WO2011012131A2 - Rotor multipolaire à aimants permanents pour machines électriques rotatives et procédé d'orientation et de fixation des pôles du rotor sur un corps de base du rotor à aimants permanents - Google Patents

Rotor multipolaire à aimants permanents pour machines électriques rotatives et procédé d'orientation et de fixation des pôles du rotor sur un corps de base du rotor à aimants permanents Download PDF

Info

Publication number
WO2011012131A2
WO2011012131A2 PCT/DE2010/075069 DE2010075069W WO2011012131A2 WO 2011012131 A2 WO2011012131 A2 WO 2011012131A2 DE 2010075069 W DE2010075069 W DE 2010075069W WO 2011012131 A2 WO2011012131 A2 WO 2011012131A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
pole
poles
fastening
rotor poles
Prior art date
Application number
PCT/DE2010/075069
Other languages
German (de)
English (en)
Other versions
WO2011012131A3 (fr
WO2011012131A4 (fr
Inventor
Joachim Sabinski
Hans Kuss
Original Assignee
Joachim Sabinski
Hans Kuss
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joachim Sabinski, Hans Kuss filed Critical Joachim Sabinski
Publication of WO2011012131A2 publication Critical patent/WO2011012131A2/fr
Publication of WO2011012131A3 publication Critical patent/WO2011012131A3/fr
Publication of WO2011012131A4 publication Critical patent/WO2011012131A4/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • High-pole permanent magnet rotor for rotating electrical machines and method for aligning and fixing the rotor poles on a rotor body of the permanent magnet rotor s
  • High-pole permanent magnet rotor as internal or external rotor with protected and recessed arranged, tangential
  • This invention relates to a permanent magnet excited assembly of an electric machine and a method for its production, in particular a synchronous machine with ferromagnetic body and permanent magnets arranged therein for use as compact drive solutions.
  • the overall mechanical strength and also the assembly components should be improved, the number of assembly components should be reduced and the efficiency of the entire highly utilized electrical machine should be increased
  • Circular blanks or metal strips with grooves and teeth for centuries, Circular blanks or metal strips with grooves and teeth for centuries, Circular blanks or metal strips with grooves and teeth for centuries
  • the laminated core is layered and then solidified with non-ferromagnetic material.
  • DE 10 2007 022 835 A1 describes a rotor for permanent magnetically excited electric machines with so-called buried magnets for high circumferential speeds.
  • the laminations of the laminated core each consist of a circular sheet metal with equally distributed recesses inserted for the magnets and interposed in complementary shaped recesses insert sheets, the blanks between the radial recesses radial material connections with a peripheral part of the sheet metal blank to cover and radial Retaining the magnets against centrifugal forces, and the insert plates at least one to the rotor axis
  • Circumferential speeds includes magnetic insertion plates fitted on all sides with positive fit all the way to the air gap, which are additionally welded, soldered or glued to the ferromagnetic sheet metal blank with their recesses.
  • the prior art provides a generalized simplified efficient solution, reduces further reduction of losses in the rotor circuit and leads to higher allowable speeds or radial forces loads.
  • non-magnetic insert plates their non-magnetic webs in the flow direction of the permanent magnets as these represent additional fictitious air gaps in the main flow direction and thus increase the magnetic circuit resistance.
  • both state-of-the-art solutions require an increased proportion Permanent magnet material, since the anchorages of the teeth generally takes place in the non-magnetic yoke or back region and thus by wide shortened scattering paths, a reduction of the air gap field occurs.
  • the invention is based on the object to realize modifiable permanent-magnet rotor assemblies for a variety of shaft heights, speeds and mechanical and electromagnetic stresses, with a minimization of the permanent magnet mass and a backup of optimal
  • Air gap flux density in comparison with other designs lower leakage flux and good magnetic material utilization.
  • the protected arrangement of the magnets in the magnetic circuit also closes for extreme operating states such as short circuits or short circuits
  • Overloading the machine causes demagnetization of the magnets and largely prevents additional losses in the permanent magnets due to harmonic fields in the air gap.
  • the pole shoes reset the magnets from the air gap at least by the height of the pole piece and secure them in the pole gap against the influence of mechanical forces.
  • the non-magnetic pole back wedges secure in addition to the constructive solutions of anchoring the rotor poles on Runner base the magnets against high tangential forces and distribute radial forces on the magnet over the entire magnet width.
  • the pole gap wedges further secure a radial seal of the pole gaps by their structured shapes and surfaces, such. B. by alternating grooves and elevations on the surface.
  • the pole wedge wedges are formed so that any method of sticking and soaking for fixing the permanent magnets in the
  • pole wedge wedges are preferably not made
  • Metallic fiber-reinforced high performance materials can also be made of non-magnetic steel or
  • the constructive fasteners as a variant for fixing the poles and the United glands can, depending on the requirements of amagnetic or ferromagnetic
  • Non-magnetic steel sheets and ferromagnetic sheets ensure a largely constant rotor diameter even at different operating temperatures. Thus, the air gap length remains independent of the temperature.
  • Claim 8 to 10 relate to methods of anchoring the rotor poles on the rotor base body and claim 11 an advantageous embodiment of the method.
  • the rotor poles of ferromagnetic sheets or of sintered or cast magnetic bodies with a pole piece and with or without Polfuß be made.
  • the rotor has on one side a sealing, non-magnetic end plate, the axial leakage of the
  • Preventing means for the magnets from the Laufer face prevents the rotor has on one side a sealing, non-magnetic end plate, the axial leakage of the
  • the magnets are by means of spacer elements, which in addition to recesses of the rotor poles, rich additionally secured. At the same time simplifies the assembly of the magnets.
  • the development according to claim 11 additionally uses any method of gluing and soaking for
  • 1.1 shows a segment cutout of an inner rotor with fastening grooves on the rotor base body for receiving the rotor poles with various structural designs for anchoring the rotor poles in the rotor base body
  • Fig. 2.1 shows a detail of a rotor base body with a
  • Fig. 2.2 shows a detail of a rotor base body with a mounting groove anchored therein rotor pole and two superimposed permanent magnets with pole gap wedges, wherein the superimposed permanent magnets by
  • FIG. 2.3 shows a section analogous to FIG. 2.1, but with a fixing tooth of the rotor base body
  • FIG. 2.4 shows a section analogous to FIG. 2.2, but with a fixing tooth of the rotor base body
  • Fig. 3 shows a segment cutout of an inner rotor
  • Fig. 4 shows a segment cutout of an inner rotor with
  • Fig. 5 shows a segment cutout of an external rotor
  • Rotor poles with various structural designs for anchoring the rotor poles in the rotor body and
  • Fig. 6.1 and 6.2 segment cutouts of an external rotor with mounting teeth on the rotor base body for receiving the
  • Rotor poles with various structural designs for anchoring the rotor poles in the rotor body.
  • the multi-pole permanent magnet rotor has protected and recessed arranged, tangentially aligned
  • Permanent magnets 1 in pole gaps 9 are formed by rotor poles 2 and a rotor base body 3.
  • the rotor poles 2 can optionally either with the pole 2.2, see Figures 1.1 and 3, in mounting grooves 8 of
  • Alignment and assembly aids 11.1 to 11.3, 11.7, 11.11 to 11.13 for alignment and anchoring of the rotor poles 2 are in complementary thereto mounting grooves 8 in the
  • Permanent magnets 1 can have additional mounting options due to non-magnetic pole splines 5.1 to 5.4. In the embodiment with fastening teeth 7 am
  • Runner base 3 are the rotor poles 2 through this specially shaped fixing teeth 7 and also by structural designs 4.13 to 4.18 consisting of fasteners 10.5 to 10.7 and Ausr ichtungs - and assembly aids 11.4 to 11.6, 11.8 to 11.10, 11.14 firmly anchored in complementary recesses of the rotor poles 2.
  • the fasteners 10.1 to 10.7 can different shaped wedges 10.1, 10.2 and 10.3 to 10.7 or
  • Centering rods be 10.3.
  • the installation and assembly aids 11.1. to 11.13 are used to automatically align the
  • notching or cutout 11.1 as a kink in the dovetail 11.2, as a prism 11.3, as a semicircular cam 11.4, as two plane recesses 11.5, as inverted prism 11.6 opposite to 11.3, as
  • Trapezoidal fit 11.7 as a triangle cam 11.8, as a quarter-round cam 11.9, as a plane recess 11.10, as a short trapezoid 11.11, as chamfered version 11.12, as inverted plane recess 11.13 as 11.5 and as inverted
  • the rotor poles 2 consist of ferromagnetic sheets or of sintered or cast magnet bodies with a pole piece 2.1 and with or without pole foot 2.2.
  • Embodiments with or without Polfuß 2.2 depends on the design of the rotor body 3 with
  • the rotor base body 3 can be made of insulated or non-insulated segmental sheets or blanks of non-magnetic materials, such as steel and aluminum. It is also a solid rotor base body 3, consisting of a body or composed of several partial bodies, of metallic non-magnetic materials analogous to those of the laminated rotor base 3 possible or the
  • Runner base 3 consists of fiber-reinforced Hoch elaboratesungsyogoffen also analogous to those of the laminated rotor body 3.
  • the spacer elements 6 can reach into recesses in the rotor pole 2.
  • the spacer elements 6 facilitate the assembly of the permanent magnets. 1
  • Fastening teeth 7 of the rotor base body 3 in the rotor pole 2 by the constructive embodiments 4.1 to 4.17 takes place by the driving of fasteners 10.1 to 10.7 in the form of wedge variants, individually 10.1, 10.6, double 10.2, 10.4, 10.5, or in triple combination 10.5, 10.6 or 10.5, 10.7 or from centering rods 10.3.
  • Certain wedge variants, such. B. 10.1, 10.4, 10.5 to 10.7 and the centering 10.3 are cooled before driving and thus shrunk hit.
  • Rotor poles 2 on the rotor body 3 can also by the constructive versions 4.16 to 4.19 by the

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

L'invention a pour but de réaliser des modules de rotor excités en permanence et modifiables pour des hauteurs d'axe, des vitesses de rotation et des sollicitations mécaniques et électromagnétiques très différentes, une réduction de la masse des aimants permanents ainsi qu'une assurance d'une épaisseur d'entrefer optimale en présence d'un flux de dispersion minime et une résistance mécanique élevée du rotor pour atteindre une vitesse de rotation très élevée devant être obtenues. Le rotor multipolaire à aimants permanents comprenant des aimants permanents (1) orientés tangentiellement, disposés de manière protégée et affleurante entre les pôles (2) de rotor qui sont fixés sur un corps de base (3) de rotor a des pôles (2) de rotor avec des embases (2.2) spécialement formées et des réalisations structurales (4.1 à 4.12 et 4.16 à 4.19) constituées d'éléments de fixation (10.1 à 10.4) et d'auxiliaires d'orientation et de montage (11.1 bis 11.3, 11.7, 11.11 bis 11.13) pour orienter et ancrer les pôles (2) de rotor dans des rainures de fixation (8) complémentaires qui sont ancrées à demeure dans le corps de base (3) de rotor amagnétique. Les aimants permanents (1) ont par des coins d'espacement interpolaire amagnétiques (5.1 à 5.4) des possibilités de fixation supplémentaires. Une fixation analogue au moyen de dents de fixation (7) du corps de base (3) de rotor dans les pôles (2) de rotor est possible. Selon le procédé, des éléments de fixation qui sont en partie préalablement refroidis sont enfoncés ou vissés. Le domaine d'application de l'invention relève de la construction de machines électriques rotatives.
PCT/DE2010/075069 2009-07-29 2010-07-29 Rotor multipolaire à aimants permanents pour machines électriques rotatives et procédé d'orientation et de fixation des pôles du rotor sur un corps de base du rotor à aimants permanents WO2011012131A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009026286 2009-07-29
DE102009026286.5 2009-07-29

Publications (3)

Publication Number Publication Date
WO2011012131A2 true WO2011012131A2 (fr) 2011-02-03
WO2011012131A3 WO2011012131A3 (fr) 2011-03-31
WO2011012131A4 WO2011012131A4 (fr) 2011-06-16

Family

ID=43416376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/075069 WO2011012131A2 (fr) 2009-07-29 2010-07-29 Rotor multipolaire à aimants permanents pour machines électriques rotatives et procédé d'orientation et de fixation des pôles du rotor sur un corps de base du rotor à aimants permanents

Country Status (1)

Country Link
WO (1) WO2011012131A2 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111343A1 (it) * 2011-07-19 2013-01-20 Wilic Sarl Aerogeneratore per la produzione di energia elettrica
WO2013081703A2 (fr) 2011-11-30 2013-06-06 Abb Research Ltd. Machines électriques et rotors de machines électriques
WO2014052049A2 (fr) 2012-09-28 2014-04-03 Abb Research Ltd. Rotors destinés à faire tourner des machines
WO2014055221A2 (fr) 2012-10-01 2014-04-10 Abb Research Ltd. Rotors de machines électriques
DE102013201908A1 (de) * 2013-02-06 2014-08-07 Robert Bosch Gmbh Lamelle für einen Rotor einer elektrischen Maschine
JP2016214082A (ja) * 2016-09-20 2016-12-15 三菱電機株式会社 永久磁石式回転電機
CN108292871A (zh) * 2015-11-27 2018-07-17 三菱电机株式会社 旋转电机
WO2018215753A1 (fr) * 2017-05-24 2018-11-29 Equipmake Ltd Rotor pour moteur électrique
CN109038880A (zh) * 2018-08-20 2018-12-18 重庆力华自动化技术有限责任公司 一种高效铁氧体聚磁同步电机
CN112421906A (zh) * 2020-12-18 2021-02-26 山东理工大学 带有蝙蝠形槽的单边止退模块化驱动电机转子生产方法
CN112436688A (zh) * 2020-12-18 2021-03-02 山东理工大学 电动汽车用电机轴向插入凸极式转子生产方法
DE102022111442A1 (de) 2022-05-09 2023-11-09 eMoSys GmbH Fluidgekühlte, mehrphasige permanenterregte Synchronmaschine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19846924A1 (de) 1998-10-12 2000-04-13 Sachsenwerk Gmbh Permanentmagneterregte Baugruppe einer elektrischen Maschine und Verfahren zu ihrer Herstellung
DE102007022835A1 (de) 2007-05-12 2008-11-13 Esw Gmbh Rotor für permanentmagnetisch erregte Elektromaschinen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952755A (en) * 1997-03-18 1999-09-14 Electric Boat Corporation Permanent magnet motor rotor
DE19715019A1 (de) * 1997-04-11 1998-10-22 Voith Turbo Kg Rotor für eine elektrische Maschine, insbesondere eine Transversalflußmaschine
JP2002369425A (ja) * 2001-06-12 2002-12-20 Nishishiba Electric Co Ltd 永久磁石回転子
US6452301B1 (en) * 2001-11-02 2002-09-17 Electric Boat Corporation Magnet retention arrangement for high speed rotors
US20060255679A1 (en) * 2005-05-13 2006-11-16 Dine Pieter V Apparatus for pole pieces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19846924A1 (de) 1998-10-12 2000-04-13 Sachsenwerk Gmbh Permanentmagneterregte Baugruppe einer elektrischen Maschine und Verfahren zu ihrer Herstellung
DE102007022835A1 (de) 2007-05-12 2008-11-13 Esw Gmbh Rotor für permanentmagnetisch erregte Elektromaschinen

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111343A1 (it) * 2011-07-19 2013-01-20 Wilic Sarl Aerogeneratore per la produzione di energia elettrica
WO2013011482A3 (fr) * 2011-07-19 2013-05-10 Wilic S.Ar.L. Turbine éolienne pour produire de l'énergie électrique et rotor de machine tournante électrique de turbine éolienne
WO2013081703A2 (fr) 2011-11-30 2013-06-06 Abb Research Ltd. Machines électriques et rotors de machines électriques
US9088190B2 (en) 2011-11-30 2015-07-21 Abb Research Ltd. Electrical machines and electrical machine rotors
WO2014052049A2 (fr) 2012-09-28 2014-04-03 Abb Research Ltd. Rotors destinés à faire tourner des machines
WO2014055221A2 (fr) 2012-10-01 2014-04-10 Abb Research Ltd. Rotors de machines électriques
DE102013201908A1 (de) * 2013-02-06 2014-08-07 Robert Bosch Gmbh Lamelle für einen Rotor einer elektrischen Maschine
CN108292871A (zh) * 2015-11-27 2018-07-17 三菱电机株式会社 旋转电机
US10707712B2 (en) 2015-11-27 2020-07-07 Mitsubishi Electric Corporation Rotating electric machine
JP2016214082A (ja) * 2016-09-20 2016-12-15 三菱電機株式会社 永久磁石式回転電機
WO2018215753A1 (fr) * 2017-05-24 2018-11-29 Equipmake Ltd Rotor pour moteur électrique
US11456639B2 (en) 2017-05-24 2022-09-27 Equipmake Ltd Rotor for an electric motor
CN109038880A (zh) * 2018-08-20 2018-12-18 重庆力华自动化技术有限责任公司 一种高效铁氧体聚磁同步电机
CN112421906A (zh) * 2020-12-18 2021-02-26 山东理工大学 带有蝙蝠形槽的单边止退模块化驱动电机转子生产方法
CN112436688A (zh) * 2020-12-18 2021-03-02 山东理工大学 电动汽车用电机轴向插入凸极式转子生产方法
CN112421906B (zh) * 2020-12-18 2022-06-21 山东理工大学 带有蝙蝠形槽的单边止退模块化驱动电机转子生产方法
CN112436688B (zh) * 2020-12-18 2023-04-21 山东理工大学 电动汽车用电机轴向插入凸极式转子生产方法
DE102022111442A1 (de) 2022-05-09 2023-11-09 eMoSys GmbH Fluidgekühlte, mehrphasige permanenterregte Synchronmaschine

Also Published As

Publication number Publication date
WO2011012131A3 (fr) 2011-03-31
WO2011012131A4 (fr) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2011012131A2 (fr) Rotor multipolaire à aimants permanents pour machines électriques rotatives et procédé d'orientation et de fixation des pôles du rotor sur un corps de base du rotor à aimants permanents
DE60212406T2 (de) Läufer mit eingebetteten Dauermagneten
EP0994550B1 (fr) Assemblage à aimants permanents pour une machine électrique et méthode de construction de celui-ci
DE112010003859B4 (de) Drehmotor vom Lundell-Typ
EP1203436B1 (fr) Machine electrique a flux axial
DE102007022835B4 (de) Rotor für permanentmagnetisch erregte Elektromaschinen
DE102011000439A1 (de) Permanentmagnetläufer für rotierende elektrische Maschinen und Verfahren zur Ausrichtung und Befestigung der Läuferpole auf einem Läufergrundkörper des Permanentmagnetläufers
EP1959546B1 (fr) Composant de stator
DE19780317B4 (de) Elektrische Maschine
EP2601728A1 (fr) Rotor pour une machine électrique
WO2003085802A1 (fr) Machine electrique, notamment moteur excite par aimant permanent
DE102009026287A1 (de) Permanentmagnetläufer mit geschützt und versenkt angeordneten, tangential ausgerichteten Permanentmagneten bei radialer Ausrichtung der Magnetpole als Innenläuferausführung oder Außenläuferausführung rotierender elektrischer Maschinen und Verfahren zur Montage dieser Permanentmagnetläufer
EP3103183A1 (fr) Rotor à réluctance à stabilisation mécanique
DE102005042543A1 (de) Permanenterregte Synchronmaschine
EP1166423B1 (fr) Rotor multipolaire a aimants permanents pour machine tournante electrique et procede de fabrication associe
WO2011012133A2 (fr) Rotor à aimants permanents comprenant des aimants permanents orientés radialement, disposés de manière protégée et affleurante, à orientation tangentielle des pôles magnétiques comme réalisation de rotor intérieur ou réalisation de rotor extérieur de machines électriques rotatives et procédé de montage de ces rotors à aimants permanents
DE102011000438A1 (de) Permanentmagetläufer für rotierende elektrische Maschinen mit geschützt und vergraben angeordneten, radial ausgerichteten Permanentmagneten bei tangentialer Ausrichtung der Magnetopole und Verfahren zur Montage dieser Permanentmagnetläufer
EP2319164B1 (fr) Rotor pour une machine électrique à couple de détente réduit
DE102015110652A1 (de) Rotor-stator-anordnung für eine hybriderregte synchronmaschine und ein rotor dafür
DE102011002327A1 (de) Permanentmagnetläufer
WO2014166826A2 (fr) Moteur à réluctance à rotor stabilisé
DE102007032135A1 (de) Elektrische Maschine
DE102012218993A1 (de) Läuferanordnung für eine permanentmagneterregte elektrische Maschine
EP0723330B1 (fr) Machine synchrone du type à jambe
EP2790297B1 (fr) Rotor pour une machine électrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10762587

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct app. not ent. europ. phase

Ref document number: 10762587

Country of ref document: EP

Kind code of ref document: A2