RU2542983C2 - Способ и установка для конверсии моноксида углерода и воды в диоксид углерода и водород с удалением одного или более продуктов - Google Patents

Способ и установка для конверсии моноксида углерода и воды в диоксид углерода и водород с удалением одного или более продуктов Download PDF

Info

Publication number
RU2542983C2
RU2542983C2 RU2012107708/04A RU2012107708A RU2542983C2 RU 2542983 C2 RU2542983 C2 RU 2542983C2 RU 2012107708/04 A RU2012107708/04 A RU 2012107708/04A RU 2012107708 A RU2012107708 A RU 2012107708A RU 2542983 C2 RU2542983 C2 RU 2542983C2
Authority
RU
Russia
Prior art keywords
reactor
carbon dioxide
solvent
hydrogen
separated
Prior art date
Application number
RU2012107708/04A
Other languages
English (en)
Other versions
RU2012107708A (ru
Inventor
Манфред БАЛДАУФ
Карстен ГРЭБЕР
Марк ГАНЕБУТ
Герхард ЦИММЕРМАНН
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2012107708A publication Critical patent/RU2012107708A/ru
Application granted granted Critical
Publication of RU2542983C2 publication Critical patent/RU2542983C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к улучшенному способу конверсии моноксида углерода СО и воды Н2О в диоксид углерода СO2 и водород Н2, который включает стадии связывания моноксида углерода из газовой фазы первым растворителем с получением формиата НСОО-, разложение формиата НСОО- и отделение образующегося водорода Н2. При этом либо образующийся гидрокарбонат, либо образующийся карбонат осаждают и отделяют, твердый гидрокарбонат или твердый карбонат термически разлагают и диоксид углерода СО2 отделяют. При этом моноксид углерода СО связывают из газовой фазы первым растворителем в первом реакторе (1), образующийся формиат НСОО- разлагают в третьем реакторе (3), а образующийся водород H2 отделяют, осажденный гидрокарбонат отделяют во втором реакторе (2) и термическое разложение твердого гидрокарбоната и удаление диоксида углерода СO2 выполняют в четвертом реакторе (4). Способ позволяет проводить реакцию сдвига моноксида углерода с улучшенной эффективностью и снизить затраты энергии. Изобретение также относится к установке для осуществления указанного способа. 2 н. и 8 з.п. ф-лы, 3 ил.

Description

Изобретение относится, в целом, к реакции сдвига моноксида углерода
СО+H2O→CO22
Обращено внимание на промышленное использование этой реакции.
Реакция сдвига моноксида углерода относится к числу наиболее важных реакций химической промышленности. В последнее время данная химическая реакция также стала важной для электростанций, использующих ископаемое топливо. Основанием для этого является современная тенденция к производству электроэнергии с низким выбросом диоксида углерода на электростанциях, сжигающих ископаемое топливо. Здесь, реакция сдвига моноксида углерода может быть комбинирована с одновременным удалением образующегося диоксида углерода. Согласно современному уровню техники возможны три фундаментальных подхода: горение с предварительным захватом СО2, горение с последующим захватом CO2 и кислородное топливо.
При горении с предварительным захватом СО2 моноксид углерода должен быть преобразован в диоксид углерода согласно химическому уравнению реакции сдвига моноксида углерода перед горением, чтобы удалить весь углерод в форме диоксида углерода. Здесь, главная часть энергии моноксида углерода передается (сдвигается) к водороду, который может использоваться в газовой турбине.
Недостатком здесь является то, что удаление двух продуктов, водорода и диоксида углерода в газовой фазе, является энергоемким.
Комбинацией, часто предлагаемой в предшествующем уровне техники, является подход предварительного горения с удалением диоксида углерода, комбинированный с реакцией сдвига моноксида углерода в газовой фазе. При этом синтез-газ "сдвигают" в смеси с паром над катализаторами при температурах 300-500°С.
Диоксид углерода впоследствии отделяют посредством физического газового скруббера, например, скруббера Rectisol scrub, во втором подпроцессе. При этом диоксид углерода абсорбируют охлажденным метанолом приблизительно при -40°С. Так как необходимы низкие температуры, чтобы отделить диоксид углерода в достаточной степени, для охлаждения должно быть израсходовано большое количество энергии, и это снижает общую эффективность электростанции.
Европейский патент ЕР 0299995 В1 раскрывает способ конверсии моноксида углерода и воды в диоксид углерода и водород. Комбинацию реакции сдвига моноксида углерода с одновременным удалением образующегося диоксида углерода из продуктов горения, описанную в указанном документе, реализуют в жидкой фазе. Конкретное указание может быть сделано на пример номер 6 и также чертеж 2 в тексте патента. В этом способе метанол, содержащий воду в количестве приблизительно 2%, используют в качестве растворителя, причем показатель рН увеличивают добавлением карбоната, такого как карбонат калия. Химические реакции, которые могут в каждом случае протекать физически отдельно, являются следующими:
Figure 00000001
Figure 00000002
Figure 00000003
В первой стадии, соответствующей уравнению (1), моноксид углерода связывают из газовой фазы в раствор и отделяют от сопутствующих компонентов синтез-газа. Затем выполняют термическое разложение растворенного гидрокарбоната НСО3-, образующегося согласно уравнениям (1) и (3), увеличивая температуру до по меньшей мере 150°С, причем образуется диоксид углерода, который предпочтительно полностью удаляют. Реакции, соответствующие уравнениям (1), (2) и (3) в каждом случае, имеют одну и ту же нумерацию в реакторе. В качестве последней стадии формиат НСОО-, образующийся согласно уравнению (1), расщепляется согласно уравнению (3), и образуется водород. Водород, образующийся согласно уравнению (3), удаляют из процесса физически отдельно от диоксида углерода в дальнейшей стадии.
Найдено, что способ, соответствующий патенту ЕР 0299995 В1, не является удовлетворительным для настоящего использования.
Таким образом, например, диоксид углерода не может быть отделен полностью во втором реакторе. Напротив, диоксид углерода удаляют с частью водорода и остаточных газов. Более того, большая доля растворителя метанола теряется при удалении диоксида углерода во втором реакторе. Метанол должен быть извлечен, например, посредством водного скруббера с последующей перегонкой. Однако это требует увеличенных издержек с точки зрения разработки технологического процесса и энергии.
Потерянный водород, который захватывается потоком диоксида углерода в процесс и не отделяется, составляет количество приблизительно до 8%. Эти потери приводят к очень неэкономной работе электростанции, если диоксид углерода удаляют этим способом.
На основе уравнений (1) и (3), относительно низкий выход, следовательно, получают при удалении диоксида углерода или выделении водорода, так как оба газа не отделяются с достаточной чистотой, но частично появляются в выпускном отверстии для соответствующего другого газа.
Задачей, поставленной изобретением, является предложить способ и установку для выполнения реакции сдвига моноксида углерода с улучшенной эффективностью. Решение этой задачи в каждом случае соответствует комбинации признаков согласно независимо сформулированной формуле изобретения.
Преимущественные варианты осуществления могут быть найдены в зависимых пунктах формулы изобретения.
Изобретение основано на признании того, что термическое разложение гидрокарбоната H C O 3
Figure 00000004
или карбоната C O 3 2
Figure 00000005
и удаление диоксида углерода CO2 не может быть выполнено в полном объеме в метанольном растворе второго реактора, поскольку этот раствор также содержит другие растворенные газы. Это применимо, в особенности, к водороду из синтез-газа или остаткам водорода, которые не могут быть десорбированы при разложении формиата. Эти газы приводят к разбавлению диоксида углерода и, со стороны водорода, к потере топлива.
Согласно изобретению установлены условия реакции такие, что либо гидрокарбонат, либо карбонат осаждается в твердой форме в реакторе осаждения. Твердое вещество может быть отделено от реакционной смеси и может затем быть разложено, чтобы удалить диоксид углерода в дополнительном четвертом реакторе. Реакцию сдвига моноксида углерода выполняют в жидкой фазе. Образование двух газов, водорода и диоксида углерода, происходит в разных местах так, чтобы они могли, следовательно, быть произведены отдельно друг от друга. Затраты энергии в таком способе ниже, чем затраты энергии в реакции сдвига моноксида углерода в газовой фазе с последующим разделением водорода и диоксида углерода.
Если разложение твердого вещества, то есть, гидрокарбоната или карбоната, не происходит легко, то твердое вещество может быть растворено заранее в растворителе, который, в идеале, имеет более высокую точку кипения по сравнению с водой, чтобы предотвратить высокие потери растворителя.
Предпочтительное осаждение гидрокарбоната может, например, преимущественно быть вызвано понижением температуры в реакторе осаждения.
Использование насыщенного раствора гидрокарбоната приводит к гидрокарбонату, образующемуся в первом реакторе и в третьем реакторе, не способному растворяться и, таким образом, осаждающемуся самопроизвольно.
Кроме того, осаждение может быть выполнено добавлением неполярного второго растворителя, который не смешивается с первым растворителем, причем второй растворитель служит осадителем для солей. После осаждения такой дополнительный растворитель может быть отогнан снова.
Дополнительной полезной возможностью для осаждения гидрокарбоната является добавление легкорастворимой соли, имеющей тот же самый катион, что и гидрокарбонат. В результате величина произведения растворимости соли гидрокарбоната достигается при относительно низкой концентрации гидрокарбоната.
Кроме того, особенно выгодно рециркулировать карбонат или образующийся твердый оксид металла из четвертого реактора для термического разложения гидрокарбоната или карбоната в первый реактор. Это замыкает цепь карбоната или цепь материалов.
Изобретение описано ниже не ограничивающими примерами при помощи схематических чертежей.
На чертежах:
Фиг.1 показывает расположение четырех реакторов, где твердый гидрокарбонат отделяют во втором реакторе и термически разлагают с высвобождением диоксида углерода в четвертом реакторе.
Фиг.2 показывает расположение четырех реакторов, соответствующее фиг.1, где карбонат отделяют как твердое вещество во втором реакторе и разлагают в четвертом реакторе также с высвобождением диоксида углерода.
Фиг.3 показывает список уравнений (1), (2) и (3), которые вместе представляют реакцию сдвига моноксида углерода, как известно из предшествующего уровня техники.
Фиг.3 указывает на дальнейшие уравнения реакции, основанные на реакциях согласно уравнениям (1), (2) и (3), чтобы показать, как протекает реакция сдвига моноксида углерода в первом реакторе, втором реакторе и третьем реакторе. Согласно полной системе уравнений происходит образование формиата с одновременным образованием гидрокарбоната. Согласно уравнению (3) формиат реагирует с водой с получением гидрокарбоната и водорода. Согласно уравнению (2) гидрокарбонат разлагается с высвобождением диоксида углерода в другом месте способа.
Так как соли формиаты могут, в принципе, также осаждаться в первом реакторе 1, в зависимости от преобладающих условий, изменение в последовательности реакций является возможным. В первом варианте протекают следующие реакции.
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Уравнения реакций 2.1 и 4.1 составлены в качестве примера использования ионов щелочного металла. Другие катионы могут одинаково хорошо подходить для выполнения реакции, в этом случае уравнения реакций 2.1 и 4.1 изменяются соответствующим образом.
Растворитель и компоненты, растворимые в нем, из второго реактора 2 и негазообразные компоненты из четвертого реактора 4 могут быть рециркулированы в первый реактор 1.
В дополнительном четвертом реакторе 4, который был включен согласно изобретению, осадок из второго реактора 2, после необязательной сушки, подвергают термическому разложению согласно уравнению 4.1. Карбонат М2СО3 вводят вместе с водой в поток, рециркулируемый из второго реактора 2 в первый реактор 1, таким образом, замыкая цепь карбоната. Представленный способ может также быть выполнен, аналогично, используя другие катионы, например, ион аммония или ионы щелочноземельного металла.
Дальнейшее изменение способа предусматривает применение сильнощелочного раствора гидроксидов, который будет использоваться вместо слабощелочной буферной системы карбоната. Стадии реакции снова изменятся в результате и согласно второму варианту будут следующими:
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Уравнения реакции 2.2 и 4.2 не должны интерпретироваться как ограниченные определенным щелочным металлом (М). Другие катионы могут в равной степени быть использованы для проведения реакций; уравнения реакций тогда изменятся соответствующим образом.
Во втором варианте, соответствующем уравнениям реакции (1.2), (3.2), (2.2) и (4.2), термическое разложение карбоната М2СО3 после сушки осадка из второго реактора 2 выполняют в дополнительном четвертом реакторе 4.
Оксид М2О вводят в рециркулируемый поток из второго реактора 2 в первый реактор 1. Там он реагирует с водой с получением гидроксида, таким образом, замыкая цепь материалов. Соответствующее уравнение:
Figure 00000014
Реакционная система согласно второму варианту имеет преимущество в том, что равновесная концентрация диоксида углерода СО2 в растворителе после первого реактора 1 будет значительно ниже, чем тогда, когда используют первый вариант согласно уравнениям (1.1), (3.1), (2.1), (4.1). Это очень сильно подавляет нежелательную десорбцию диоксида углерода вместе с водородом H2, образующимся в третьем реакторе 3, и, таким образом, снижает потери диоксида углерода с потоком водорода или в поток водорода.
В качестве растворителя можно использовать водный метанол, воду или полярный растворитель. Условие состоит в том, чтобы участвующие соли были растворимы.
Согласно изобретению разложение гидрокарбоната или карбоната выполняют не в растворе, который циркулирует под действием насоса, а также содержит растворенные горючие газы, но после осаждения твердого вещества. Твердым веществом является гидрокарбонат согласно варианту 1 и карбонат согласно варианту 2. Разложение твердого вещества соответственно выполняют в отдельном реакторе. Эти меры дают возможность избежать потерь растворителя и потерь горючего газа.
Кроме того, интервал рН может быть увеличен в дальнейшей стадии и равновесная концентрация диоксида углерода в растворе может, таким образом, быть значительно снижена, а нежелательная десорбция диоксида углерода посредством остающихся газов в первом реакторе 1 или посредством водорода в третьем реакторе 3 может, в то же самое время, быть снижена. Это повышает общий уровень удаления диоксида углерода и уменьшает потери горючего газа.
Фиг.1 показывает первый вариант, в котором производят гидрокарбонат в качестве твердого вещества во втором реакторе 2 и термически разлагают его в четвертом реакторе 4 с высвобождением диоксида углерода.
Фиг.2 показывает схему, соответствующую второму варианту, в котором твердым веществом является карбонат вместо гидрокарбоната. Как на фиг.1, так и на фиг.2, можно видеть, что горючий газ водород и диоксид углерода, подлежащий удалению перед сгоранием, удаляют в совершенно разных местах способа.

Claims (10)

1. Способ конверсии моноксида углерода СО и воды Н2О в диоксид углерода СO2 и водород Н2, который включает, по меньшей мере, следующие стадии:
- моноксид углерода связывают из газовой фазы первым растворителем с получением формиата НСОО-,
- формиат НСОО- разлагают и образующийся водород Н2 отделяют, при этом
- либо образующийся гидрокарбонат, либо образующийся карбонат осаждают и отделяют, и
- твердый гидрокарбонат или твердый карбонат термически разлагают и диоксид углерода СО2 отделяют, при этом
- моноксид углерода СО связывают из газовой фазы первым растворителем в первом реакторе (1),
- образующийся формиат НСОО- разлагают в третьем реакторе (3), а образующийся водород H2 отделяют,
- осажденный гидрокарбонат отделяют во втором реакторе (2), и
- термическое разложение твердого гидрокарбоната и удаление диоксида углерода СO2 выполняют в четвертом реакторе (4).
2. Способ по п.1, в котором первый растворитель является сильнощелочным.
3. Способ по п.1 или 2, характеризующийся тем, что удаление диоксида углерода СО2 выполняют во втором растворителе, который отличается от первого растворителя.
4. Способ по п.3, характеризующийся тем, что второй растворитель не содержит метанола.
5. Способ по п.1, характеризующийся тем, что осаждение гидрокарбоната производят понижением температуры.
6. Способ по п.1, характеризующийся тем, что используют насыщенный раствор гидрокарбоната, для того, чтобы гидрокарбонат, образующийся в первом реакторе (1) и в третьем реакторе (3), не мог быть растворен и осаждался.
7. Способ по п.1, характеризующийся тем, что твердое вещество, образующееся в четвертом реакторе (4), рециркулируют вместе с водой Н2О из четвертого реактора (4) в первый реактор (1).
8. Способ по п.1, характеризующийся тем, что используют сильнощелочной раствор гидроксидов, для того, чтобы стадии реакции в индивидуальных реакторах были следующими:
Figure 00000015

Figure 00000016

Figure 00000017

Figure 00000018

где М является любым одновалентным катионом, при этом уравнения 2.2 и 4.2 представлены для одновалентного катиона.
9. Способ по п. 7 или 8, характеризующийся тем, что оксид М2О вводят в поток, рециркулируемый из четвертого реактора (4) в первый реактор (1), и он реагирует с получением гидроксида так, чтобы равновесная концентрация диоксида углерода в растворителе ниже по потоку от первого реактора (1) снижалась.
10. Установка для конверсии моноксида углерода СО и воды Н2О в диоксид углерода СО2 и водород Н2, характеризующаяся тем, что установка содержит
- первый реактор (1), который предназначен для связывания моноксида углерода СО из газовой фазы первым растворителем,
- третий реактор (3), который предназначен, по существу, для разложения формиата НСОО-,
- второй реактор (2), который предназначен для осаждения либо соли гидрокарбоната НСО3-, либо соли карбоната СО3- в виде твердого вещества,
- четвертый реактор (4), который служит, по существу, для термического разложения твердого вещества и дает возможность высвобождения диоксида углерода СО2.
RU2012107708/04A 2009-07-30 2010-06-25 Способ и установка для конверсии моноксида углерода и воды в диоксид углерода и водород с удалением одного или более продуктов RU2542983C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009035388.7A DE102009035388B4 (de) 2009-07-30 2009-07-30 Verfahren und Vorrichtung zur Umwandlung von Kohlenmonoxid und Wasser in Kohlendioxid und Wasserstoff, mit der Abtrennung eines oder mehrer Produkte
DE102009035388.7 2009-07-30
PCT/EP2010/059094 WO2011012385A1 (de) 2009-07-30 2010-06-25 Verfahren und vorrichtung zur umwandlung von kohlenmonoxid und wasser in kohlendioxid und wasserstoff, mit der abtrennung eines oder mehrer produkte

Publications (2)

Publication Number Publication Date
RU2012107708A RU2012107708A (ru) 2013-09-10
RU2542983C2 true RU2542983C2 (ru) 2015-02-27

Family

ID=42357570

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012107708/04A RU2542983C2 (ru) 2009-07-30 2010-06-25 Способ и установка для конверсии моноксида углерода и воды в диоксид углерода и водород с удалением одного или более продуктов

Country Status (7)

Country Link
US (1) US8623240B2 (ru)
EP (1) EP2459480B1 (ru)
CN (1) CN102471052B (ru)
DE (1) DE102009035388B4 (ru)
IN (1) IN2012DN00350A (ru)
RU (1) RU2542983C2 (ru)
WO (1) WO2011012385A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107848794B (zh) 2015-05-13 2021-08-24 耶路撒冷希伯来大学伊萨姆研究开发有限公司 用于储存和释放氢的方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087373A (en) * 1976-07-23 1978-05-02 The United States Of America As Represented By The Secretary Of The Navy Novel method for the production of hydrogen and hydrogen-carbon monoxide mixtures
US4137298A (en) * 1977-12-21 1979-01-30 Continental Oil Company Production of a hydrogen-rich gas from a hydrogen, carbon monoxide and carbon dioxide-containing fuel gas
US4372833A (en) * 1981-04-14 1983-02-08 University Of Georgia Research Foundation, Inc. Photogeneration of active formate decomposition catalysts to produce hydrogen from formate and water
WO1988005422A1 (en) * 1987-01-27 1988-07-28 Onsager Olav T Process for converting carbon monoxide and water to hydrogen and carbon dioxide
SU834993A1 (ru) * 1978-06-16 1995-04-10 Г.П. Черкасов Способ получения катализатора для конверсии окиси углерода с водяным паром
US20040028603A1 (en) * 2001-08-15 2004-02-12 Benjamin Reichman Carbonate recycling in a hydrogen producing reaction
WO2006098854A2 (en) * 2005-03-14 2006-09-21 Ovonic Battery Company, Inc. Production of hydrogen via a base-facilitated reaction of carbon monoxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262973A (en) * 1963-11-20 1966-07-26 Standard Oil Co Preparation of alkali metal formates in alcoholic medium
US3772380A (en) * 1970-03-12 1973-11-13 Monsanto Co Production of carboxylic acids and esters
US4067958A (en) * 1976-03-10 1978-01-10 Continental Oil Company Production of a hydrogen-rich gas from a co-containing fuel gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087373A (en) * 1976-07-23 1978-05-02 The United States Of America As Represented By The Secretary Of The Navy Novel method for the production of hydrogen and hydrogen-carbon monoxide mixtures
US4137298A (en) * 1977-12-21 1979-01-30 Continental Oil Company Production of a hydrogen-rich gas from a hydrogen, carbon monoxide and carbon dioxide-containing fuel gas
SU834993A1 (ru) * 1978-06-16 1995-04-10 Г.П. Черкасов Способ получения катализатора для конверсии окиси углерода с водяным паром
US4372833A (en) * 1981-04-14 1983-02-08 University Of Georgia Research Foundation, Inc. Photogeneration of active formate decomposition catalysts to produce hydrogen from formate and water
WO1988005422A1 (en) * 1987-01-27 1988-07-28 Onsager Olav T Process for converting carbon monoxide and water to hydrogen and carbon dioxide
US20040028603A1 (en) * 2001-08-15 2004-02-12 Benjamin Reichman Carbonate recycling in a hydrogen producing reaction
WO2006098854A2 (en) * 2005-03-14 2006-09-21 Ovonic Battery Company, Inc. Production of hydrogen via a base-facilitated reaction of carbon monoxide

Also Published As

Publication number Publication date
CN102471052A (zh) 2012-05-23
EP2459480A1 (de) 2012-06-06
CN102471052B (zh) 2015-11-25
US20120126178A1 (en) 2012-05-24
EP2459480B1 (de) 2014-05-07
DE102009035388A1 (de) 2011-02-03
WO2011012385A1 (de) 2011-02-03
DE102009035388B4 (de) 2014-01-02
IN2012DN00350A (ru) 2015-07-10
US8623240B2 (en) 2014-01-07
RU2012107708A (ru) 2013-09-10

Similar Documents

Publication Publication Date Title
US9285116B2 (en) Method and a system for converting carbon dioxide into chemical starting materials
CN108884761B (zh) 氨裂解
US9085497B2 (en) Conversion of carbon dioxide to hydrocarbons via hydrogenation
AU2010282714B2 (en) Method and apparatus to sequester CO2 gas
TW201532658A (zh) 從氣流中移除酸氣體之系統及方法
WO2013156476A1 (en) A method and an apparatus for performing an energy efficient simultaneous desulphurization and decarbonisation of a flue gas by reduction with an electropositive metal
US20160251228A1 (en) Ammonia synthesis for fertilizer production
WO2016204881A1 (en) Method for on board conversion of co2 to fuel and apparatus therefor
EP3472123B1 (en) A method and system for carbon capture and recycling
TW201618848A (zh) 二氧化碳移除方法及系統中之水回收
RU2542983C2 (ru) Способ и установка для конверсии моноксида углерода и воды в диоксид углерода и водород с удалением одного или более продуктов
WO2011008714A2 (en) Dialkyl and diaryl ether production from metal alcoholate
US7700071B2 (en) Production of hydrogen via a base-facilitated reaction of carbon monoxide
US11858819B2 (en) Methods of producing a syngas composition
KR101670961B1 (ko) 알코올 전환시스템을 이용한 이산화탄소 포집방법
JP2001122812A (ja) メタノール製造装置及び製造方法
RU2532555C2 (ru) Способ и установка для конверсии моноксида углерода и воды в диоксид углерода и водород с удалением, по меньшей мере, одного получаемого газа
EP4206172A1 (en) Method for producing methanol
US9174890B2 (en) Method for conversion of carbon dioxide into hydrocarbons
Venkatesh et al. Reduction in environmental hazards and enhance the energy conversion from microalgae wastewater: Characteristics evaluation
JP2023028524A (ja) メタノールの製造方法
Azhdarpour et al. High purity calcium carbonate production from FGD gypsum
Smith et al. Method and apparatus to sequester CO 2 gas
JP2011195728A (ja) バイオディーゼル燃料の製造方法及び製造システム

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170626