少)を試験前の試験片の表面積で除することにより、単位面積あたりの質量変化を求めた。この質量変化の絶対値が10mg/m2以下であれば、EGRクーラー部材として優れた高温酸化特性を有していると評価され、5mg/m2以下であるものは特に優れている。
〔Niろう付け性(濡れ性)〕
 冷延焼鈍板から10mm×20mm×1.5mmのろう付け試験片を各鋼種2枚ずつ切り出した。うち1枚の試験片を水平に置いた状態で、その表面の全面にペースト状のNiろうを0.5mm厚で塗布した。その上にもう1枚の試験片を重ね、試験片/Niろう/試験片の3層からなる積層体を構成し、これを水平に保ったまま真空炉に入れ、真空引き後に1150℃で30分加熱した。冷却後に積層体を取り出し、上面に重ねた方(Niろうを塗布しなかった方)の試験片表面を観察し、表面のうちNiろうで濡れた面積を試験片表面の全面積で除することによりNiろう被覆率を求めた。Niろう被覆率が50%以上のものをA、20%以上50%未満のものをB、20%未満のものをCと評価し、B評価以上を合格とした。なお、Niろうは19質量%Cr-10質量%Si-71質量%Ni組成のもの(JIS Z3265のBNi-5相当品)を使用した。
〔結晶粒粗大化に対する抵抗〕
 上記のNiろう付け性を評価した試験片について、その断面(圧延方向および板厚方向に平行な断面;L断面)の金属組織を光学顕微鏡で観察した。エッチングは弗酸+硝酸の混酸で行った。平均結晶粒径が200μm以下のものをA、200μm超え500μm以下のものをB、500μm超えのものをCと評価し、B評価以上を合格と判定した。
〔低温靭性〕
 1.5mm厚の冷延焼鈍板を上記Niろう付け性評価と同等のヒートパターンで熱処理したのち、その鋼板からVノッチシャルピー衝撃試験片を作製し、JIS Z2242に準拠して0℃でのシャルピー衝撃試験を実施した。試験片はハンマーのぶつかる方向が圧延方向に対して直角方向(C方向)となるように採取した。0℃でのシャルピー衝撃値が100J/cm2以上のものをA、50J/cm2以上100J/cm2未満のものをB、50J/cm2未満のものをCと評価し、B評価以上を合格と判定した。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、本発明例のフェライト系ステンレス鋼は、比較例B4、B5のオーステナイト系ステンレス鋼に比べ、熱膨張係数が格段に小さく、700℃での0.2%耐力および繰り返しサイクルでの高温酸化特性においても勝っていた。また、Niろう付け性(濡れ性)、結晶粒粗大化に対する抵抗、および低温靭性に関してもEGRクーラー部材として十分満足できる特性を具備していることが確認された。
 これに対し、比較例B1はC含有量が高く、かつNb含有量が低いために固溶Nb量が不足し、高温強度(700℃の0.2%耐力)および結晶粒粗大化に対する抵抗性能に劣った。また、Mn含有量が高いために高温でオーステナイト相が生成し、これが一部マルテンサイト相に変態したことが考えられ、低温靭性にも劣った。B2はNb含有量が低かったが、C、N含有量も比較的低いことから固溶Nb量は適度に確保され高温強度(700℃の0.2%耐力)は良好であった。しかし、Nb炭化物・窒化物の微細分散が少なく、結晶粒粗大化に対する抵抗性能は不十分であった。B3はTi含有量が過剰であったためNiろう付け時に表面に酸化膜が生じやすくなり、Niろう付け性に劣った。また、Mo、Cu、V、Wの合計含有量が高すぎたことにより低温靭性に劣った。B4、B5はオーステナイト系ステンレス鋼であり、熱膨張係数が高い。高温強度(700℃の0.2%耐力)も他のフェライト系鋼種より低レベルであった。また、熱膨張係数が高いことも影響して、繰り返しサイクルではスケールが剥離しやすく、質量変化がマイナスの大きな値となった。B6はTi、Al、Zrの合計含有量が高すぎたためNiろう付け時に表面に酸化膜が生じやすくなり、Niろう付け性に劣った。

Claims (8)

  1.  質量%で、C:0.03%以下、Si:0.1超え~3%、Mn:0.1~2%、Cr:10~25%、Nb:0.3~0.8%、N:0.03%以下、残部Feおよび不可避的不純物からなるEGRクーラー部材用フェライト系ステンレス鋼。
  2.  さらに、Mo、Cu、VおよびWの1種以上を合計4%以下の範囲で含有する請求項1に記載のフェライト系ステンレス鋼。
  3.  さらに、Ti、AlおよびZrの1種以上を合計0.3%以下の範囲で含有する請求項1または2に記載のフェライト系ステンレス鋼。
  4.  さらに、NiおよびCoの1種以上を合計5%以下の範囲で含有する請求項1~3のいずれかに記載のフェライト系ステンレス鋼。
  5.  さらに、REM(希土類元素)およびCaの1種以上を合計0.2%以下の範囲で含有する請求項1~4のいずれかに記載のフェライト系ステンレス鋼。
  6.  CおよびNの合計含有量が0.01質量%以上である請求項1~5に記載のフェライト系ステンレス鋼。
  7.  請求項1~6のいずれかに記載の鋼からなる鋼材を、構成部材に持ち、少なくともその部材を他の部材にNiろう付けにて接合した構造を有するEGRクーラー。
  8.  請求項1~6のいずれかに記載の鋼からなる鋼材を、自動車排ガスおよび冷却水の両方に接触する部材に持ち、少なくともその部材を他の部材にNiろう付けにて接合した構造を有するEGRクーラー。
PCT/JP2009/063370 2009-07-27 2009-07-27 Egrクーラー用フェライト系ステンレス鋼およびegrクーラー WO2011013193A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09847785.4A EP2460899A4 (en) 2009-07-27 2009-07-27 FERRITIC STAINLESS STEEL FOR EGR COOLER AND EGR COOLER
KR1020127000631A KR20120036959A (ko) 2009-07-27 2009-07-27 Egr 쿨러용 페라이트계 스테인리스강 및 egr 쿨러
KR1020167026760A KR20160119255A (ko) 2009-07-27 2009-07-27 Egr 쿨러용 페라이트계 스테인리스강 및 egr 쿨러
US13/382,375 US20120111529A1 (en) 2009-07-27 2009-07-27 Ferritic stainless steel for egr cooler and egr cooler
CN2009801606251A CN102471840A (zh) 2009-07-27 2009-07-27 Egr冷却器用铁素体系不锈钢及egr冷却器
PCT/JP2009/063370 WO2011013193A1 (ja) 2009-07-27 2009-07-27 Egrクーラー用フェライト系ステンレス鋼およびegrクーラー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/063370 WO2011013193A1 (ja) 2009-07-27 2009-07-27 Egrクーラー用フェライト系ステンレス鋼およびegrクーラー

Publications (1)

Publication Number Publication Date
WO2011013193A1 true WO2011013193A1 (ja) 2011-02-03

Family

ID=43528870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063370 WO2011013193A1 (ja) 2009-07-27 2009-07-27 Egrクーラー用フェライト系ステンレス鋼およびegrクーラー

Country Status (5)

Country Link
US (1) US20120111529A1 (ja)
EP (1) EP2460899A4 (ja)
KR (2) KR20120036959A (ja)
CN (1) CN102471840A (ja)
WO (1) WO2011013193A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533084A (ja) * 2016-09-28 2019-11-14 ポスコPosco 吸音性に優れた排気系熱交換器用フェライト系ステンレス鋼およびその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364404B (zh) * 2012-05-28 2020-07-28 杰富意钢铁株式会社 铁素体系不锈钢
FI125855B (fi) * 2012-06-26 2016-03-15 Outokumpu Oy Ferriittinen ruostumaton teräs
SI2893049T1 (sl) 2012-09-03 2021-03-31 Aperam Stainless France, Feritna nerjavna jeklena pločevina, postopek za njeno izdelavo in njena uporaba, zlasti v izpušnih vodih
KR20140087887A (ko) * 2012-12-31 2014-07-09 현대자동차주식회사 Egr 시스템용 페라이트계 스테인리스강
JP6370276B2 (ja) * 2015-08-17 2018-08-08 日新製鋼株式会社 高Al含有制振性フェライト系ステンレス鋼材および製造方法
KR101697093B1 (ko) * 2015-09-22 2017-01-18 주식회사 포스코 페라이트계 스테인리스강 및 이의 제조 방법
JP6895787B2 (ja) * 2017-03-31 2021-06-30 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼、ろう付け構造体、ろう付け構造部品および排気ガス熱交換部品
CN110678567A (zh) * 2017-05-24 2020-01-10 东华隆株式会社 熔融金属镀浴用部件
US10400714B2 (en) * 2017-09-28 2019-09-03 Senior Ip Gmbh Heat exchanger with annular coolant chamber

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648254A (en) * 1987-06-27 1989-01-12 Nisshin Steel Co Ltd Manifold steel for automobile engine
JPH03274245A (ja) * 1990-03-24 1991-12-05 Nisshin Steel Co Ltd 低温靭性,溶接性および耐熱性に優れたフエライト系耐熱用ステンレス鋼
JPH07292446A (ja) 1994-04-22 1995-11-07 Nippon Yakin Kogyo Co Ltd 熱交換器用フェライト系ステンレス鋼
JP2000107883A (ja) * 1998-10-06 2000-04-18 Tokyo Radiator Mfg Co Ltd Egrクーラ接合用ニッケルろう材、これを使用したegrクーラの製造方法、及びegrクーラ
JP2003193205A (ja) 2001-10-18 2003-07-09 Hitachi Metals Ltd 排気ガス再循環系部品
JP2006134662A (ja) * 2004-11-04 2006-05-25 Nisshin Steel Co Ltd 自動車の燃料電池システム用熱交換器
JP2006131945A (ja) * 2004-11-04 2006-05-25 Nisshin Steel Co Ltd 耐高温水蒸気酸化性に優れたフェライト系鋼材およびその使用方法
JP2008195985A (ja) * 2007-02-09 2008-08-28 Hitachi Metals Ltd 耐酸性に優れたフェライト系ステンレス鋳鋼および鋳造部材
WO2009084526A1 (ja) * 2007-12-28 2009-07-09 Nippon Steel & Sumikin Stainless Steel Corporation ろう付け性に優れたフェライト系ステンレス鋼

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536568B2 (ja) * 1997-01-24 2004-06-14 Jfeスチール株式会社 耐熱性および溶接部のマフラー耐食性に優れるエンジン排気部材用フェライト系ステンレス鋼
EP0908265B1 (en) * 1997-10-09 2005-05-11 Calsonic Kansei Corporation Nickel-based brazing material, method of brazing with the brazing material, process for producing EGR cooler with the brazing material, and EGR cooler
TW480288B (en) * 1999-12-03 2002-03-21 Kawasaki Steel Co Ferritic stainless steel plate and method
JP4185425B2 (ja) * 2002-10-08 2008-11-26 日新製鋼株式会社 成形性と高温強度・耐高温酸化性・低温靱性とを同時改善したフェライト系鋼板
JP2009007601A (ja) * 2007-06-26 2009-01-15 Nisshin Steel Co Ltd 集熱機器用フェライト系ステンレス鋼材
JP5349153B2 (ja) * 2009-06-15 2013-11-20 日新製鋼株式会社 ろう付け用フェライト系ステンレス鋼材および熱交換器部材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648254A (en) * 1987-06-27 1989-01-12 Nisshin Steel Co Ltd Manifold steel for automobile engine
JPH03274245A (ja) * 1990-03-24 1991-12-05 Nisshin Steel Co Ltd 低温靭性,溶接性および耐熱性に優れたフエライト系耐熱用ステンレス鋼
JPH07292446A (ja) 1994-04-22 1995-11-07 Nippon Yakin Kogyo Co Ltd 熱交換器用フェライト系ステンレス鋼
JP2000107883A (ja) * 1998-10-06 2000-04-18 Tokyo Radiator Mfg Co Ltd Egrクーラ接合用ニッケルろう材、これを使用したegrクーラの製造方法、及びegrクーラ
JP2003193205A (ja) 2001-10-18 2003-07-09 Hitachi Metals Ltd 排気ガス再循環系部品
JP2006134662A (ja) * 2004-11-04 2006-05-25 Nisshin Steel Co Ltd 自動車の燃料電池システム用熱交換器
JP2006131945A (ja) * 2004-11-04 2006-05-25 Nisshin Steel Co Ltd 耐高温水蒸気酸化性に優れたフェライト系鋼材およびその使用方法
JP2008195985A (ja) * 2007-02-09 2008-08-28 Hitachi Metals Ltd 耐酸性に優れたフェライト系ステンレス鋳鋼および鋳造部材
WO2009084526A1 (ja) * 2007-12-28 2009-07-09 Nippon Steel & Sumikin Stainless Steel Corporation ろう付け性に優れたフェライト系ステンレス鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2460899A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533084A (ja) * 2016-09-28 2019-11-14 ポスコPosco 吸音性に優れた排気系熱交換器用フェライト系ステンレス鋼およびその製造方法

Also Published As

Publication number Publication date
EP2460899A1 (en) 2012-06-06
US20120111529A1 (en) 2012-05-10
KR20160119255A (ko) 2016-10-12
KR20120036959A (ko) 2012-04-18
EP2460899A4 (en) 2014-07-09
CN102471840A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5264199B2 (ja) フェライト系ステンレス鋼を用いたegrクーラー
JP5349153B2 (ja) ろう付け用フェライト系ステンレス鋼材および熱交換器部材
WO2011013193A1 (ja) Egrクーラー用フェライト系ステンレス鋼およびegrクーラー
JP5390175B2 (ja) ろう付け性に優れたフェライト系ステンレス鋼
JP5462583B2 (ja) Egrクーラ用フェライト系ステンレス鋼板
JP5420292B2 (ja) フェライト系ステンレス鋼
JP6607268B2 (ja) フェライト系ステンレス鋼
WO2014157104A1 (ja) ろう付け性に優れたフェライト系ステンレス鋼板、熱交換器、熱交換器用フェライト系ステンレス鋼板、フェライト系ステンレス鋼、燃料供給系部材用フェライト系ステンレス鋼、及び燃料供給系部品
JP6379283B2 (ja) ろう付け性に優れたステンレス鋼
JP5786491B2 (ja) Egrクーラー用フェライト系ステンレス鋼
JP5788946B2 (ja) ろう付け性に優れたろう付け接合により組み立てられる部材用フェライト系ステンレス鋼
JP6547927B1 (ja) フェライト系ステンレス鋼
JP6871045B2 (ja) ろう付け性と耐食性に優れたフェライト系ステンレス鋼およびNiろう付け接合部材
WO2019159606A1 (ja) フェライト系ステンレス鋼
JP2009041102A (ja) 排ガス再循環系部品用Ni基合金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160625.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13382375

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127000631

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 315/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009847785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP