WO2011010725A1 - ダイポールアンテナ - Google Patents

ダイポールアンテナ Download PDF

Info

Publication number
WO2011010725A1
WO2011010725A1 PCT/JP2010/062445 JP2010062445W WO2011010725A1 WO 2011010725 A1 WO2011010725 A1 WO 2011010725A1 JP 2010062445 W JP2010062445 W JP 2010062445W WO 2011010725 A1 WO2011010725 A1 WO 2011010725A1
Authority
WO
WIPO (PCT)
Prior art keywords
dipole antenna
straight
radiating element
straight portion
length
Prior art date
Application number
PCT/JP2010/062445
Other languages
English (en)
French (fr)
Inventor
官 寧
博育 田山
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2011523710A priority Critical patent/JP5416773B2/ja
Priority to EP10802345.8A priority patent/EP2458682B1/en
Priority to CN201080032828.5A priority patent/CN102474013B/zh
Publication of WO2011010725A1 publication Critical patent/WO2011010725A1/ja
Priority to US13/356,296 priority patent/US9093748B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements

Definitions

  • the present invention relates to a dipole antenna, and more particularly to a novel dipole antenna having a unique structure in the vicinity of a feeding point.
  • An antenna has been used for a long time as a device for converting a high-frequency current into an electromagnetic wave or converting an electromagnetic wave into a high-frequency current.
  • the antennas are classified into linear antennas, planar antennas, three-dimensional antennas and the like based on their shapes, and are classified into dipole antennas, monopole antennas, loop antennas and the like based on their structures.
  • a dipole antenna including a linear radiating element is an antenna having a very simple structure (Non-Patent Document 1), and is still widely used as a base station antenna or the like.
  • a planar dipole antenna having a planar radiating element instead of a linear radiating element is also known (Non-Patent Document 2).
  • FIG. 30 (a) shows the structure of a conventional dipole antenna dp.
  • the dipole antenna dp is composed of a linear radiating element e1 extending from the feeding point F in the first direction and a linear radiating element e2 extending from the feeding point F in the direction opposite to the first direction. It functions as a transmitting antenna that converts to a high-frequency current or a receiving antenna that converts electromagnetic waves into a high-frequency current.
  • the high-frequency current (electromagnetic wave) that can be efficiently converted into electromagnetic waves (high-frequency current) using the dipole antenna dp is limited to those having a frequency close to the resonance frequency of the dipole antenna dp.
  • FIG. 30 (b) shows a current distribution (basic mode) at the first resonance frequency f1 of the dipole antenna dp.
  • the direction of the current flowing through the radiating elements e1 and e2 is uniform as shown in FIG. For this reason, when a high-frequency current having a frequency close to the first resonance frequency f1 is input via the feeding point F, electromagnetic waves having a unimodal radiation pattern are radiated from the radiating elements e1 and e2.
  • FIG. 30 (c) shows a current distribution (higher order mode) at the second resonance frequency f2 of the dipole antenna dp.
  • the directions of the currents flowing through the radiating elements e1 and e2 are not uniform. More specifically, the point of dividing the whole of the radiating elements e1 and e2 into three equals becomes a node of current distribution, and the direction of the current flowing through the radiating elements e1 and e2 is inverted at these nodes. For this reason, when a high-frequency current having a frequency close to the second resonance frequency f2 is input via the feeding point F, electromagnetic waves having a split radiation pattern are radiated from the radiating elements e1 and e2. This is because the intensity of electromagnetic waves radiated in a specific direction is significantly lower than the intensity of electromagnetic waves radiated in other directions due to interference between the electromagnetic waves radiated from the respective parts of the radiating elements e1 and e2. .
  • the conventional dipole antenna has a problem that (1) the dimensions are large and (2) the operation band is narrow. More specifically, these problems are as follows.
  • Narrow operating band In order to efficiently radiate electromagnetic waves of a certain frequency, the input reflection coefficient at that frequency (ratio of reflected power to input power, that is, the amplitude of the component S 1,1 of the S matrix)
  • the operation band of the conventional dipole antenna will be described as follows in accordance with a specific example shown in FIG.
  • a dipole antenna 90 shown in FIG. 31 is configured such that radiating elements 91 and 92 each formed of a conductor wire (radius 1 mm) having a length of 40 mm are arranged on a straight line with an interval of 2 mm.
  • the various characteristics of the dipole antenna 90 shown below are obtained by numerical simulation performed assuming that the system characteristic impedance is 50 ⁇ .
  • FIG. 32 shows the frequency dependence of the input reflection coefficient S 1,1 of the dipole antenna 90 shows the frequency dependence of the radiation gain G 0 of the dipole antenna 90 at (b) in FIG. 32.
  • S 1,1 When the operating condition of
  • the value of the input reflection coefficient S 1,1 is a value when the characteristic impedance on the incident side is 50 ⁇ (the same applies to the value of the input reflection coefficient S 1,1 mentioned below).
  • the “specific band” of a certain band refers to the ratio of the bandwidth of the band to the center frequency of the band.
  • a band (4.7 GHz) near the second resonance frequency that satisfies the operation condition imposed on the input reflection coefficient S 1,1 a band of 4.9 GHz or more cannot be set as the operation band.
  • steep decrease in radiation gain G 0 resulting in more bandwidth, radiation pattern in this band is a phenomenon caused by splitting.
  • the radiation pattern shown in (a) of FIG. 33 is a radiation pattern at 1.7 GHz (near the first resonance frequency), and the radiation pattern shown in (b) of FIG. 33 is 3.4 GHz (radiation gain G 0).
  • the radiation patterns shown in (c) of FIG. 33 is a radiation pattern at 5.1 GHz (band radiation gain G 0 is lowered abruptly). From the radiation patterns shown in (c) of FIG. 33, it can be seen that the radiation pattern in the band radiation gain G 0 of the above 4.3GHz decreases sharply is split.
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize a dipole antenna that is more compact than a conventional dipole antenna and has a wider operating band than a conventional dipole antenna.
  • a dipole antenna is a dipole antenna including a first radiating element and a second radiating element, wherein the first radiating element is connected to a first feeding point.
  • a first linear portion extending in a first direction and a first bent portion connected to the first linear portion on the opposite side of the first feeding point side from the first bent portion;
  • a second linear portion extending in a direction opposite to the first direction, and the second radiating element extends from the second feeding point in a direction opposite to the first direction.
  • a fourth bent portion extending in the first direction from the second bent portion, and connected to the opposite side of the third straight portion to the second feeding point side via the second bent portion. And a straight line portion.
  • the direction of the current flowing through the first radiating element and the second radiating element can be made uniform at the second resonance frequency.
  • the 2nd resonance frequency can be shifted to the low frequency side, and the radiation pattern in the 2nd resonance frequency can be made unimodal.
  • unimodalization of the radiation pattern at the second resonance frequency means that the second resonance frequency is shifted to a lower frequency side than the frequency at which the radiation gain is maximized, that is, the first resonance frequency and the second resonance frequency. This means that there is no sharp drop in radiation gain between frequencies. For this reason, the band near the second resonance frequency, which could not be set as the operating band due to the sharp decrease in the radiation gain in the conventional configuration, can be set as the operating band that satisfies the operating condition imposed on the radiation gain. .
  • the first resonance frequency and the second resonance frequency approach each other, and the input reflection coefficient extends over the entire band between the first resonance frequency and the second resonance frequency. descend.
  • the first resonance frequency and the second resonance frequency can be reduced.
  • the entire band between the resonance frequency f2 can be set as the operation band.
  • the first radiating element and the second radiating element are configured as described above, there is an effect that the conventional dipole antenna having the same overall length becomes more compact.
  • the “direction” in the “first direction” refers to the oriented direction. That is, for example, if north is the first direction, south is not the first direction but the opposite direction of the first direction.
  • a first linear portion extending in a first direction from the first feeding point; and a first bent portion connected to the first linear portion on the opposite side to the first feeding point side;
  • a first radiating element having a second straight portion extending from the first bent portion in a direction opposite to the first direction; and a third radiating element extending from the second feeding point in a direction opposite to the first direction.
  • a fourth portion extending in the first direction from the second bent portion is connected to the opposite side of the third straight portion to the second feeding point side via the straight portion and the second bent portion.
  • FIG. 9 is a view showing a modification of the dipole antenna of FIG. 4 and is an enlarged view showing an enlarged central portion. It is a graph which shows the characteristic of the dipole antenna of FIG. 4, (a) is a graph which shows a radiation pattern, (b) is a graph which shows a VSWR characteristic. In the dipole antenna of FIG. 4, the case of FIG. 6 is a graph showing the characteristics when the size of each part is changed, (a) is a graph showing the radiation pattern, and (b) is a graph showing the VSWR characteristics. is there. It is a top view which shows the structure of the dipole antenna which concerns on 2nd Embodiment in the 1st basic form of this invention. It is a graph which shows the characteristic of the dipole antenna of FIG.
  • FIG. 14 is a graph showing the characteristics of the dipole antenna of FIG. 13, (a) is a graph showing the frequency dependence of the input reflection coefficient, and (b) is a graph showing the frequency dependence of the radiation gain. 14 is a graph showing radiation patterns of the dipole antenna of FIG. 13, and (a) to (c) are graphs showing radiation patterns at frequencies of 1.7 GHz, 3.4 GHz, and 5.1 GHz, respectively. It is a graph which shows the frequency dependence of HPBW of the dipole antenna of FIG. In the dipole antenna of FIG.
  • FIG. 14A is a graph showing the frequency dependence of the input reflection coefficient when the size of each part is changed.
  • FIG. 18 is a graph showing a radiation pattern when the size of each part in the dipole antenna of FIG. 13 is set the same as in FIG. 17. It is a graph which shows the shape parameter dependence of the resonant frequency in the dipole antenna of FIG. It is a graph which shows the shape parameter dependence of the resonant frequency in the dipole antenna of FIG. It is a top view which shows the structure of the dipole antenna which concerns on 2nd Embodiment in the 2nd basic form of this invention. It is a graph which shows the frequency dependence of the input reflection coefficient of the dipole antenna of FIG.
  • FIG. 32 is a graph showing the characteristics of the dipole antenna of FIG.
  • FIG. 32 is a graph showing radiation patterns of the dipole antenna of FIG. 31, and (a) to (c) are graphs showing radiation patterns at frequencies of 1.7 GHz, 3.4 GHz, and 5.1 GHz, respectively. It is a graph which shows the frequency dependence of HPBW of the dipole antenna of FIG.
  • the dipole antenna according to the present invention has two basic forms. Below, the 1st basic form, the various embodiments of the 1st basic form, the 2nd basic form, and the various embodiments of the 2nd basic form are explained in order.
  • FIG. 1A is a diagram showing the structure of a dipole antenna DP according to the present invention.
  • the dipole antenna DP according to the present invention includes two radiating elements E1 and E2 arranged in the same plane.
  • the radiating element E1 includes a linear portion E1a (first linear portion) extending in one direction from one end of the radiating element E1, and a bent portion E1c (first first portion). And a straight portion E1b (second straight portion) extending from the bent portion E1c in the opposite direction to the first direction.
  • the radiating element is bent in a U shape so that the linear portion E1a and the linear portion E1b adjacent to each other via the bent portion E1c are parallel to each other.
  • the radiating element E2 includes a straight part E2a (third straight part) extending from one end of the radiating element E2 in the direction opposite to the first direction, It has a straight part E2b (second straight part) connected to the straight part E2a via the part E2c (second bent part) and extending from the bent part E2c in the first direction.
  • the radiating element is bent in a U shape so that the linear portion E2a and the linear portion E2b adjacent to each other via the bent portion E2c are parallel to each other.
  • a straight line portion E1c ′ extending in a direction perpendicular to the first direction and an end portion of the straight line portion E1a (an end portion closer to the straight line portion E1c ′).
  • a bent line-shaped (more specifically, U-shaped) bent portion E1c is employed.
  • the present invention is not limited to this.
  • a curved bent portion for example, a U-shaped bent portion
  • the same can be said for the bent portion E2c of the radiating element E2.
  • end portion of the straight line portion E1a closer to the straight line portion E1c ' indicates an end portion (near the end point) when an intersection point with the straight line portion E1c' is regarded as an end point.
  • end portions of the other straight portions The same applies to the end portions of the other straight portions.
  • the straight portion E1a is disposed between the straight portion E2a and the straight portion E2b, and the straight portion E2a is straight with the straight portion E1a. They are combined so as to be disposed between the portion E1b. That is, the radiating elements E1 and E2 are combined so that the straight line portion E1a enters the region surrounded by the radiating element E2 and the straight portion E2a enters the region surrounded by the radiating element E1. Yes.
  • a more compact dipole antenna can be realized by combining the bent radiating elements E1 and E2 in this way.
  • the feeding to the radiating element E1 is performed not from the end point of the radiating element E1, but from the feeding point F1 provided in the middle of the straight line portion E1a.
  • power supply to the radiating element E2 is performed from a power supply point F2 provided in the middle of the straight line portion E2a.
  • the feeding point F1 only needs to be provided at a point other than the end point of the straight line portion E1a, that is, it may be provided at an arbitrary point between the both end points of the straight line portion E1a, and the center of the straight line portion E1a. It is not necessary to be provided at the point (the midpoint between the two end points). The same applies to the feeding point F2. However, it is preferable that the feeding point F2 is provided at the position of the leg of the perpendicular line that is lowered from the feeding point F1 to the straight line portion E2a so that the distance between the feeding points is the shortest. Further, in order to make the radiation pattern symmetric, when the radiating elements E1 and E2 are arranged point-symmetrically, as shown in FIG. 1A, the linear portion E2a from the feeding point F1. The symmetry of the radiation pattern can be enhanced by arranging the feeding point F1 so that the perpendicular line drawn down to the center passes through the center of symmetry.
  • the direction of the current flowing through the radiating elements E1 and E2 at the second resonance frequency f2 is substantially the same as shown in FIG. Can be realized.
  • the radiation pattern at the second resonance frequency f2 is easily unimodal, and the second resonance frequency f2 is shifted to the low frequency side.
  • the second resonance frequency f2 When the radiation pattern at the second resonance frequency f2 is unimodal, it means that the second resonance frequency f2 is shifted to a lower frequency side than the frequency f G0max at which the radiation gain G 0 is maximized. It means that the steep drop in radiation gain G 0 is not generated between the resonant frequency f1 and the second resonance frequency f2. Therefore, in this case, the operating condition imposed on the radiation gain G 0 is satisfied in the band in the vicinity of the second resonance frequency that could not be set as the operating band due to the sharp decrease in the radiation gain G 0 in the conventional configuration. Operating band.
  • the input reflection coefficient S 11 of the first resonance frequency f1 and the second resonance frequency f2 Decreases across the entire band.
  • the operating conditions imposed on the input reflection coefficient S 11, the first resonance frequency f1 And the second resonance frequency f2 can be the entire operation band.
  • the direction of the current flowing through the radiating elements E1 and E2 is not uniform in the space as shown in FIG. radiation gain G 0 may be reduced. This is because part of the electromagnetic waves radiated from the straight line part E1b and the straight line part E2b are canceled by the electromagnetic waves radiated from the straight line part E1a and the straight line part E2a, respectively.
  • FIG. Set as shown. That is, the length of the portion of the straight portion E1a that is closer to the bent portion E1c than the feeding point F1 is L1a ′, and the length of the portion that is closer to the bent portion E2c of the straight portion E2a than the feeding point F2 is L2a ′.
  • the length L1b of the part E1b is set to satisfy L1b> L1a ′ + L2a ′, and the length L2b of the straight line part E2b is set to satisfy L2b> L1a ′ + L2a ′.
  • the present invention is not limited to this. It is not something. That is, by adding a further element to the end point of the straight line part E1b (end point opposite to the bent part E1c side), the radiating element E1 has an end point of the straight line part E1b (end point opposite to the bent part E1c side). You may deform
  • the further element added to the radiating element E1 may be a conductor film or a conductor wire.
  • Various shapes such as a polygonal line shape, a meander shape, and a rectangular shape are conceivable as the shape of the additional element added to the radiating element E1. The same applies to the radiating element E2.
  • FIG. 3 shows an example of a dipole antenna DP with additional elements added.
  • the dipole antenna shown in FIG. 3 is obtained by adding extensions E1 'and E2', which are also made of a conductor film, to a dipole antenna DP made of a conductor film.
  • the extension E1 ′ added to the radiating element E1 is formed by forming a conductor film having the same width as each linear part constituting the dipole antenna DP in a meander shape, and the extension E2 ′ added to the radiating element E2 is A conductor film having the same width as each straight line constituting the dipole antenna DP is formed in an L shape.
  • the electrical length of the dipole antenna DP becomes longer, so the lower limit of the operating band of the dipole antenna DP is set to the lower frequency side while keeping the size of the dipole antenna DP compact. Can be shifted.
  • a dipole antenna that covers the terrestrial digital television band can be realized in a size that can be mounted on a small wireless device.
  • the dipole antenna shown in the following embodiments is a dipole antenna having a shape selected in this way.
  • Embodiment 1 The first embodiment of the first basic form of the present invention will be described below with reference to the drawings.
  • FIG. 4 is a plan view showing the configuration of the dipole antenna 10 according to the present embodiment.
  • the dipole antenna 10 includes a radiating element 11 (first radiating element) and a radiating element 12 (second radiating element) arranged in the same plane (yz plane).
  • the radiating elements 11 and 12 included in the dipole antenna 10 according to the present embodiment are both made of a strip-shaped conductor film and are disposed on a dielectric sheet (not shown).
  • the radiating element 11 includes a linear portion 11 a (first linear portion) extending in the positive y-axis direction (first direction) from one end of the radiating element 11, and a bent portion 11 c ( A straight portion 11b (second straight portion) that is coupled to the straight portion 11a via the first bent portion) and extends from the bent portion 11c in the negative y-axis direction (the direction opposite to the first direction).
  • a wide portion 11d (first wide portion) wider than the straight portion 11b is added to the end of the straight portion 11b opposite to the bent portion 11c. Power supply to the radiating element 11 is performed from a power supply point 11e provided in the middle of the linear portion 11a.
  • the wide part 11d is a conductor film formed in a rectangular shape, and is arranged so that the long side is parallel to the y-axis direction.
  • the length of the short side of the wide portion 11d that is, the width of the wide portion 11d is equal to the distance between the end of the straight portion 11b on the negative z-axis direction side and the end of the straight portion 12b on the positive z-axis direction. Is set. That is, it is larger than the sum of the widths of the four straight portions 11a, 11b, 12a, 12b.
  • the radiating element 12 includes a straight part 12 a (third straight part) extending in the negative y-axis direction from the end of the radiating element 12 and a bent part 12 c (second bent part). And a straight portion 12b (fourth straight portion) that extends in the positive y-axis direction from the bent portion 12c and is opposite to the bent portion 12c side of the straight portion 12b. A wide portion 12d (second wide portion) wider than the straight portion 12b is added to the end portion.
  • the radiating element 12 is also fed from a feeding point 12e provided in the middle of the straight line portion 12a.
  • the wide portion 12d is a conductor film formed in a rectangular shape, and is arranged so that the long side is parallel to the z-axis direction.
  • the length of the short side of the wide portion 12d, that is, the width of the wide portion 12d is set to be equal to or greater than the width of the wide portion 11d.
  • both are long.
  • the size in the y-axis direction can be reduced as compared with a configuration in which the sides are arranged in parallel with the y-axis direction.
  • a conductor piece 13 for adjusting the magnitude of the reactance is provided.
  • the conductor piece 13 is formed by bending a linear conductor into a U-shape, and is disposed so as to surround the end of the straight portion 12a from three sides without contacting any of the radiating element 11 and the radiating element 12.
  • a conductor piece 14 for adjusting the size of the parasitic capacitance generated between the radiating element 11 and the radiating element 12 is provided in the gap between the bent portion 12c and the wide portion 11d. It has been.
  • the conductor piece 14 is formed by bending a linear conductor into an L shape, and does not contact any of the radiating element 11 and the radiating element 12, and the short side facing the bent portion 12 c of the wide portion 11 d and its short side. It arrange
  • a similar conductor piece (not shown) may be provided in the gap between the bent portion 11c and the wide portion 12d.
  • FIG. 5 is an enlarged view showing the central portion of the dipole antenna 10 in an enlarged manner.
  • a plate-like conductor piece 15 arranged so as to cover a part of the gap between the straight part 12a and the bent part 11c is a conductor piece for adjusting the parasitic reactance, and a part of the gap between the bent part 12c and the wide part 11d.
  • a plate-like conductor piece 16 arranged so as to cover the conductor is a conductor piece for adjusting the parasitic capacitance.
  • the characteristics of the dipole antenna 10 configured as described above, particularly the dipole antenna 10 for the terrestrial digital TV band (470 MHz to 900 MHz) are shown in FIGS.
  • 6 (a) and 6 (b) are graphs showing the radiation pattern and VSWR characteristics of the dipole antenna 10 in which the size of each part is set as follows.
  • FIG. 6 (a) shows that omnidirectionality is realized in the xy plane direction in the entire terrestrial digital television band despite the shape asymmetry. Further, according to FIG. 6B, it can be seen that the VSWR can be suppressed to 3.0 or less in the entire terrestrial digital television band.
  • FIGS. 7A and 7B are graphs showing the radiation pattern and VSWR characteristics of the dipole antenna 10 in which the size of each part is set as follows.
  • FIG. 7A shows that omnidirectionality is realized in the xy plane direction in the terrestrial digital television band except for some bands. Further, according to FIG. 7B, it can be seen that the VSWR can be suppressed to 3.0 or less in the terrestrial digital television band except for the band of 500 MHz or less and the band of 700 MHz to 800 MHz. .
  • the dipole antenna 10 When the characteristics shown in FIG. 6 and the characteristics shown in FIG. 7 are compared, if the lengths of the straight portion 11a and the straight portion 12a (that is, the distance between the wide portion 11d and the wide portion 12d) are increased, the dipole antenna 10 It can be seen that the characteristics are improved.
  • the operating band may be an operating band defined as a specification, or may be a band defined as a band in which VSWR is 3.0 or less.
  • the width of the wide portion 11d As in the case of the wide portion 12d described above, if c / (128f) or more (1/128 or more of the corresponding wavelength) is used, deterioration of the radiation pattern and VSWR characteristics in the higher-order mode can be suppressed. It is expected to be.
  • FIG. 8 is a plan view showing the configuration of the dipole antenna 20 according to the present embodiment.
  • the dipole antenna 20 includes two radiating elements 21 (first radiating elements) and a radiating element 22 (second radiating elements) arranged in the same plane (yz plane). ing.
  • the radiating elements 21 and 22 included in the dipole antenna 20 according to the present embodiment are both made of a strip-shaped conductor film and are disposed on a dielectric sheet (not shown).
  • the radiating element 21 includes a straight portion 21a (first straight portion) extending in the positive y-axis direction from one end of the radiating element 21, and a bent portion 21c (first bent portion). And a straight portion 21b (second straight portion) that extends in the negative y-axis direction from the bent portion 21c and is opposite to the bent portion 21c side of the straight portion 21b. A wide portion 21d (first wide portion) wider than the straight portion 21b is added to the end portion. Power supply to the radiating element 21 is performed from a power supply point 21e provided in the middle of the straight line portion 21a.
  • the wide part 21d is a conductor film formed in a rectangular shape, and is arranged so that the long side is parallel to the y-axis direction.
  • the length of the short side of the wide portion 21d that is, the width of the wide portion 21d is equal to the distance between the end of the straight portion 21b on the negative side of the z axis and the end of the straight portion 22b on the positive side of the z axis. Is set. That is, it is larger than the sum of the widths of the four straight portions 21a, 21b, 22a, 22b.
  • the radiating element 22 includes a straight portion 22a (third straight portion) extending from the end of the radiating element 22 in the negative y-axis direction and a bent portion 22c (second bent portion). And a straight portion 22b (fourth straight portion) that extends in the positive y-axis direction from the bent portion 22c, and is opposite to the bent portion 22c side of the straight portion 22b. A wide portion 22d that is wider than the straight portion 22b is added to the end portion.
  • the radiating element 22 is also fed from a feeding point 22e provided in the middle of the straight line portion 22a.
  • the wide portion 22d is a conductor film formed in a rectangular shape, and is arranged so that the long side is parallel to the y-axis direction.
  • the length of the short side of the wide portion 22d that is, the width of the wide portion 22d is equal to the distance between the end of the straight portion 21b on the negative side of the z axis and the end of the straight portion 22b on the positive side of the z axis. Is set. That is, it is larger than the sum of the widths of the four straight portions 21a, 21b, 22a, 22b.
  • the width of the wide portion 22d is made to coincide with the width of the wide portion 21d.
  • both the wide part 21d and the wide part 22d are arranged so that the long side is parallel to the y-axis direction, one is arranged so that the long side is parallel to the y-axis direction, and the other is long.
  • the size in the z-axis direction can be reduced as compared with the configuration in which the sides are arranged so as to be parallel to the z-axis.
  • the characteristics of the dipole antenna 20 configured as described above, particularly the dipole antenna 20 for the terrestrial digital television band (470 MHz to 900 MHz) are shown in FIGS.
  • 9 (a) and 9 (b) are graphs showing the radiation pattern and VSWR characteristics of the dipole antenna 20 in which the size of each part is set as follows.
  • FIG. 9A shows that omnidirectionality is realized in the xz plane direction in the terrestrial digital television band except for some bands. Further, according to (b) of FIG. 9, it is understood that the VSWR can be suppressed to 3.0 or less in the band except for the vicinity of 450 MHz and the band of 850 MHz or more in the terrestrial digital television band.
  • FIGS. 10A and 10B are graphs showing the radiation pattern and VSWR characteristics of the dipole antenna 20 in which the size of each part is set as follows.
  • the frequency in the operating band is f (more specifically, when the operating band is defined as a band where VSWR is 3.0 or less and the lower limit is f), the speed of light is c If the width of the wide portion 22d is set to c / (128f) or more (1/128 or more of the corresponding wavelength), it has been experimentally confirmed that deterioration of the radiation pattern and the VSWR characteristic in the higher-order mode can be suppressed. Yes.
  • FIG. 11 (a) is a diagram showing the structure of the dipole antenna DP2 according to the present invention.
  • the dipole antenna DP2 according to the present invention includes two radiating elements E21 and E22 arranged in the same plane.
  • the radiating element E21 includes a straight portion E21a (first straight portion) extending in the first direction from the feeding point F and a bent portion E21c (first bent portion). And a straight portion E21b (second straight portion) that is coupled to the straight portion E21a and extends from the bent portion E21c in the direction opposite to the first direction.
  • the radiating element E22 includes a straight portion E22a (third straight portion) extending from the feeding point F in the opposite direction to the first direction, and a bent portion E22c (second portion). And a straight part E22b (second straight part) extending in the first direction from the bent part E22c.
  • the dipole antenna DP2 of the present invention includes a radiating element E21 that is bent so that the linear portions E21a and E21b adjacent to each other via the bent portion E21c are parallel to each other, and a straight line that is adjacent to each other via the bent portion E22c.
  • the radiating element E22 bent so that the part E22a and the straight line part E22b are parallel to each other is arranged point-symmetrically with respect to the feeding point F, and each of the radiating elements E21 and E22 facing each other via the feeding point F is arranged.
  • This is a dipole antenna configured by connecting an end point to a feed line (not shown).
  • the end portion of the straight line portion E21a far from the feeding point F and the end portion of the straight line portion E21b closer to the feeding point F (the radiating element E21).
  • a polygonal line shape (more specifically, a U-shape) formed by a straight line portion E21c ′ extending in a direction perpendicular to the first direction and an end portion closer to the feeding point F when extending in a straight line.
  • the present invention is not limited to this.
  • a curved bent portion for example, a U-shaped bent portion
  • the end portion of the straight line portion E21a far from the feeding point F refers to an end portion (near the end point) when the intersection point with the straight line portion E21c 'is regarded as an end point.
  • the end portion of the straight line portion E21b closer to the feeding point F indicates an end portion (near the end point) when the intersection point with the straight line portion E21c 'is regarded as an end point.
  • the operating band of the dipole antenna DP2 can be expanded as compared with the conventional configuration in which the radiating elements E21 and E22 are not bent. The reason for this will be described with reference to FIG.
  • the direction of the current flowing through the radiating elements E21 and E22 at the second resonance frequency f2 is uniform as shown in FIG. 11C.
  • the 2nd resonance frequency f2 can be shifted to the low frequency side, and the radiation pattern in the 2nd resonance frequency f2 can be made into a single peak.
  • the length L21b of the straight portion E21b and the length L22b of the straight portion E22b are the sum L21a + L22a of the length L21a of the straight portion E21a and the length L22a of the straight portion E22a.
  • the direction of the current flowing through the radiating elements E21 and E22 is not uniform in the space as shown in FIG. radiation gain G 0 may be reduced. This is because part of the electromagnetic waves radiated from the straight line part E21b and the straight line part E22b are canceled by the electromagnetic waves radiated from the straight line part E21a and the straight line part E22a, respectively.
  • the length L21b of the straight portion E21b and the length L22b of the straight portion E22b are set longer than the sum L21a + L22a of the length L21a of the straight portion E21a and the length L22a of the straight portion E22a.
  • L21a / L21b ⁇ 0.5 is set.
  • Embodiment 1 The following describes the first embodiment of the second basic form of the present invention with reference to the drawings.
  • FIG. 13 is a plan view showing the configuration of the dipole antenna 30 according to the present embodiment.
  • the dipole antenna 30 includes two radiating elements 31 and 32 arranged in the same plane (yz plane).
  • the radiating elements 31 and 32 included in the dipole antenna 30 according to the present embodiment are both configured by conductor wires. More specifically, it is composed of a conductor wire having a radius of 1 mm.
  • the radiating element 31 includes a linear portion 31a extending in the z-axis positive direction from the feeding point 33, and a linear portion 31b connected to the linear portion 31a via the bent portion 31c and extending in the z-axis negative direction from the bent portion 31c.
  • the straight portion 31b is terminated at an end point opposite to the bent portion 31c side.
  • the radiating element 31 includes a straight portion 31a, a straight portion 31b, and a bent portion 31c, and does not have a component before the end point of the straight portion 31b opposite to the bent portion 31c.
  • the radiating element 32 includes a straight portion 32a extending in the negative z-axis direction from the feeding point 33, and a straight portion 32b connected to the straight portion 32a via the bent portion 32c and extending in the z-axis positive direction from the bent portion 32c. And is terminated at an end point opposite to the bent portion 32c side of the linear portion 32b.
  • the radiating element 32 includes a straight portion 32a, a straight portion 32b, and a bent portion 32c, and does not have a component before the end point of the straight portion 32b opposite to the bent portion 32c.
  • FIG. 14 shows the characteristics of the dipole antenna 30 configured as described above.
  • 14A shows the frequency dependence of the input reflection coefficient S 1,1
  • FIG. 14B shows the frequency dependence of the radiation gain G 0 .
  • Radiation gain G 0 is shown ( ⁇ represents a declination angle with respect to the z-axis in the polar coordinate system, and ⁇ represents a declination angle with respect to the x-axis in the polar coordinate system).
  • ⁇ ⁇ 5.1 dB is imposed as an operation condition, operation is performed at 1.9 GHz to 2.7 GHz (bandwidth ratio 35%) and 3.5 GHz to 5.3 GHz (bandwidth ratio 40%). It becomes a band.
  • the second resonance frequency f2 is shifted to a lower frequency than the frequency f G0max to maximize the radiation gain G 0, the radiation gain G 0 is the second resonance frequency
  • the operating condition imposed on the input reflection coefficient S 1,1 is relaxed to
  • a band of 5.5 GHz or less can be set as the operation band.
  • the band between the first resonance frequency f1 and the second resonance frequency f2 can be used as the operation band, as shown in FIG.
  • the input reflection coefficient S 1,1 decreases over the entire band between the first resonance frequency f1 and the second resonance frequency f2, and FIG.
  • the frequency f G0max second resonance frequency f2 (4.6 GHz) is to maximize the radiation gain G 0 (6.0 GHz) is shifted to a lower frequency, the first resonant frequency f1 due to no possibility that a steep drop in radiation gain G 0 occurs between the second resonance frequency f2.
  • the frequency f G0max (6.0 GHz) that maximizes the radiation gain G 0 is higher than the second resonance frequency f 2, that is, the radiation gain G 0 is between the first resonance frequency f 1 and the second resonance frequency f 2.
  • the fact that a sufficiently high radiation gain G 0 is obtained in the vicinity of the second resonance frequency without causing a steep drop is that the frequency dependence of the radiation pattern shown in FIG. 15 and the frequency dependence of HPBW / 2 shown in FIG. Can also be confirmed.
  • FIG. 15A shows a radiation pattern at 1.7 GHz
  • FIG. 15B shows a radiation pattern at 3.4 GHz
  • FIG. 15C shows a radiation pattern at 5.1 GHz.
  • the radiation pattern is shown.
  • the dipole antenna 30 in which the first resonance frequency f1 and the second resonance frequency f2 are very close can be realized by setting the size of each part as follows.
  • the radius of the conductor wire constituting the radiating elements 31 and 32 is 1 mm;
  • the distance ⁇ 2 mm between the radiating element 31 and the radiating element 32 facing each other via the feeding point 33;
  • FIG. 17 shows the frequency dependence of the input reflection coefficient S 1,1 of the dipole antenna 30 according to this modification.
  • the first resonance frequency f1 and the second resonance frequency f2 are extremely close to each other, and a deep valley having an input reflection coefficient S 1,1 is formed in a band including the first resonance frequency f1 and the second resonance frequency f2. . Therefore, for example, even when the operating condition of
  • FIG. 18 shows a radiation pattern at 2.0 GHz of the dipole antenna 30 according to this modification.
  • a radiation pattern with extremely high axial symmetry equivalent to that of the conventional ⁇ / 2 dipole antenna can be obtained at least in the vicinity of 2.0 GHz.
  • a sufficiently high radiation gain G 0 (2.4 dBi) can be obtained.
  • the shape effect of the dipole antenna 30 according to this embodiment will be described.
  • the scale is ignored, it can be defined by two parameters h1 / h2 and w / h2.
  • the behavior of the resonance frequency when these two parameters are changed will be described.
  • FIG. 19 is a graph showing the behavior of the first resonance frequency f1 and the second resonance frequency f2 when h1 / h2 is changed after setting the size of each part of the dipole antenna 30 as follows.
  • the radius of the conductor wires constituting the radiating elements 31 and 32 is fixed to 1 mm;
  • Distance ⁇ 2 mm (fixed) between the radiating element 31 and the radiating element 32 facing each other via the feeding point 33;
  • the first resonance frequency f1 and the second resonance frequency f2 are so close that they cannot be distinguished from the input reflection coefficient S 1,1 (the first resonance frequency f1 and The second resonance frequency f2 is integrated), and the valley of the input reflection coefficient S 1,1 is formed in the band between the first resonance frequency f1 and the second resonance frequency f2. can do.
  • the same effect can be obtained if at least h1 / h2 is 0.3 or less. Therefore, it can be seen that if h1 / h2 is 0.05 or more and 0.3 or less, the operation band can be surely expanded.
  • the dipole antenna 30 whose operation band is a desired band.
  • the shapes of the radiating elements 31 and 32 may be determined so that h1 / h2 is about 0.05, and 2.5 GHz to 3.5 GHz. If a wide operating band is required, the shapes of the radiating elements 31 and 32 may be determined so that h1 / h2 is about 0.2.
  • FIG. 20 is a graph showing the behavior of the first resonance frequency f1 and the second resonance frequency f2 when w / h2 is changed after setting the size of each part of the dipole antenna 30 as follows.
  • the radius of the conductor wires constituting the radiating elements 31 and 32 is fixed to 1 mm;
  • Distance ⁇ 2 mm (fixed) between the radiating element 31 and the radiating element 32 facing each other via the feeding point 33;
  • w / h2 when w / h2 ⁇ 0.07, the values of the first resonance frequency f1 and the second resonance frequency f2 do not change much even if the value of w / h2 is changed. That is, the parameter w / h2 does not have a great influence on the first resonance frequency f1 and the second resonance frequency f2.
  • w / h2 may be 0.05 or more and 0.25 or less.
  • FIG. 21 is a diagram showing a configuration of the dipole antenna 40 according to the present embodiment.
  • the dipole antenna 40 includes two radiating elements 41 and 42 arranged in the same plane (yz plane).
  • the radiating elements 41 and 42 included in the dipole antenna 40 according to the present embodiment are both made of a conductor film. More specifically, it is composed of a conductor film formed in a band shape having a width of 2 mm.
  • the radiating element 41 includes a straight portion 41a extending in the z-axis positive direction from the feeding point 43, and a straight portion 41b connected to the straight portion 41a via the bent portion 41c and extending in the z-axis negative direction from the bent portion 41c.
  • the straight portion 41b is terminated at an end point opposite to the bent portion 41c side.
  • the radiating element 42 includes a straight portion 42a extending in the negative z-axis direction from the feeding point 43, and a straight portion 42b connected to the straight portion 42a via the bent portion 42c and extending in the positive z-axis direction from the bent portion 42c. And is terminated at an end point opposite to the bent portion 42c side of the straight portion 42b.
  • FIG. 22 is a graph showing the frequency dependence of the input reflection coefficient S 1,1 near 5.0 GHz
  • FIG. 23 is a graph showing the radiation pattern at 5.0 GHz.
  • the configuration in which the radiating element 41 is terminated at the end point of the straight portion 41b (the end point opposite to the bent portion 41c side) has been described, but the present invention is not limited to this. . That is, by adding a further element to the end point of the straight portion 41b (end point opposite to the bent portion 41c side), the radiation element 41 has an end point of the straight portion 41b (end point opposite to the bent portion 41c side). You may deform
  • the further element added to the radiating element 41 may be a conductor film or a conductor wire. Various shapes such as a straight line shape, a curved line shape, and a meander shape can be considered as the shape of the additional element added to the radiating element 41. The same can be said for the radiating element 42.
  • a dipole antenna 40 in which meander parts 41d and 42d are added to the radiating elements 41 and 42 is shown in FIG.
  • the radiating element 41 is provided with a meander part 41d (first meander part) extending in the negative z-axis direction (opposite to the first direction) from the end point of the linear part 41b opposite to the bent part 41c side.
  • the radiation element 42 is provided with a meander part 42d (second meander part) extending in the positive z-axis direction from an end point of the linear part 42b opposite to the bent part 42c side.
  • end point of the straight line portion 41b opposite to the bent portion 41c side is a point that becomes the end point of the straight line portion 41b when the meander portion 41d is removed.
  • end point of the straight portion 42b opposite to the bent portion 42c is a point that becomes the end point of the straight line portion 41b when the meander portion 41d is removed.
  • the “direction in which the meander extends” can be defined as follows. That is, if the meander is traced from the side closer to the feeding point, a traveling direction sequence such as ⁇ y-axis direction, z-axis direction, -y-axis direction, z-axis direction,. In this traveling direction column, a traveling direction whose direction is reversed (in this case, the y-axis direction) and a traveling direction whose direction is not reversed (in this case, the z-axis direction) alternately appear. Of the traveling directions appearing in the traveling direction row, the traveling direction whose direction is not reversed may be the “direction in which the meander portion extends”.
  • FIG. 25 is a graph showing the frequency dependence of the input reflection coefficient S 1,1 near 5.0 GHz
  • FIG. 26 is a graph showing the radiation pattern at 5.0 GHz.
  • Modification 2 In the first modification, the configuration in which the meander unit 41d includes a single meander has been described, but the present invention is not limited to this. That is, the meander unit 41d may include a double or more meander. The same applies to the meander part 42d.
  • FIG. 27 shows a dipole antenna 40 that is deformed so that the meander parts 41d and 42d include double meanders. As shown in FIG. 27, the dipole antenna 40 can be made more compact by employing the meander parts 41d and 42d including multiple meanders.
  • N-fold meander can be defined as follows. That is, when the number of times that the traveling direction whose direction does not reverse in the traveling direction row appears is 2N, the meander is called an N-fold meander.
  • the direction in which the meander portion 41d extends is matched with the direction in which the straight portion 41b extends.
  • the present invention is not necessarily limited to this. That is, for example, the direction in which the meander part 41d extends may be orthogonal to the direction in which the straight line part 41b extends. The same applies to the direction in which the meander part 42d extends.
  • FIG. 28 shows a dipole antenna 40 that is deformed so that the direction in which the meander part 41d extends is perpendicular to the direction in which the straight part 41b extends.
  • the radiating element 41 is provided with a meander part 41d extending in the positive y-axis direction from an end point of the linear part 41b opposite to the linear part 41a side.
  • the radiating element 42 is provided with a meander part 42d extending in the y-axis negative direction from an end point of the linear part 42b opposite to the linear part 42a side.
  • the application range of the meander structure shown in the first to third modifications is not limited to the present embodiment in which the radiating elements 41 and 42 are configured by the conductor film, but the first implementation in which the radiating elements 31 and 32 are configured by the conductor wire. It extends to form.
  • FIG. 29A shows a power supply form in which power is supplied (balanced power supply) by the coaxial cable 34 entering the power supply point 33 along the straight line portion 32 a
  • FIG. 29B shows a straight line portion passing through the power supply point 33.
  • a power supply form in which power is supplied (balanced power supply) by a coaxial cable entering a power supply point 33 along a straight line (not shown) orthogonal to 32a is shown.
  • the inner conductor of the coaxial cable 34 may be connected to one of the radiating elements 31 and 32 and the outer conductor of the coaxial cable 34 may be connected to the other.
  • the end of the linear portion 31a on the power supply point 33 side and the power supply point of the linear portion 32a are used. It is preferable to bend the end portion on the 33 side inward (feeding point 33 side) along the coaxial cable 34.
  • the dipole antenna 10 shown in FIG. 4 has the radiation element 11 (first radiation point). Element) and a radiating element 12 (second radiating element), and the radiating element 11 (first radiating element) is a straight portion 11a extending in the first direction from the first feeding point. (The first straight portion) and the first bent portion are connected to the opposite side of the first feeding point side of the straight portion 11a (first straight portion) from the first bent portion. And a radiating element 12 (second radiating element) extending from the second feeding point to the first direction.
  • the straight portion 12a (third straight portion) extending in the opposite direction to the straight portion 12a (third straight portion) via the second bent portion
  • a straight portion 12b (fourth straight portion) that is connected to the side opposite to the second feeding point side of the straight portion and extends in the first direction from the second bent portion.
  • the first feeding point and the second feeding point are provided in the middle of the first straight line portion 11a and the third straight line portion 12a, respectively.
  • the first straight line portion 11a is disposed between the third straight line portion 12a and the fourth straight line portion 12b
  • the third straight line portion 12a is disposed between the first straight line portion 11a and the second straight line portion 11b. It is the example of a structure arrange
  • connection point between the coaxial cable 34 (feed line) and the radiating element 31 (first radiating element) is the first feeding point, and the coaxial cable 34 (feed line) and the radiating element 32 are connected.
  • connection point with the (second radiating element) is called the second feeding point
  • the dipole antenna 30 shown in FIGS. 29 (a) and 29 (b) is radiated with the radiating element 31 (first radiating element).
  • the dipole antenna includes an element 32 (second radiating element), and the radiating element 31 (first radiating element) includes a linear portion 31a (first radiating element) extending in the first direction from the first feeding point.
  • a straight portion) and a first bent portion the straight portion 31a (first straight portion) is connected to the side opposite to the first feeding point side, and the first bent portion is connected to the first bent portion.
  • a linear portion 31b (second linear portion) extending in a direction opposite to the direction, and the radiating element 32 (first linear portion).
  • the radiating element includes a straight part 32a (third straight part) extending from the second feeding point in the direction opposite to the first direction, and a straight part 32a (third straight line) via the second bent part. Part) is connected to the side opposite to the second feeding point side and has a straight part 32b (fourth straight part) extending from the second bent part in the first direction.
  • the dipole antenna 30 shown in FIG. 29A is a configuration example in which a straight portion 31a (first straight portion) and a straight portion 32a (third straight portion) are arranged in a straight line.
  • the dipole antenna 30 shown in 29 (b) is a configuration example in which a straight portion 31a (first straight portion) and a straight portion 32a (third straight portion) are arranged on a straight line.
  • the dipole antenna according to the present invention is a dipole antenna including a first radiating element and a second radiating element, and the first radiating element is connected to the first radiating element from one end thereof.
  • a first straight portion extending in the direction of 1 and a first bent portion connected to the opposite side of the first straight portion from the end portion side, and from the first bent portion to the first bent portion
  • a second linear portion extending in a direction opposite to the first direction, and the second radiating element extends from one end of the second radiating element in a direction opposite to the first direction.
  • a fourth straight line extending from the second bent portion in the first direction and connected to the opposite side of the third straight portion via the second bent portion.
  • a feeding point is provided in the middle of the first straight portion and the middle of the third straight portion,
  • the first straight line portion is disposed between the third straight line portion and the fourth straight line portion, and the third straight line portion includes the first straight line portion and the second straight line portion. It is characterized by being arranged between.
  • “middle” in the “middle of the first straight line portion” means an arbitrary point between both ends of the “first straight line portion”, and not the center point between both ends.
  • “middle” in “middle of the third straight line portion” means an arbitrary point between both end portions of the “third straight line portion”, and does not mean a center point between both end portions.
  • the direction of the current flowing through the first radiating element and the second radiating element at the second resonance frequency can be made substantially uniform.
  • the radiation pattern at the second resonance frequency is easily unimodal, and the second resonance frequency is shifted to the low frequency side.
  • unimodalization of the radiation pattern at the second resonance frequency means that the second resonance frequency is shifted to a lower frequency side than the frequency at which the radiation gain is maximized, that is, the first resonance frequency and the second resonance frequency. This means that there is no sharp drop in radiation gain between frequencies. For this reason, when the radiation pattern at the second resonance frequency is unimodal, a band in the vicinity of the second resonance frequency, which could not be set as the operating band due to a sharp decrease in the radiation gain in the conventional configuration, is radiated. The operating band can satisfy the operating condition imposed on the gain.
  • the first resonance frequency and the second resonance frequency approach each other, and the input reflection coefficient extends over the entire band between the first resonance frequency and the second resonance frequency. descend. Therefore, if the radiation gain between the first resonance frequency and the second resonance frequency satisfies the operation condition, the entire band between the first resonance frequency and the second resonance frequency can be set as the operation band. .
  • first radiating element and the second radiating element are configured as described above, there is an effect that the conventional dipole antenna having the same overall length becomes more compact.
  • first radiating element and the second radiating element are not only bent, but the first radiating element enters between the straight portions of the second radiating element, and the second radiating element is the first radiating element. Therefore, a more compact dipole antenna can be realized.
  • the “direction” in the “first direction” refers to the oriented direction. That is, for example, if north is the first direction, south is not the first direction but the opposite direction of the first direction.
  • the length of the second straight line portion and the length of the fourth straight line portion are respectively set to the first bent portion side of the first straight portion from the feeding point. It is preferable that it is larger than the sum of the length of the portion located on the second bent portion side with respect to the feeding point of the third straight portion.
  • the direction of the current flowing through the first radiating element and the second radiating element is non-uniform, which may reduce the radiation gain in the vicinity of the first resonance frequency. This is because a part of the electromagnetic waves radiated from the second linear portion and the fourth linear portion are canceled by the electromagnetic waves radiated from the first linear portion and the third linear portion.
  • the rate at which the electromagnetic waves radiated from the second linear portion and the fourth linear portion are canceled by the electromagnetic waves radiated from the first linear portion and the third linear portion is reduced. Can do. Therefore, a further effect of being able to suppress a decrease in radiation gain G 0 which can occur at the first resonant frequency neighborhood.
  • the dipole antenna according to the present invention includes a conductor piece disposed in a gap between the first straight portion and the second radiating element or a gap between the third straight portion and the first radiating element. Furthermore, it is preferable to provide.
  • the 1st radiating element is more effective. And the parasitic reactance between the second radiating element can be adjusted. Therefore, it is possible to realize a dipole antenna whose antenna characteristics can be easily adjusted.
  • the dipole antenna according to the present invention includes a conductor piece disposed in a gap between the first linear portion and the second radiating element, and a third linear portion and the first radiating element. Both of the conductor pieces arranged in the gap may be provided, or only one of them may be provided.
  • the dipole antenna In the dipole antenna according to the present invention, at least a part of a gap between the first straight portion and the second radiating element or a gap between the third straight portion and the first radiating element is provided as a dielectric. It is preferable to further include a conductor piece arranged to cover the body sheet.
  • the 1st radiating element is more effective. And the parasitic reactance between the second radiating element can be adjusted. Therefore, it is possible to realize a dipole antenna whose antenna characteristics can be easily adjusted.
  • the dipole antenna according to the present invention includes a conductor piece covering at least a part of a gap between the first linear portion and the second radiating element, and the third linear portion and the first radiating element. Both of the conductor pieces covering at least a part of the gap may be provided, or only one of them may be provided.
  • the first radiating element is connected to a side opposite to the first bent portion side of the second straight portion, and has a width wider than that of the second straight portion.
  • the second radiating element is connected to a side of the fourth straight portion opposite to the second bent portion and is wider than the fourth straight portion. It is preferable to further have a wide second wide portion.
  • the electrical length of a 1st radiating element and a 2nd radiating element can be lengthened by providing a wide part, and an operating zone is shifted to the low frequency side, keeping a size compact. Can do.
  • a dipole antenna with low directivity can be realized.
  • the width of the first wide portion or the width of the second wide portion is not less than c / (128f), where f is a frequency within the operating band (c is the speed of light Is preferred.
  • the VSWR in the higher-order mode can be reduced and the operating band can be further expanded. Moreover, directivity can be further reduced.
  • Both the width of the first wide portion and the width of the second wide portion may be c / (128f) or more, or only one of them is c / (128f) or more. May be.
  • the length of the second straight portion or the length of the fourth straight portion is equal to or greater than c / (16f), where f is a frequency within the operating band (c Is the speed of light).
  • the VSWR in the higher-order mode can be reduced and the operating band can be further expanded. Moreover, directivity can be further reduced.
  • both the length of the second straight portion and the length of the fourth straight portion may be c / (16f) or more, or only one of them is c / (16f) or more. It may be.
  • the dipole antenna according to the present invention includes a conductor piece disposed in a gap between the second bent portion and the first wide portion, or a gap between the first bent portion and the second wide portion. Furthermore, it is preferable to provide.
  • the parasitic capacitance generated between the first radiating element and the second radiating element can be changed without changing the shapes of the first radiating element and the second radiating element. Compared with the case where the conductor piece is provided at the location, it can be changed more effectively. Therefore, it is possible to realize a dipole antenna whose antenna characteristics can be easily adjusted.
  • the dipole antenna according to the present invention includes a conductor piece disposed in a gap between the second bent portion and the first wide portion, and the first bent portion and the second wide portion. Both of the conductor pieces arranged in the gap may be provided, or only one of them may be provided.
  • the dipole antenna according to the present invention at least a part of the gap between the second bent portion and the first wide portion or the gap between the first bent portion and the second wide portion is made dielectric. It is preferable that a conductor piece that covers the body sheet is further provided.
  • the parasitic capacitance generated between the first radiating element and the second radiating element can be changed without changing the shapes of the first radiating element and the second radiating element. Compared with the case where the conductor piece is provided at the location, it can be changed more effectively. Therefore, it is possible to realize a dipole antenna whose antenna characteristics can be easily adjusted.
  • the dipole antenna according to the present invention includes a conductor piece covering at least a part of a gap between the second bent portion and the first wide portion, and the first bent portion and the second wide portion. Both of the conductor pieces covering at least a part of the gap may be provided, or only one of them may be provided.
  • the first wide portion is formed in a rectangular shape having a long side parallel to the first direction, and the second wide portion is in the first direction. It is preferably formed in a rectangular shape having a vertical long side.
  • the size of the said 1st direction and its reverse direction is compared. Can be reduced.
  • the said dipole antenna becomes L shape as a whole, mounting to the small radio
  • the first wide portion and the second wide portion are each formed in a rectangular shape having a long side parallel to the first direction.
  • the dipole antenna has an I-shape as a whole, so that it can be easily mounted on a small wireless device having an I-shaped space.
  • the dipole antenna according to the present invention is a dipole antenna including a first radiating element and a second radiating element, wherein the first radiating element includes a first straight portion extending in a first direction from a feeding point; The second straight portion connected to the side opposite to the feeding point side of the first straight portion via the first bent portion and extending from the first bent portion in the direction opposite to the first direction.
  • the second radiating element includes a third linear portion extending from the feeding point in a direction opposite to the first direction, and the third linear portion via a second bent portion. And a fourth linear portion that is connected to the side opposite to the feeding point side and extends in the first direction from the second bent portion.
  • the direction of the current flowing through the first radiating element and the second radiating element can be made uniform at the second resonance frequency.
  • the 2nd resonance frequency can be shifted to the low frequency side, and the radiation pattern in the 2nd resonance frequency can be made unimodal.
  • unimodalization of the radiation pattern at the second resonance frequency means that the second resonance frequency is shifted to a lower frequency side than the frequency at which the radiation gain is maximized, that is, the first resonance frequency and the second resonance frequency. This means that there is no sharp drop in radiation gain between frequencies. For this reason, the band near the second resonance frequency, which could not be set as the operating band due to the sharp decrease in the radiation gain in the conventional configuration, can be set as the operating band that satisfies the operating condition imposed on the radiation gain. .
  • the first resonance frequency and the second resonance frequency approach each other, and the input reflection coefficient extends over the entire band between the first resonance frequency and the second resonance frequency. descend.
  • the first resonance frequency and the second resonance frequency can be reduced.
  • the entire band between the resonance frequency f2 can be set as the operation band.
  • the first radiating element and the second radiating element are configured as described above, there is an effect that the conventional dipole antenna having the same overall length becomes more compact.
  • the “direction” in the “first direction” refers to the oriented direction. That is, for example, if north is the first direction, south is not the first direction but the opposite direction of the first direction.
  • the length of the second straight portion and the length of the fourth straight portion are respectively the length of the first straight portion and the length of the third straight portion. It is preferably larger than the sum.
  • the direction of the current flowing through the first radiating element and the second radiating element is non-uniform, which may reduce the radiation gain in the vicinity of the first resonance frequency. This is because a part of the electromagnetic waves radiated from the second linear portion and the fourth linear portion are canceled by the electromagnetic waves radiated from the first linear portion and the third linear portion.
  • the rate at which the electromagnetic waves radiated from the second linear portion and the fourth linear portion are canceled by the electromagnetic waves radiated from the first linear portion and the third linear portion is reduced. Can do. Therefore, a further effect of being able to suppress a decrease in radiation gain G 0 which can occur at the first resonant frequency neighborhood.
  • the first radiating element is terminated on a side opposite to the first bent portion side of the second straight line portion, and the second radiating element includes the first radiating element. 4 is preferably terminated on the side opposite to the second bent portion side.
  • the first characteristic can be obtained using a numerical simulation or the like.
  • the radiating element and the second radiating element can be easily designed.
  • the ratio of the length of the first straight portion to the length of the second straight portion, and the length of the third straight portion relative to the length of the fourth straight portion is preferably 0.05 or more and 0.3 or less.
  • a sufficiently wide operating band can be obtained by setting the ratio to 0.05 or more, and at the same time, a sufficiently high radiation gain can be obtained by setting the ratio to 0.3 or less. There is a further effect that it can be obtained.
  • the first radiating element and the second radiating element further include a meander part at least partially meandered.
  • the first radiating element extends in a direction opposite to the first direction from a side opposite to the first bent portion side of the second linear portion, and at least a part of the first radiating element is a meander.
  • the second radiating element extends in the first direction from the opposite side of the fourth straight portion to the second bent portion side, It is preferable to further have a second meander part at least partially meandered.
  • the first meander part extending in the direction opposite to the first direction and the second meander part extending in the first direction are converted into meanders.
  • the size of the dipole antenna in the first direction and the opposite direction can be reduced. There is a further effect.
  • the first radiating element extends in a second direction perpendicular to the first direction from a side opposite to the first bent portion side of the second linear portion.
  • the second radiating element further includes a first meander part that is at least partly meandered, and the second radiating element is arranged on the second linear part from the side opposite to the second bent part side. It is preferable to further have a second meander portion that extends in a direction opposite to the direction and is at least partially meandered.
  • the size of the dipole antenna in the second direction and the opposite direction thereof is converted into a meander. Accordingly, compared to the case where the first radiating element and the second radiating element extend linearly in the second direction and the opposite direction, respectively, the size of the dipole antenna in the second direction and the opposite direction thereof. There is a further effect that can be reduced.
  • the first radiating element and the second radiating element can be constituted by, for example, a conductor film or a conductor wire.
  • the dipole antenna according to the present invention can be fed by a coaxial cable extending from the feeding point in the first direction or a direction perpendicular to the first direction.
  • the first straight line portion and the third straight line portion can be arranged on a straight line, for example.
  • the present invention can be widely used for various wireless devices.
  • it can be suitably used as an antenna for a small wireless device that covers the terrestrial digital television band.
  • the present invention can be widely used for various wireless devices.
  • it can be suitably used as an antenna for a small wireless device such as a personal computer or a mobile phone terminal, or as an antenna for a base station.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

 従来のダイポールアンテナよりもコンパクトで、かつ、従来のダイポールアンテナよりも動作帯域の広いダイポールアンテナを実現する。本発明のダイポールアンテナ(DP)は、同一平面内に配置された2つの放射素子(E1)及び(E2)を備えている。放射素子(E1)は、放射素子(E1)の一方の端部から第1の方向に伸びる直線部(E1a)と、屈曲部(E1c)を介して直線部(E1a)に連結され、屈曲部(E1c)から第1の方向と逆方向に伸びる直線部(E1b)とを有している。放射素子(E2)は、放射素子(E2)の一方の端部から第1の方向と反対方向に伸びる直線部(E2a)と、屈曲部(E2c)を介して直線部(E2a)に連結され、屈曲部(E2c)から第1の方向に伸びる直線部(E2b)とを有している。放射素子(E1)及び(E2)は、直線部(E1a)が、直線部(E2a)と直線部(E2b)との間に配置され、直線部(E2a)が直線部(E1a)と直線部(E1b)との間に配置されるように組み合わせられている。

Description

ダイポールアンテナ
 本発明は、ダイポールアンテナに関するものであり、特に、給電点近傍に特有の構造を有する新規なダイポールアンテナに関するものである。
 高周波電流を電磁波に変換したり、電磁波を高周波電流に変換したりするための装置として、古くからアンテナが用いられている。アンテナは、その形状から線状アンテナ、面状アンテナ、立体アンテナ等に分類されており、又、その構造からダイポールアンテナ、モノポールアンテナ、ループアンテナ等に分類されている。線状の放射素子を備えたダイポールアンテナは、極めて簡単な構造を有するアンテナであり(非特許文献1)、基地局アンテナ等として現在でも広く利用されている。また、線状の放射素子の代わりに、面状の放射素子を備えた平面ダイポールアンテナなども知られている(非特許文献2)。
 図30の(a)に従来のダイポールアンテナdpの構造を示す。ダイポールアンテナdpは、給電点Fから第1の方向に伸びる直線状の放射素子e1と、給電点Fから第1の方向と逆方向に伸びる直線状の放射素子e2とからなり、高周波電流を電磁波に変換する送信アンテナ、あるいは、電磁波を高周波電流に変換する受信アンテナとして機能する。ただし、ダイポールアンテナdpを用いて効率的に電磁波(高周波電流)に変換できる高周波電流(電磁波)は、ダイポールアンテナdpの共振周波数に近い周波数をもつものに限られる。
 図30の(b)にダイポールアンテナdpの第1共振周波数f1における電流分布(基本モード)を示す。第1共振周波数f1においては、図30の(b)に示したように、放射素子e1及びe2を流れる電流の向きが一様になる。このため、第1共振周波数f1に近い周波数をもつ高周波電流が給電点Fを介して入力されると、単峰性の放射パターンをもつ電磁波が放射素子e1及びe2から放射される。
 図30の(c)にダイポールアンテナdpの第2共振周波数f2における電流分布(高次モード)を示す。第2共振周波数f2おいては、図30の(c)に示したように、放射素子e1及びe2を流れる電流の向きが非一様になる。もう少し具体的にいうと、放射素子e1及びe2の全体を3等分する点が電流分布の節となり、放射素子e1及びe2を流れる電流の向きがこれらの節で反転する。このため、第2共振周波数f2に近い周波数をもつ高周波電流が給電点Fを介して入力されると、スプリットした放射パターンをもつ電磁波が放射素子e1及びe2から放射される。これは、放射素子e1及びe2の各部から放射される電磁波同士の干渉により、特定の方向に放射される電磁波の強度が他の方向に放射される電磁波の強度と比べて著しく低下するためである。
J.D.クラウス他著(J.D. Kraus and R.J. Marhefka)、「アンテナとその応用(Antennas For All Applications)」、第3版、(米国)、マグロウヒル(McGraw Hill)、2002年、p178-181 Xuan Hui Wu、Comparison of Planar Dipoles in UWB Applications、IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION、VOL. 53、NO. 6、2005年6月
 しかしながら、従来のダイポールアンテナには、(1)寸法が大きく、(2)動作帯域が狭いという問題があった。これらの問題についてより具体的に説明すれば以下のとおりである。
 (1)寸法が大きい
 第1共振周波数をもつ基本モードを利用して波長λの電磁波を放射する場合、概ね全長λ/2のダイポールアンテナを使用する必要がある。また、第2共振周波数をもつ高次モードを利用して波長λの電磁波を放射する場合、概ね全長3λ/2のダイポールアンテナを使用する必要がある。例えば、基本モードを利用して地上波デジタルテレビ帯域(470MHz以上900MHz以下)の電磁波を放射する場合、30cm以上のダイポールアンテナを使用する必要があり、これを携帯電話端末やパーソナルコンピュータなどに収納することは困難である。高次モードを利用する場合は尚更である。
 また、例えば、基本モードを利用して2GHz(波長15cm)の電磁波を放射する場合、概ね全長7.5cmのダイポールアンテナを使用する必要があり、これを携帯電話端末やパーソナルコンピュータなどに収納することは困難である。高次モードを利用する場合は尚更である。
 (2)動作帯域が狭い
 一般に、ある周波数の電磁波を効率的に放射するためには、その周波数における入力反射係数(入力電力に対する反射電力の比、すなわち、Sマトリクスの成分S1,1の振幅|S1,1|)が低く、かつ、その周波数における放射利得が高いことを要する。したがって、入力反射係数を極小化する帯域(すなわち、共振周波数近傍)であっても、その帯域における放射利得が低過ぎれば動作帯域として使用することができない。逆に、放射利得を極大化する帯域であっても、その帯域における入力反射係数が高過ぎれば動作帯域として使用することができない。
 従来のダイポールアンテナの動作帯域について、図31に示す具体例に即して説明すれば以下のとおりである。
 図31に示したダイポールアンテナ90は、長さ40mmの導体ワイヤ(半径1mm)により構成された放射素子91及び92を、2mmの間隔をあけて一直線上に配置したものである。なお、以下に示すダイポールアンテナ90の諸特性は、システム特性インピーダンスを50Ωと仮定して行った数値シミュレーションによって得られたものである。
 図32の(a)にダイポールアンテナ90の入力反射係数S1,1の周波数依存性を示し、図32の(b)にダイポールアンテナ90の放射利得Gの周波数依存性を示す。なお、図32の(b)に示す放射利得Gは、θ=90°方向に対する放射利得である(θは極座標系におけるz軸に対する偏角を表す)。
 図32の(a)から分かるように、ダイポールアンテナ90は、f1=1.7GHz及びf2=5.0GHzを共振周波数としており、例えば、入力反射係数S1,1に対して|S1,1|≦-5.1dBという動作条件が課された場合、1.5GHz以上1.9GHz以下(比帯域24%)及び4.7GHz以上5.4GHz以下(比帯域14%)が動作帯域となる。ただし、入力反射係数S1,1の値は、入射側の特性インピーダンスを50Ωとしたときの値である(以下に言及する入力反射係数S1,1の値についても同様である)。ここで、ある帯域の「比帯域」とは、その帯域の中心周波数に対するその帯域の帯域幅の比を指す。
 ところが、図32の(b)から分かるように、ダイポールアンテナ90の放射利得Gは、第2共振周波数f2よりも低い周波数fG0max=4.3GHzで極大値をとり、更に周波数を上げると急峻に低下する。このため、放射利得Gに対して課される動作条件によっては、入力反射係数S1,1に対して課された動作条件を充足する第2共振周波数近傍の帯域(4.7GHz以上5.4GHz以下)全体を動作帯域とすることができない。例えば、放射利得Gが2dBi以上であることが動作条件として課された場合、入力反射係数S1,1に対して課された動作条件を充足する第2共振周波数近傍の帯域(4.7GHz以上5.4GHz以下)のうち、4.9GHz以上の帯域を動作帯域とすることができない。
 なお、4.3GHz以下の帯域にて生じる放射利得Gの緩やかな上昇は、この帯域において放射パターンがθ=90°方向へと次第に集中していくことに起因する現象であり、4.3GHz以上の帯域にて生じる放射利得Gの急峻な低下は、この帯域において放射パターンがスプリットすることに起因する現象である。
 図33の(a)~図33の(c)にいくつかの周波数における放射パターンを示す。図33の(a)に示した放射パターンは、1.7GHz(第1共振周波数近傍)における放射パターンであり、図33の(b)に示した放射パターンは、3.4GHz(放射利得Gが緩やかに上昇する帯域)における放射パターンである。図33の(a)及び図33の(b)に示した放射パターンからも、4.3GHz以下の放射利得Gが緩やかに上昇する帯域において放射パターンがθ=90°方向へと次第に集中していくことが分かる。また、図33の(c)に示した放射パターンは、5.1GHz(放射利得Gが急峻に低下する帯域)における放射パターンである。図33の(c)に示した放射パターンからも、4.3GHz以上の放射利得Gが急峻に低下する帯域において放射パターンがスプリットすることが分かる。
 図34は、θ=90°方向に対するHPBW(Half Power Band Width)/2の周波数依存性を示すグラフである。HPBWは、放射利得Gが-3[dBi]となる偏角θの差として定義される量であり、放射パターンのθ=90°方向への集中度が高いほどその値が小さくなる。図34からも、4.3GHz以下の放射利得Gが緩やかに上昇する帯域において放射パターンがθ=90°方向へと次第に集中していくことが確かめられる。
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、従来のダイポールアンテナよりもコンパクトで、かつ、従来のダイポールアンテナよりも動作帯域の広いダイポールアンテナを実現することにある。
 本発明に係るダイポールアンテナは、上記の課題を解決するために、第1の放射素子と第2の放射素子とを備えたダイポールアンテナにおいて、上記第1の放射素子は、第1の給電点から第1の方向に伸びる第1の直線部と、第1の屈曲部を介して上記第1の直線部の上記第1の給電点側とは反対側に連結され、上記第1の屈曲部から上記第1の方向と逆方向に伸びる第2の直線部とを有しており、上記第2の放射素子は、第2の給電点から上記第1の方向と逆方向に伸びる第3の直線部と、第2の屈曲部を介して上記第3の直線部の上記第2の給電点側とは反対側に連結され、上記第2の屈曲部から上記第1の方向に伸びる第4の直線部とを有している、ことを特徴としている。
 上記の構成によれば、第2共振周波数において第1の放射素子及び第2の放射素子を流れる電流の方向を一様化することができる。これにより、第2共振周波数を低周波側にシフトさせ、第2共振周波数における放射パターンを単峰化することができる。
 ここで、第2共振周波数における放射パターンの単峰化は、第2共振周波数が放射利得を極大化する周波数よりも低周波側にシフトしていること、すなわち、第1共振周波数と第2共振周波数との間で放射利得の急峻な低下が生じないことを意味する。このため、従来の構成では放射利得の急峻な低下によって動作帯域とすることができなかった第2共振周波数近傍の帯域を、放射利得に課された動作条件を充足する動作帯域とすることができる。
 更に、第2共振周波数が低周波側にシフトすると、第1共振周波数と第2共振周波数とが接近し、入力反射係数が第1共振周波数と第2共振周波数との間の帯域全体に渡って低下する。しかも、上述したように第1共振周波数と第2共振周波数との間で放射利得が急峻に低下することがないので、入力反射係数に課される動作条件によっては、第1共振周波数と第2共振周波数f2との間の帯域全体を動作帯域とすることができる。
 すなわち、従来のダイポールアンテナにおいては動作帯域とすることができなかった第2周波数近傍を新たに動作帯域とすることによって、動作帯域の拡大を図ることができるという効果を奏する。
 併せて、第1の放射素子及び第2の放射素子を上記のように構成したことにより、全長が同じ従来のダイポールアンテナよりもコンパクトになるという効果を奏する。
 なお、「第1の方向」における「方向」とは、向き付けられた方向のことを指す。すなわち、例えば、北を第1の方向とすれば、南は第1の方向ではなく、第1の方向の逆方向となる。
 第1の給電点から第1の方向に伸びる第1の直線部と、第1の屈曲部を介して上記第1の直線部の上記第1の給電点側とは反対側に連結され、上記第1の屈曲部から上記第1の方向と逆方向に伸びる第2の直線部とを有する第1の放射素子と、第2の給電点から上記第1の方向と逆方向に伸びる第3の直線部と、第2の屈曲部を介して上記第3の直線部の上記第2の給電点側とは反対側に連結され、上記第2の屈曲部から上記第1の方向に伸びる第4の直線部とを有する第2の放射素子とを備えることによって、従来よりもコンパクトで、かつ、動作帯域の広いダイポールアンテナを実現することができる。
本発明の第1の基本形態に係るダイポールアンテナを説明する図であり、(a)は本発明の第1の基本形態に係るダイポールアンテナの構造を示す図であり、(b)及び(c)は上記ダイポールアンテナのそれぞれ第1及び第2共振周波数における電流分布を示す図である。 図1の(a)のダイポールアンテナの好ましい変形例を示す図である。 図1の(a)のダイポールアンテナに更なる要素を付加したダイポールアンテナの構成を示す平面図である。 本発明の第1の基本形態における第1の実施形態に係るダイポールアンテナの構成を示す平面図である。 図4のダイポールアンテナの変形例を示すものであり、中心部を拡大して示した拡大図である。 図4のダイポールアンテナの特性を示すグラフであり、(a)は放射パターンを示すグラフであり、(b)はVSWR特性を示すグラフである。 図4のダイポールアンテナにおいて、図6の場合とは各部のサイズを変更したときの特性を表すグラフであり、(a)は放射パターンを示すグラフであり、(b)はVSWR特性を示すグラフである。 本発明の第1の基本形態における第2の実施形態に係るダイポールアンテナの構成を示す平面図である。 図8のダイポールアンテナの特性を示すグラフであり、(a)は放射パターンを示すグラフであり、(b)はVSWR特性を示すグラフである。 図8のダイポールアンテナにおいて、図9の場合とは各部のサイズを変更したときの特性を表すグラフであり、(a)は放射パターンを示すグラフであり、(b)はVSWR特性を示すグラフである。 本発明の第2の基本形態に係るダイポールアンテナを説明する図であり、(a)は本発明の第2の基本形態に係るダイポールアンテナの構造を示す図であり、(b)及び(c)は上記ダイポールアンテナのそれぞれ第1及び第2共振周波数における電流分布を示す図である。 図11の(a)のダイポールアンテナの好ましい変形例を示す図である。 本発明の第2の基本形態における第1の実施形態に係るダイポールアンテナの構成を示す平面図である。 図13のダイポールアンテナの特性を示すグラフであり、(a)は入力反射係数の周波数依存性を示すグラフであり、(b)は放射利得の周波数依存性を示すグラフである。 図13のダイポールアンテナの放射パターンを示すグラフであり、(a)~(c)はそれぞれ周波数1.7GHz、3.4GHz、5.1GHzにおける放射パターンを示すグラフである。 図13のダイポールアンテナのHPBWの周波数依存性を示すグラフである。 図13のダイポールアンテナにおいて、図14の(a)の場合とは各部のサイズを変更したときの入力反射係数の周波数依存性を示すグラフである。 図13のダイポールアンテナにおいて、各部のサイズを図17の場合と同一に設定したときの放射パターンを示すグラフである。 図13のダイポールアンテナにおける共振周波数の形状パラメータ依存性を示すグラフである。 図13のダイポールアンテナにおける共振周波数の形状パラメータ依存性を示すグラフである。 本発明の第2の基本形態における第2の実施形態に係るダイポールアンテナの構成を示す平面図である。 図21のダイポールアンテナの入力反射係数の周波数依存性を示すグラフである。 図21のダイポールアンテナの放射パターンを示すグラフである。 本発明の第2の基本形態における第2の実施形態の第1変形例に係るダイポールアンテナの構成を示す平面図である。 図24のダイポールアンテナの入力反射係数の周波数依存性を示すグラフである。 図24のダイポールアンテナの放射パターンを示すグラフである。 本発明の第2の基本形態における第2の実施形態の第2変形例に係るダイポールアンテナの構成を示す平面図である。 本発明の第2の基本形態における第2の実施形態の第3変形例に係るダイポールアンテナの構成を示す平面図である。 本発明の第2の基本形態に係るダイポールアンテナへの給電手段を説明する図であり、(a)及び(b)は、本発明の実施形態に係るダイポールアンテナへの給電手段を示す平面図である。 従来のダイポールアンテナを説明する図であり、(a)は従来のダイポールアンテナの構造及び共振モードを示す図であり、(b)及び(c)は上記ダイポールアンテナのそれぞれ第1及び第2共振周波数における電流分布を示す図である。 従来のダイポールアンテナの構成を示す平面図である。 図31のダイポールアンテナの特性を示すグラフであり、(a)は入力反射係数の周波数依存性を示すグラフであり、(b)は放射利得の周波数依存性を示すグラフである。 図31のダイポールアンテナの放射パターンを示すグラフであり、(a)~(c)はそれぞれ周波数1.7GHz、3.4GHz、5.1GHzにおける放射パターンを示すグラフである。 図31のダイポールアンテナのHPBWの周波数依存性を示すグラフである。
 本発明に係るダイポールアンテナは、2つの基本形態を持つ。以下では、第1の基本形態、その第1の基本形態の各種の実施形態、第2の基本形態、その第2の基本形態の各種の実施形態について、順に説明する。
 〔本発明の第1の基本形態〕
 本発明の具体的な実施形態について説明する前に、まず、各実施形態に共通する第1の基本形態について図1を参照して説明する。
 図1の(a)は、本発明に係るダイポールアンテナDPの構造を示した図である。本発明に係るダイポールアンテナDPは、図1の(a)に示したように、同一平面内に配置された2つの放射素子E1及びE2を備えている。
 放射素子E1は、図1の(a)に示したように、放射素子E1の一方の端部から第1の方向に伸びる直線部E1a(第1の直線部)と、屈曲部E1c(第1の屈曲部)を介して直線部E1aに連結され、屈曲部E1cから第1の方向と逆方向に伸びる直線部E1b(第2の直線部)とを有している。換言すれば、屈曲部E1cを介して互いに隣接する直線部E1aと直線部E1bとが平行になるようにコの字状に折れ曲がった放射素子である。
 また、放射素子E2は、図1の(a)に示したように、放射素子E2の一方の端部から第1の方向と反対方向に伸びる直線部E2a(第3の直線部)と、屈曲部E2c(第2の屈曲部)を介して直線部E2aに連結され、屈曲部E2cから第1の方向に伸びる直線部E2b(第2の直線部)とを有している。すなわち、屈曲部E2cを介して互いに隣接する直線部E2aと直線部E2bとが平行になるようにコの字状に折れ曲がった放射素子である。
 このように折れ曲がった放射素子E1及びE2を採用することによって、折れ曲がっていない放射素子を備えた従来のダイポールアンテナと比べてコンパクトなダイポールアンテナを実現することができる。
 なお、図1の(a)に示したダイポールアンテナDPにおいては、第1の方向と垂直な方向に伸びる直線部E1c’と、直線部E1aの端部(直線部E1c’に近い方の端部)と、直線部E1bの端部(直線部E1c’に近い方の端部)とにより構成された折れ線状(より具体的にはコの字状)の屈曲部E1cを採用しているが、本発明はこれに限定されるものではない。例えば、折れ線状の屈曲部E1cに代えて、曲線状の屈曲部(例えばU字状の屈曲部)を採用してもよい。放射素子E2の屈曲部E2cについても同様のことが言える。なお、直線部E1aの直線部E1c’に近い方の端部とは、直線部E1c’との交点を端点と見做したときの端部(端点近傍)のことを指す。他の直線部の端部についても同様である。
 また、放射素子E1及びE2は、図1の(a)に示したように、直線部E1aが、直線部E2aと直線部E2bとの間に配置され、直線部E2aが、直線部E1aと直線部E1bとの間に配置されるように組み合わせられている。すなわち、放射素子E1及びE2は、直線部E1aが放射素子E2により三方を囲まれた領域に入り込み、かつ、直線部E2aが、放射素子E1により三方を囲まれた領域に入り込むように組み合わされている。
 折れ曲がった放射素子E1及びE2をこのように組み合わせることによって、更にコンパクトなダイポールアンテナを実現することができる。
 放射素子E1に対する給電は、放射素子E1の端点からではなく、直線部E1aの中間に設けられた給電点F1から行われる。放射素子E2に対する給電も、同様に、直線部E2aの中間に設けられた給電点F2から行われる。
 なお、給電点F1は、直線部E1aの端点以外に設けられていればよく、つまり、直線部E1aの両端点間の中間にある任意の点に設けられていればよく、直線部E1aの中心点(両端点の中点)に設けられていることを要さない。給電点F2についても同様である。ただし、給電点間の距離が最短になるよう、給電点F2は、給電点F1から直線部E2aに下ろした垂線の足の位置に設けられていることが好ましい。また、放射パターンを対称にするために、放射素子E1及びE2が点対称に配置されている場合には、図1の(a)にも示されているように、給電点F1から直線部E2aに下ろした垂線が対称の中心を通るように給電点F1を配置することによって、放射パターンの対称性を高めることができる。
 放射素子E1及びE2を図1の(a)のように折り曲げたことによって、ダイポールアンテナDPのサイズがコンパクトになるばかりではなく、放射素子E1及びE2を折り曲げていない従来の構成と比べて、ダイポールアンテナDPの動作帯域を拡大することができる。図1を参照してその要因を説明すれば以下のとおりである。
 すなわち、放射素子E1及びE2を図1の(a)のように折り曲げたことによって、第2共振周波数f2において放射素子E1及びE2を流れる電流の方向を図1の(c)のように概ね一様化することができる。これにより、第2共振周波数f2における放射パターンは単峰化され易くなり、第2共振周波数f2は低周波側にシフトする。
 第2共振周波数f2における放射パターンが単峰化された場合、それは第2共振周波数f2が放射利得Gを極大化する周波数fG0maxよりも低周波側にシフトしていること、すなわち、第1共振周波数f1と第2共振周波数f2との間で放射利得Gの急峻な低下が生じないことを意味する。したがって、この場合には、従来の構成では放射利得Gの急峻な低下によって動作帯域とすることができなかった第2共振周波数近傍の帯域を、放射利得Gに課された動作条件を充足する動作帯域とすることができる。
 また、第2共振周波数f2が低周波側にシフトすると、第1共振周波数f1と第2共振周波数f2とが接近し、入力反射係数S11が第1共振周波数f1と第2共振周波数f2との間の帯域全体に渡って低下する。したがって、第1共振周波数f1と第2共振周波数f2との間の放射利得Gが動作条件を充足していれば、入力反射係数S11に課される動作条件によっては、第1共振周波数f1と第2共振周波数f2との間の帯域全体を動作帯域とすることができる。
 ただし、第1共振周波数f1においては、図1の(b)に示したように、放射素子E1及びE2を流れる電流の方向が空間内で非一様化されるため、第1共振周波数近傍における放射利得Gが低下し得る。これは、直線部E1b及び直線部E2bから放射される電磁波の一部が、それぞれ、直線部E1a及び直線部E2aから放射される電磁波によって打ち消されるためである。
 そこで、以下に説明する各実施形態においては、直線部E1b及び直線部E2bから放射される電磁波が直線部E1a及び直線部E2aから放射される電磁波によって打ち消される割合を低下させるために、図2に示すように設定する。すなわち、直線部E1aの給電点F1よりも屈曲部E1c側にある部分の長さをL1a’、直線部E2aの給電点F2よりも屈曲部E2c側にある部分の長さをL2a’として、直線部E1bの長さL1bを、L1b>L1a’+L2a’となるように設定し、また、直線部E2bの長さL2bを、L2b>L1a’+L2a’となるように設定する。これにより、第1共振周波数近傍において生じ得る放射利得Gの低下を抑制することができる。
 なお、図1及び図2には、放射素子E1が直線部E1bの端点(屈曲部E1c側とは反対側の端点)にて終端されている構成を示したが、本発明はこれに限定されるものではない。すなわち、直線部E1bの端点(屈曲部E1c側とは反対側の端点)に更なる要素を付加することによって、放射素子E1が直線部E1bの端点(屈曲部E1c側とは反対側の端点)にて終端されないように変形してもよい。放射素子E1に付加する更なる要素は、導体フィルムであってもよいし、導体ワイヤであってもよい。放射素子E1に付加する更なる要素の形状についても、折れ線状、メアンダ状、長方形状など、種々の形状が考えられる。放射素子E2についても同様のことが言える。
 図3に、更なる要素を付加したダイポールアンテナDPの一例を示す。図3に示したダイポールアンテナは、導体フィルムにより構成されたダイポールアンテナDPに、同じく導体フィルムにより構成された延長部E1’及びE2’を付加したものである。放射素子E1に付加された延長部E1’は、ダイポールアンテナDPを構成する各直線部と同じ幅の導体フィルムをメアンダ状に形成したものであり、放射素子E2に付加された延長部E2’は、ダイポールアンテナDPを構成する各直線部と同じ幅の導体フィルムをL字状に形成したものである。
 このように、ダイポールアンテナDPに更なる要素を付加すると、ダイポールアンテナDPの電気長が長くなるので、ダイポールアンテナDPのサイズをコンパクトに保ちつつ、ダイポールアンテナDPの動作帯域の下限を低周波側にシフトさせることができる。例えば、地上波デジタルテレビ帯域をカバーするダイポールアンテナを、小型無線装置に搭載可能なサイズにて実現することができる。
 しかしながら、ダイポールアンテナDPに更なる要素を付加する場合、付加する要素の形状によっては、強い指向性が現れたり、VSWR特性が著しく悪化したりする虞がある。したがって、ダイポールアンテナDPに付加する要素の形状は、強い指向性が現れず、VSWR特性が良好なものを選ぶ必要がある。以下の各実施形態に示すダイポールアンテナは、このようにして選ばれた形状のダイポールアンテナである。
 〔実施形態1〕
 本発明の第1の基本形態における第1の実施形態について、図面に基づいて説明すれば以下のとおりである。
 図4は、本実施形態に係るダイポールアンテナ10の構成を示す平面図である。ダイポールアンテナ10は、図4に示したように、同一平面(yz平面)内に配置された放射素子11(第1の放射素子)及び放射素子12(第2の放射素子)を備えている。本実施形態に係るダイポールアンテナ10が備えている放射素子11及び12は、何れも、帯状の導体フィルムにより構成されており、誘電体シート(不図示)上に配置されている。
 図4に示したように、放射素子11は、放射素子11の一方の端部からy軸正方向(第1の方向)に伸びる直線部11a(第1の直線部)と、屈曲部11c(第1の屈曲部)を介して直線部11aに連結され、屈曲部11cからy軸負方向(第1の方向と逆方向)に伸びる直線部11b(第2の直線部)とを有しており、直線部11bの屈曲部11c側とは反対側の端部には、直線部11bよりも幅の広い幅広部11d(第1の幅広部)が付加されている。放射素子11に対する給電は、直線部11aの中間に設けられた給電点11eから行われる。
 幅広部11dは、長方形状に形成された導体フィルムであり、長辺がy軸方向と平行になるように配置されている。幅広部11dの短辺の長さ、すなわち、幅広部11dの幅は、直線部11bのz軸負方向側の端辺と、直線部12bのz軸正方向側の端辺との距離と等しく設定されている。つまり、4つの直線部11a、11b、12a、12bの幅の和よりも大きくなっている。
 また、図4に示したように、放射素子12は、放射素子12の端部からy軸負方向に伸びる直線部12a(第3の直線部)と、屈曲部12c(第2の屈曲部)を介して直線部12aに連結され、屈曲部12cからy軸正方向に伸びる直線部12b(第4の直線部)とを有しており、直線部12bの屈曲部12c側とは反対側の端部には、直線部12bよりも幅の広い幅広部12d(第2の幅広部)が付加されている。放射素子12に対する給電も、直線部12aの中間に設けられた給電点12eから行われる。
 幅広部12dは、長方形状に形成された導体フィルムであり、長辺がz軸方向と平行になるように配置されている。幅広部12dの短辺の長さ、すなわち、幅広部12dの幅は、幅広部11dの幅以上に設定されている。
 このように、幅広部11d及び幅広部12dの一方を長辺がy軸方向と平行になるように配置し、他方を長辺がz軸と平行になるように配置することによって、両方を長辺がy軸方向と平行になるように配置する構成と比較して、y軸方向のサイズを小さくすることができる。
 また、図4に示したように、直線部12aと屈曲部11cとの間隙には、放射素子11及び放射素子12の形状を変えることなく、放射素子11と放射素子12との間に生じる寄生リアクタンスの大きさを調整するための導体片13が設けられている。導体片13は、線状導体をコの字状に折り曲げたものであり、放射素子11及び放射素子12の何れにも接触することなく、直線部12aの端部を三方から取り囲むように配置される。なお、図4に示したように、直線部11aと屈曲部12cとの間隙に同様の導体片を設けてもよい。
 また、図4に示したように、屈曲部12cと幅広部11dとの間隙には、放射素子11と放射素子12との間に生じる寄生容量の大きさを調整するための導体片14が設けられている。導体片14は、線状導体をL字状に折り曲げたものであり、放射素子11及び放射素子12の何れにも接触することなく、幅広部11dの屈曲部12cに対向する短辺とその短辺と交わる長辺の一部とに沿うように配置される。なお、屈曲部12cと幅広部11dとの間隙に導体片14を設ける代わりに、屈曲部11cと幅広部12dとの間隙に同様の導体片(不図示)を設けてもよい。
 なお、寄生リアクタンス調整用及び寄生容量調整用の導体片13、14を上記のように設ける代わりに、図5に示すように、誘電体シートの放射素子形成面とは反対側の面に導体片を設けることによって、寄生リアクタンス及び寄生容量の調整を行ってもよい。図5は、ダイポールアンテナ10の中心部を拡大して示した拡大図である。直線部12aと屈曲部11cとの間隙の一部を覆うように配置された板状の導体片15が寄生リアクタンス調整用の導体片であり、屈曲部12cと幅広部11dとの間隙の一部を覆うように配置された板状の導体片16が寄生容量調整用の導体片である。
 以上のように構成されたダイポールアンテナ10、特に地上波デジタルテレビ帯域(470MHz以上900MHz以下)用のダイポールアンテナ10の特性を図6及び図7に示す。
 図6の(a)及び図6の(b)は、それぞれ、各部のサイズが以下のように設定されたダイポールアンテナ10の放射パターン及びVSWR特性を示すグラフである。
 直線部11a及び直線部12aの幅=2mm;
 直線部11a及び直線部12aの長さ=56mm;
 直線部11b及び直線部12bの幅=2mm;
 直線部11b及び直線部12bの長さ=60mm;
 幅広部11dの長辺の長さ=56mm;
 幅広部11dの短辺の長さ=11mm;
 幅広部12dの長辺の長さ=79mm;
 幅広部12dの短辺の長さ=20mm。
 図6の(a)によれば、形状の非対称性にも関わらず、地上波デジタルテレビ帯域全域においてxy平面内方向に対して無指向性が実現されていることが分かる。また、図6の(b)によれば、地上波デジタルテレビ帯域全域においてVSWRを3.0以下に抑えられることが分かる。
 一方、図7の(a)及び図7の(b)は、それぞれ、各部のサイズが以下のように設定されたダイポールアンテナ10の放射パターン及びVSWR特性を示すグラフである。
 直線部11a及び直線部12aの幅=2mm;
 直線部11a及び直線部12aの長さ=50mm;
 直線部11b及び直線部12bの幅=2mm;
 直線部11b及び直線部12bの長さ=54mm;
 幅広部11dの長辺の長さ=56mm;
 幅広部11dの短辺の長さ=12mm;
 幅広部12dの長辺の長さ=79mm;
 幅広部12dの短辺の長さ=20mm。
 図7の(a)によれば、一部の帯域を除き、地上波デジタルテレビ帯域においてxy平面内方向に対して無指向性が実現されていることが分かる。また、図7の(b)によれば、地上波デジタルテレビ帯域のうち、500MHz以下の帯域、及び、700MHz以上800MHz以下の帯域を除いた帯域においてVSWRを3.0以下に抑えられることが分かる。
 図6に示した特性と図7に示した特性とを比較すると、直線部11a及び直線部12aの長さ(すなわち、幅広部11dと幅広部12dとの間隔)を長くすると、ダイポールアンテナ10の特性が改善されることが分かる。
 なお、動作帯域内の周波数をfとしたときに、具体的には動作帯域内の下限周波数をfとしたときに、直線部11a及び直線部12aの長さをc/(16f)以上(対応波長の1/16以上)にすると、高次モードにおける放射パターン及びVSWR特性の劣化を抑えられることが実験的に確かめられている。また、光速をcとしたときに、幅広部12dの幅をc/(128f)以上(対応波長の1/128以上)にすると、高次モードにおける放射パターン及びVSWR特性の劣化を抑えられることが実験的に確かめられている。ここで、動作帯域は、仕様として定められた動作帯域であってもよいし、VSWRが3.0以下になる帯域として規定された帯域であってもよい。
 幅広部11dの幅に関しても、上記の幅広部12dの場合と同様、c/(128f)以上(対応波長の1/128以上)にすると、高次モードにおける放射パターン及びVSWR特性の劣化を抑えられると予想される。
 〔実施形態2〕
 本発明の第1の基本形態における第2の実施形態について、図面に基づいて説明すれば以下のとおりである。
 図8は、本実施形態に係るダイポールアンテナ20の構成を示す平面図である。ダイポールアンテナ20は、図8に示したように、同一平面(yz平面)内に配置された2つの放射素子21(第1の放射素子)と放射素子22(第2の放射素子)とを備えている。本実施形態に係るダイポールアンテナ20が備えている放射素子21及び22は、何れも、帯状の導体フィルムにより構成されており、誘電体シート(不図示)上に配置されている。
 図8に示したように、放射素子21は、放射素子21の一方の端部からy軸正方向に伸びる直線部21a(第1の直線部)と、屈曲部21c(第1の屈曲部)を介して直線部21aに連結され、屈曲部21cからy軸負方向に伸びる直線部21b(第2の直線部)とを有しており、直線部21bの屈曲部21c側とは反対側の端部には、直線部21bよりも幅の広い幅広部21d(第1の幅広部)が付加されている。放射素子21に対する給電は、直線部21aの中間に設けられた給電点21eから行われる。
 幅広部21dは、長方形状に形成された導体フィルムであり、長辺がy軸方向と平行になるように配置されている。幅広部21dの短辺の長さ、すなわち、幅広部21dの幅は、直線部21bのz軸負方向側の端辺と、直線部22bのz軸正方向側の端辺との距離と等しく設定されている。つまり、4つの直線部21a、21b、22a、22bの幅の和よりも大きくなっている。
 また、図8に示したように、放射素子22は、放射素子22の端部からy軸負方向に伸びる直線部22a(第3の直線部)と、屈曲部22c(第2の屈曲部)を介して直線部22aに連結され、屈曲部22cからy軸正方向に伸びる直線部22b(第4の直線部)とを有しており、直線部22bの屈曲部22c側とは反対側の端部には、直線部22bよりも幅の広い幅広部22dが付加されている。放射素子22に対する給電も、直線部22aの中間に設けられた給電点22eから行われる。
 幅広部22dは、長方形状に形成された導体フィルムであり、長辺がy軸方向と平行になるように配置されている。幅広部22dの短辺の長さ、すなわち、幅広部22dの幅は、直線部21bのz軸負方向側の端辺と、直線部22bのz軸正方向側の端辺との距離と等しく設定されている。つまり、4つの直線部21a、21b、22a、22bの幅の和よりも大きくなっている。図8に示した例では、幅広部22dの幅を幅広部21dの幅と一致させている。
 このように、幅広部21d及び幅広部22dの両方を長辺がy軸方向と平行になるように配置することによって、一方を長辺がy軸方向と平行になるように配置し他方を長辺がz軸と平行になるように配置する構成と比較して、z軸方向のサイズを小さくすることができる。
 以上のように構成されたダイポールアンテナ20、特に地上波デジタルテレビ帯域(470MHz以上900MHz以下)用のダイポールアンテナ20の特性を図9及び図10に示す。
 図9の(a)及び図9の(b)は、それぞれ、各部のサイズが以下のように設定されたダイポールアンテナ20の放射パターン及びVSWR特性を示すグラフである。
 直線部21a及び直線部22aの幅=2mm;
 直線部21a及び直線部22aの長さ=82mm;
 直線部21b及び直線部22bの幅=2mm;
 直線部21b及び直線部22bの長さ=88mm;
 幅広部21dの長辺の長さ=56mm;
 幅広部21dの短辺の長さ=14mm;
 幅広部22dの長辺の長さ=57mm;
 幅広部22dの短辺の長さ=14mm。
 図9の(a)によれば、一部の帯域を除き、地上波デジタルテレビ帯域においてxz平面内方向に対して無指向性が実現されていることが分かる。また、図9の(b)によれば、地上波デジタルテレビ帯域のうち、450MHz近傍及び850MHz以上の帯域を除いた帯域においてVSWRを3.0以下に抑えられることが分かる。
 一方、図10の(a)及び図10の(b)は、それぞれ、各部のサイズが以下のように設定されたダイポールアンテナ20の放射パターン及びVSWR特性を示すグラフである。
 直線部21a及び直線部22aの幅=2mm;
 直線部21a及び直線部22aの長さ=82mm;
 直線部21b及び直線部22bの幅=2mm;
 直線部21b及び直線部22bの長さ=88mm;
 幅広部21dの長辺の長さ=56mm;
 幅広部21dの短辺の長さ=14mm;
 幅広部22dの長辺の長さ=56mm;
 幅広部22dの短辺の長さ=14mm。
 図10の(a)によれば、地上波デジタルテレビ帯域全域において、xz平面内方向に対して略無指向性が実現されていることが分かる。また、図10の(b)によれば、地上波デジタルテレビ帯域全域においてVSWRを3.0以下に抑えられることが分かる。
 なお、動作帯域内の周波数をfとしたときに(更に具体的には、動作帯域をVSWRが3.0以下になる帯域と規定し、その下限値をfとしたときに)、光速をcとすれば、幅広部22dの幅をc/(128f)以上(対応波長の1/128以上)にすると、高次モードにおける放射パターン及びVSWR特性の劣化を抑えられることが実験的に確かめられている。
 〔本発明の第2の基本形態〕
 本発明の具体的な実施形態について説明する前に、まず、各実施形態の基本となる第2の基本形態について図11を参照して説明する。
 図11の(a)は、本発明に係るダイポールアンテナDP2の構造を示した図である。本発明に係るダイポールアンテナDP2は、図11の(a)に示したように、同一平面内に配置された2つの放射素子E21及びE22を備えている。
 放射素子E21は、図11の(a)に示したように、給電点Fから第1の方向に伸びる直線部E21a(第1の直線部)と、屈曲部E21c(第1の屈曲部)を介して直線部E21aに連結され、屈曲部E21cから第1の方向と逆方向に伸びる直線部E21b(第2の直線部)とを有している。
 また、放射素子E22は、図11の(a)に示したように、給電点Fから第1の方向と反対方向に伸びる直線部E22a(第3の直線部)と、屈曲部E22c(第2の屈曲部)を介して直線部E22aに連結され、屈曲部E22cから第1の方向に伸びる直線部E22b(第2の直線部)とを有している。
 すなわち、本発明のダイポールアンテナDP2は、屈曲部E21cを介して互いに隣接する直線部E21aと直線部E21bとが平行になるように折れ曲がった放射素子E21と、屈曲部E22cを介して互いに隣接する直線部E22aと直線部E22bとが平行になるように折れ曲がった放射素子E22とを給電点Fに対して点対称に配置し、給電点Fを介して互いに対向する放射素子E21及び放射素子E22の各端点を給電線(不図示)に接続することにより構成されたダイポールアンテナである。
 なお、図11の(a)に示したダイポールアンテナDP2においては、直線部E21aの給電点Fから遠い方の端部と、直線部E21bの給電点Fに近い方の端部(放射素子E21を一直線に伸ばしたときに給電点Fに近くなる方の端部)と、第1の方向と垂直な方向に伸びる直線部E21c’とにより構成された折れ線状(より具体的にはコの字状)の屈曲部E21cを採用しているが、本発明はこれに限定されるものではない。例えば、折れ線状の屈曲部E21cに代えて、曲線状の屈曲部(例えばU字状の屈曲部)を採用してもよい。放射素子E22の屈曲部E22cについても同様のことが言える。なお、直線部E21aの給電点Fから遠い方の端部とは、直線部E21c’との交点を端点と見做したときの端部(端点近傍)のことを指す。また、直線部E21bの給電点Fに近い方の端部とは、直線部E21c’との交点を端点と見做したときの端部(端点近傍)のことを指す。
 放射素子E21及びE22を図11の(a)のように折り曲げたことによって、放射素子E21及びE22を折り曲げていない従来の構成と比べて、ダイポールアンテナDP2の動作帯域を拡大することができる。図11を参照してその理由を説明すれば以下のとおりである。
 すなわち、放射素子E21及びE22を図11の(a)のように折り曲げたことによって、第2共振周波数f2において放射素子E21及びE22を流れる電流の方向を図11の(c)のように一様化することができる。これにより、第2共振周波数f2を低周波側にシフトさせ、第2共振周波数f2における放射パターンを単峰化することができる。
 第2共振周波数f2における放射パターンの単峰化は、第2共振周波数f2が放射利得Gを極大化する周波数fG0maxよりも低周波側にシフトしていること、すなわち、第1共振周波数f1と第2共振周波数f2との間で放射利得Gの急峻な低下が生じないことを意味する。このため、従来の構成では放射利得Gの急峻な低下によって動作帯域とすることができなかった第2共振周波数近傍の帯域を、放射利得Gに課された動作条件を充足する動作帯域とすることができる。
 放射素子E21及びE22を図11の(a)のように折り曲げたことによる動作帯域の拡大はこれに留まらない。すなわち、第2共振周波数f2が低周波側にシフトすると、第1共振周波数f1と第2共振周波数f2とが接近し、入力反射係数S1,1が第1共振周波数f1と第2共振周波数f2との間の帯域全体に渡って低下する。しかも、上述したように第1共振周波数f1と第2共振周波数f2との間で放射利得Gが急峻に低下することがないので、入力反射係数S1,1に課される動作条件によっては、第1共振周波数f1と第2共振周波数f2との間の帯域全体を動作帯域とすることができる。
 なお、図11の(a)においては、直線部E21bの長さL21b、及び、直線部E22bの長さL22bが、直線部E21aの長さL21aと直線部E22aの長さL22aとの和L21a+L22aに一致するものとしているが、これは動作帯域を拡大するための必須条件ではない。すなわち、L21b(=L22b)>L21a+L22aとなる場合であっても、L21b(=L22b)<L21a+L22aとなる場合であっても、第2共振周波数f2における放射パターンが単峰化されるので、すなわち、第2共振周波数f2が放射利得Gを極大化する周波数fG0maxを下回るので、動作帯域を拡大するという効果を得ることができる。
 ただし、第1共振周波数f1においては、図11の(b)に示したように、放射素子E21及びE22を流れる電流の方向が空間内で非一様化されるため、第1共振周波数近傍における放射利得Gが低下し得る。これは、直線部E21b及び直線部E22bから放射される電磁波の一部が、それぞれ、直線部E21a及び直線部E22aから放射される電磁波によって打ち消されるためである。
 そこで、以下に説明する各実施形態においては、直線部E21b及び直線部E22bから放射される電磁波が直線部E21a及び直線部E22aから放射される電磁波によって打ち消される割合を低下させるために、図12に示すように、直線部E21bの長さL21b及び直線部E22bの長さL22bを、直線部E21aの長さL21aと直線部E22aの長さL22aとの和L21a+L22aよりも長く設定している。放射素子E21と放射素子E22とが給電点Fに対して点対称に配置されている場合には、L21a/L21b<0.5に設定していると言い換えてもよい。これにより、第1共振周波数近傍において生じ得る放射利得Gの低下を抑制することができる。
 〔実施形態1〕
 本発明の第2の基本形態における第1の実施形態について、図面に基づいて説明すれば以下のとおりである。
 図13は、本実施形態に係るダイポールアンテナ30の構成を示す平面図である。ダイポールアンテナ30は、図13に示したように、同一平面(yz平面)内に配置された2つの放射素子31及び32を備えている。本実施形態に係るダイポールアンテナ30が備えている放射素子31及び32は、何れも、導体ワイヤにより構成されている。より具体的には、半径1mmの導体ワイヤにより構成されている。
 放射素子31は、給電点33からz軸正方向に伸びる直線部31aと、屈曲部31cを介して直線部31aに連結され、屈曲部31cからz軸負方向に伸びる直線部31bとを有し、直線部31bの屈曲部31c側とは反対側の端点で終端されている。すなわち、放射素子31は、直線部31aと直線部31bと屈曲部31cとからなり、直線部31bの屈曲部31c側とは反対側の端点より先に構成要素を持たない。
 また、放射素子32は、給電点33からz軸負方向に伸びる直線部32aと、屈曲部32cを介して直線部32aに連結され、屈曲部32cからz軸正方向に伸びる直線部32bとを有し、直線部32bの屈曲部32c側とは反対側の端点で終端されている。すなわち、放射素子32は、直線部32aと直線部32bと屈曲部32cとからなり、直線部32bの屈曲部32c側とは反対側の端点より先に構成要素を持たない。
 更に、本実施形態に係るダイポールアンテナ30の各部のサイズは、以下のように設定されている;
  直線部31aの長さL31a=直線部32aの長さL32a=3mm;
  直線部31bの長さL31b=直線部32bの長さL32b=34mm;
  給電点33を介して対向する放射素子31と放射素子32との間隔Δ=2mm;
  直線部31aと直線部31bとの中心軸間の距離δ=直線部32aと直線部32bとの中心軸間の距離δ=3mm。
 以上のように構成されたダイポールアンテナ30の特性を図14に示す。図14の(a)は、入力反射係数S1,1の周波数依存性を示しており、図14の(b)は、放射利得Gの周波数依存性を示している。なお、ダイポールアンテナ30は軸対称性をもたないため、図14の(b)においては、θ=90°かつφ=0°の放射利得Gと、θ=90°かつφ=90°の放射利得Gとを示している(θは極座標系におけるz軸に対する偏角を表し、φは極座標系におけるx軸に対する偏角を表す)。
 図14の(a)から分かるように、本実施形態に係るダイポールアンテナ30は、f1=2.1GHz及びf2=4.6GHzを共振周波数としており、例えば、入力反射係数S1,1に対して|S1,1|≦-5.1dBを動作条件として課した場合、1.9GHz以上2.7GHz以下(帯域比35%)及び3.5GHz以上5.3GHz以下(帯域比40%)が動作帯域となる。
 しかも、図14の(b)から分かるように、第2共振周波数f2が放射利得Gを極大化する周波数fG0maxよりも低周波側にシフトしており、放射利得Gは第2共振周波数f2よりも高い周波数fG0max=6.0GHzまで単調に上昇する。したがって、例えば、放射利得Gが2dBi以上であることが動作条件として課されたとしても、入力反射係数S1,1に対して課された動作条件を充足する第1共振周波数近傍の帯域(1.9GHz以上2.7GHz以下)、及び、第2共振周波数近傍の帯域(3.5GHz以上5.3GHz以下)の全体を動作帯域とすることができる。
 更に、例えば、入力反射係数S1,1に課す動作条件を|S1,1|≦-4.3dBに緩和した場合、第1共振周波数f1及び第2共振周波数f2を含む、1.8GHz以上5.5GHz以下の帯域を動作帯域とすることができる。このように、第1共振周波数f1と第2共振周波数f2との間の帯域を動作帯域として使用することができるのは、図14の(a)に示すように、第1共振周波数f1と第2共振周波数f2とが接近することに伴い入力反射係数S1,1が第1共振周波数f1と第2共振周波数f2との間の帯域全体に渡って低下すること、及び、図14の(b)に示すように、第2共振周波数f2(4.6GHz)が放射利得Gを極大化する周波数fG0max(6.0GHz)よりも低周波側にシフトしており、第1共振周波数f1と第2共振周波数f2との間において放射利得Gの急峻な低下が生じる虞がないことによる。
 放射利得Gを極大化する周波数fG0max(6.0GHz)が第2共振周波数f2よりも高くなること、すなわち、第1共振周波数f1と第2共振周波数f2との間で放射利得Gの急峻な低下が起こらず、第2共振周波数近傍で十分高い放射利得Gが得られることは、図15に示す放射パターンの周波数依存性、及び、図16に示すHPBW/2の周波数依存性からも確認することができる。
 図15において、図15の(a)は、1.7GHzにおける放射パターンを示し、図15の(b)は、3.4GHzにおける放射パターンを示し、図15の(c)は、5.1GHzにおける放射パターンを示す。図15の(a)~図15の(c)を対照することにより、少なくとも5.1GHz以下の帯域においては、放射パターンが単峰性を保ったままθ=90°方向へと次第に集中していき、θ=90°方向の放射利得Gもこれに伴って緩やかに上昇していくことが見て取れる。
 また、図16において、実線は、θ=90°かつφ=0°方向のHPBW/2の周波数依存性を示し、点線は、θ=90°かつφ=90°方向のHPBW/2の周波数依存性を示す。図16からは、6.0GHz以下においては、φに依らずに放射パターンが単峰性を保ったままθ=90°方向へと次第に集中していくことが見て取れる。
 (変形例)
 図13に示した構成において、各部のサイズを以下のように設定することによって、第1共振周波数f1と第2共振周波数f2とが極めて近接したダイポールアンテナ30を実現することができる。なお、本変形例においても、放射素子31及び32を構成する導体ワイヤの半径は1mmである;
  直線部31aの長さL31a=直線部32aの長さL32a=10mm;
  直線部31bの長さL31b=直線部32bの長さL32b=55mm;
  給電点33を介して対向する放射素子31と放射素子32との間隔Δ=2mm;
  直線部31aと直線部31bとの中心軸間の距離δ=直線部32aと直線部32bとの中心軸間の距離δ=3mm。
 図17に本変形例に係るダイポールアンテナ30の入力反射係数S1,1の周波数依存性を示す。第1共振周波数f1と第2共振周波数f2とが極めて近接しており、第1共振周波数f1と第2共振周波数f2とを含む帯域に入力反射係数S1,1の深い谷が形成されている。このため、例えば、入力反射係数S1,1に対して|S1,1|≦-4.3dBという動作条件が課された場合であっても、1.3GHz以上2.8GHz以下(比帯域73%)という広い動作帯域を実現することができる。
 図18に本変形例に係るダイポールアンテナ30の2.0GHzにおける放射パターンを示す。図18に示したように、本変形例に係るダイポールアンテナ30によれば、少なくとも2.0GHz近傍において、従来のλ/2ダイポールアンテナと同等の極めて軸対称性の高い放射パターンを得ることができ、同時に十分に高い放射利得G(2.4dBi)を得ることができる。
 (形状効果)
 次に、本実施形態に係るダイポールアンテナ30の形状効果について説明する。本実施形態に係るダイポールアンテナ30の形状は、給電点33に対する対称性を仮定すれば、3つのパラメータh1(=L31a=L32a)、h2(=L31b=L32b)、及び、w(=δ≒L31c’=L32c’)によって規定することができる。さらに、スケールを無視すれば、2つのパラメータh1/h2、及び、w/h2によって規定することができる。以下、これら2つのパラメータを変化させたときの共振周波数の振る舞いについて説明する。
 図19は、ダイポールアンテナ30の各部のサイズを以下のように設定したうえで、h1/h2を変化させたときの第1共振周波数f1及び第2共振周波数f2の振る舞いを示すグラフである。ここでも放射素子31及び32を構成する導体ワイヤの半径は1mmに固定している;
  直線部31aの長さL31a=直線部32aの長さL32a=h1(可変);
  直線部31bの長さL31b=直線部32bの長さL32b=h2=34mm(固定);
  給電点33を介して対向する放射素子31と放射素子32との間隔Δ=2mm(固定);
  直線部31aと直線部31bとの中心軸間の距離δ=直線部32aと直線部32bとの中心軸間の距離δ=3mm(固定)。
 図19に示すように、h1/h2の値を大きくしていくと、すなわち、給電点33に近い方の直線部31aを長くしていくと、第2共振周波数f2は低周波側にシフトし、第1共振周波数f1は高周波側にシフトする。h1/h2=0.2から先でグラフが途切れているのは、入力反射係数S1,1からは識別することができないほど、第1共振周波数f1と第2共振周波数f2とが近づいたことを意味する。
 図19において注目すべきは、少なくともh1/h2が0.05以上0.2以下であれば、第2共振周波数f2が第1共振周波数f1に近づくという作用が漏れなく認められる点である。第2共振周波数f2が第1共振周波数f1に近づけば、第2共振周波数f2の低周波側の近傍において入力反射係数S1,1の低下が起こる。したがって、h1/h2が0.05以上0.2以下であれば、第2共振周波数近傍の動作帯域が拡大されるという効果が漏れなく得られる。
 また、h1/h2が0.2以上であれば、第1共振周波数f1と第2共振周波数f2とが入力反射係数S1,1からは識別することができないほど近づき(第1共振周波数f1と第2共振周波数f2とが一体化し)、第1共振周波数f1と第2共振周波数f2との間の帯域に入力反射係数S1,1の谷が形成されるので、その帯域全体を動作帯域とすることができる。グラフを外挿することにより、少なくともh1/h2が0.3以下であれば、同様の効果を得られることが確かめられる。したがって、h1/h2が0.05以上0.3以下であれば、確実に動作帯域の拡大が図れることがわかる。
 また、図19に示したグラフを参照することにより、所望の帯域を動作帯域とするダイポールアンテナ30を容易に設計することができる。例えば、5GHz帯と2GHz帯とを動作帯域としたければ、h1/h2が0.05程度になるように放射素子31及び32の形状を定めればよいし、2.5GHz以上3.5GHz以下の広い動作帯域が必要であれば、h1/h2が0.2程度になるように放射素子31及び32の形状を定めればよい。
 図20は、ダイポールアンテナ30の各部のサイズを以下のように設定したうえで、w/h2を変化させたときの第1共振周波数f1及び第2共振周波数f2の振る舞いを示すグラフである。ここでも放射素子31及び32を構成する導体ワイヤの半径は1mmに固定している;
  直線部31aの長さL31a=直線部32aの長さL32a=3mm(固定);
  直線部31bの長さL31b=直線部32bの長さL32b=h2=34mm(固定);
  給電点33を介して対向する放射素子31と放射素子32との間隔Δ=2mm(固定);
  直線部31aと直線部31bとの中心軸間の距離δ=直線部32aと直線部32bとの中心軸間の距離δ=w(可変)。
 図20に示すように、w/h2≧0.07においては、w/h2の値を変えても第1共振周波数f1及び第2共振周波数f2の値はあまり変わらない。すなわち、このパラメータw/h2は、第1共振周波数f1及び第2共振周波数f2に対して大きな影響を与えない。実用上はw/h2が0.05以上0.25以下になるようにすればよい。
 〔実施形態2〕
 本発明の第2の基本形態における第2の実施形態について、図面に基づいて説明すれば以下のとおりである。
 図21は、本実施形態に係るダイポールアンテナ40の構成を示す図である。ダイポールアンテナ40は、図21に示したように、同一平面(yz平面)内に配置された2つの放射素子41及び42を備えている。本実施形態に係るダイポールアンテナ40が備えている放射素子41及び42は、何れも、導体フィルムにより構成されている。より具体的には、幅2mmの帯状に形成された導体フィルムにより構成されている。
 放射素子41は、給電点43からz軸正方向に伸びる直線部41aと、屈曲部41cを介して直線部41aに連結され、屈曲部41cからz軸負方向に伸びる直線部41bとを有し、直線部41bの屈曲部41c側とは反対側の端点で終端されている。また、放射素子42は、給電点43からz軸負方向に伸びる直線部42aと、屈曲部42cを介して直線部42aに連結され、屈曲部42cからz軸正方向に伸びる直線部42bとを有し、直線部42bの屈曲部42c側とは反対側の端点で終端されている。
 更に、本実施形態に係るダイポールアンテナ40の各部のサイズは、以下のように設定されている;
  直線部41aの長さL41a=直線部42aの長さL42a=3mm;
  直線部41bの長さL41b=直線部42bの長さL42b=40mm;
  給電点43を介して対向する放射素子41と放射素子42との間隔Δ=2mm;
  直線部41aと直線部41bとの間隔δ=直線部42aと直線部42bとの間隔δ=1mm。
 以上のように構成されたダイポールアンテナ40の特性を図22及び図23に示す。図22は、5.0GHz近傍における入力反射係数S1,1の周波数依存性を示したグラフであり、図23は、5.0GHzにおける放射パターンを示したグラフである。
 図22によれば、例えば、入力反射係数S1,1に対して|S1,1|≦-5.1dBを動作条件として課した場合、4.4GHz以上5.4GHz以下(比帯域20%)が動作帯域となることが分かる。また、図23によれば、5.0GHzにおいて高い放射利得G(4.7dBi)が得られることが分かる。すなわち、上記のように構成されたダイポールアンテナ40によれば、帯域幅が広く、かつ、放射利得Gの高い動作帯域を5.0GHz近傍に設けることができる。
 (変形例1)
 本実施形態においては、放射素子41が直線部41bの端点(屈曲部41c側とは反対側の端点)にて終端されている構成について説明したが、本発明はこれに限定されるものではない。すなわち、直線部41bの端点(屈曲部41c側とは反対側の端点)に更なる要素を付加することによって、放射素子41が直線部41bの端点(屈曲部41c側とは反対側の端点)にて終端されないように変形してもよい。放射素子41に付加する更なる要素は、導体フィルムであってもよいし、導体ワイヤであってもよい。放射素子41に付加する更なる要素の形状についても、直線状、曲線状、メアンダ状など、種々の形状が考えられる。放射素子42についても同様のことが言える。
 放射素子41及び42にメアンダ部41d及び42dが付加されたダイポールアンテナ40を図24に示す。放射素子41には、直線部41bの屈曲部41c側とは反対側の端点からz軸負方向(第1の方向と逆方向)に伸びるメアンダ部41d(第1のメアンダ部)が付加されている。また、放射素子42には、直線部42bの屈曲部42c側とは反対側の端点からz軸正方向に伸びるメアンダ部42d(第2のメアンダ部)が付加されている。このように少なくとも一部がメアンダ化されたメアンダ部41d及び42dを採用することによって、よりコンパクトなダイポールアンテナ40を実現することができる。
 なお、直線部41bの屈曲部41c側とは反対側の端点とは、メアンダ部41dを取り去ったときに直線部41bの端点となる点のことである。直線部42bの屈曲部42c側とは反対側の端点についても同様である。
 また、「メアンダが伸びる方向」は、以下のように定義することができる。すなわち、給電点に近い方からメアンダを辿っていけば、{y軸方向、z軸方向、-y軸方向、z軸方向、・・・}のような進行方向列を構成することができる。この進行方向列には、向きが反転する進行方向(この場合y軸方向)と向きが反転しない進行方向(この場合z軸方向)とが交互に現れる。この進行方向列に現れる進行方向のうち、向きが反転しない方の進行方向のことを「メアンダ部が伸びる方向」とすればよい。
 なお、本変形例に係るダイポールアンテナ40の各部のサイズは、以下のように設定されている;
  直線部41aの長さL41a=直線部42aの長さL42a=3mm;
  直線部41bの長さL41b=直線部42bの長さL42b=12mm;
  給電点43を介して対向する放射素子41と放射素子42との間隔Δ=2mm;
  直線部41aと直線部41bとの間隔δ=直線部42aと直線部42bとの間隔δ=1mm;
  メアンダ部42dに含まれるz軸方向に伸びる直線部の長さD=メアンダ部41dに含まれるz軸方向の逆方向に伸びる直線部の長さD=15mm;
  メアンダ部42dに含まれるy軸方向及びその逆方向に伸びる直線部間の間隔δ´=メアンダ部41dに含まれるy軸方向及びその逆方向に伸びる直線部間の間隔δ´=1mm。
 以上のように構成されたダイポールアンテナ40の特性を図25及び図26に示す。図25は、5.0GHz近傍における入力反射係数S1,1の周波数依存性を示したグラフであり、図26は、5.0GHzにおける放射パターンを示したグラフである。
 図15によれば、例えば、入力反射係数S1,1に対して|S1,1|≦-5.1dBを動作条件として課した場合、4.3GHz以上5.4GHz以下(比帯域23%)が動作帯域となることが分かる。また、図26によれば、5.0GHzにおいて高い放射利得G(5.0dBi)が得られることが分かる。すなわち、上記のように構成されたダイポールアンテナ40によれば、帯域幅が広く、かつ、放射利得Gの高い動作帯域を5.0GHz近傍に設けることができる。さらに、図26と図23とを対比すれば、メアンダが形成されていない場合と比べ、より対称性が高く、より安定した放射パターンが得られることが分かる。
 (変形例2)
 変形例1においては、メアンダ部41dが一重のメアンダを含む構成について説明したが、本発明はこれに限定されるものではない。すなわち、メアンダ部41dは二重以上のメアンダを含んでいてもよい。メアンダ部42dについても同様のことが言える。
 メアンダ部41d及び42dが2重のメアンダを含むように変形されたダイポールアンテナ40を図27に示す。図27に示すように、多重のメアンダを含むメアンダ部41d及び42dを採用することによって、ダイポールアンテナ40を更にコンパクトにすることができる。
 なお、「N重のメアンダ」は、以下のように定義することができる。すなわち、上述した進行方向列において向きが反転しない進行方向が現れる回数が2Nであるとき、そのメアンダをN重のメアンダと呼ぶ。
 (変形例3)
 変形例1においては、メアンダ部41dが伸びる方向を直線部41bが伸びる方向と一致させていたが、本発明は必ずしもこれに限定されるものではない。すなわち、例えば、メアンダ部41dが伸びる方向を直線部41bが伸びる方向と直交させるようにしてもよい。メアンダ部42dが伸びる方向についても同様である。
 メアンダ部41dが伸びる方向を直線部41bが伸びる方向と直交させるように変形されたダイポールアンテナ40を図28に示す。放射素子41には、直線部41bの直線部41a側とは反対側の端点からy軸正方向に伸びるメアンダ部41dが付加されている。また、放射素子42には、直線部42bの直線部42a側とは反対側の端点からy軸負方向に伸びるメアンダ部42dが付加されている。このようなメアンダ部41d及び42dを採用することによっても、よりコンパクトなダイポールアンテナを実現することができる。
 なお、変形例1~3に示したメアンダ構造の適用範囲は、導体フィルムによって放射素子41及び42を構成する本実施形態に限らず、導体ワイヤによって放射素子31及び32を構成する第1の実施形態にも及ぶ。
 〔給電形態〕
 最後に、本発明に係るダイポールアンテナへの給電形態について、図29を参照して説明する。なお、図29においては、第1の実施形態に係るダイポールアンテナ30への給電形態を示しているが、第2の実施形態に係るダイポールアンテナ40への給電形態についてもこれと同様である。
 図29の(a)は、直線部32aに沿って給電点33に進入する同軸ケーブル34によって給電(平衡給電)する給電形態を示し、図29の(b)は、給電点33を通り直線部32aに直交する直線(不図示)に沿って給電点33に進入する同軸ケーブルによって給電(平衡給電)する給電形態を示している。いずれの場合も、放射素子31及び32の何れか一方に同軸ケーブル34の内部導体を接続し、他方に同軸ケーブル34の外部導体を接続すればよい。
 なお、図29の(b)に示した給電形態を採用する場合、同軸ケーブル34とのインピーダンス整合を図るために、直線部31aの給電点33側の端部、及び、直線部32aの給電点33側の端部を、同軸ケーブル34に沿うように内側(給電点33側)に折り曲げておくとよい。
 〔第1の基本形態と第2の基本形態との関係〕
 先ず、第1の基本形態においては、給電点11eを第1の給電点、給電点11fを第2の給電点と呼べば、図4に示すダイポールアンテナ10は、放射素子11(第1の放射素子)と放射素子12(第2の放射素子)とを備えたダイポールアンテナであって、放射素子11(第1の放射素子)は、第1の給電点から第1の方向に伸びる直線部11a(第1の直線部)と、第1の屈曲部を介して直線部11a(第1の直線部)の上記第1の給電点側とは反対側に連結され、上記第1の屈曲部から上記第1の方向と逆方向に伸びる直線部11b(第2の直線部)とを有しており、放射素子12(第2の放射素子)は、第2の給電点から上記第1の方向と逆方向に伸びる直線部12a(第3の直線部)と、第2の屈曲部を介して直線部12a(第3の直線部)の上記第2の給電点側とは反対側に連結され、上記第2の屈曲部から上記第1の方向に伸びる直線部12b(第4の直線部)とを有している、ことを特徴とするダイポールアンテナであると表現することができる。特に、図4に示すダイポールアンテナ10は、第1の給電点、及び、第2の給電点が、それぞれ、第1の直線部11aの中間、及び、第3の直線部12aの中間に設けられ、第1の直線部11aが、第3の直線部12aと第4の直線部12bとの間に配置され、第3の直線部12aが、第1の直線部11aと第2の直線部11bとの間に配置された構成例である。
 また、第2の基本形態においては、同軸ケーブル34(給電線)と放射素子31(第1の放射素子)との接続点を第1の給電点、同軸ケーブル34(給電線)と放射素子32(第2の放射素子)との接続点を第2の給電点と呼べば、図29の(a)及び(b)に示すダイポールアンテナ30は、放射素子31(第1の放射素子)と放射素子32(第2の放射素子)とを備えたダイポールアンテナであって、放射素子31(第1の放射素子)は、第1の給電点から第1の方向に伸びる直線部31a(第1の直線部)と、第1の屈曲部を介して直線部31a(第1の直線部)の上記第1の給電点側とは反対側に連結され、上記第1の屈曲部から上記第1の方向と逆方向に伸びる直線部31b(第2の直線部)とを有しており、放射素子32(第2の放射素子)は、第2の給電点から上記第1の方向と逆方向に伸びる直線部32a(第3の直線部)と、第2の屈曲部を介して直線部32a(第3の直線部)の上記第2の給電点側とは反対側に連結され、上記第2の屈曲部から上記第1の方向に伸びる直線部32b(第4の直線部)とを有している、ことを特徴とするダイポールアンテナであると表現することができる。特に、図29の(a)に示すダイポールアンテナ30は、直線部31a(第1の直線部)と直線部32a(第3の直線部)とが一直線上に配置された構成例であり、図29の(b)に示すダイポールアンテナ30は、直線部31a(第1の直線部)と直線部32a(第3の直線部)とが一直線上に配置された構成例である。
 なお、本発明は、以下のようにも表現することができる。すなわち、本発明に係るダイポールアンテナは、第1の放射素子と第2の放射素子とを備えたダイポールアンテナにおいて、上記第1の放射素子は、当該第1の放射素子の一方の端部から第1の方向に伸びる第1の直線部と、第1の屈曲部を介して上記第1の直線部の上記端部側とは反対側に連結され、上記第1の屈曲部から上記第1の方向と逆方向に伸びる第2の直線部とを有しており、上記第2の放射素子は、当該第2の放射素子の一方の端部から上記第1の方向と逆方向に伸びる第3の直線部と、第2の屈曲部を介して上記第3の直線部の上記端部側とは反対側に連結され、上記第2の屈曲部から上記第1の方向に伸びる第4の直線部とを有しており、上記第1の直線部の中間と上記第3の直線部の中間とに給電点が設けられており、上記第1の直線部は、上記第3の直線部と上記第4の直線部との間に配置され、上記第3の直線部は、上記第1の直線部と上記第2の直線部との間に配置されていることを特徴としている。
 ここで、「第1の直線部の中間」における「中間」は、「第1の直線部」の両端部間の任意の点の意であり、両端部間の中心点の意ではない。同様に、「第3の直線部の中間」における「中間」は、「第3の直線部」の両端部間の任意の点の意であり、両端部間の中心点の意ではない。
 上記の構成によれば、第2共振周波数において第1の放射素子及び第2の放射素子を流れる電流の方向を概ね一様化することができる。これにより、第2共振周波数における放射パターンが単峰化され易くなり、第2共振周波数が低周波側にシフトする。
 ここで、第2共振周波数における放射パターンの単峰化は、第2共振周波数が放射利得を極大化する周波数よりも低周波側にシフトしていること、すなわち、第1共振周波数と第2共振周波数との間で放射利得の急峻な低下が生じないことを意味する。このため、第2共振周波数における放射パターンが単峰化された場合には、従来の構成では放射利得の急峻な低下によって動作帯域とすることができなかった第2共振周波数近傍の帯域を、放射利得に課された動作条件を充足する動作帯域とすることができる。
 更に、第2共振周波数が低周波側にシフトすると、第1共振周波数と第2共振周波数とが接近し、入力反射係数が第1共振周波数と第2共振周波数との間の帯域全体に渡って低下する。したがって、第1共振周波数と第2共振周波数との間の放射利得が動作条件を充足していれば、第1共振周波数と第2共振周波数との間の帯域全体を動作帯域とすることができる。
 すなわち、従来のダイポールアンテナにおいては動作帯域とすることができなかった第2周波数近傍を新たに動作帯域とすることによって、動作帯域の拡大を図ることができるという効果を奏する。
 併せて、第1の放射素子及び第2の放射素子を上記のように構成したことにより、全長が同じ従来のダイポールアンテナよりもコンパクトになるという効果を奏する。しかも、第1の放射素子及び第2の放射素子が単に折れ曲がっているだけでなく、第1の放射素子が第2の放射素子の直線部間に入り込み、また、第2の放射素子が第1の放射素子の直線部間に入り込むという構造を有しているので、より一層コンパクトなダイポールアンテナを実現することができる。
 なお、「第1の方向」における「方向」とは、向き付けられた方向のことを指す。すなわち、例えば、北を第1の方向とすれば、南は第1の方向ではなく、第1の方向の逆方向となる。
 本発明に係るダイポールアンテナにおいて、上記第2の直線部の長さ及び上記第4の直線部の長さは、それぞれ、上記第1の直線部の、上記給電点より上記第1の屈曲部側にある部分の長さと、上記第3の直線部の、上記給電点より上記第2の屈曲部側にある部分の長さとの和よりも大きいことが好ましい。
 第1共振周波数においては、第1の放射素子及び第2の放射素子を流れる電流の方向が、非一様化されるため、第1共振周波数近傍における放射利得が低下する可能性がある。これは、第2の直線部及び第4の直線部から放射される電磁波の一部が、第1の直線部及び第3の直線部から放射される電磁波によって打ち消されるためである。
 しかしながら、上記の構成によれば、第2の直線部及び第4の直線部から放射される電磁波が第1の直線部及び第3の直線部から放射される電磁波によって打ち消される割合を低減することができる。このため、第1共振周波数近傍において生じ得る放射利得Gの低下を抑制することができるという更なる効果を奏する。
 本発明に係るダイポールアンテナは、上記第1の直線部と上記第2の放射素子との間隙、又は、上記第3の直線部と上記第1の放射素子との間隙に配置された導体片を更に備えていることが好ましい。
 上記の構成によれば、第1の放射素子及び第2の放射素子の形状を変更することなく、他の場所に導体片を設けた場合と比較して、より効果的に第1の放射素子と第2の放射素子との間の寄生リアクタンスを調整することができる。したがって、アンテナ特性の調整が容易なダイポールアンテナを実現することができる。
 なお、本発明に係るダイポールアンテナは、上記第1の直線部と上記第2の放射素子との間隙に配置された導体片、及び、上記第3の直線部と上記第1の放射素子との間隙に配置された導体片の両方を備えていてもよいし、何れか一方のみを備えていてもよい。
 本発明に係るダイポールアンテナは、上記第1の直線部と上記第2の放射素子との間隙、又は、上記第3の直線部と上記第1の放射素子との間隙の少なくとも一部を、誘電体シートを介して覆うように配置された導体片を更に備えていることが好ましい。
 上記の構成によれば、第1の放射素子及び第2の放射素子の形状を変更することなく、他の場所に導体片を設けた場合と比較して、より効果的に第1の放射素子と第2の放射素子との間の寄生リアクタンスを調整することができる。したがって、アンテナ特性の調整が容易なダイポールアンテナを実現することができる。
 なお、本発明に係るダイポールアンテナは、上記第1の直線部と上記第2の放射素子との間隙の少なくとも一部を覆う導体片、及び、上記第3の直線部と上記第1の放射素子との間隙の少なくとも一部を覆う導体片の両方を備えていてもよいし、何れか一方のみを備えていてもよい。
 本発明に係るダイポールアンテナにおいて、上記第1の放射素子は、上記第2の直線部の上記第1の屈曲部側とは反対側に連結され、上記第2の直線部よりも幅の広い第1の幅広部を更に有しており、上記第2の放射素子は、上記第4の直線部の上記第2の屈曲部側とは反対側に連結され、上記第4の直線部よりも幅の広い第2の幅広部を更に有していることが好ましい。
 上記の構成によれば、幅広部を設けることによって第1の放射素子及び第2の放射素子の電気長を長くすることができ、サイズをコンパクトに保ちつつ動作帯域を低周波側にシフトさせることができる。また、指向性の低いダイポールアンテナを実現することができる。
 本発明に係るダイポールアンテナにおいて、上記第1の幅広部の幅、又は、上記第2の幅広部の幅が、fを動作帯域内の周波数として、c/(128f)以上である(cは光速)ことが好ましい。
 上記の構成によれば、高次モードにおけるVSWRを低下させ、動作帯域を更に拡大することができる。また、指向性をより一層低下させることができる。
 なお、上記第1の幅広部の幅、及び、上記第2の幅広部の幅の両方がc/(128f)以上であってもよいし、何れか一方のみがc/(128f)以上であってもよい。
 本発明に係るダイポールアンテナにおいて、上記第2の直線部の長さ、又は、上記第4の直線部の長さが、fを動作帯域内の周波数として、c/(16f)以上である(cは光速)ことが好ましい。
 上記の構成によれば、高次モードにおけるVSWRを低下させ、動作帯域を更に拡大することができる。また、指向性をより一層低下させることができる。
 なお、上記第2の直線部の長さ、及び、上記第4の直線部の長さの両方がc/(16f)以上であってもよいし、何れか一方のみがc/(16f)以上であってもよい。
 本発明に係るダイポールアンテナは、上記第2の屈曲部と上記第1の幅広部との間隙、又は、上記第1の屈曲部と上記第2の幅広部との間隙に配置された導体片を更に備えていることが好ましい。
 上記の構成によれば、第1の放射素子及び第2の放射素子の形状を変更することなく、第1の放射素子と第2の放射素子との間に生じる寄生容量の大きさを、他の場所に導体片を設けた場合と比較して、より効果的に変化させることができる。したがって、アンテナ特性の調整が容易なダイポールアンテナを実現することができる。
 なお、本発明に係るダイポールアンテナは、上記第2の屈曲部と上記第1の幅広部との間隙に配置された導体片、及び、上記第1の屈曲部と上記第2の幅広部との間隙に配置された導体片の両方を備えていてもよいし、何れか一方のみを備えていてもよい。
 本発明に係るダイポールアンテナにおいて、上記第2の屈曲部と上記第1の幅広部との間隙、又は、上記第1の屈曲部と上記第2の幅広部との間隙の少なくとも一部を、誘電体シートを介して覆う導体片を更に備えていることが好ましい。
 上記の構成によれば、第1の放射素子及び第2の放射素子の形状を変更することなく、第1の放射素子と第2の放射素子との間に生じる寄生容量の大きさを、他の場所に導体片を設けた場合と比較して、より効果的に変化させることができる。したがって、アンテナ特性の調整が容易なダイポールアンテナを実現することができる。
 なお、本発明に係るダイポールアンテナは、上記第2の屈曲部と上記第1の幅広部との間隙の少なくとも一部を覆う導体片、及び、上記第1の屈曲部と上記第2の幅広部との間隙の少なくとも一部を覆う導体片の両方を備えていてもよいし、何れか一方のみを備えていてもよい。
 本発明に係るダイポールアンテナにおいて、上記第1の幅広部は、上記第1の方向に平行な長辺を有する長方形状に形成されており、上記第2の幅広部は、上記第1の方向に垂直な長辺を有する長方形状に形成されていることが好ましい。
 上記の構成によれば、上記第2の幅広部が上記第1の方向に垂直な長辺を有する長方形状に形成されている場合と比較して、上記第1の方向及びその逆方向のサイズを小さくすることができる。また、上記の構成によれば、当該ダイポールアンテナが全体としてL字状になるので、L字状のスペースを有する小型無線装置等への搭載が容易になる。
 本発明に係るダイポールアンテナにおいて、上記第1の幅広部及び上記第2の幅広部は、それぞれ、上記第1の方向に平行な長辺を有する長方形状に形成されていることが好ましい。
 上記の構成によれば、上記第2の幅広部が上記第1の方向に垂直な長辺を有する長方形状に形成されている場合と比較して、上記第1の方向に垂直な方向及びその逆方向のサイズを小さくすることができる。また、上記の構成によれば、当該ダイポールアンテナが全体としてI字状になるので、I字状のスペースを有する小型無線装置等への搭載が容易になる。
 本発明に係るダイポールアンテナは、第1の放射素子と第2の放射素子とを備えたダイポールアンテナにおいて、上記第1の放射素子は、給電点から第1の方向に伸びる第1の直線部と、第1の屈曲部を介して上記第1の直線部の上記給電点側とは反対側に連結され、上記第1の屈曲部から上記第1の方向と逆方向に伸びる第2の直線部とを有しており、上記第2の放射素子は、上記給電点から上記第1の方向と逆方向に伸びる第3の直線部と、第2の屈曲部を介して上記第3の直線部の上記給電点側とは反対側に連結され、上記第2の屈曲部から上記第1の方向に伸びる第4の直線部とを有していることを特徴としている。
 上記の構成によれば、第2共振周波数において第1の放射素子及び第2の放射素子を流れる電流の方向を一様化することができる。これにより、第2共振周波数を低周波側にシフトさせ、第2共振周波数における放射パターンを単峰化することができる。
 ここで、第2共振周波数における放射パターンの単峰化は、第2共振周波数が放射利得を極大化する周波数よりも低周波側にシフトしていること、すなわち、第1共振周波数と第2共振周波数との間で放射利得の急峻な低下が生じないことを意味する。このため、従来の構成では放射利得の急峻な低下によって動作帯域とすることができなかった第2共振周波数近傍の帯域を、放射利得に課された動作条件を充足する動作帯域とすることができる。
 更に、第2共振周波数が低周波側にシフトすると、第1共振周波数と第2共振周波数とが接近し、入力反射係数が第1共振周波数と第2共振周波数との間の帯域全体に渡って低下する。しかも、上述したように第1共振周波数と第2共振周波数との間で放射利得が急峻に低下することがないので、入力反射係数に課される動作条件によっては、第1共振周波数と第2共振周波数f2との間の帯域全体を動作帯域とすることができる。
 すなわち、従来のダイポールアンテナにおいては動作帯域とすることができなかった第2周波数近傍を新たに動作帯域とすることによって、動作帯域の拡大を図ることができるという効果を奏する。
 併せて、第1の放射素子及び第2の放射素子を上記のように構成したことにより、全長が同じ従来のダイポールアンテナよりもコンパクトになるという効果を奏する。
 なお、「第1の方向」における「方向」とは、向き付けられた方向のことを指す。すなわち、例えば、北を第1の方向とすれば、南は第1の方向ではなく、第1の方向の逆方向となる。
 本発明に係るダイポールアンテナにおいて、上記第2の直線部の長さ及び上記第4の直線部の長さは、それぞれ、上記第1の直線部の長さと上記第3の直線部の長さとの和より大きいことが好ましい。
 第1共振周波数においては、第1の放射素子及び第2の放射素子を流れる電流の方向が、非一様化されるため、第1共振周波数近傍における放射利得が低下する可能性がある。これは、第2の直線部及び第4の直線部から放射される電磁波の一部が、第1の直線部及び第3の直線部から放射される電磁波によって打ち消されるためである。
 しかしながら、上記の構成によれば、第2の直線部及び第4の直線部から放射される電磁波が第1の直線部及び第3の直線部から放射される電磁波によって打ち消される割合を低減することができる。このため、第1共振周波数近傍において生じ得る放射利得Gの低下を抑制することができるという更なる効果を奏する。
 本発明に係るダイポールアンテナにおいて、上記第1の放射素子は、上記第2の直線部の上記第1の屈曲部側とは反対側で終端されており、上記第2の放射素子は、上記第4の直線部の上記第2の屈曲部側とは反対側で終端されていることが好ましい。
 上記の構成によれば、第1の放射素子及び第2の放射素子の形状を規定するために必要なパラメータの数が少ないため、数値シミュレーション等を用いて所望の特性が得られるように第1の放射素子及び第2の放射素子を設計することが容易であるという更なる効果を奏する。
 本発明に係るダイポールアンテナにおいて、上記第2の直線部の長さに対する上記第1の直線部の長さの比、及び、上記第4の直線部の長さに対する上記第3の直線部の長さの比が0.05以上0.3以下であることが好ましい。
 上記の構成によれば、上記比を0.05以上にしたことにより、十分に広い動作帯域を得ることができ、同時に、上記比を0.3以下としたことにより、十分に高い放射利得を得ることができるという更なる効果を奏する。
 本発明に係るダイポールアンテナにおいて、上記第1の放射素子及び上記第2の放射素子は、少なくとも一部分がメアンダ化されたメアンダ部を更に有していることが好ましい。
 上記の構成によれば、同じ動作帯域を有するダイポールアンテナを、よりコンパクトに実現することができるという更なる効果を奏する。
 本発明に係るダイポールアンテナにおいて、上記第1の放射素子は、上記第2の直線部の上記第1の屈曲部側とは反対側から上記第1の方向と逆方向に伸びる、少なくとも一部分がメアンダ化された第1のメアンダ部を更に有しており、上記第2の放射素子は、上記第4の直線部の上記第2の屈曲部側とは反対側から上記第1の方向に伸びる、少なくとも一部分がメアンダ化された第2のメアンダ部を更に有していることが好ましい。
 上記の構成によれば、第1の方向と逆方向に伸びる第1のメアンダ部、及び、第1の方向に伸びる第2のメアンダ部の少なくとも一部をメアンダ化したことに伴い、第1の放射素子及び第2の放射素子がそれぞれ第1の方向及びその逆方向に直線的に伸びる場合と比較して、当該ダイポールアンテナの第1の方向及びその逆方向に関するサイズを小さくすることができるという更なる効果を奏する。
 本発明に係るダイポールアンテナにおいて、上記第1の放射素子は、上記第2の直線部の上記第1の屈曲部側とは反対側から上記第1の方向と垂直な第2の方向に伸びる、少なくとも一部がメアンダ化された第1のメアンダ部を更に有しており、上記第2の放射素子は、上記第4の直線部の上記第2の屈曲部側とは反対側から上記第2の方向と逆方向に伸びる、少なくとも一部がメアンダ化された第2のメアンダ部を更に有していることが好ましい。
 上記の構成によれば、第1の方向と垂直な第2の方向に伸びる第1のメアンダ部、及び、第2の方向の逆方向に伸びる第2のメアンダ部の少なくとも一部をメアンダ化したことに伴い、第1の放射素子及び第2の放射素子がそれぞれ第2の方向及びその逆方向に直線的に伸びる場合と比較して、当該ダイポールアンテナの第2の方向及びその逆方向に関するサイズを小さくすることができるという更なる効果を奏する。
 なお、本発明に係るダイポールアンテナにおいて、上記第1の放射素子及び上記第2の放射素子は、例えば、導体フィルム又は導体ワイヤにより構成することができる。
 また、本発明に係るダイポールアンテナは、上記給電点から上記第1の方向又は上記第1の方向と垂直な方向に伸びる同軸ケーブルにより給電することができる。
 また、本発明に係るダイポールアンテナにおいて、上記第1の直線部と上記第3の直線部とは、例えば、一直線上に配置することができる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、各種無線装置に広く利用することができる。特に、地上波デジタルテレビ帯域をカバーする小型無線機器用アンテナとして好適に利用することができる。
 また、本発明は、各種無線装置に広く利用することができる。例えば、パーソナルコンピュータや携帯電話端末などの小型無線装置用アンテナとしてとして、あるいは、基地局用アンテナとして好適に利用することができる。
 DP,10,20,DP2,30,40        ダイポールアンテナ
 E1,11,21,E21,31,41        放射素子(第1の放射素子)
 E1a,11a,21a,E21a,31a,41a  直線部(第1の直線部)
 E1b,11b,21b,E21b,31b,41b  直線部(第2の直線部)
 E1c,11c,21c,E21c,31c,41c  屈曲部(第1の屈曲部)
 E2,12,22,E22,32,42  放射素子(第2の放射素子)
 E2a,12a,22a,E22a,32a,42a  直線部(第3の直線部)
 E2b,12b,22b,E22b,32b,42b  直線部(第4の直線部)
 E2c,12c,22c,E22c,32c,42c  屈曲部(第2の屈曲部)
 F,F1,F2、11e、12e、21e、22e,33,43  給電点

Claims (22)

  1.  第1の放射素子と第2の放射素子とを備えたダイポールアンテナにおいて、
     上記第1の放射素子は、第1の給電点から第1の方向に伸びる第1の直線部と、第1の屈曲部を介して上記第1の直線部の上記第1の給電点側とは反対側に連結され、上記第1の屈曲部から上記第1の方向と逆方向に伸びる第2の直線部とを有しており、
     上記第2の放射素子は、第2の給電点から上記第1の方向と逆方向に伸びる第3の直線部と、第2の屈曲部を介して上記第3の直線部の上記第2の給電点側とは反対側に連結され、上記第2の屈曲部から上記第1の方向に伸びる第4の直線部とを有している、
    ことを特徴とするダイポールアンテナ。
  2.  上記第1の給電点、及び、上記第2の給電点は、それぞれ、上記第1の直線部の中間、及び、上記第3の直線部の中間に設けられ、
     上記第1の直線部は、上記第3の直線部と上記第4の直線部との間に配置され、上記第3の直線部は、上記第1の直線部と上記第2の直線部との間に配置されている、
    ことを特徴とする請求項1に記載のダイポールアンテナ。
  3.  上記第2の直線部の長さ及び上記第4の直線部の長さは、それぞれ、上記第1の直線部の、上記給電点より上記第1の屈曲部側にある部分の長さと、上記第3の直線部の、上記給電点より上記第2の屈曲部側にある部分の長さとの和よりも大きい、
    ことを特徴とする請求項2に記載のダイポールアンテナ。
  4.  上記第1の直線部と上記第2の放射素子との間隙、又は、上記第3の直線部と上記第1の放射素子との間隙に配置された導体片を更に備えている、
    ことを特徴とする請求項2又は3に記載のダイポールアンテナ。
  5.  上記第1の直線部と上記第2の放射素子との間隙、又は、上記第3の直線部と上記第1の放射素子との間隙の少なくとも一部を、誘電体シートを介して覆うように配置された導体片を更に備えている、
    ことを特徴とする請求項2又は3に記載のダイポールアンテナ。
  6.  上記第1の放射素子は、上記第2の直線部の上記第1の屈曲部側とは反対側に連結され、上記第2の直線部よりも幅の広い第1の幅広部を更に有しており、
     上記第2の放射素子は、上記第4の直線部の上記第2の屈曲部側とは反対側に連結され、上記第4の直線部よりも幅の広い第2の幅広部を更に有している、
    ことを特徴とする請求項2から5までの何れか1項に記載のダイポールアンテナ。
  7.  上記第1の幅広部の幅、又は、上記第2の幅広部の幅が、fを動作帯域内の周波数として、c/(128f)以上である(cは光速)、
    ことを特徴とする請求項6に記載のダイポールアンテナ。
  8.  上記第2の直線部の長さ、又は、上記第4の直線部の長さが、fを動作帯域内の周波数として、c/(16f)以上である(cは光速)、
    ことを特徴とする請求項6又は7に記載のダイポールアンテナ。
  9.  上記第2の屈曲部と上記第1の幅広部との間隙、又は、上記第1の屈曲部と上記第2の幅広部との間隙に配置された導体片を更に備えている、
    ことを特徴とする請求項6から8までの何れか1項に記載のダイポールアンテナ。
  10.  上記第2の屈曲部と上記第1の幅広部との間隙、又は、上記第1の屈曲部と上記第2の幅広部との間隙の少なくとも一部を、誘電体シートを介して覆う導体片を更に備えている、
    ことを特徴とする請求項6から8までの何れか1項に記載のダイポールアンテナ。
  11.  上記第1の幅広部は、上記第1の方向に平行な長辺を有する長方形状に形成されており、
     上記第2の幅広部は、上記第1の方向に垂直な長辺を有する長方形状に形成されている、
    ことを特徴とする請求項6から10までの何れか1項に記載のダイポールアンテナ。
  12.  上記第1の幅広部及び上記第2の幅広部は、それぞれ、上記第1の方向に平行な長辺を有する長方形状に形成されている、
    ことを特徴とする請求項6から10までの何れか1項に記載のダイポールアンテナ。
  13.  上記第1の給電点、及び、上記第2の給電点は、それぞれ、上記第1の直線部の上記第1の屈曲部側とは反対側の端部、及び、上記第3の直線部の上記第2の屈曲部側とは反対側の端部に設けられ、
     上記第1の直線部と上記第3の直線部とは、上記第1の給電点と上記第2の給電点とが互いに対向するように配置されている、
    ことを特徴とする請求項1に記載のダイポールアンテナ。
  14.  上記第2の直線部の長さ及び上記第4の直線部の長さは、それぞれ、上記第1の直線部の長さと上記第3の直線部の長さとの和より大きい、
    ことを特徴とする請求項13に記載のダイポールアンテナ。
  15.  上記第1の放射素子は、上記第2の直線部の上記第1の屈曲部側とは反対側で終端されており、
     上記第2の放射素子は、上記第4の直線部の上記第2の屈曲部側とは反対側で終端されている、
    ことを特徴とする請求項13又は14に記載のダイポールアンテナ。
  16.  上記第2の直線部の長さに対する上記第1の直線部の長さの比、及び、上記第4の直線部の長さに対する上記第3の直線部の長さの比が0.05以上0.3以下である、
    ことを特徴とする請求項15に記載のダイポールアンテナ。
  17.  上記第1の放射素子及び上記第2の放射素子は、少なくとも一部分がメアンダ化されたメアンダ部を更に有している、
    ことを特徴とする請求項13又は14に記載のダイポールアンテナ。
  18.  上記第1の放射素子は、上記第2の直線部の上記第1の屈曲部側とは反対側から上記第1の方向と逆方向に伸びる、少なくとも一部分がメアンダ化された第1のメアンダ部を更に有しており、
     上記第2の放射素子は、上記第4の直線部の上記第2の屈曲部側とは反対側から上記第1の方向に伸びる、少なくとも一部分がメアンダ化された第2のメアンダ部を更に有している、
    ことを特徴とする請求項13又は14に記載のダイポールアンテナ。
  19.  上記第1の放射素子は、上記第2の直線部の上記第1の屈曲部側とは反対側から上記第1の方向と垂直な第2の方向に伸びる、少なくとも一部がメアンダ化された第1のメアンダ部を更に有しており、
     上記第2の放射素子は、上記第4の直線部の上記第2の屈曲部側とは反対側から上記第2の方向と逆方向に伸びる、少なくとも一部がメアンダ化された第2のメアンダ部を更に有している、
    ことを特徴とする請求項13又は14に記載のダイポールアンテナ。
  20.  上記第1の放射素子及び上記第2の放射素子は、導体フィルム又は導体ワイヤにより構成されている、
    ことを特徴とする請求項13から19までの何れか1項に記載のダイポールアンテナ。
  21.  上記給電点から上記第1の方向又は上記第1の方向と垂直な方向に伸びる同軸ケーブルにより給電されている、
    ことを特徴とする請求項13から20までの何れか1項に記載のダイポールアンテナ。
  22.  上記第1の直線部と上記第3の直線部とが、一直線上に配置されている、
    ことを特徴とする請求項13から21までの何れか1項に記載のダイポールアンテナ。
PCT/JP2010/062445 2009-07-24 2010-07-23 ダイポールアンテナ WO2011010725A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011523710A JP5416773B2 (ja) 2009-07-24 2010-07-23 ダイポールアンテナ
EP10802345.8A EP2458682B1 (en) 2009-07-24 2010-07-23 Dipole antenna
CN201080032828.5A CN102474013B (zh) 2009-07-24 2010-07-23 偶极天线
US13/356,296 US9093748B2 (en) 2009-07-24 2012-01-23 Dipole antenna

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-173615 2009-07-24
JP2009173615 2009-07-24
JP2009-173614 2009-07-24
JP2009173614 2009-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/356,296 Continuation US9093748B2 (en) 2009-07-24 2012-01-23 Dipole antenna

Publications (1)

Publication Number Publication Date
WO2011010725A1 true WO2011010725A1 (ja) 2011-01-27

Family

ID=43499197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062445 WO2011010725A1 (ja) 2009-07-24 2010-07-23 ダイポールアンテナ

Country Status (5)

Country Link
US (1) US9093748B2 (ja)
EP (1) EP2458682B1 (ja)
JP (1) JP5416773B2 (ja)
CN (1) CN102474013B (ja)
WO (1) WO2011010725A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10862541B2 (en) 2017-07-21 2020-12-08 Murata Manufacturing Co., Ltd. Wireless communication device
JP2021064916A (ja) * 2019-10-17 2021-04-22 日本アンテナ株式会社 ダイポールアンテナ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572097B (zh) * 2015-07-14 2017-02-21 智易科技股份有限公司 雙頻天線
CN106711588A (zh) * 2015-07-22 2017-05-24 智易科技股份有限公司 双频天线
US10734709B2 (en) * 2018-09-28 2020-08-04 Qualcomm Incorporated Common-radiator multi-band antenna system
CN113964488A (zh) * 2020-07-21 2022-01-21 富士康(昆山)电脑接插件有限公司 天线

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229298A (en) 1962-11-27 1966-01-11 Dean O Morgan Bent-arm multiband dipole antenna wherein overall dimension is quarter wavelength on low band
JPH07131231A (ja) * 1993-11-05 1995-05-19 Mitsubishi Cable Ind Ltd 移動通信機器用アンテナ
US5453752A (en) 1991-05-03 1995-09-26 Georgia Tech Research Corporation Compact broadband microstrip antenna
DE19703864A1 (de) * 1997-02-03 1998-06-25 Markus Dr Ing Thieme Streifenleitungs-Antennenelement für zirkular polarisierte elektromagnetische Wellen
US6285342B1 (en) * 1998-10-30 2001-09-04 Intermec Ip Corp. Radio frequency tag with miniaturized resonant antenna
JP2002280817A (ja) * 2001-03-21 2002-09-27 Hitachi Cable Ltd 同軸ケーブル付小型アンテナ及びそれを用いた情報端末
US20040201522A1 (en) * 2003-04-10 2004-10-14 Housing Technology, Inc. RFID tag using a surface insensitive antenna structure
JP2005210151A (ja) * 2004-01-20 2005-08-04 Toyota Central Res & Dev Lab Inc アンテナ及びその配設方法
JP2006135775A (ja) * 2004-11-08 2006-05-25 Alps Electric Co Ltd ダイポールアンテナ
JP2007116300A (ja) * 2005-10-19 2007-05-10 Fujitsu Ltd タグアンテナ,これを用いるタグ及びrfidシステム。
EP1942553A1 (en) 2006-12-29 2008-07-09 Delta Networks, Inc. Antenna structure and method for increasing its bandwidth
US20090128440A1 (en) 2007-11-19 2009-05-21 X-Ether, Inc. Balanced antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231894A (en) * 1960-06-23 1966-01-25 Sony Corp Zigzag antenna
AU6210700A (en) * 1999-08-18 2001-03-13 Ericsson Inc. A dual band bowtie/meander antenna
JP4281023B1 (ja) * 2008-02-18 2009-06-17 日本電気株式会社 ワイドバンドアンテナおよびそれを用いたウエア、持ち物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229298A (en) 1962-11-27 1966-01-11 Dean O Morgan Bent-arm multiband dipole antenna wherein overall dimension is quarter wavelength on low band
US5453752A (en) 1991-05-03 1995-09-26 Georgia Tech Research Corporation Compact broadband microstrip antenna
JPH07131231A (ja) * 1993-11-05 1995-05-19 Mitsubishi Cable Ind Ltd 移動通信機器用アンテナ
DE19703864A1 (de) * 1997-02-03 1998-06-25 Markus Dr Ing Thieme Streifenleitungs-Antennenelement für zirkular polarisierte elektromagnetische Wellen
US6285342B1 (en) * 1998-10-30 2001-09-04 Intermec Ip Corp. Radio frequency tag with miniaturized resonant antenna
JP2002280817A (ja) * 2001-03-21 2002-09-27 Hitachi Cable Ltd 同軸ケーブル付小型アンテナ及びそれを用いた情報端末
US20040201522A1 (en) * 2003-04-10 2004-10-14 Housing Technology, Inc. RFID tag using a surface insensitive antenna structure
JP2005210151A (ja) * 2004-01-20 2005-08-04 Toyota Central Res & Dev Lab Inc アンテナ及びその配設方法
JP2006135775A (ja) * 2004-11-08 2006-05-25 Alps Electric Co Ltd ダイポールアンテナ
JP2007116300A (ja) * 2005-10-19 2007-05-10 Fujitsu Ltd タグアンテナ,これを用いるタグ及びrfidシステム。
EP1942553A1 (en) 2006-12-29 2008-07-09 Delta Networks, Inc. Antenna structure and method for increasing its bandwidth
US20090128440A1 (en) 2007-11-19 2009-05-21 X-Ether, Inc. Balanced antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2458682A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10862541B2 (en) 2017-07-21 2020-12-08 Murata Manufacturing Co., Ltd. Wireless communication device
JP2021064916A (ja) * 2019-10-17 2021-04-22 日本アンテナ株式会社 ダイポールアンテナ
JP7292807B2 (ja) 2019-10-17 2023-06-19 日本アンテナ株式会社 ダイポールアンテナ

Also Published As

Publication number Publication date
CN102474013B (zh) 2014-04-09
US9093748B2 (en) 2015-07-28
CN102474013A (zh) 2012-05-23
EP2458682A1 (en) 2012-05-30
US20120119966A1 (en) 2012-05-17
JP5416773B2 (ja) 2014-02-12
EP2458682A4 (en) 2013-08-21
JPWO2011010725A1 (ja) 2013-01-07
EP2458682B1 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
US8497808B2 (en) Ultra-wideband miniaturized omnidirectional antennas via multi-mode three-dimensional (3-D) traveling-wave (TW)
JP5284491B2 (ja) ハーフループチップアンテナ及び関連する方法
JP4807413B2 (ja) アンテナおよびそのアンテナを備えた通信装置
EP1814193B1 (en) Planar antenna
Ghosh et al. A loop loading technique for the miniaturization of non-planar and planar antennas
JP4949469B2 (ja) ワイヤレス・デバイス用の埋め込みマルチモード・アンテナ・アーキテクチャ
US20170077599A1 (en) Multi-antenna and radio apparatus including thereof
JPWO2009031229A1 (ja) アンテナ素子
JP4710457B2 (ja) デュアルバンドアンテナ、及び、その構成方法
JP5416773B2 (ja) ダイポールアンテナ
JP2013013084A (ja) アンテナ及びその通信デバイス
CA2435830A1 (en) Ultra wideband antenna
US6967631B1 (en) Multiple meander strip monopole antenna with broadband characteristic
US9306277B2 (en) Multi-antenna device and communication device
WO2014125832A1 (ja) デュアルバンドアンテナ装置
EP2416445A1 (en) Wide band antenna
JP4948373B2 (ja) アンテナ
JP2006033068A (ja) アンテナおよび当該アンテナ搭載の携帯無線装置
JP4775390B2 (ja) リーダライタ
TWI515960B (zh) 天線與其通訊裝置
JP2007243908A (ja) アンテナ装置とこれを用いた電子機器
CN111373603B (zh) 通信设备
JP5324608B2 (ja) マルチバンドアンテナ
KR20100094190A (ko) 다중 공진 광대역 안테나
JP7018539B1 (ja) クロスダイポールアンテナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032828.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523710

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010802345

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010802345

Country of ref document: EP