WO2011012548A2 - Verfahren zum sintern von thermoelektrischen materialien - Google Patents

Verfahren zum sintern von thermoelektrischen materialien Download PDF

Info

Publication number
WO2011012548A2
WO2011012548A2 PCT/EP2010/060713 EP2010060713W WO2011012548A2 WO 2011012548 A2 WO2011012548 A2 WO 2011012548A2 EP 2010060713 W EP2010060713 W EP 2010060713W WO 2011012548 A2 WO2011012548 A2 WO 2011012548A2
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
oxygen
thermoelectric material
thermoelectric
pressing
Prior art date
Application number
PCT/EP2010/060713
Other languages
English (en)
French (fr)
Other versions
WO2011012548A3 (de
Inventor
Madalina Andreea Stefan
Frank Haass
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP10742116A priority Critical patent/EP2459762A2/de
Priority to CA2768979A priority patent/CA2768979A1/en
Publication of WO2011012548A2 publication Critical patent/WO2011012548A2/de
Publication of WO2011012548A3 publication Critical patent/WO2011012548A3/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6588Water vapor containing atmospheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Definitions

  • thermoelectric materials resulting in thermoelectric materials with improved properties.
  • Thermoelectric generators and Peltier devices as such have long been known, p-type and n-type doped semiconductors, heated on one side and cooled on the other, carry electrical charges through an external circuit, electrical work being done to a load in the circuit can be performed.
  • the achieved conversion efficiency of heat into electrical energy is thermodynamically limited by the Carnot efficiency.
  • an efficiency of (1000 - 400): 1000 60% is possible.
  • efficiencies up to 6% are achieved.
  • thermoelectric generators are used in space probes for generating direct currents, for cathodic corrosion protection of pipelines, for powering light and radio buoys, for operating radios and televisions.
  • the advantage of the thermoelectric generators lies in their extreme reliability. So they work regardless of atmospheric conditions such as humidity; there is no fault-susceptible material transport, but only a load transport; The fuel is burned continuously - even without catalytic free flame -, whereby only small amounts of CO, NO x and unburned fuel are released; It can be used any fuel from hydrogen to natural gas, gasoline, kerosene, diesel fuel to biologically produced fuels such as rapeseed oil methyl ester.
  • thermoelectric energy conversion adapts extremely flexibly to future needs, such as hydrogen economy or energy generation from regenerative energies.
  • high requirements are placed not only on the module structure itself but, above all, on the thermoelectric material. This must be as homogeneous as possible, free of cracks and holes, of high specific gravity and of high mechanical stability. Therefore, after a synthesis of the thermoelectric material, a metallurgical processing step usually follows to meet these requirements.
  • the material is first comminuted (eg by grinding) and then compacted again.
  • the compaction can be done by uniaxial or isostatic cold or hot pressing, extrusion, spark plasma sintering, etc.
  • the material is homogenized in the course of comminution on the one hand, and in the course of compaction, the other properties required above are achieved. It is essential, especially during cold pressing, to add another sintering step. During sintering, further densification and intimate bonding of the crystal structure occurs, so that the sintered bodies end up having a high density and high electrical conductivity, as desired for thermoelectric materials.
  • the sintering behavior is changed by the formation of superficial oxide layers, since the oxide layers, for example, behave like an inert protective layer, which is difficult to sinter. This leads to material bodies with lower density or powders which are no longer sinterable at the actually desired temperatures.
  • these oxide layers can act as an electrical insulator and thus as a barrier. This results in a massive reduction of the electrical conductivity the original bulk material, and the sintered body loses its good thermoelectric properties.
  • thermoelectric material contains dopants which react easily and quickly with oxygen and thus are removed as an oxide from the thermoelectric material and are no longer available as a dopant.
  • thermoelectric materials from powders or high surface area grains poses a challenge when an oxygen effect, e.g. B. from the ambient air, can not be excluded meticulously.
  • the object of the present invention is to provide a method for sintering thermoelectric materials by heat treatment under inert gas or at reduced pressure, which avoids the disadvantages of the existing methods and, in particular, largely prevents oxygen contact with the thermoelectric material.
  • the object is achieved by a method for producing, processing, sintering, pressing or extrusion of thermoelectric materials under heat treatment under inert gas or at reduced pressure at temperatures in the range of 100 to 900 0 C, in which the manufacturing, processing, sintering, pressing or extruding in the presence of oxygen scavengers, which form thermodynamically stable oxides in the production, processing, sintering, pressing or extrusion conditions in the presence of free oxygen and thus keep free oxygen from the thermoelectric material.
  • thermoelectric material by adding an oxygen scavenger to the thermoelectric material, oxygen which is still present during sintering is adequately trapped and can no longer develop a damaging effect. During sintering, the oxygen scavenger catches residual oxygen residues quickly and largely completely so that they can no longer react with the thermoelectric material.
  • the oxygen scavenger forms thermodynamically stable oxides in the sintering conditions in the presence of free oxygen and thus keeps free oxygen away from the thermoelectric material.
  • a thermodynamically stable oxide forms in the With the unoxidized thermoelectric material, the lowest possible oxygen partial pressure prevails. On the other hand, this means that the oxides formed do not decompose to any appreciable extent again at sintering temperatures.
  • the oxygen scavenger reacts by oxidation reaction with the oxygen still present in the gas space during sintering and binds it, so that the oxygen can not react with the thermoelectric material.
  • the oxygen scavenger is more easily oxidized than the thermoelectric material or at lower temperatures.
  • oxygen scavengers inorganic materials, preferably metals, metal alloys and semimetals and their alloys are used. Typical examples are titanium, zirconium, hafnium, silicon, aluminum, vanadium, scandium, yttrium, rare earth metals (eg lanthanum or cerium), lithium, sodium, potassium, magnesium, calcium, strontium, barium, manganese, iron, cobalt, nickel, Copper, zinc, cadmium, but also non-metals such as phosphorus, graphite and mixtures thereof.
  • Gaseous oxygen scavengers may be selected from H 2 , CO, CO / CO 2 mixtures, H 2 / H 2 O mixtures or inert gas / H 2 mixtures.
  • Oxygen scavengers may also be selected from hydrides, carbonyls, lower valent oxides, sulfides, phosphides of metals, preferably metals above, sulfur or phosphorus containing compounds in general, sulfur, phosphorus or mixtures thereof.
  • Low-valent oxides are those oxides which can be oxidized to higher valent oxides in the presence of free oxygen.
  • a material containing no chemical elements of the thermoelectric material can be used. It can also be a dopant material.
  • the amount of oxygen scavenger to be used can be adjusted according to the practical requirements. These depend on the remaining oxygen content in the inert gas during sintering and on the oxygen affinity of the constituents of the thermoelectric materials. As a rule, based on the amount of the thermoelectric material, below 25 wt .-%, preferably 0.05 to 15 wt .-%, in particular 0.05 to 1 wt .-% of oxygen scavenger used.
  • the surface of the solid oxygen scavengers may be pretreated to increase their effectiveness, for example by roughening, mechanical, chemical or electrochemical removal of an already existing oxide layer, or by mechanical, chemical or electrochemical activation of the surface.
  • the solid oxygen scavenger can be used in any form, for. As a powder, wire, sheet, strip, chunks, spheres, moldings, sponge or mesh or supported on an inert material.
  • the thermoelectric material may be used in any suitable form for sintering. Often, a green body is sintered, but it is also possible to sinter a powder or granules of the thermoelectric material under pressure and molding. According to one embodiment of the invention, a green body made of a thermoelectric material which has been subjected to shaping is sintered in direct contact with the oxygen scavenger.
  • the green body of a thermoelectric material which has been subjected to a shaping and the oxygen scavenger during sintering spatially separated from each other, but connected via a common gas space.
  • the sintering takes place under pressure and shaping of a powder of the thermoelectric material.
  • the sintering under pressure as hot pressing, isostatic pressing or hot pressing or spark plasma sintering can take place.
  • the oxygen scavenger can be arranged in the pressing tool in contact with the thermoelectric material or be pressed in the form of a sandwich with the powder of the thermoelectric material.
  • thermoelectric material legs By means of the sintering according to the invention, any shaped bodies of the thermoelectric material can be produced.
  • the sintering is preferably carried out for the direct production of thermoelectric material legs.
  • thermoelectric materials or components thereof When manufacturing or processing z. As powders, granules or melts of the thermoelectric materials or components thereof can be used. They are not in direct contact with the oxygen scavenger, which is e.g. B. may be connected via a common gas space with them.
  • oxygen scavenger which is e.g. B. may be connected via a common gas space with them.
  • thermoelectric material used in the method according to the invention is not subject to any restrictions.
  • the materials may be p-type or n-type and have corresponding dopants.
  • the underlying thermal electrical material selected from PbTe, Bi 2 Te 3, Zintl phases, skutterudites, clathrates and zinc antimonides, Heusler compounds, silicides, oxides and mixtures thereof. Suitable materials are for. As mentioned in the cited font of S. Nolan.
  • thermoelectric materials are generally prepared by reactive milling or, preferably, by fusing and reaction of mixtures of the respective constituent elements or their alloys, which steps may be carried out in the presence of oxygen scavengers.
  • thermoelectric material green body, legs, powder, granules
  • the thermoelectric material is sintered at a temperature of generally at least 100 ° C., preferably at least 200 ° C., lower than the melting point of the resulting semiconductor material in the presence of the oxygen scavengers.
  • the sintering temperature is 350 to 900 ° C., preferably 500 to 800 ° C.
  • Spark plasma sintering (SPS) or microwave sintering may also be carried out.
  • the sintering is carried out for a period of preferably at least 0.5 hours. Usually, the sintering time is 1 to 24 hours. In one execution of the present invention approximate shape, the sintering is carried out at a temperature which is 100 to 500 0 C lower than the melting temperature of the resulting semiconductor material.
  • the sintering can be carried out under a protective gas atmosphere, for example of argon, hydrogen or inert gas / hydrogen.
  • the pressed parts are preferably sintered to 90 to 100% of their theoretical bulk density.
  • thermoelectric material (1) fusing together mixtures of the respective constituent elements or their alloys of the thermoelectric material
  • the material for sintering for example, by grinding a Melting body or directly in powder form by rapid solidification (MeIt spinning) or corresponding synthesis methods (precipitation, spraying, etc.) are produced.
  • the pre-compression of the powder to the green body is carried out according to the techniques known to those skilled in the art. It is preferred not to densify the green body already close to 100% in order to allow a gas exchange with the environment during sintering. The actual compaction takes place only in the sintering step.
  • the oxygen scavenger can be directly enclosed with the green body in an ampoule.
  • the oxygen scavenger can either be in direct contact with the green body, or spatially separated.
  • the direct contact can z. B. by wrapping with wire, placing on a mesh, embedding in a powder bed, etc. take place.
  • the spatial separation can be achieved by a partition wall (eg quartz wool), but also in an ampoule with several compartments (eg in dumbbell shape).
  • Several compartments have the advantage that the oxygen scavenger and the material in a multi-zone oven can also be exposed to different temperature levels, if desired and necessary.
  • the ampoule can be made of quartz glass, for example, but also directly from the material of the oxygen scavenger.
  • the sintering should then be carried out in the oven under inert conditions to prevent oxidation of the outside or permeation of oxygen through the container wall.
  • the oxygen scavenger in open sintering. Open sintering can be done, for example, in a conventional furnace in a graphite, quartz or metal crucible. Possibly. can also serve the crucible material itself as an oxygen scavenger.
  • the oxygen scavenger can simply be added into the crucible to the green body, either in solid form (wire, net, etc.), or as a powder.
  • the green body can then be placed on the powder, or be directly in the powder. Possibly. the oxygen scavenger can also be "diluted" as a powder by an additive such as graphite, quartz sand, inert ceramic or the like.
  • the oxygen scavenger spatially in front of the green body in the gas stream.
  • the sintering can be carried out under an inert gas stream. leads (He, Ar, N 2 ), the reduction effect of the oxygen scavenger can be supported by a reducing gas (H 2 , CO), which is added to the inert gas stream or completely replaced. Alternatively, it may be sintered under reduced pressure.
  • the sintering can be effected by electric, inductive, microwave or combustion heating.
  • an oxygen scavenger can be used.
  • the following embodiments are conceivable.
  • thermoelectric materials it is possible to integrate oxygen scavenger materials into the jacket of the press die, rather than using a pure graphite or a pure steel die. It is also possible to coat the inside of the press die with the oxygen scavenger. Same precautions can be taken in the manufacture or processing of the thermoelectric materials.
  • thermoelectric material powder is layered on the oxygen scavenger and both are densified together by hot pressing or SPS.
  • the oxygen scavenger can also be used as a powder, but also as a pre-pressed or solid molded body.
  • thermoelectric material which may also be pre-compressed before the hot pressing or SPS step to a green body. After compaction, oxygen scavengers and material bodies are mechanically separated from one another (cutting, sawing, etc., the corresponding processes are known to the person skilled in the art).
  • thermoelectric materials it is also possible to extrude the materials into dense moldings. This is usually carried out at elevated temperature for thermoelectric materials and can be carried out as described in WO 01/17034, see also US Pat. No. 3,220,199 and US Pat. No. 4,161,111.
  • an oxygen scavenger can be used by a suitable capsule material in the course of encapsulated extrusion (US Pat. the basic method is known to those skilled in the art), wherein either the entire capsule can be made of the relevant material, which is then rendered inert to the outside by an additional coating, or the capsule is coated on the inside with the oxygen scavenger material.
  • An analogous capsule process is also used in hot isostatic pressing.
  • the compaction by hot pressing, SPS or extrusion etc. may be followed by another sintering step.
  • the sintered bodies can either already be produced directly in the leg geometry necessary for the thermoelectric module, or limbs can be cut out of the sintered bodies in the required geometry. This can be done by the methods known in the art.
  • the invention also relates to a method for increasing the long-term stability of thermoelectric legs, in which the legs are operated in a thermoelectric module in the presence of oxygen scavengers.
  • Example 1 PbTe n-doped bulk material was minced and compressed in air at 60 kF with 30 kN into a compact pill. The pill was removed from the press and wrapped with Ti wire 0.25 mm in diameter and 3 cm in length and sintered in a closed quartz ampule at 600 ° C. for 72 hours. After sintering, the power factor at 300 0 C was determined.
  • Doped PbTe bulk material was crushed and ground and mixed with 0.1 wt% TiH 2 .
  • the mixture was submerged into a compact pill for 1 second with 15 kN force Air pressed.
  • the pill was removed from the cold press and sintered in an ampule at 700 ° C. for 3 hours.

Abstract

Das Verfahren zum Herstellen, Verarbeiten, Sintern, Pressen oder Extrudieren von thermoelektrischen Materialien unter Wärmebehandlung unter Inertgas oder bei vermindertem Druck bei Temperaturen im Bereich von 100 bis 900 °C ist dadurch gekennzeichnet, dass das Herstellen, Verarbeiten, Sintern, Pressen oder Extrudieren in Gegenwart von Sauerstofffängern erfolgt, die bei den Herstell-, Verarbeitungs-, Sinter-, Press- oder Extrusionsbedingungen in Gegenwart von freiem Sauerstoff thermodynamisch stabile Oxide ausbilden und damit freien Sauerstoff vom thermoelektrischen Material fernhalten.

Description

Verfahren zum Sintern von thermoelektrischen Materialien Beschreibung Die Erfindung betrifft Verfahren zum Sintern von thermoelektrischen Materialien, die zu thermoelektrischen Materialien mit verbesserten Eigenschaften führen.
Thermoelektrische Generatoren und Peltier-Anordnungen als solche sind seit langem bekannt, p- und n-dotierte Halbleiter, die auf einer Seite erhitzt und auf der anderen Seite gekühlt werden, transportieren elektrische Ladungen durch einen äußeren Stromkreis, wobei an einem Verbraucher im Stromkreis elektrische Arbeit verrichtet werden kann. Der dabei erzielte Wirkungsgrad der Konversion von Wärme in elektrische Energie wird thermodynamisch durch den Carnot-Wirkungsgrad limitiert. Somit wäre bei einer Temperatur von 1000 K auf der heißen und 400 K auf der "kalten" Seite ein Wirkungsgrad von (1000 - 400) : 1000 = 60 % möglich. Bis heute werden jedoch nur Wirkungsgrade bis 6 % erzielt.
Legt man andererseits einen Gleichstrom an eine derartige Anordnung an, so wird Wärme von einer Seite zur anderen Seite transportiert. Eine derartige Peltier- Anordnung arbeitet als Wärmepumpe und eignet sich deshalb zur Kühlung von Apparateteilen, Fahrzeugen oder Gebäuden. Auch die Heizung über das Peltier-Prinzip ist günstiger als eine herkömmliche Heizung, weil immer mehr Wärme transportiert wird als dem zugeführten Energieäquivalent entspricht. Einen guten Überblick über Effekte und Materialien gibt z. B. S. Nolan et al., Recent Developments in BuIk Thermoelectric Materials, MRS Bulletin, Vol. 31 , 2006, 199 - 206.
Gegenwärtig werden thermoelektrische Generatoren in Raumsonden zur Erzeugung von Gleichströmen, für den kathodischen Korrosionsschutz von Pipelines, zur Energieversorgung von Leucht- und Funkbojen, zum Betrieb von Radios und Fernsehapparaten eingesetzt. Der Vorteil der thermoelektrischen Generatoren liegt in ihrer äußersten Zuverlässigkeit. So arbeiten sie unabhängig von atmosphärischen Bedingungen wie Luftfeuchte; es erfolgt kein störungsanfälliger Stofftransport, sondern nur ein Ladungs- transport; der Betriebsstoff wird kontinuierlich - auch katalytisch ohne freie Flamme - verbrannt, wodurch nur geringe Mengen an CO, NOx und unverbranntem Betriebsstoff frei werden; es sind beliebige Betriebsstoffe einsetzbar von Wasserstoff über Erdgas, Benzin, Kerosin, Dieselkraftstoff bis zu biologisch erzeugten Kraftstoffen wie Rapsölmethylester. Damit passt sich die thermoelektrische Energiewandlung äußerst flexibel in künftige Bedürfnisse wie Wasserstoffwirtschaft oder Energieerzeugung aus regenerativen E- nergien ein. Für eine vorteilhafte Funktionsweise eines thermoelektrischen Moduls werden hohe Anforderungen nicht nur an den Modulaufbau selbst, sondern zuallererst an das thermoelektrische Material gestellt. Dieses muss möglichst homogen, riss- und lochfrei, von hoher spezifischer Dichte und von hoher mechanischer Stabilität sein. Nach einer Synthese des thermoelektrischen Materials schließt sich daher üblicherweise ein metallurgischer Verarbeitungsschritt an, um diese Anforderungen zu erreichen.
Im dem dem Fachmann bekannten Prozedere wird das Material daher zunächst zerkleinert (z. B. durch Mahlen) und anschließend wieder verdichtet. Die Verdichtung kann durch uniaxiales oder isostatisches Kalt- oder Heißpressen, Extrudieren, Spark- Plasma-Sintern etc. erfolgen. Dabei wird das Material im Zuge der Zerkleinerung zum einen homogenisiert, und im Zuge der Verdichtung werden die weiteren oben geforderten Eigenschaften erzielt. Dabei ist es vor allem beim Kaltpressen unerlässlich, noch einen Sinterschritt anzuschließen. Während der Sinterung findet eine weitere Verdichtung und eine enge Verbindung des Kristallgefüges statt, so dass die Sinterkörper am Ende eine hohe Dichte und eine hohe elektrische Leitfähigkeit aufwiesen, wie sie für thermoelektrische Materialien gewünscht wird.
Nicht alle Materialien lassen sich jedoch problemlos verarbeiten. Gerade bei sauerstoffempfindlichen Materialien ist besondere Sorgfalt bei der Herstellung zu beachten. So kann es leicht passieren, dass bereits bei der Pulverherstellung Sauerstoff an der Oberfläche adsorbiert wird, der bei der späteren Temperaturbehandlung (Heißpressen, Sintern) mit dem Material reagiert. Folgende Effekte sind zu beobachten:
(1 ) Durch die Bildung oberflächlicher Oxidschichten wird zum einen das Sinterverhalten verändert, da sich die Oxidschichten beispielsweise wie eine inerte, nur noch schwer sinterbare Schutzschicht verhalten. Dies führt zu Materialkörpern mit geringerer Dichte oder Pulvern, die bei den eigentlich gewünschten Temperaturen nicht mehr sinterbar sind.
(2) Weiterhin können diese Oxidschichten wie ein elektrischer Isolator und damit als Barriere wirken. Dadurch findet eine massive Verringerung der elektrischen Leitfähig- keit gegenüber dem ursprünglichen Bulk-Material statt, und der Sinterkörper verliert seine guten thermoelektrischen Eigenschaften.
(3) Zum dritten kann der Sauerstoff zu einer chemischen Veränderung des Materials führen, nicht nur oberflächlich, sondern je nach chemischer Natur auch im BuIk. Dies ist beispielsweise der Fall, wenn das thermoelektrische Material Dopanden enthält, die leicht und schnell mit Sauerstoff reagieren und auf diese Weise als Oxid dem thermoelektrischen Material entzogen werden und nicht mehr als Dopand zur Verfügung stehen.
Aus diesem Grund stellt die Temperaturbehandlung thermoelektrischer Materialien aus Pulvern oder Körnern mit hoher Oberfläche eine Herausforderung dar, wenn ein Sau- erstoffeinfluss, z. B. aus der Umgebungsluft, nicht penibel ausgeschlossen werden kann.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens zum Sintern von thermoelektrischen Materialien durch Wärmebehandlung unter Inertgas oder bei vermindertem Druck, das die Nachteile der bestehenden Verfahren vermeidet und insbesondere einen Sauerstoffkontakt mit dem thermoelektrischen Material weitestge- hend verhindert.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zum Herstellen, Verarbeiten, Sintern, Pressen oder Extrudieren von thermoelektrischen Materialien unter Wärmebehandlung unter Inertgas oder bei vermindertem Druck bei Temperaturen im Bereich von 100 bis 9000C, bei dem das Herstellen, Verarbeiten, Sintern, Pressen oder Extrudieren in Gegenwart von Sauerstofffängern erfolgt, die bei den Herstell-, Verarbei- tungs-, Sinter-, Press- oder Extrusionsbedingungen in Gegenwart von freiem Sauerstoff thermodynamisch stabile Oxide ausbilden und damit freien Sauerstoff vom thermoelektrischen Material fernhalten.
Es wurde erfindungsgemäß gefunden, dass durch Zusatz eines Sauerstofffängers zum thermoelektrischen Material noch vorhandener Sauerstoff beim Sintern hinreichend abgefangen wird und keine schädigende Wirkung mehr entfalten kann. Während der Sinterung fängt der Sauerstofffänger noch vorhandene Sauerstoffreste schnell und weitgehend vollständig ab, so dass diese nicht mehr mit dem thermoelektrischen Material reagieren können.
Der Sauerstofffänger bildet bei den Sinterbedingungen in Gegenwart von freiem Sauerstoff thermodynamisch stabile Oxide aus und hält damit freien Sauerstoff vom ther- moelektrischen Material fern. Ein thermodynamisch stabiles Oxid bildet im Gleichge- wicht mit dem unoxidierten thermoelektrischen Material einen möglichst geringen Sau- erstoffpartialdruck aus. Dies bedeutet andererseits, dass sich die gebildeten Oxide bei Sintertemperaturen nicht in nennenswertem Umfang wieder zersetzen. Der Sauerstofffänger reagiert durch Oxidationsreaktion mit dem im Gasraum beim Sintern noch vor- handenen Sauerstoff und bindet diesen, so dass der Sauerstoff nicht mit dem thermoelektrischen Material reagieren kann. Der Sauerstofffänger ist leichter oxidierbar als das thermoelektrische Material bzw. bei niedrigeren Temperaturen.
Als Sauerstofffänger werden anorganische Materialien, bevorzugt Metalle, Metalllegie- rungen und Halbmetalle sowie deren Legierungen eingesetzt. Typische Beispiele sind Titan, Zirconium, Hafnium, Silicium, Aluminium, Vanadium, Scandium, Yttrium, Seltenerdmetalle (bspw. Lanthan oder Cer), Lithium, Natrium, Kalium, Magnesium, Calcium, Strontium, Barium, Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Cadmium, aber auch Nichtmetalle wie Phosphor, Graphit und Gemische davon.
Gasförmige Sauerstofffänger können ausgewählt sein aus H2, CO, CO/CO2- Mischungen, H2/H2O-Mischungen oder Inertgas/H2-Mischungen.
Sauerstofffänger können auch ausgewählt sein aus Hydriden, Carbonylen, niederva- lenten Oxiden, Sulfiden, Phosphiden von Metallen, vorzugsweise obiger Metalle, Schwefel oder Phosphor enthaltenden Verbindungen allgemein, Schwefel, Phophor oder Gemischen davon. Niedervalente Oxide sind solche Oxide, die sich in Gegenwart von freiem Sauerstoff zu höhervalenten Oxiden aufoxidieren lassen. Als Sauerstofffänger kann ein Material eingesetzt werden, das keine chemischen Elemente des thermoelektrischen Materials enthält. Es kann sich auch um ein Dopandmaterial handeln.
Die Menge des einzusetzenden Sauerstofffängers kann nach den praktischen Erfor- dernissen eingestellt werden. Diese richten sich nach dem verbliebenen Sauerstoffanteil im Inertgas bei der Sinterung und nach der Sauerstoffaffinität der Bestandteile der thermoelektrischen Materialien. In der Regel werden, bezogen auf die Menge des thermoelektrischen Materials, unter 25 Gew.-%, vorzugsweise 0,05 bis 15 Gew.-%, insbesondere 0,05 bis 1 Gew.-% an Sauerstofffänger eingesetzt.
Die Oberfläche der festen Sauerstofffänger kann vorbehandelt werden, um deren Wirksamkeit zu steigern, beispielsweise durch Aufrauen, mechanisches, chemisches oder elektrochemisches Entfernen einer bereits vorhandenen Oxidschicht, oder durch eine mechanische, chemische oder elektrochemische Aktivierung der Oberfläche. Der feste Sauerstofffänger kann in beliebiger Form eingesetzt werden, z. B. als Pulver, Draht, Blech, Band, Brocken, Kugeln, Formkörper, Schwamm oder Netz oder geträgert auf einem inerten Material. Das thermoelektrische Material kann in jeder beliebigen geeigneten Form zum Sintern eingesetzt werden. Häufig wird ein Grünkörper gesintert, es ist jedoch auch möglich, ein Pulver oder Granulat des thermoelektrischen Materials unter Druck und Formgebung zu sintern. Gemäß einer Ausführungsform der Erfindung wird ein Grünkörper aus einem thermoelektrischen Material, das einer Formgebung unterzogen wurde, in direktem Kontakt mit dem Sauerstofffänger gesintert.
Gemäß einer weiteren Ausführungsform der Erfindung sind der Grünkörper aus einem thermoelektrischen Material, welches einer Formgebung unterzogen wurde und der Sauerstofffänger beim Sintern räumlich voneinander getrennt, aber über einen gemeinsamen Gasraum verbunden.
Gemäß einer weiteren Ausführungsform der Erfindung erfolgt die Sinterung unter Druck und Formgebung eines Pulvers des thermoelektrischen Materials. Dabei kann die Sinterung unter Druck als Heißpressen, isostatisches Pressen oder Heißpressen oder Spark-Plasma-Sintering erfolgen. Bei diesem Vorgehen kann der Sauerstofffänger im Presswerkzeug in Kontakt mit dem thermoelektrischen Material angeordnet sein oder in Form eines Sandwiches mit dem Pulver des thermoelektrischen Materials ver- presst werden.
Es ist auch möglich, die Sinterung direkt in einer Extrusion durchzuführen.
Durch das erfindungsgemäße Sintern können beliebige Formkörper des thermoelektri- sehen Materials hergestellt werden. Bevorzugt erfolgt das Sintern zur direkten Herstellung thermoelektrischer Materialschenkel.
Beim Herstellen oder Verarbeiten können z. B. Pulver, Granulate oder Schmelzen der thermoelektrischen Materialien oder Komponenten davon eingesetzt werden. Sie Ne- gen nicht in direktem Kontakt mit dem Sauerstofffänger vor, der z. B. über einen gemeinsamen Gasraum mit ihnen verbunden sein kann.
Das im erfindungsgemäßen Verfahren eingesetzte thermoelektrische Material unterliegt keinen Einschränkungen. Die Materialien können p- oder n-leitend sein und ent- sprechende Dotierstoffe aufweisen. Vorzugsweise ist das zugrunde liegende thermo- elektrische Material ausgewählt aus PbTe, Bi2Te3, Zintl-Phasen, Skutteruditen, Clathra- ten und Zink-Antimoniden, Heusler-Verbindungen, Silicide, Oxide sowie Gemischen davon. Geeignete Materialien sind z. B. in der eingangs zitierten Schrift von S. Nolan genannt.
Die thermoelektrischen Materialien werden im Allgemeinen durch Reaktivmahlen oder bevorzugt durch Zusammenschmelzen und Reaktion von Mischungen der jeweiligen Elementbestandteile oder deren Legierungen hergestellt, wobei diese Schritte in Gegenwart von Sauerstofffängern durchgeführt werden können.
Das thermoelektrische Material (Grünkörper, Schenkel, Pulver, Granulat) wird bei einer Temperatur von im Allgemeinen mindestens 100 0C, vorzugsweise mindestens 200 0C, niedriger als der Schmelzpunkt des resultierenden Halbleitermaterials in Gegenwart der Sauerstofffänger gesintert. Üblicherweise beträgt die Sintertemperatur 350 bis 900 0C, vorzugsweise 500 bis 800 0C. Es kann auch ein Spark-Plasma-Sintern (SPS) oder Mikrowellensintern durchgeführt werden.
Das Sintern wird während eines Zeitraums von vorzugsweise mindestens 0,5 Stunden durchgeführt. Üblichweise beträgt die Sinterzeit 1 bis 24 Stunden. In einer Ausfüh- rungsform der vorliegenden Erfindung wird das Sintern bei einer Temperatur durchgeführt, welche 100 bis 500 0C niedriger ist als die Schmelztemperatur des resultierenden Halbleitermaterials. Das Sintern kann unter einer Schutzgasatmosphäre, beispielsweise aus Argon, Wasserstoff oder Inertgas/Wasserstoff, durchgeführt werden. Somit werden die gepressten Teile vorzugsweise auf 90 bis 100 % ihrer theoretischen Bulkdichte gesintert.
Insgesamt ergibt sich damit als bevorzugte Ausführungsform ein Verfahren, welches durch die folgenden Verfahrensschritte gekennzeichnet ist:
(1 ) Zusammenschmelzen von Mischungen der jeweiligen Elementbestandteile oder deren Legierungen des thermoelektrischen Materials;
(2) Zerkleinern des in Verfahrensschritt (1 ) erhaltenen Materials;
(3) Pressen des in Verfahrensschritt (2) erhaltenen Materials zu Formkörpern und
(4) Sintern der in Verfahrensschritt (3) erhaltenen Formkörper mit Sauerstofffänger.
An die Vorbehandlung des Materials und die Pulverherstellung gibt es keine Beschrän- kung. Das Material für die Sinterung kann beispielsweise durch Mahlen eines Schmelzkörpers oder aber direkt in Pulverform durch Rascherstarrung (MeIt Spinning) oder entsprechende Syntheseverfahren (Fällung, Versprühen etc.) hergestellt werden. Die Vorverdichtung des Pulvers zum Grünkörper erfolgt nach den dem Fachmann hierfür bekannten Techniken. Dabei ist es bevorzugt, den Grünkörper nicht bereits nahe 100 % zu verdichten, um noch einen Gasaustausch mit der Umgebung während der Sinterung zu ermöglichen. Die eigentliche Verdichtung erfolgt erst im Sinterschritt.
Für die Sinterung gemäß der vorliegenden Erfindung gibt es mehrere Optionen. Der Sauerstofffänger kann direkt gemeinsam mit dem Grünkörper in eine Ampulle eingeschlossen werden. Dabei kann der Sauerstofffänger entweder in direktem Kontakt mit dem Grünkörper sein, oder räumlich getrennt. Der direkte Kontakt kann z. B. durch ein Umwickeln mit Draht, Auflegen auf ein Netzchen, Einbetten in eine Pulverschüttung etc. erfolgen.
Die räumliche Trennung kann durch eine Trennwand (z. B. Quarzwolle) erreicht werden, aber auch in einer Ampulle mit mehreren Kompartimenten (z. B. in Hantelform). Mehrere Kompartimente haben den Vorteil, dass der Sauerstofffänger und das Material in einem Mehrzonenofen auch verschiedenen Temperaturniveaus ausgesetzt werden können, sofern das gewünscht und notwendig ist.
Die Ampulle kann beispielsweise aus Quarzglas gefertigt sein, aber auch direkt aus dem Material des Sauerstofffängers. Die Sinterung sollte dann im Ofen unter Inertbedingungen erfolgen, um eine Oxidation der Außenseite oder eine Permeation von Sau- erstoff durch die Behälterwand zu verhindern. Es ist aber auch möglich, die Ampulle aus dem Fängermaterial nachträglich außen mit einer Inertschicht zu beschichten, oder umgekehrt eine Schicht des Fängermaterials auf die Innenseite der Ampulle einzutragen. Auch ist es möglich, den Sauerstofffänger bei einer offenen Sinterung mit einzusetzen. Eine offene Sinterung kann beispielsweise in einem konventionellen Ofen in einem Graphit-, Quarz- oder Metalltiegel erfolgen. Ggf. kann auch das Tiegelmaterial selbst als Sauerstofffänger dienen. Der Sauerstofffänger kann einfach mit in den Tiegel zum Grünkörper hinzugefügt werden, entweder in massiver Form (Draht, Netz etc.), oder als Pulver. Der Grünkörper kann dann auf das Pulver aufgelegt werden, oder sich direkt im Pulver befinden. Ggf. kann der Sauerstofffänger als Pulver auch durch ein Additiv wie Graphit, Quarzsand, inerte Keramik o. ä.„verdünnt" werden.
Alternativ ist es weiterhin möglich, den Sauerstofffänger räumlich vor dem Grünkörper in dem Gasstrom zu platzieren. Die Sinterung kann unter einem Inertgasstrom ausge- führt (He, Ar, N2) werden, die Reduktionswirkung des Sauerstofffängers kann dabei von einem reduzierenden Gas unterstützt werden (H2, CO), das dem Inertgasstrom beigemischt wird oder diesen vollständig ersetzt. Alternativ kann unter vermindertem Druck gesintert werden. Die Sinterung kann durch elektrisches, induktives, Mikrowel- len- oder Verbrennungsheizen bewirkt werden.
Auch bei der Sinterung unter Druck (Heißpressen, Spark-Plasma-Sintering) kann ein Sauerstofffänger eingesetzt werden. Hierzu sind beispielsweise die folgenden Ausführungsformen denkbar.
Zunächst ist es möglich, in den Mantel der Pressmatrize Sauerstofffängermaterialien zu integrieren, statt einen reinen Graphit oder eine reine Stahlmatrize zu verwenden. Auch eine Beschichtung der Innenseite der Pressmatrize mit dem Sauerstofffänger ist möglich. Gleiche Vorkehrungen können bei der Herstellung oder Verarbeitung der thermoelektrischen Materialien getroffen werden.
Weiterhin ist eine gemeinsame Verdichtung des thermoelektrischen Materialpulvers und des Sauerstofffängers in einer Form eines Sandwiches möglich. Das thermoelekt- rische Materialpulver wird auf den Sauerstofffänger geschichtet, und beide werden gemeinsam durch Heißpressen oder SPS verdichtet. Der Sauerstofffänger kann dabei ebenfalls als Pulver, aber auch als vorgepresster oder massiver Formkörper eingesetzt werden. Das gleiche gilt für das thermoelektrische Material, das ebenfalls vor dem Heißpress- oder SPS-Schritt zu einem Grünkörper vorverdichtet sein kann. Nach der Kompaktierung werden Sauerstofffänger und Materialkörper mechanisch voneinander getrennt (Schneiden, Sägen etc., die entsprechenden Verfahren sind dem Fachmann bekannt).
Auch eine Extrusion der Materialien zu dichten Formkörpern ist möglich. Diese erfolgt bei thermoelektrischen Materialien üblicherweise bei erhöhter Temperatur und kann wie in WO 01/17034 beschrieben durchgeführt werden, siehe auch US 3,220, 199 und US 4,161 ,11 1. Hier kann ein Sauerstofffänger durch ein geeignetes Kapselmaterial im Zuge einer verkapselten Extrusion eingesetzt werden (das grundlegende Verfahren ist dem Fachmann bekannt), wobei entweder die gesamte Kapsel aus dem betreffenden Material hergestellt werden kann, welches dann nach außen hin durch eine zusätzliche Beschichtung inertisiert wird, oder die Kapsel wird auf der Innenseite mit dem Sauerstofffängermaterial beschichtet.
Ein analoger Kapselprozess kommt auch beim isostatischen Heißpressen zum Tragen. An die Kompaktierung durch Heißpressen, SPS oder Extrusion etc. kann sich noch ein weiterer Sinterschritt anschließen. Für diesen gelten die gleichen Möglichkeiten und Bedingungen wie bereits vorstehend für das Kaltpressen/Sintern beschrieben. Die Sinterkörper können entweder bereits direkt in der für das thermoelektrische Modul notwendigen Schenkelgeometrie hergestellt werden, oder aber Schenkel können aus den Sinterkörpern in der erforderlichen Geometrie herausgeschnitten werden. Dies kann durch die dem Fachmann bekannten Verfahren erfolgen. Die Erfindung betrifft auch ein Verfahren zur Erhöhung der Langzeitstabilität thermo- elektrischer Schenkel, bei dem die Schenkel in einem thermoelektrischen Modul in Gegenwart von Sauerstofffängern betrieben werden.
Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
Beispiele
Beispiel 1 n-dotiertes PbTe-Bulkmaterial wurde zerkleinert und unter Luft für 60 Sekunden mit 30 kN zu einer kompakten Pille verpresst. Die Pille wurde aus der Presse entfernt und mit Ti-Draht von 0,25 mm Durchmesser und 3 cm Länge umwickelt und in einer geschlossenen Quarzampulle für 72 Stunden bei 600 0C gesintert. Nach dem Sintern wurde der Power-Faktor bei 300 0C bestimmt.
Für den mit Ti-Draht umwickelten Körper ergab sich ein Power-Faktor von 21 ,5 μW/K2 cm. Wurde zum Vergleich auf den Ti-Draht verzichtet, so ergab sich ein Power-Faktor von 0,45 μW/K2 cm.
Damit wird deutlich, dass das erfindungsgemäße Sinterverfahren zu deutlich verbesserten Power-Faktoren führt.
Beispiel 2
Dotiertes PbTe Bulkmaterial wurde zerkleinert und gemahlen und mit 0,1 Gew.-% TiH2 vermischt. Die Mischung wurde zu einer kompakten Pille 1 s lang mit 15 kN Kraft unter Luft gepresst. Die Pille wurde aus der Kaltpresse entfernt und in einer Ampulle für 3 h bei 700 0C gesintert.
Figure imgf000011_0001

Claims

Patentansprüche
1. Verfahren zum Herstellen, Verarbeiten, Sintern, Pressen oder Extrudieren von thermoelektrischen Materialien unter Wärmebehandlung unter Inertgas oder bei vermindertem Druck bei Temperaturen im Bereich von 100 bis 900 0C, dadurch gekennzeichnet, dass das Herstellen, Verarbeiten, Sintern, Pressen oder Extrudieren in Gegenwart von Sauerstofffängern erfolgt, die bei den Herstell-, Verar- beitungs-, Sinter-, Press- oder Extrusionsbedingungen in Gegenwart von freiem Sauerstoff thermodynamisch stabile Oxide ausbilden und damit freien Sauerstoff vom thermoelektrischen Material fernhalten.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Sauerstofffängern ausgewählt sind aus Ti, Zr, Hf, Si, AI, V, Sc, Y, Seltenerdmetallen, Li, Na, K, Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn, Cd, P oder Gemischen davon.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Sauerstofffänger ausgewählt sind aus H2, CO, CO/CO2-Mischungen, H2/H2O-Mischungen oder Inertgas/H2-Mischungen.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Sauerstofffänger ausgewählt sind aus Hydriden, Carbonylen, niedervalenten Oxiden, Sulfiden, Phosphiden, von Metallen, Schwefel oder Phosphor enthaltenden Verbindungen, Schwefel, Phosphor oder Gemischen davon.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das thermoelektrische Material ausgewählt ist aus PbTe, Bi2Te3, Zintl-Phasen, Skut- teruditen, Clathraten und Zink-Antimoniden, Heusler-Verbindungen, Siliciden, Oxiden oder Gemischen davon.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Grünkörper aus einem thermoelektrischen Material, das einer Formgebung unterzogen wurde, in direktem Kontakt mit dem Sauerstofffänger gesintert wird.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Grünkörper aus einem thermoelektrischen Material, das einer Formgebung unterzogen wurde, und der Sauerstofffänger beim Sintern räumlich voneinander getrennt, aber über einen gemeinsamen Gasraum verbunden sind.
8. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Sinterung unter Druck und Formgebung eines Pulvers des thermoelektrischen Materials erfolgt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Sinterung unter Druck als Heißpressen, isostatisches Heißpressen oder Spark-Plasma-Sintering erfolgt.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Sauer- stofffänger im Presswerkzeug in Kontakt mit dem thermoelektrischen Material angeordnet ist oder in Form eines Sandwiches mit dem Pulver des thermoelektrischen Materials verpresst wird.
1 1. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Sinterung unter Druck als Extrusion durchgeführt wird.
12. Verfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass das Sintern zur direkten Herstellung thermoelektrischer Materialschenkel erfolgt.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der feste Sauerstofffänger in Form eines Pulvers, Drahtes, Bleches, Bandes, Granulats, Formkörpers, Netzes oder in Kugelform eingesetzt wird.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Sauerstofffänger kein Element enthält, das im thermoelektrischen Material vorliegt.
15. Verfahren zur Erhöhung der Langzeitstabilität thermoelektrischer Schenkel, bei dem die Schenkel in einem thermoelektrischen Modul in Gegenwart von Sauer- stofffängern betrieben werden.
PCT/EP2010/060713 2009-07-27 2010-07-23 Verfahren zum sintern von thermoelektrischen materialien WO2011012548A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10742116A EP2459762A2 (de) 2009-07-27 2010-07-23 Verfahren zum sintern von thermoelektrischen materialien
CA2768979A CA2768979A1 (en) 2009-07-27 2010-07-23 Method for sintering thermoelectric materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09166477 2009-07-27
EP09166477.1 2009-07-27

Publications (2)

Publication Number Publication Date
WO2011012548A2 true WO2011012548A2 (de) 2011-02-03
WO2011012548A3 WO2011012548A3 (de) 2011-05-26

Family

ID=42799666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/060713 WO2011012548A2 (de) 2009-07-27 2010-07-23 Verfahren zum sintern von thermoelektrischen materialien

Country Status (4)

Country Link
US (2) US20110020164A1 (de)
EP (1) EP2459762A2 (de)
CA (1) CA2768979A1 (de)
WO (1) WO2011012548A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011047405A3 (de) * 2009-10-23 2011-08-11 Miba Sinter Austria Gmbh Verfahren zum herstellen eines thermoelektrischen elementes
DE102014114830A1 (de) * 2014-10-13 2016-04-28 Vacuumschmelze Gmbh & Co. Kg Verfahren zum Herstellen eines thermoelektischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
DE102016116248A1 (de) 2016-08-31 2018-03-01 Technische Universität Darmstadt Thermoelektrisches Material

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2411324A2 (de) * 2009-03-24 2012-02-01 Basf Se Selbstorganisierende thermoelektrische materialien
DE102013103896B4 (de) * 2013-04-17 2015-05-28 Vacuumschmelze Gmbh & Co. Kg Verfahren zum Herstellen eines thermoelektrischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
FR3005882B1 (fr) * 2013-05-22 2015-06-26 Aubert & Duval Sa Procede de fabrication par metallurgie des poudres d'une piece metallique, et piece en acier ainsi obtenue, et conteneur pour la mise en oeuvre de ce procede
US9793461B2 (en) 2014-09-05 2017-10-17 Mossey Creek Technologies, Inc. Nano-structured porous thermoelectric generators
CN104498751B (zh) * 2014-12-25 2017-01-18 中国科学院上海硅酸盐研究所 一种方钴矿热电材料的制备方法
FR3063739A1 (fr) * 2017-06-20 2018-09-14 Commissariat Energie Atomique Procede de preparation d'un materiau thermoelectrique du type half-heusler
CN108878634B (zh) * 2018-07-30 2021-12-07 哈尔滨师范大学 一种y掺杂赝三元半导体致冷材料及其制备方法
CN112919915B (zh) * 2021-03-09 2022-12-02 南京理工大学 一种sps有压烧结粉末压制氮化硅陶瓷异形刀具的方法
CN114634358A (zh) * 2022-03-09 2022-06-17 北京航空航天大学 一种铜基氧化物热电材料的制备方法
CN114836641A (zh) * 2022-04-21 2022-08-02 安徽大学 一种p型Mg3Sb2热电材料的制备方法
CN115521148A (zh) * 2022-09-22 2022-12-27 广西自贸区见炬科技有限公司 一种Cu掺杂的(Bi,Sb)2Te3热电材料的制备方法及其产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220199A (en) 1961-02-23 1965-11-30 Siemens Ag Thermoelectric devices, and method and apparatus for producing thin thermocouple legs by extrusion
US4161111A (en) 1971-06-24 1979-07-17 Minnesota Mining And Manufacturing Company Hydrostatically extruded thermoelectric legs
WO2001017034A1 (en) 1999-08-27 2001-03-08 Simard Jean Marc Process for producing thermoelectric material and thermoelectric material thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400452A (en) * 1963-05-21 1968-09-10 Westinghouse Electric Corp Process for producing thermoelectric elements
US3485680A (en) * 1966-10-06 1969-12-23 Monsanto Res Corp Thermoelement made by plasma spraying
PH19385A (en) * 1983-01-31 1986-04-07 Energy Conversion Devices Inc New powder pressed n-type thermoelectric materials and method of making same
US7560053B2 (en) * 2005-02-17 2009-07-14 Nobuyoshi Imaoka Thermoelectric material having a rhombohedral crystal structure
TW200933940A (en) * 2007-12-28 2009-08-01 Basf Se Extrusion process for preparing improved thermoelectric materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220199A (en) 1961-02-23 1965-11-30 Siemens Ag Thermoelectric devices, and method and apparatus for producing thin thermocouple legs by extrusion
US4161111A (en) 1971-06-24 1979-07-17 Minnesota Mining And Manufacturing Company Hydrostatically extruded thermoelectric legs
WO2001017034A1 (en) 1999-08-27 2001-03-08 Simard Jean Marc Process for producing thermoelectric material and thermoelectric material thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. NOLAN; MRS BULLETIN ET AL., RECENT DEVELOPMENTS IN BULK THERMOELECTRIC MATERIALS, vol. 31, 2006, pages 199 - 206

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011047405A3 (de) * 2009-10-23 2011-08-11 Miba Sinter Austria Gmbh Verfahren zum herstellen eines thermoelektrischen elementes
DE102014114830A1 (de) * 2014-10-13 2016-04-28 Vacuumschmelze Gmbh & Co. Kg Verfahren zum Herstellen eines thermoelektischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
US10818831B2 (en) 2014-10-13 2020-10-27 Vacuumschmelze Gmbh & Co. Kg Method for producing a thermoelectric object for a thermoelectric conversion device
DE102016116248A1 (de) 2016-08-31 2018-03-01 Technische Universität Darmstadt Thermoelektrisches Material
US11114601B2 (en) 2016-08-31 2021-09-07 Technische Universität Darmstadt Thermoelectric material

Also Published As

Publication number Publication date
US20110020164A1 (en) 2011-01-27
EP2459762A2 (de) 2012-06-06
US20140353880A1 (en) 2014-12-04
WO2011012548A3 (de) 2011-05-26
CA2768979A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
EP2459762A2 (de) Verfahren zum sintern von thermoelektrischen materialien
EP2227834B1 (de) Extrusionsverfahren zur herstellung verbesserter thermoelektrischer materialien
WO2010108912A2 (de) Selbstorganisierende thermoelektrische materialien
EP1999066A2 (de) Dotierte bleitelluride fuer thermoelektrische anwendungen
EP2460195B1 (de) Verfahren zur herstellung thermoelektrischer halbleitermaterialien und schenkel
CN1199020A (zh) Co-Sb系热电材料及其制造方法
DE102011085828A1 (de) THERMOELEKTRISCHES MATERIAL AUS EINER VERBINDUNG AUF Mg2Si-BASIS UND HERSTELLUNGSVERFAHREN DAFÜR
EP2250126A2 (de) Dotierte zinntelluride für thermoelektrische anwendungen
US9444026B2 (en) Reduced oxides having large thermoelectric ZT values
US9076567B2 (en) Reduced oxides having large thermoelectric ZT values
EP1409408B1 (de) Methode zur herstellung von magnesiumdiborid sowie von magnesiumdiborid-formkörpern aus magnesiumhydrid und elementarem bor mittels puls-plasma-synthese
CN1236090C (zh) 一种机械活化与化学活化法制备W-Cu合金方法
WO2006089938A1 (de) Halbleitende bismutsulfide mit neuen eigenschaftskombinationen und deren verwendung in der thermoelektrik und photovoltaik
JP5482229B2 (ja) 熱電材料およびその製造方法
WO2007104603A2 (de) Blei-germanium-telluride fuer thermoelektrische anwendungen
Katsuyama et al. Thermoelectric properties of CeFe3CoSb12-MoO2 composite
WO2005114756A2 (de) Antimonide mit neuen eigenschaftskombinationen
EP2824076B1 (de) Herstellung von Skutterudit
RU2459289C1 (ru) Способ получения таблеток ядерного топлива на основе диоксида урана
DE102004025066A1 (de) Telluride mit neuen Eigenschaftskombinationen
EP3507241B1 (de) Thermoelektrisches material
WO2006089936A1 (de) Halbleitende kupfersulfide mit neuen eigenschaftskombinationen und deren verwendung in der thermoelektrik und photovoltaik
WO2006027250A2 (de) Thermoelektrisch aktive mischoxide
JP2018160620A (ja) 熱電変換材料及びその製造方法、並びに、熱電変換素子、熱電変換モジュール、移動体
IL33806A (en) Method of preparing an anode composition for a solid state electrolyte power cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10742116

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2010742116

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010742116

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2768979

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE