WO2011012385A1 - Verfahren und vorrichtung zur umwandlung von kohlenmonoxid und wasser in kohlendioxid und wasserstoff, mit der abtrennung eines oder mehrer produkte - Google Patents

Verfahren und vorrichtung zur umwandlung von kohlenmonoxid und wasser in kohlendioxid und wasserstoff, mit der abtrennung eines oder mehrer produkte Download PDF

Info

Publication number
WO2011012385A1
WO2011012385A1 PCT/EP2010/059094 EP2010059094W WO2011012385A1 WO 2011012385 A1 WO2011012385 A1 WO 2011012385A1 EP 2010059094 W EP2010059094 W EP 2010059094W WO 2011012385 A1 WO2011012385 A1 WO 2011012385A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
carbon dioxide
solvent
solid
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2010/059094
Other languages
German (de)
English (en)
French (fr)
Inventor
Manfred Baldauf
Carsten Graeber
Marc Hanebuth
Gerhard Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to IN350DEN2012 priority Critical patent/IN2012DN00350A/en
Priority to EP10728652.8A priority patent/EP2459480B1/de
Priority to US13/387,170 priority patent/US8623240B2/en
Priority to CN201080033865.8A priority patent/CN102471052B/zh
Priority to RU2012107708/04A priority patent/RU2542983C2/ru
Publication of WO2011012385A1 publication Critical patent/WO2011012385A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds

Definitions

  • the invention generally relates to the carbon monoxide shift reaction CO + H 2 O-> CO 2 + H 2 .
  • the large-scale use of this reaction is considered.
  • the carbon monoxide shift reaction is one of the most important reactions in the chemical industry. Recently, this chemical reaction has also become important for fossil fuel power plants. The background for this is the current trend of low-carbon power generation with fossil fuels
  • a commonly used prior art combination demonstrates the pre-combustion approach with carbon dioxide separation combined with the gas-phase carbon monoxide shift reaction.
  • a second subprojects process the separation of the carbon dioxide by physical gas scrubbing, for example, a Rectisol laundry.
  • the carbon dioxide into cooled methanol is absorbed at about -40 0 C., Since these low temperatures are needed to In order to be able to sufficiently separate the carbon dioxide, a large amount of energy must be expended for the cooling, which lowers the overall efficiency of the power plant.
  • European Patent EP 0 299 995 B1 discloses a process for the conversion of carbon monoxide and water to carbon dioxide and hydrogen
  • the combination of a carbon monoxide shift reaction described above with simultaneous removal of the carbon dioxide formed from the fuel gases is carried out in the liquid phase, in particular by mentioning Example No. 6 and Patent Document 2 in this process about 2% water content as solvent l, wherein its pH is increased by the addition of a carbonate such as potassium carbonate.
  • the chemical reactions, which can be spatially separated, are as follows:
  • the invention has for its object to provide a method and an apparatus for carrying out the carbon monoxide shift reaction with improved overall efficiency.
  • the solution of this task corresponds in each case to a combination of features of an independently formulated patent claim.
  • Advantageous embodiments can be found in the dependent claims.
  • the invention is based on the finding that the thermal decomposition of the hydrogencarbonate HCO 3 " or of the carbonates CO 3 and the expulsion of the carbon dioxide CO 2 can not in each case be carried out completely in the methanolic solution of the second reactor, since this solution
  • a solid can be separated from the reaction mixture and subsequently decomposed in an additional fourth reactor for the expulsion of carbon dioxide
  • the carbon monoxide shift reaction is doing in f Lüssiger phase performed.
  • the formation of the two gases hydrogen and carbon dioxide takes place at different locations, as a result of which their representation can be achieved separately from one another.
  • the energy demand of such a designed process is lower than that of a carbon monoxide shift reaction in the gas phase with subsequent separation of hydrogen and carbon dioxide.
  • the decomposition of the solid, a bicarbonate or a carbonate does not proceed without further measures, the dissolution of the solid can be preceded by a solvent which has the highest possible boiling point, such as water, in order to prevent high solvent losses.
  • a preferred precipitation of the bicarbonate can be brought about for example by lowering the temperature in the precipitation reactor advantageous.
  • the use of a saturated bicarbonate solution results in that bicarbonate formed in the first reactor and in the third reactor can not be dissolved and thus precipitates by itself.
  • the precipitation may be carried out further by addition of apolar, but miscible with the first solvent, the second solvent, wherein the second solvent serves as a precipitant for salts. After the precipitation, corresponding additives can be distilled off again.
  • a further advantageous possibility for precipitating the bicarbonate is the addition of a readily soluble salt with the same cation as is present in the hydrogencarbonate.
  • the solubility product of the hydrogen carbonate salt is already achieved at a low bicarbonate concentration.
  • Figure 1 shows an arrangement of four reactors, wherein in the second reactor, a solid bicarbonate is separated, which in the fourth reactor is decomposed thermally under carbon dioxide release,
  • Figure 2 shows an arrangement of four reactors corresponding to Figure 1, wherein a carbonate as
  • Figure 3 shows a listing of equations (1), (2) and (3), these three equations representing in sum the carbon monoxide shift reaction, as known in the art.
  • equations (1), (2) and (3) based on the reactions according to equations (1), (2) and (3), further reaction equations are given for how the carbon monoxide shift reaction proceeds in a first reactor, second reactor and third reactor.
  • formation of formate takes place with simultaneous formation of hydrogencarbonate.
  • equation (3) occurs a reaction of formate with water to bicarbonate and hydrogen.
  • Equation (2) bicarbonate is decomposed elsewhere in the course of the reaction to release carbon dioxide.
  • reaction equations 2.1 and 4.1 are exemplarily formulated for the use of alkali metal ions. Other cations may equally be suitable for carrying out the reactions, with the reaction equations 2.1 and 4.1 then changing accordingly.
  • Solvent and dissolved components from the second reactor 2 and non-gaseous components from the fourth reactor 4 can be recycled to the first reactor 1
  • fourth reactor 4 is carried out after an optional drying of the precipitate from the second reactor 2, a thermal decomposition according to equation 4.1.
  • the carbonate M 2 CO 3 is brought together with the water in the recirculated stream of the second reactor 2 to the first reactor 1, so that thereby the Bonatatniklauf is closed.
  • the process presented can also be carried out with other cations in an analogous manner, for example with the ammonium ion or alkaline earth metal ions.
  • a further adaptation of the method provides that instead of a weakly alkaline carbonate buffer system, a strongly alkaline solution of hydroxides is used.
  • a strongly alkaline solution of hydroxides is used instead of a weakly alkaline carbonate buffer system.
  • reaction equations 2.2 and 4.2 are not intended to be limiting to a particular alkali metal (M). Other cations may equally be suitable for carrying out the reactions; the reaction equations change accordingly.
  • the second variant according to the reaction equations (1.2), (3.2), (2.2) and (4.2) takes place in the additional fourth reactor 4 after drying of the precipitate from the second reactor 2, a thermal decomposition of the carbonate M 2 CO 3 .
  • the oxide M 2 O is introduced into the recirculated stream of the second reactor 2 to the first reactor 1. There it reacts with water to the hydroxide, so that thereby the material cycle is closed.
  • the corresponding equation is:
  • the reaction system according to the second variant has the advantage that after the first reactor 1 in the solvent, the equilibrium concentration of carbon dioxide CO 2 will be substantially lower than when using the first variant according to the equations (1.1), (3.1), (2.1), (4.1). As a result, the undesirable desorption of the carbon dioxide together with the hydrogen H 2 formed in the third reactor 3 is very strongly suppressed and thus the carbon dioxide losses are reduced with or into the hydrogen stream.
  • the solvent used may be aqueous methanol, water or even a polar solvent.
  • the condition is that the salts involved are soluble.
  • the decomposition of the bicarbonate or of the carbonate does not take place in a pumped-over solution which also contains dissolved fuel gases, but takes place after the precipitation of a solid.
  • the solid is, according to variant 1, the bicarbonate and according to variant 2, the carbonate. In a separate reactor, the decomposition of the solid is carried out accordingly. This measure can both Solvent losses and fuel gas losses are avoided.
  • the pH range can be increased, thus significantly reducing the carbon dioxide equilibrium concentration in the solution and at the same time reducing unwanted carbon dioxide desorption with the residual gases in the first reactor 1 or with the hydrogen in the third reactor 3. Overall, this increases the degree of carbon dioxide capture and the losses of fuel gas fall.
  • the first variant is shown, which as a solid in the second reactor 2, a hydrogen carbonate ausbringt, which is thermally decomposed in the 4th reactor 4 with release of carbon dioxide.
  • FIG. 2 shows a scheme corresponding to the second variant, which has a carbonate as solid instead of the hydrogen carbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)
PCT/EP2010/059094 2009-07-30 2010-06-25 Verfahren und vorrichtung zur umwandlung von kohlenmonoxid und wasser in kohlendioxid und wasserstoff, mit der abtrennung eines oder mehrer produkte Ceased WO2011012385A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN350DEN2012 IN2012DN00350A (enExample) 2009-07-30 2010-06-25
EP10728652.8A EP2459480B1 (de) 2009-07-30 2010-06-25 Verfahren und vorrichtung zur umwandlung von kohlenmonoxid und wasser in kohlendioxid und wasserstoff, mit der abtrennung eines oder mehrer produkte
US13/387,170 US8623240B2 (en) 2009-07-30 2010-06-25 Method and apparatus for converting carbon monoxide and water into carbon dioxide and hydrogen, with removal of one or more products
CN201080033865.8A CN102471052B (zh) 2009-07-30 2010-06-25 将一氧化碳和水转化成二氧化碳和氢并随之分离出一种或多种产物的方法和设备
RU2012107708/04A RU2542983C2 (ru) 2009-07-30 2010-06-25 Способ и установка для конверсии моноксида углерода и воды в диоксид углерода и водород с удалением одного или более продуктов

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009035388.7A DE102009035388B4 (de) 2009-07-30 2009-07-30 Verfahren und Vorrichtung zur Umwandlung von Kohlenmonoxid und Wasser in Kohlendioxid und Wasserstoff, mit der Abtrennung eines oder mehrer Produkte
DE102009035388.7 2009-07-30

Publications (1)

Publication Number Publication Date
WO2011012385A1 true WO2011012385A1 (de) 2011-02-03

Family

ID=42357570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/059094 Ceased WO2011012385A1 (de) 2009-07-30 2010-06-25 Verfahren und vorrichtung zur umwandlung von kohlenmonoxid und wasser in kohlendioxid und wasserstoff, mit der abtrennung eines oder mehrer produkte

Country Status (7)

Country Link
US (1) US8623240B2 (enExample)
EP (1) EP2459480B1 (enExample)
CN (1) CN102471052B (enExample)
DE (1) DE102009035388B4 (enExample)
IN (1) IN2012DN00350A (enExample)
RU (1) RU2542983C2 (enExample)
WO (1) WO2011012385A1 (enExample)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107848794B (zh) 2015-05-13 2021-08-24 耶路撒冷希伯来大学伊萨姆研究开发有限公司 用于储存和释放氢的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137298A (en) * 1977-12-21 1979-01-30 Continental Oil Company Production of a hydrogen-rich gas from a hydrogen, carbon monoxide and carbon dioxide-containing fuel gas
US4372833A (en) * 1981-04-14 1983-02-08 University Of Georgia Research Foundation, Inc. Photogeneration of active formate decomposition catalysts to produce hydrogen from formate and water
EP0299995B1 (en) 1987-01-27 1991-10-30 ONSAGER, Olav-T. Process for converting carbon monoxide and water to hydrogen and carbon dioxide
US20040028603A1 (en) * 2001-08-15 2004-02-12 Benjamin Reichman Carbonate recycling in a hydrogen producing reaction
WO2006098854A2 (en) * 2005-03-14 2006-09-21 Ovonic Battery Company, Inc. Production of hydrogen via a base-facilitated reaction of carbon monoxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262973A (en) * 1963-11-20 1966-07-26 Standard Oil Co Preparation of alkali metal formates in alcoholic medium
US3772380A (en) * 1970-03-12 1973-11-13 Monsanto Co Production of carboxylic acids and esters
US4067958A (en) * 1976-03-10 1978-01-10 Continental Oil Company Production of a hydrogen-rich gas from a co-containing fuel gas
US4087373A (en) * 1976-07-23 1978-05-02 The United States Of America As Represented By The Secretary Of The Navy Novel method for the production of hydrogen and hydrogen-carbon monoxide mixtures
SU834993A1 (ru) * 1978-06-16 1995-04-10 Г.П. Черкасов Способ получения катализатора для конверсии окиси углерода с водяным паром

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137298A (en) * 1977-12-21 1979-01-30 Continental Oil Company Production of a hydrogen-rich gas from a hydrogen, carbon monoxide and carbon dioxide-containing fuel gas
US4372833A (en) * 1981-04-14 1983-02-08 University Of Georgia Research Foundation, Inc. Photogeneration of active formate decomposition catalysts to produce hydrogen from formate and water
EP0299995B1 (en) 1987-01-27 1991-10-30 ONSAGER, Olav-T. Process for converting carbon monoxide and water to hydrogen and carbon dioxide
US20040028603A1 (en) * 2001-08-15 2004-02-12 Benjamin Reichman Carbonate recycling in a hydrogen producing reaction
WO2006098854A2 (en) * 2005-03-14 2006-09-21 Ovonic Battery Company, Inc. Production of hydrogen via a base-facilitated reaction of carbon monoxide

Also Published As

Publication number Publication date
DE102009035388A1 (de) 2011-02-03
CN102471052A (zh) 2012-05-23
EP2459480A1 (de) 2012-06-06
CN102471052B (zh) 2015-11-25
DE102009035388B4 (de) 2014-01-02
RU2542983C2 (ru) 2015-02-27
EP2459480B1 (de) 2014-05-07
IN2012DN00350A (enExample) 2015-07-10
US8623240B2 (en) 2014-01-07
US20120126178A1 (en) 2012-05-24
RU2012107708A (ru) 2013-09-10

Similar Documents

Publication Publication Date Title
EP2947387B1 (de) Stoffverwertung der stoffe kohlenstoffdioxid und stickstoff mit elektropositivem metall
DE69111754T2 (de) System für die Rückgewinnung und Verwendung von CO2-Gas.
DE102016213360A1 (de) Verfahren zur elektrochemischen Herstellung von Ammoniak
EP3710617B1 (de) Elektrochemische herstellung von kohlenstoffmonoxid und/oder synthesegas
DE102013113946A1 (de) System und Verfahren zur CO2 - Erfassung mittels eines H2- Separators, der Wärmeentschwefelungstechnologie verwendet.
DE112020001970T5 (de) Synthetik-Produkt-Herstellungssystem und Synthetik-Produktherstellungsverfahren
EP2459480B1 (de) Verfahren und vorrichtung zur umwandlung von kohlenmonoxid und wasser in kohlendioxid und wasserstoff, mit der abtrennung eines oder mehrer produkte
WO2021089183A1 (de) Verfahren und anlage zur herstellung von monoethylenglycol
EP2459481B1 (de) Verfahren und anordnung zur umwandlung von kohlenmonoxid und wasser in kohlendioxid und wasserstoff mit der abtrennung von zumindest einem produktgas
DE2455694A1 (de) Verfahren zur herstellung eines wasserstoff und kohlenmonoxid enthaltenden gases
EP3969433A1 (de) Verfahren und anlage zur synthese von methanol
EP3674261B1 (de) Verfahren zur synthese einer wasserstoffhaltigen verbindung
WO2016070989A1 (de) Verfahren zur produktion von synthesegas
DE2929315A1 (de) Verfahren zur rueckgewinnung von hydrierungskatalysatoren aus kohleartigen kohlehydrierungsrueckstaenden und verfahren zur kontinuierlichen kohlehydrierung
EP4166499A2 (de) Verfahren zur erzeugung von wasserstoff und kohlendioxid aus organischen substanzen
EP2620426B1 (de) Verfahren zur Herstellung von Harnstoff aus Abfällen, vorzugsweise Hausmüll, beliebiger Zusammensetzung
EP3148926A1 (de) Aufbau eines integrierten kraftwerks zum betrieb mit ameisensäure und betrieb eines integrierten kraftwerks mit ameisensäure
EP4428099A1 (de) Verfahren und vorrichtung zur synthese von ammoniak
DE102014212995A1 (de) Verfahren zur katalytischen Erzeugung von Carbonsäuren
EP4635905A1 (de) Verfahren und anlage zur gewinnung eines wasserstoffprodukts unter verwendung von ammoniak
DE102016204331A1 (de) Verfahren zur Herstellung von Ammoniak aus Rohgas
DE102023119209A1 (de) Verfahren zur CO2-neutralen, technischen Herstellung von Magnesium mit späterer Gewinnung von Wasserstoff und/oder synthetischen Kraftstoffen
EP4635908A1 (de) Verfahren und anlage zur gewinnung eines wasserstoffprodukts unter verwendung von ammoniak
DE1965627A1 (de) Verfahren zur Herabsetzung der Gesundheitsschaedlichkeit von fluessigen Abfaellen radioaktiver Natur
AT526550A1 (de) Verfahren zur kontinuierlichen Produktion von Wasserstoff, Kohlenstoffdioxid und Stickstoff

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033865.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10728652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010728652

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 350/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13387170

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012107708

Country of ref document: RU