WO2011010630A1 - 空気液化分離方法及び装置 - Google Patents

空気液化分離方法及び装置 Download PDF

Info

Publication number
WO2011010630A1
WO2011010630A1 PCT/JP2010/062158 JP2010062158W WO2011010630A1 WO 2011010630 A1 WO2011010630 A1 WO 2011010630A1 JP 2010062158 W JP2010062158 W JP 2010062158W WO 2011010630 A1 WO2011010630 A1 WO 2011010630A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
pressure
temperature
low
raw material
Prior art date
Application number
PCT/JP2010/062158
Other languages
English (en)
French (fr)
Inventor
正実 明畠
茂 湯澤
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to CN201080032477.8A priority Critical patent/CN102472575B/zh
Priority to US13/386,466 priority patent/US20120131951A1/en
Publication of WO2011010630A1 publication Critical patent/WO2011010630A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air

Definitions

  • the present invention relates to an air liquefaction separation method and apparatus, and more particularly, to an air liquefaction separation method for collecting at least liquid oxygen as a product by subjecting compressed, purified and cooled raw material air to cryogenic separation in an intermediate pressure tower and a low pressure tower. And an apparatus.
  • the production is generally carried out by a so-called deep-cooling type air liquefaction separation apparatus which uses air as a raw material and separates it by a double rectification column comprising an intermediate pressure column and a low pressure column. is there.
  • this cryogenic air liquefaction separation apparatus about 5% of the product can be produced as liquid oxygen, liquid nitrogen, or liquid argon.
  • additional liquefaction processes are required to produce more liquid products.
  • the liquefaction process is a process in which raw air, nitrogen gas, etc. are compressed, circulated, and adiabatic expansion to obtain the cooling required for the process, and many techniques have been disclosed for each process (for example, see Patent Document 1). .)
  • the circulating fluid is supplied to the distillation tower in a partially liquefied state, and a liquid product that is thermally suitable is collected.
  • the air circulation liquefaction process that compresses a part of higher-pressure raw material air and uses it as a circulating fluid This is a fundamentally advantageous process that requires less power to compress the fluid.
  • the air circulation liquefaction process increases the liquefaction rate of the raw material air supplied to the intermediate pressure tower, and the distillation conditions of the intermediate pressure tower decrease, making it difficult to cope with it. Become.
  • liquid nitrogen suitable for the liquid product is supplied to the intermediate pressure tower, and even when the amount of the product liquid is large, the distillation conditions of the intermediate pressure tower are not lowered. That is, when the amount of product liquid is relatively small, an air circulation liquefaction process with less power consumption is superior, but when the amount of product liquid is relatively large, only the nitrogen circulation liquefaction process can be handled.
  • the raw material air is pressurized to 460 kPa (gauge pressure, hereinafter referred to as kPaG) with a compressor and purified, and then introduced into the circulating air compressor together with a part of the circulating air processed by the expansion turbine.
  • the pressure is increased to a suitable pressure.
  • These circulating air is cooled to a predetermined temperature by a heat exchanger and then introduced into an expansion turbine to generate the necessary cooling for the apparatus.
  • a part of the circulating air treated by the expansion turbine is introduced into the intermediate pressure tower, and the rest is introduced into the circulating compressor together with the raw air.
  • the operation pressure of the intermediate pressure tower is about 480 kPaG, which is approximately the same as the expansion turbine discharge pressure and the pretreatment device operation pressure.
  • an object of the present invention is to provide an air liquefaction separation method and apparatus capable of reducing the apparatus cost in an air circulation liquefaction process for collecting at least liquid oxygen as a product.
  • a first configuration of the present invention is an air liquefaction separation method in which at least liquid oxygen is collected as a product by low-temperature distillation of compressed, purified, and cooled raw material air in a medium-pressure tower and a low-pressure tower.
  • a raw material air compression step in which the total amount of the raw material air is increased to a first set pressure higher than the operation pressure of the intermediate pressure tower to obtain the pressurized raw material air;
  • the second configuration of the present invention is an air liquefaction separation method for collecting at least liquid oxygen as a product by low-temperature distillation of compressed, purified, and cooled raw material air in an intermediate pressure column and a low pressure column,
  • a raw material air compression step in which the total amount of air is boosted to a first set pressure higher than the operation pressure of the intermediate pressure tower to form pressurized raw material air, and adsorption purification by adsorbing and removing impurities from the pressurized raw material air
  • a step a circulating air merging step in which the pressure-purified air and the pressure-returned return air, which will be described later, are merged to form circulating air, and the first shunt air that has been circulated in three minutes is cooled to the first set temperature to the medium pressure
  • the second split air is cooled to a second set temperature higher than the first set temperature to form cold expansion air
  • the third split air is set to a third set temperature higher than the second set temperature.
  • a cooling step a first expansion step in which the cold expansion air is adiabatically expanded to a second set pressure lower than the first set pressure to form a first low-temperature air, and the warm expansion air is used as the second set pressure.
  • a second expansion step of adiabatic expansion into the second low-temperature air having a temperature higher than the first set temperature, a step of introducing a part of the first low-temperature air into the intermediate pressure tower, and the first low temperature A temperature raising step of recovering the temperature of the remaining air and the second low-temperature air to obtain return air, a circulation compression step of raising the feedback air to obtain the boosted feedback air, and the intermediate pressure tower introduction air to And a step of introducing into the intermediate pressure tower.
  • a circulating air pressurizing step is provided for boosting the circulating air to a pressure higher than the first set pressure.
  • the third configuration of the present invention is an air liquefaction separation apparatus that collects at least liquid oxygen as a product by low-temperature distillation of compressed, purified, and cooled raw material air in a medium-pressure tower and a low-pressure tower,
  • a raw material air compressor that boosts the total amount of air to a first set pressure that is higher than the operating pressure of the intermediate pressure tower to obtain pressurized raw material air
  • an adsorption device that adsorbs and removes impurities from the pressurized raw material air to obtain pressurized purified air
  • a circulating air merging pipe that joins the pressure-purified air and pressure-returning return air, which will be described later, to form a circulating air, and a first divided air that has been divided into two by circulating the circulating air to a first preset temperature
  • a main heat exchanger that is a tower introduction air, cools the second shunt air to a second set temperature higher than the first set temperature, and makes the expansion air; and a second heat lower
  • Adiabatic expansion to the set pressure results in low-temperature air Circulation of the expansion turbine, piping for introducing a part of the low-temperature air into the intermediate pressure tower, and the return air whose temperature is recovered by the main heat exchanger for the rest of the low-temperature air to be the boosted feedback air
  • a compressor and a pipe for introducing the intermediate-pressure tower introduction air into the intermediate-pressure tower are provided.
  • the fourth configuration of the present invention is an air liquefaction separation apparatus for collecting at least liquid oxygen as a product by low-temperature distillation of compressed, purified, and cooled raw material air in an intermediate pressure column and a low pressure column
  • a raw material air compressor that boosts the total amount of air to a first set pressure that is higher than the operating pressure of the intermediate pressure tower to obtain pressurized raw material air
  • an adsorption device that adsorbs and removes impurities from the pressurized raw material air to obtain pressurized purified air
  • a circulating air merging pipe that circulates the pressurized purified air and the boosted return air, which will be described later, to form circulating air, and the first divided air that has been circulated into the circulating air for 3 minutes is cooled to the first set temperature to the medium pressure
  • the second split air is cooled to a second set temperature higher than the first set temperature to form cold expansion air
  • the third split air is set to a third set temperature higher than the second set temperature.
  • An exchanger Mainly cooled and used as air for thermal expansion
  • a cold expansion turbine that adiabatically expands the cold expansion air to a second set pressure lower than the first set pressure to form first low-temperature air
  • the thermal expansion air is insulated to the second set pressure
  • the main expansion of the thermal expansion turbine to be expanded into the second low-temperature air
  • the piping for introducing a part of the first low-temperature air into the intermediate pressure tower, the remainder of the first low-temperature air and the second low-temperature air.
  • a circulating compressor is used to pressurize the return air whose temperature has been recovered by a heat exchanger to obtain the boosted feedback air, and a pipe for introducing the intermediate pressure tower introduction air into the intermediate pressure tower.
  • a circulating air compressor that boosts the circulating air to a pressure higher than the first set pressure
  • the circulating air booster includes the expansion An expansion turbine braking blower provided in the turbine, and the expansion turbine is braked by any of a blower, a generator, and a hydraulic pump.
  • the total amount of the raw material air that has been conventionally increased to a pressure corresponding to the operation pressure of the intermediate pressure tower is set to a first set pressure higher than the operation pressure of the intermediate pressure tower, for example, the operation pressure of the intermediate pressure tower.
  • the pressure is increased to at least about 1.5 times, and impurities such as water vapor and carbon dioxide contained in the raw material air are adsorbed and removed in that state.
  • the adsorption device and the surrounding piping can be reduced in size.
  • the partial pressure of water vapor contained in the raw air becomes relatively low, it is possible to reduce the necessary amount of adsorbent for adsorbing and removing moisture, and to reduce the energy required for regeneration of the adsorbent. Therefore, the device price and the like can be reduced with the same power consumption as in the conventional case.
  • FIG. 1 is a system diagram of an air liquefaction separation apparatus showing a first embodiment of the present invention. It is a principal part systematic diagram of the air liquefaction separation apparatus which shows the 2nd form example of this invention. It is a principal part systematic diagram of the air liquefaction separation apparatus which shows the 3rd example of this invention. It is a principal part systematic diagram of the air liquefaction separation apparatus which shows the 4th example of this invention. It is a principal part systematic diagram of the air liquefaction separation apparatus which shows the 5th example of this invention. It is a principal part systematic diagram of the air liquefaction separation apparatus which shows the 6th form example of this invention.
  • the air liquefaction / separation apparatus shown in the first embodiment of FIG. 1 is obtained by subjecting raw material air that has been compressed, purified, and cooled to low temperature distillation in a medium pressure tower 11 and a low pressure tower 12, thereby producing liquid oxygen LO 2 and liquid as liquid products.
  • the crude argon LAr and the liquid nitrogen LN 2 are collected, and the oxygen gas GO 2 and the nitrogen gas GN 2 are collected as gas products.
  • the raw material air compressor 13, the adsorption device 14, and the circulating compressor 15 are collected.
  • a main heat exchanger 16 an expansion turbine 17, a main condenser 18, a crude argon tower 19, an argon condenser 20, and a supercooler 21.
  • the total amount of the raw material air is introduced into the raw material air compression process in which the raw material air compressor 13 boosts the pressure to the first set pressure higher than the operation pressure of the intermediate pressure tower 11 to obtain the boosted raw material air.
  • the pressurized raw material air is cooled by a cooler 13a, separated from condensed water by a drain separator 13b, and then introduced into an adsorption device 14 that performs an adsorption purification process.
  • impurities such as water vapor and carbon dioxide contained in the raw material air are adsorbed and removed by the adsorbent, and the pressurized raw material air is purified to become pressurized purified air.
  • the pressure-purified air is cooled by the cooler 14a, passes through one pipe 51a constituting the circulating air confluence pipe 51, and is discharged from the circulation compressor 15 to the pipe 51b that is the other confluence pipe.
  • a circulating air merging step is performed by merging with the return air to become circulating air flowing through the pipe 51c.
  • the circulating air in the pipe 51 c is introduced into the main heat exchanger 16 that performs the cooling process after being divided into two parts, the first divided air in the pipe 52 and the second divided air in the pipe 53.
  • the first diverted air is cooled to the first set temperature by the main heat exchanger 16, led out from the cold end of the main heat exchanger 16 to the pipe 54, and becomes intermediate pressure tower introduction air.
  • This intermediate pressure tower introduction air is depressurized by the valve 31 to a pressure corresponding to the operation pressure of the intermediate pressure tower 11, and is mostly introduced into the lower part of the intermediate pressure tower 11 from the pipe 55 in a liquefied state.
  • the second shunt air of the pipe 53 is cooled to the second set temperature higher than the first set temperature in the cooling process in the main heat exchanger 16 and is piped before reaching the cold end of the main heat exchanger 16.
  • the air is extracted into the expansion air 56 and introduced into the expansion turbine 17.
  • the expansion air is subjected to an expansion process in which the expansion turbine 17 adiabatically expands to a second set pressure lower than the first set pressure, and becomes low-temperature air in the pipe 57.
  • This low-temperature air is divided into the pipe 58 and the pipe 59 from the pipe 57, and the low-temperature air divided into the pipe 59 is introduced as a rising gas from the pipe 60 to the lower part of the intermediate pressure tower 11 through the valve 32.
  • the remaining portion of the low-temperature air that has been diverted to the pipe 58 is introduced into the cold end of the main heat exchanger 16 to perform a temperature raising step, and heat exchange is performed with the first and second diverted air to exchange each diverted air.
  • the temperature While cooling to a predetermined temperature, the temperature itself recovers to near normal temperature and becomes return air of the pipe 61.
  • the return air is sucked into the circulation compressor 15 and subjected to a circulation compression process.
  • the compressed air is discharged to the pipe 51b and joined to the pressurized purified air in the pipe 51a. Then, it becomes the circulating air of the pipe 51c.
  • the raw material air introduced into the lower part of the intermediate pressure tower 11 from the pipe 55 and the pipe 60 is subjected to distillation operation in the intermediate pressure tower 11 so that the medium pressure nitrogen-enriched gas at the top of the intermediate pressure tower and the oxygen enrichment at the bottom of the intermediate pressure tower. Separated from the chemical solution.
  • the oxygen-enriched liquid is extracted from the bottom of the intermediate pressure tower to the pipe 62 and cooled by the supercooler 21, and then is divided into the pipe 63 and the pipe 64.
  • the oxygen-enriched liquid in the pipe 64 is After being reduced to a pressure corresponding to the operating pressure of the low-pressure column 12, it is introduced as a reflux liquid into the intermediate portion of the low-pressure column 12 through the pipe 65.
  • the oxygen-enriched liquid flowing through the pipe 63 is decompressed by the valve 34 and then introduced into the argon condenser 20 provided at the upper part of the crude argon tower 19.
  • the oxygen-enriched gas vaporized in the argon condenser 20 is introduced as an ascending gas into the intermediate portion of the low-pressure column 12 through the pipe 66.
  • the oxygen content in the oxygen-enriched liquid and oxygen-enriched gas introduced into the low-pressure column 12 is concentrated at the bottom of the low-pressure column by distillation operation in the low-pressure column 12 to become low-pressure liquid oxygen.
  • a part of this low-pressure liquid oxygen is extracted to the pipe 67 and cooled by the supercooler 21 and then collected from the pipe 68 as product liquid oxygen.
  • the medium-pressure nitrogen-enriched gas at the top of the intermediate-pressure tower is introduced into the main condenser 18 disposed at the bottom of the low-pressure tower through the pipe 69, and indirectly heat exchanges with the low-pressure liquid oxygen to vaporize the low-pressure liquid oxygen.
  • the gas is liquefied into liquid nitrogen.
  • the liquid nitrogen is partially returned to the upper portion of the intermediate pressure tower 11 through the pipe 70 as a reflux liquid, and the remainder of the liquid nitrogen is cooled by the supercooler 21 through the pipe 71 and then partially.
  • the product is diverted to the pipe 72 and collected as product liquid nitrogen.
  • Most of the liquid nitrogen is depressurized to a pressure corresponding to the operating pressure of the low-pressure column 12 by the valve 35, and then introduced into the upper portion of the low-pressure column 12 through the pipe 73 as a reflux liquid.
  • a gas fluid rich in argon is extracted from the intermediate portion of the low-pressure column 12 into the pipe 74 and introduced into the lower portion of the crude argon column 19.
  • a crude argon gas enriched with argon is separated at the top of the column, and a liquid having a reduced argon concentration is separated at the bottom of the crude argon column.
  • the liquid having a reduced argon concentration is extracted from the bottom of the crude argon tower to the pipe 75 and returned to the intermediate part of the low-pressure tower 12 as a descending liquid.
  • the crude argon gas at the top of the crude argon column is introduced into the argon condenser 20 through the pipe 76, and is liquefied by heat exchange with the oxygen-enriched liquid in the argon condenser 20 to become liquid crude argon.
  • a part of the liquid crude argon is collected from the pipe 77 as the liquid crude argon of the product, and the remaining liquid crude argon is introduced as a reflux liquid through the pipe 78 into the upper portion of the crude argon tower 19.
  • the low-pressure nitrogen gas concentrated at the top of the low-pressure column by the distillation operation in the low-pressure column 12 is extracted into the pipe 79 and introduced into the supercooler 21 and used as a cooling source for the liquids. And then introduced into the cold end of the main heat exchanger 16. A part of the low-pressure oxygen gas vaporized in the main condenser 18 is extracted into the pipe 81 and introduced into the cold end of the main heat exchanger 16, and most of the remaining low-pressure oxygen gas is supplied to the low-pressure column 12. Ascending gas.
  • a part of the gas rising in the low-pressure column 12 is extracted from the upper part of the low-pressure column 12 to the pipe 82 as waste gas WG and becomes a cooling source for the supercooler 21, and then the main heat exchanger 16 introduced at the cold end.
  • the first set pressure of the pressurized feed air obtained by boosting the feed air with the feed air compressor 13 is set to a pressure higher than the operation pressure of the intermediate pressure tower 11.
  • the operation pressure of the intermediate pressure column 11 in the double rectification column having the intermediate pressure column 11, the low pressure column 12 and the main condenser 18 is about 500 kPaG, and is introduced into the lower part of the intermediate pressure column 11 from the pipe 60.
  • the pressure of the low-temperature air is about the same, and the return air flowing through the pipe 61 is about 500 kPaG, which is about the same as the operation pressure of the intermediate pressure tower 11, so that the compression ratio of the circulating compressor 15 for boosting the circulating air is 1 .5 to 1.8, the pressure of the pressurized raw material air having a pressure equal to the discharge pressure of the circulating compressor 15, that is, the first set pressure is about 750 kPaG (500 kPaG ⁇ 1.5) to 900 kPaG (500 kPaG ⁇ 1. 8).
  • the operating pressure of the adsorption device 14 that removes impurities from the raw air is about 1.5 times that in the case of a conventional ordinary air liquefaction separation device. It is possible to reduce the size of the main body and the surrounding piping, and to reduce the device price. That is, compared with the conventional adsorption apparatus, the diameter of the adsorption cylinder of the adsorption apparatus 14 can be reduced, so that the price of the adsorption cylinder material is reduced and the amount of water vapor entrained in the raw material air is reduced. Since the amount of alumina gel necessary for the adsorption device can be reduced, the equipment cost of the entire adsorption device can be greatly reduced. Further, since the amount of water vapor contained in the raw air is reduced, it is not necessary to cool the raw air to a low temperature, and the cost required for the cooling equipment can be reduced.
  • the circulating compressor 15 is a multistage compressor having a first compression stage 15a and a second compression stage 15b, and the boosted feedback air discharged from the first compression stage 15a. And the pressurized purified air are combined to form a circulating air, and the circulating air is further pressurized to a high-pressure circulating air by performing a circulating air pressurizing step in the second compression stage 15b of the circulating compressor 15, and then the expansion turbine. By performing the second circulating air pressurizing step with 17 brake blowers 22, the pressure is further increased to a high pressure.
  • the pressure-purified air obtained by refining the raw material air whose total amount has been increased to the first set pressure by the raw material air compressor 13 by the adsorption device 14 passes through the pipe 51a of the circulating air merging pipe line 51 and passes through the first compression stage 15a.
  • the pressurized feedback air of the pipe 51b discharged and cooled by the aftercooler merges with the pipe 51c, and is pressurized to a pressure higher than the first set pressure by the second compression stage 15b to become high-pressure circulating air.
  • a part of the high-pressure circulating air discharged from the circulation compressor 15 is divided into the pipe 52 and, as described above, is introduced into the main heat exchanger 16 and cooled to the first set temperature. Then, it is introduced into the lower part of the intermediate pressure tower 11 in a state where most of the liquid is liquefied through the pipe 55.
  • the remainder of the high-pressure circulating air that has been diverted to the pipe 53 is introduced into the brake blower 22 of the expansion turbine 17 and further boosted to a high pressure, and then introduced into the main heat exchanger 16 via the pipe 86. It is cooled to the second set temperature, which is a high temperature, and extracted to the piping 56 before reaching the cold end of the main heat exchanger 16, becomes expansion air, and is introduced into the expansion turbine 17.
  • the expansion air is adiabatically expanded to a second set pressure that is lower than the first set pressure in the expansion turbine 17 and becomes low-temperature air in the pipe 57.
  • a part of this low-temperature air is diverted to the pipe 59 and introduced into the lower part of the intermediate pressure tower through the valve 32 and the pipe 60, and the rest of the low-temperature air is diverted to the pipe 58 and the cold end of the main heat exchanger 16. Then, the temperature is recovered to return air to the pipe 61, which is sucked into the first compression stage 15a of the circulating compressor 15 and circulated.
  • the expansion rate in the expansion turbine 17 can be increased, and the amount of cold generation can be increased.
  • the air liquefaction separation apparatus shown in the third embodiment of FIG. 3 is a cold expansion that adiabatically expands the expansion air (cold expansion air) having the relatively low temperature as the expansion turbine that performs the expansion process.
  • a turbine 17a and a thermal expansion turbine 17b that adiabatically expands expansion air (temperature expansion air) having a third set temperature that is relatively higher than the second set temperature are provided, and braking of both the expansion turbines 17a and 17b is provided.
  • a cold expansion turbine braking blower 22a and a warm expansion turbine braking blower 22b are provided.
  • the circulated air that has been pressurized by the second compression stage 15b of the circulating compressor 15 and has become high pressure after the pressurized purified air and the pressurized return air have joined together is combined with the first shunt air in the pipe 52.
  • the second diverted air divided into the second diverted air in the pipe 53 and further divided into the pipe 53 is further pressurized by the cold expansion turbine brake blower 22a, and introduced into the main heat exchanger 16 from the pipe 86 to be set in the second setting. In the state cooled to the temperature, it is extracted into the pipe 56 and becomes cold expansion air.
  • the cold expansion air is converted into the first low-temperature air near the first set temperature by performing the first expansion step in the cold expansion turbine 17a and adiabatically expanding to the second set pressure.
  • a part of the first low-temperature air is diverted from the pipe 57 to the pipe 59, introduced into the lower portion of the intermediate pressure tower 11 via the valve 32 and the pipe 60, and the remaining first low-temperature air diverted to the pipe 58 is main heat.
  • the temperature is recovered by being introduced into the cold end of the exchanger 16, it becomes the return air of the pipe 61 and is sucked into the first compression stage 15 a of the circulating compressor 15 and circulated in the same manner as described above.
  • the first divided air divided into the pipe 52 is further pressurized by the hot expansion turbine braking blower 22b and introduced into the main heat exchanger 16 from the pipe 87, and reaches a third set temperature higher than the second set temperature. After being cooled, a part of the air is diverted as third diverted air, and is extracted to the pipe 88 to become hot expansion air.
  • the warm expansion air undergoes a second expansion step in the thermal expansion turbine 17b and adiabatically expands to the second set pressure, whereby a second temperature higher than the first set temperature and lower than the third set temperature.
  • the air liquefaction separation apparatus shown in the fourth embodiment of FIG. 4 is a multistage compressor having the first compression stage 15a, the second compression stage 15b, and the third compression stage 15c. It is a thing.
  • the circulating air whose pressure has been increased in the second compression stage 15b of the circulating compressor 15 is divided into the first divided air in the pipe 52 and the second divided air in the pipe 53, as described above, and the first divided air is subjected to thermal expansion.
  • the pressure is further increased by the turbine braking blower 22b and introduced into the main heat exchanger 16 from the pipe 87, and a part of the pressure is diverted to the pipe 88 as the third diverted air at the third set temperature to form the temperature expansion air. It is introduced into the turbine 17b.
  • the second low-temperature air is obtained as described above. After being introduced into the main heat exchanger 16 from the pipe 89 and recovered in temperature, it is circulated to the circulation compressor 15 through the pipe 61. To do.
  • the second shunt air in the pipe 53 is further pressurized to a high pressure by the third compression stage 15c and the cold expansion turbine braking blower 22a, and then introduced into the main heat exchanger 16 through the pipe 86, and at the second set temperature.
  • the air is drawn into the pipe 56 to be cold expansion air, and is adiabatically expanded to the second set pressure by the cold expansion turbine 17a, thereby becoming the first low-temperature air near the first set temperature.
  • a part of the first low-temperature air in the pipe 57 is introduced from the pipe 59 through the valve 32 and the pipe 60 to the lower portion of the intermediate pressure tower 11, and the remaining first low-temperature air is introduced into the main heat exchanger 16 from the pipe 58. Then, it merges with the second low-temperature air, recovers the temperature, becomes the return air of the pipe 61, is sucked into the circulation compressor 15 and circulates.
  • a generator 23 is installed instead of the cold expansion turbine braking blower 22a in the fourth embodiment, and the generator 23 brakes the cold expansion turbine 17a.
  • the second shunt air that has been shunted to the pipe 53 and increased in pressure by the third compression stage 15c of the circulating compressor 15 is introduced into the main heat exchanger 16 from the pipe 90 at the same pressure.
  • motor braking and oil braking other than blower braking can be employed for braking the expansion turbine.
  • the air liquefaction separation apparatus shown in the sixth embodiment of FIG. 6 is boosted to a first set pressure higher than the operating pressure of the intermediate pressure tower 11 by the raw air compressor 13 and purified by the adsorption device 14. And the boosted feedback air that has been boosted by the circulating compressor 15 and further boosted by the cold expansion turbine braking blower 22a and the warm expansion turbine braking blower 22b.
  • the pressurized purified air led out from the adsorption device 14 to the pipe 91 is branched into the pipe 92 and the pipe 93 that constitute the circulating air confluence pipe.
  • the boosted feedback air obtained by boosting the feedback air of the pipe 61 by the circulating compressor 15 is divided into a pipe 94 directed to the cold expansion turbine brake blower 22a and a pipe 95 directed to the warm expansion turbine brake blower 22b.
  • liquid oxygen LO 2 , liquid crude argon LAr, and liquid nitrogen LN 2 are collected as liquid products.
  • the liquid liquefaction separation apparatus collects only liquid oxygen LO 2 as the liquid product.
  • a combination of liquid oxygen LO 2 and liquid crude argon LAr, or liquid oxygen LO 2 and liquid nitrogen LN 2 is possible.
  • the circulation compressor a compressor having four or more compression stages according to the suction pressure, the discharge pressure, and the processing amount can be used.
  • cryogenic air separation unit shown in the third embodiment, a specific example of a case where liquid oxygen 1500 Nm 3 / h, liquid nitrogen 1000 Nm 3 / h and liquid argon 50 Nm 3 / h taken .
  • [Nm 3 / h] represents the flow rate per hour converted to 0 ° C. and 1 atmosphere.
  • the raw material air (8800 Nm 3 / h) is pressurized to about 850 kPaG by the raw material air compressor 13 and then introduced into the adsorption device 14 using activated alumina gel and zeolite and contained in the raw material air. Impurities such as water vapor and carbon dioxide are adsorbed and removed for purification.
  • Purified raw material air (pressure-purified air) is introduced between the first compression stage 15a and the second compression stage 15b of the circulating compressor 15, and is supplied with pressure-returned return air (12800 Nm 3) discharged from the first compression stage 15a. / H), the pressure is increased to 2700 kPaG in the second compression stage 15b, and becomes circulating air.
  • Part of the circulating air (first shunt air 7700 Nm 3 / h) is boosted to 4000 kPaG by the hot expansion turbine braking blower 22 b and then introduced into the main heat exchanger 16.
  • Part of the first shunt air (third shunt air 4000 Nm 3 / h) is extracted from the main heat exchanger 16 when it is cooled to the third set temperature by the main heat exchanger 16, and is supplied to the thermal expansion turbine 17b.
  • second low-temperature air is obtained.
  • the remaining part of the first diverted air (3700 Nm 3 / h) is cooled to the first set temperature by the main heat exchanger 16, reduced to the pressure corresponding to the intermediate pressure tower by the valve 31, and then passed through the pipe 55 to the intermediate pressure tower. 11 is introduced.
  • the remainder of the circulating air (second shunt air 13900 Nm 3 / h) is boosted to 4000 kPaG by the cold expansion turbine braking blower 22 a and introduced into the main heat exchanger 16, and is cooled to the second set temperature by the main heat exchanger 16. Then, it is introduced into the cold expansion turbine 17a and adiabatically expands to become the first low-temperature air.
  • a part of the first low-temperature air (8800 Nm 3 / h) is introduced into the main heat exchanger 16 and merges with the second low-temperature air to recover the temperature by serving as a cooling source for the raw air (circulation air). Return air.
  • the remainder (5100 Nm 3 / h) of the first low-temperature air is introduced into the lower part of the intermediate pressure tower 11 through the valve 32 and the pipe 60.
  • the flow rate, temperature, pressure, and oxygen composition of the gas and liquid flowing through the main piping are shown in Table 1, and the main specifications of the adsorption device comparing the adsorption device in the present example with the conventional adsorption device are shown in Table 2. .
  • Table 2 the amount of activated alumina or less is a relative value when the conventional apparatus is 100.
  • SYMBOLS 11 Medium pressure tower, 12 ... Low pressure tower, 13 ... Raw material air compressor, 14 ... Adsorption apparatus, 15 ... Circulating compressor, 15a ... 1st compression stage, 15b ... 2nd compression stage, 15c ... 3rd compression stage, DESCRIPTION OF SYMBOLS 16 ... Main heat exchanger, 17 ... Expansion turbine, 17a ... Cold expansion turbine, 17b ... Warm expansion turbine, 18 ... Main condenser, 19 ... Coarse argon tower, 20 ... Argon condenser, 21 ... Subcooler, 22 ... Brake blower, 22a ... Cold expansion turbine brake blower, 22b ... Warm expansion turbine brake blower, 23 ... Generator, 51 ... Circulating air confluence line

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

液体製品を採取する際の装置価格を低減できる空気液化分離方法及び装置であって、原料空気の全量を中圧塔の運転圧力より高い第1設定圧力の昇圧原料空気とする原料空気圧縮工程と、昇圧原料空気から不純物を除去して昇圧精製空気とする吸着精製工程と、昇圧精製空気と昇圧帰還空気とを合流させて循環空気とする循環空気合流工程と、循環空気を2分流した第1分流空気を第1設定温度に冷却して中圧塔導入空気とし、第2分流空気を第1設定温度より高い第2設定温度に冷却して膨張用空気とする冷却工程と、膨張用空気を第1設定圧力より低い第2設定圧力に断熱膨張させて低温空気とする膨張工程と、低温空気の一部を中圧塔に導入する工程と、低温空気の残部を温度回復させて帰還空気とする昇温工程と、該帰還空気を昇圧して昇圧帰還空気とする循環圧縮工程と、中圧塔導入空気を中圧塔に導入する工程とを有している。

Description

空気液化分離方法及び装置
 本発明は、空気液化分離方法及び装置に関し、詳しくは、圧縮、精製、冷却した原料空気を中圧塔及び低圧塔にて深冷分離することによって少なくとも液体酸素を製品として採取する空気液化分離方法及び装置に関する。
 工業的に酸素、窒素及びアルゴンを製造する場合には、空気を原料とし、中圧塔、低圧塔からなる複精留塔で分離する、いわゆる深冷式空気液化分離装置による製造が一般的である。この深冷式空気液化分離装置では、製品の5%程度を液体酸素、液体窒素、液体アルゴンとして製造できる。しかし、更に多くの液体製品を製造する場合には、液化プロセスの追加が必要である。
 液化プロセスは、原料空気、窒素ガス等を圧縮、循環、断熱膨張させ、プロセスに必要な寒冷を得るプロセスであり、それぞれのプロセスについて、多くの技術が開示されている(例えば、特許文献1参照。)。
 このような液化プロセスでは、循環流体が一部液化された状態で蒸留塔に供給され、熱的に見合う液体製品が採取される。低圧及び/又は中圧の窒素ガスを圧縮して循環流体とする窒素循環液化プロセスに比較して、より圧力の高い原料空気の一部を圧縮して循環流体とする空気循環液化プロセスは、循環流体の圧縮に必要な消費動力が少なく、基本的に優位なプロセスである。
 しかし、製品液量、特に液体窒素が多い場合は、空気循環液化プロセスでは中圧塔に供給される原料空気の液化率が上昇するため、中圧塔の蒸留条件が低下して対応が困難となる。一方、窒素循環液化プロセスでは、液製品に見合う液体窒素を中圧塔に供給するプロセスであり、製品液量が多い場合でも、中圧塔の蒸留条件は低下しない。つまり、製品液量が比較的少ない場合には、消費動力がより少ない空気循環液化プロセスが優位となるが、製品液量が比較的多い場合には、窒素循環液化プロセスのみが対応可能となる。
 また、単精留塔プロセスに空気循環プロセスを利用したプロセスが知られている(例えば、特許文献2,3,4参照。)。いずれも単精留塔の運転圧力と同程度の原料空気の一部を循環させて常温まで昇温後に原料空気圧縮機に導入し、外部から導入した原料空気とともに圧縮することにより、プロセスを循環させるようにしている。これらのプロセスでは、循環する原料空気には、水蒸気や二酸化炭素が含まれていないのに、循環空気も前処理装置を循環するプロセスとなっているので、前処理吸着装置が必要以上に大型化される無駄があった。
 さらに、複精留塔プロセスに空気循環液化プロセスを利用したプロセスも知られている(例えば、特許文献5,6参照。)。例えば、原料空気は圧縮機で460kPa(ゲージ圧、以下、kPaGと表記する)まで昇圧されて精製された後、膨張タービンで処理された循環空気の一部と共に循環空気圧縮機に導入され、必要な圧力まで昇圧される。これらの循環空気は、熱交換器で所定の温度まで冷却された後、膨張タービンに導入され、装置に必要な寒冷が発生する。膨張タービンで処理された循環空気の一部は中圧塔に導入され、残りは原料空気と共に循環圧縮機に導入される。このプロセスでは、中圧塔の運転圧力は約480kPaGであり、膨張タービン吐出圧力、前処理装置運転圧力と同程度となっている。
 また、製品酸素を採取する空気液化分離装置であって、採取する液体酸素量比の変更が可能なプロセスも知られており(例えば、特許文献7,8参照。)、例えば、中圧塔からの流体を前処理設備の後流に導入して原料空気と共に昇圧するようにしている。また、中圧塔からの流体を、原料空気と共に圧縮機で中圧塔の運転圧力よりも高い圧力まで圧縮するプロセスも知られている(例えば、特許文献9参照。)。しかし、このプロセスでは、冷却装置や前処理吸着装置で循環流体も処理しているので、これらに多くの処理能力が必要となる。
特許第3213846号公報 特公昭56-034787号公報 特公昭60-044584号公報 実開昭54-095552号公報 特開平06-159929号公報 特開平06-159930号公報 特開平10-054657号公報 特開平10-054658号公報 特開平06-300435号公報
 上述のように、液化プロセスとして多くの提案がなされており、空気循環液化プロセスでは、プロセス上の効率改善を主な目的としているが、装置価格改善の点では未だ十分なものとはいえない。
 そこで本発明は、製品として少なくとも液体酸素を採取する空気循環液化プロセスにおける装置価格の低減を図ることができる空気液化分離方法及び装置を提供することを目的としている。
 上記目的を達成するため、本発明の第1の構成は、圧縮、精製、冷却した原料空気を中圧塔及び低圧塔にて低温蒸留することにより少なくとも液体酸素を製品として採取する空気液化分離方法であって、原料空気の全量を前記中圧塔の運転圧力より高い第1設定圧力に昇圧して昇圧原料空気とする原料空気圧縮工程と、該昇圧原料空気から不純物を吸着除去して昇圧精製空気とする吸着精製工程と、該昇圧精製空気と後述する昇圧帰還空気とを合流させて循環空気とする循環空気合流工程と、該循環空気を2分流した第1分流空気を第1設定温度に冷却して中圧塔導入空気とし、第2分流空気を前記第1設定温度より高い第2設定温度に冷却して膨張用空気とする冷却工程と、該膨張用空気を前記第1設定圧力より低い第2設定圧力に断熱膨張させることにより低温空気とする膨張工程と、該低温空気の一部を前記中圧塔に導入する工程と、該低温空気の残部を温度回復させて帰還空気とする昇温工程と、該帰還空気を昇圧して前記昇圧帰還空気とする循環圧縮工程と、前記中圧塔導入空気を前記中圧塔に導入する工程とを備えている。
 また、本発明の第2の構成は、圧縮、精製、冷却した原料空気を中圧塔及び低圧塔にて低温蒸留することにより少なくとも液体酸素を製品として採取する空気液化分離方法であって、原料空気の全量を前記中圧塔の運転圧力より高い第1設定圧力に昇圧して昇圧原料空気とする原料空気圧縮工程と、該昇圧原料空気から不純物を吸着除去して昇圧精製空気とする吸着精製工程と、該昇圧精製空気と後述する昇圧帰還空気とを合流させて循環空気とする循環空気合流工程と、該循環空気を3分流した第1分流空気を第1設定温度に冷却して中圧塔導入空気とし、第2分流空気を前記第1設定温度より高い第2設定温度に冷却して冷膨張用空気とし、さらに、第3分流空気を前記第2設定温度より高い第3設定温度に冷却して温膨張用空気とする冷却工程と、前記冷膨張用空気を前記第1設定圧力より低い第2設定圧力に断熱膨張させることにより第1低温空気とする第1膨張工程と、前記温膨張用空気を前記第2設定圧力に断熱膨張させることにより前記第1設定温度より高い温度の第2低温空気とする第2膨張工程と、該第1低温空気の一部を前記中圧塔に導入する工程と、該第1低温空気の残部と前記第2低温空気とを温度回復させて帰還空気とする昇温工程と、該帰還空気を昇圧して前記昇圧帰還空気とする循環圧縮工程と、前記中圧塔導入空気を前記中圧塔に導入する工程とを備えている。
 さらに、前記第1の構成又は第2の構成において、前記循環空気を、前記第1設定圧力より高い圧力に昇圧する循環空気昇圧工程を備えている。
 また、本発明の第3の構成は、圧縮、精製、冷却した原料空気を中圧塔及び低圧塔にて低温蒸留することにより少なくとも液体酸素を製品として採取する空気液化分離装置であって、原料空気の全量を前記中圧塔の運転圧力より高い第1設定圧力に昇圧して昇圧原料空気とする原料空気圧縮機と、該昇圧原料空気から不純物を吸着除去して昇圧精製空気とする吸着装置と、該昇圧精製空気と後述する昇圧帰還空気とを合流させて循環空気とする循環空気合流管路と、該循環空気を2分流した第1分流空気を第1設定温度に冷却して中圧塔導入空気とし、第2分流空気を前記第1設定温度より高い第2設定温度に冷却して膨張用空気とする主熱交換器と、該膨張用空気を前記第1設定圧力より低い第2設定圧力に断熱膨張させて低温空気とする膨張タービンと、該低温空気の一部を前記中圧塔に導入する配管と、該低温空気の残部を前記主熱交換器で温度回復させた帰還空気を昇圧して前記昇圧帰還空気とする循環圧縮機と、前記中圧塔導入空気を前記中圧塔に導入する配管とを備えている。
 さらに、本発明の第4の構成は、圧縮、精製、冷却した原料空気を中圧塔及び低圧塔にて低温蒸留することにより少なくとも液体酸素を製品として採取する空気液化分離装置であって、原料空気の全量を前記中圧塔の運転圧力より高い第1設定圧力に昇圧して昇圧原料空気とする原料空気圧縮機と、該昇圧原料空気から不純物を吸着除去して昇圧精製空気とする吸着装置と、該昇圧精製空気と後述する昇圧帰還空気とを合流させて循環空気とする循環空気合流管路と、該循環空気を3分流した第1分流空気を第1設定温度に冷却して中圧塔導入空気とし、第2分流空気を前記第1設定温度より高い第2設定温度に冷却して冷膨張用空気とし、さらに、第3分流空気を前記第2設定温度より高い第3設定温度に冷却して温膨張用空気とする主熱交換器と、前記冷膨張用空気を前記第1設定圧力より低い第2設定圧力に断熱膨張させて第1低温空気とする冷膨張タービンと、前記温膨張用空気を前記第2設定圧力に断熱膨張させて第2低温空気とする温膨張タービンと、前記第1低温空気の一部を前記中圧塔に導入する配管と、該第1低温空気の残部と前記第2低温空気とを前記主熱交換器で温度回復させた帰還空気を昇圧して前記昇圧帰還空気とする循環圧縮機と、前記中圧塔導入空気を前記中圧塔に導入する配管とを備えている。
 加えて、前記第3の構成又は第4の構成において、前記循環空気を、前記第1設定圧力より高い圧力に昇圧する循環空気圧縮機を備えていること、前記循環空気昇圧機が、前記膨張タービンに設けられた膨張タービン制動ブロワであること、前記膨張タービンの制動を、ブロワ、発電機、油圧ポンプのいずれかで行う。
 本発明によれば、従来は中圧塔の運転圧力に対応した圧力に昇圧されていた原料空気の全量を中圧塔の運転圧力より高い第1設定圧力、例えば、中圧塔の運転圧力に対して少なくとも1.5倍程度の圧力に昇圧し、その状態で原料空気に含まれる水蒸気、二酸化炭素等の不純物を吸着除去するようにしているため、従来の一般的な空気液化分離装置に比較して吸着装置及びその周辺の配管を小型にすることができる。また、原料空気に含まれる水蒸気の分圧が相対的に低くなるので、水分を吸着除去するための吸着剤の必要量を低減できるとともに、吸着剤の再生に要するエネルギも低減することができる。したがって、従来と同程度の消費動力で装置価格等を低減することができる。
本発明の第1形態例を示す空気液化分離装置の系統図である。 本発明の第2形態例を示す空気液化分離装置の要部系統図である。 本発明の第3形態例を示す空気液化分離装置の要部系統図である。 本発明の第4形態例を示す空気液化分離装置の要部系統図である。 本発明の第5形態例を示す空気液化分離装置の要部系統図である。 本発明の第6形態例を示す空気液化分離装置の要部系統図である。
 図1の第1形態例に示す空気液化分離装置は、圧縮、精製、冷却した原料空気を中圧塔11及び低圧塔12にて低温蒸留することにより、液体製品として、液体酸素LO、液体粗アルゴンLAr及び液体窒素LNを採取するとともに、ガス製品として酸素ガスGO及び窒素ガスGNを採取するもので、主要構成機器として、原料空気圧縮機13,吸着装置14,循環圧縮機15,主熱交換器16,膨張タービン17,主凝縮器18,粗アルゴン塔19,アルゴン凝縮器20,過冷器21を備えている。
 まず、原料空気の全量は、原料空気圧縮機13で中圧塔11の運転圧力より高い第1設定圧力に昇圧して昇圧原料空気とする原料空気圧縮工程に導入される。昇圧原料空気は、冷却器13aで冷却され、ドレンセパレータ13bで凝縮水を分離した後、吸着精製工程を行う吸着装置14に導入される。吸着装置14では、原料空気中に含まれている水蒸気や二酸化炭素等の不純物が吸着剤に吸着されて除去され、昇圧原料空気が精製されて昇圧精製空気となる。この昇圧精製空気は、冷却器14aで冷却された後、循環空気合流管路51を構成する一方の配管51aを通り、循環圧縮機15から他方の合流管路である配管51bに吐出された昇圧帰還空気と合流して循環空気合流工程が行われ、配管51cを流れる循環空気となる。
 配管51cの循環空気は、配管52の第1分流空気と配管53の第2分流空気とに2分流されてから冷却工程を行う主熱交換器16に導入される。第1分流空気は、主熱交換器16で第1設定温度に冷却され、主熱交換器16の冷端から配管54に導出されて中圧塔導入空気となる。この中圧塔導入空気は、弁31で中圧塔11の運転圧力に対応する圧力に減圧され、大部分が液化した状態で配管55から中圧塔11の下部に導入される。
 配管53の第2分流空気は、主熱交換器16での冷却工程で前記第1設定温度より高い温度の第2設定温度に冷却され、主熱交換器16の冷端に到達する前に配管56に抜き出されて膨張用空気となり、膨張タービン17に導入される。膨張用空気は、膨張タービン17で前記第1設定圧力より低い第2設定圧力に断熱膨張する膨張工程が行われて配管57の低温空気となる。この低温空気は、配管57から配管58と配管59とに分流し、配管59に分流した低温空気は、弁32を経て配管60から中圧塔11の下部に上昇ガスとして導入される。
 前記配管58に分流した低温空気の残部は、主熱交換器16の冷端に導入されて昇温工程が行われ、前記第1分流空気及び第2分流空気と熱交換して各分流空気を所定温度に冷却するとともに自身は常温付近まで温度回復し、配管61の帰還空気となる。この帰還空気は、循環圧縮機15に吸引されて循環圧縮工程が行われ、前記昇圧精製空気に対応した圧力に昇圧された後、前記配管51bに吐出されて前記配管51aの昇圧精製空気に合流し、配管51cの前記循環空気となる。
 配管55及び配管60から中圧塔11の下部に導入された原料空気は、該中圧塔11での蒸留操作により、中圧塔頂部の中圧窒素富化ガスと中圧塔底部の酸素富化液とに分離する。酸素富化液は、中圧塔底部から配管62に抜き出され、過冷器21で冷却された後、配管63と配管64とに分流し、配管64の酸素富化液は、弁33で低圧塔12の運転圧力に対応した圧力に減圧された後、配管65を通って低圧塔12の中間部に還流液として導入される。
 また、配管63を流れる酸素富化液は、弁34で減圧された後、粗アルゴン塔19の上部に設けられたアルゴン凝縮器20に導入される。アルゴン凝縮器20で気化した酸素富化ガスは、配管66を通って低圧塔12の中間部に上昇ガスとして導入される。低圧塔12に導入された酸素富化液及び酸素富化ガス中の酸素分は、低圧塔12での蒸留操作によって低圧塔底部に濃縮されて低圧液体酸素となる。この低圧液体酸素の一部は、配管67に抜き出され、過冷器21で冷却された後に製品液体酸素として配管68から採取される。
 前記中圧塔頂部の中圧窒素富化ガスは、配管69を通って低圧塔底部に配置された主凝縮器18に導入され、前記低圧液体酸素と間接熱交換を行い、低圧液体酸素を気化させて低圧酸素ガスにするとともに、自身は液化して液体窒素となる。この液体窒素は、一部が配管70を通って中圧塔11の上部に還流液として戻され、液体窒素の残部は、配管71を通って過冷器21で冷却された後、一部が配管72に分流して製品液体窒素として採取される。大部分の液体窒素は、弁35で低圧塔12の運転圧力に対応した圧力に減圧された後、配管73を通って低圧塔12の上部に還流液として導入される。
 さらに、低圧塔12の中間部からは、配管74にアルゴンに富んだガス流体(フィードアルゴン)が抜き出されて粗アルゴン塔19の下部に導入され、粗アルゴン塔19での蒸留操作によって粗アルゴン塔頂部にアルゴンが濃縮された粗アルゴンガスが分離し、粗アルゴン塔底部にはアルゴン濃度が低下した液体が分離する。このアルゴン濃度が低下した液体は、粗アルゴン塔底部から配管75に抜き出され、低圧塔12の中間部に下降液として戻される。
 粗アルゴン塔頂部の粗アルゴンガスは、配管76を経てアルゴン凝縮器20に導入され、このアルゴン凝縮器20で前記酸素富化液と熱交換することにより液化して液体粗アルゴンとなる。この液体粗アルゴンは、一部が製品の液体粗アルゴンとして配管77から採取され、残部の液体粗アルゴンは、配管78を通って粗アルゴン塔19の上部に還流液として導入される。
 前記低圧塔12での蒸留操作によって低圧塔頂部に濃縮された低圧窒素ガスは、配管79に抜き出されて過冷器21に導入され、前記各液体の冷却源として用いられた後、配管80を経て主熱交換器16の冷端に導入される。また、前記主凝縮器18で気化した低圧酸素ガスは、一部が配管81に抜き出されて主熱交換器16の冷端に導入され、残りの大部分の低圧酸素ガスは低圧塔12の上昇ガスとなる。さらに、低圧塔12の中上部からは、低圧塔12内を上昇するガスの一部が廃ガスWGとして配管82に抜き出され、過冷器21の冷却源となった後、主熱交換器16の冷端に導入される。
 これらの低圧窒素ガス、低圧酸素ガス及び廃ガスは、主熱交換器16の温端から導入される前記各分流空気と熱交換を行い、温度回復して常温に昇温した後、低圧窒素ガスは配管83から製品窒素ガスとして採取され、低圧酸素ガスは配管84から製品酸素ガスとして採取され、廃ガスは配管85に抜き出された後、前記吸着装置14の再生ガスなどとして用いられる。
 このように形成された空気液化分離装置において、原料空気圧縮機13で原料空気を昇圧した昇圧原料空気の第1設定圧力は、中圧塔11の運転圧力より高い圧力に設定される。一般的に、中圧塔11、低圧塔12、主凝縮器18を備えた複精留塔における中圧塔11の運転圧力は約500kPaGであり、配管60から中圧塔11の下部に導入される低温空気の圧力も同程度となり、配管61を流れる帰還空気も中圧塔11の運転圧力と同程度の約500kPaGとなることから、この循環空気を昇圧する循環圧縮機15の圧縮比を1.5~1.8とすれば、循環圧縮機15の吐出圧力に等しい圧力の昇圧原料空気の圧力、即ち第1設定圧力は、約750kPaG(500kPaG×1.5)~900kPaG(500kPaG×1.8)となる。
 したがって、本形態例では、原料空気から不純物を除去する吸着装置14の運転圧力は、従来の通常の空気液化分離装置の場合と比較して1.5倍程度となるので、吸着装置14における吸着器本体や周辺配管の小型化を図ることができ、装置価格を低減することができる。すなわち、従来の吸着装置と比較すると、吸着装置14の吸着筒の筒径を小さくできるので吸着筒材料価格が低減し、また、原料空気に同伴される水蒸気量が減少するので、水蒸気の吸着除去に必要なアルミナゲル量を少なくすることができることから、吸着装置全体としての設備コストを大幅に低減することができる。また、原料空気に含まれる水蒸気量が少なくなるので、原料空気を低温に冷却する必要がなくなり、冷却設備に要するコストも削減できる。
 以下に記載する本発明の他の形態例の説明において、前記第1形態例に示した空気液化分離装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。また、中圧塔や低圧塔の周辺の構成は、前記第1形態例と同様の構成を採用することができるので、これらの部分の図示及び説明は省略する。
 図2の第2形態例に示す空気液化分離装置は、循環圧縮機15を第1圧縮段15a、第2圧縮段15bを有する多段圧縮機とし、第1圧縮段15aから吐出された昇圧帰還空気と昇圧精製空気とを合流させて循環空気とし、該循環空気を循環圧縮機15の第2圧縮段15bで循環空気昇圧工程を行うことで更に昇圧して高圧の循環空気とした後、膨張タービン17の制動ブロワ22で第2の循環空気昇圧工程を行うことで更に高圧に昇圧するように形成している。
 すなわち、原料空気圧縮機13で全量が第1設定圧力に昇圧された原料空気を吸着装置14で精製した昇圧精製空気は、循環空気合流管路51の配管51aを通り、第1圧縮段15aから吐出されてアフタークーラで冷却された配管51bの昇圧帰還空気と配管51cに合流し、第2圧縮段15bで第1設定圧力より高い圧力に昇圧されて高圧の循環空気となる。
 循環圧縮機15から吐出された高圧の循環空気は、一部が前記配管52に分流し、前記同様に、主熱交換器16に導入されて第1設定温度に冷却され、配管54、弁31、配管55を経て大部分が液化した状態で中圧塔11の下部に導入される。
 配管53に分流した高圧の循環空気の残部は、膨張タービン17の制動ブロワ22に導入されて更に高圧に昇圧された後、配管86を経て主熱交換器16に導入され、第1設定温度より高い温度の第2設定温度に冷却され、主熱交換器16の冷端に到達する前に配管56に抜き出されて膨張用空気となり、膨張タービン17に導入される。膨張用空気は、膨張タービン17で第1設定圧力より低い圧力の第2設定圧力に断熱膨張して配管57の低温空気となる。この低温空気の一部は、配管59に分流して弁32及び配管60を経て中圧塔の下部に導入され、低温空気の残部は、配管58に分流して主熱交換器16の冷端に導入され、温度回復して配管61の帰還空気となり、循環圧縮機15の第1圧縮段15aに吸引されて循環する。
 このように、循環空気昇圧工程で循環空気を昇圧して更に高圧の循環空気とすることにより、膨張タービン17での膨張率を高くすることができ、寒冷発生量を増大させることができる。
 図3の第3形態例に示す空気液化分離装置は、膨張工程を行う膨張タービンとして、相対的に温度が低い前記第2設定温度の膨張用空気(冷膨張用空気)を断熱膨張させる冷膨張タービン17aと、第2設定温度より相対的に温度が高い第3設定温度の膨張用空気(温膨張用空気)を断熱膨張させる温膨張タービン17bとを設けるとともに、両膨張タービン17a,17bの制動用として、冷膨張タービン制動ブロワ22a及び温膨張タービン制動ブロワ22bをそれぞれ設けている。
 前記第2形態例と同様に、昇圧精製空気と昇圧帰還空気とが合流後に循環圧縮機15の第2圧縮段15bで昇圧されて高圧となった循環空気は、配管52の第1分流空気と配管53の第2分流空気とに分流し、配管53に分流した第2分流空気は、冷膨張タービン制動ブロワ22aで更に昇圧され、配管86から主熱交換器16に導入されて前記第2設定温度に冷却された状態で配管56に抜き出されて冷膨張用空気となる。この冷膨張用空気は、冷膨張タービン17aで第1膨張工程が行われて前記第2設定圧力に断熱膨張することにより、前記第1設定温度付近の第1低温空気となる。
 第1低温空気の一部は、配管57から配管59に分流し、弁32及び配管60を経て中圧塔11の下部に導入され、配管58に分流した残部の第1低温空気は、主熱交換器16の冷端に導入されて温度回復することにより配管61の帰還空気となり、循環圧縮機15の第1圧縮段15aに吸引されて前記同様に循環する。
 一方、配管52に分流した第1分流空気は、温膨張タービン制動ブロワ22bで更に昇圧されて配管87から主熱交換器16に導入され、前記第2設定温度より高い温度の第3設定温度に冷却され、一部が第3分流空気として分流し、配管88に抜き出されて温膨張用空気となる。この温膨張用空気は、温膨張タービン17bで第2膨張工程が行われて前記第2設定圧力に断熱膨張することにより、前記第1設定温度より高く、第3設定温度より低い温度の第2低温空気となり、該第2低温空気の温度に対応した位置の配管89から主熱交換器16に導入され、温度回復中の第1低温空気に合流して配管61に導出されて帰還空気となり、循環圧縮機15に循環する。第1分流空気の残部は、主熱交換器16で第1設定温度に冷却され、配管54,弁31,配管55を経て中圧塔11に導入される。
 このように、膨張工程を、温・冷の2工程に分割することにより、膨張タービンによる断熱膨張を効率よく行うことができ、中圧塔11に導入する原料空気を効果的に冷却することができる。
 図4の第4形態例に示す空気液化分離装置は、前記第3形態例における循環圧縮機15を、第1圧縮段15a、第2圧縮段15b、第3圧縮段15cを有する多段圧縮機としたものである。循環圧縮機15の第2圧縮段15bで昇圧された循環空気は、前記同様に、配管52の第1分流空気と配管53の第2分流空気とに分流し、第1分流空気は、温膨張タービン制動ブロワ22bで更に昇圧されて配管87から主熱交換器16に導入され、一部が前記第3設定温度で配管88に第3分流空気として分流し、温膨張用空気となって温膨張タービン17bに導入される。温膨張タービン17bで第2設定圧力に断熱膨張することによって前記同様の第2低温空気となり、配管89から主熱交換器16に導入されて温度回復した後に配管61を経て循環圧縮機15に循環する。
 一方、配管53の第2分流空気は、第3圧縮段15c及び冷膨張タービン制動ブロワ22aで更に高圧に昇圧されてから配管86を経て主熱交換器16に導入され、前記第2設定温度で配管56に抜き出されて冷膨張用空気となり、冷膨張タービン17aで第2設定圧力に断熱膨張することにより、前記第1設定温度付近の第1低温空気となる。配管57の第1低温空気の一部は、配管59から弁32及び配管60を経て中圧塔11の下部に導入され、残部の第1低温空気は、配管58から主熱交換器16に導入されて前記第2低温空気と合流し、温度回復して配管61の帰還空気となり、循環圧縮機15に吸引されて循環する。
 図5の第5形態例に示す空気液化分離装置は、前記第4形態例における冷膨張タービン制動ブロワ22aに代えて発電機23を設置し、冷膨張タービン17aの制動を発電機23で行うようにするとともに、配管53に分流して循環圧縮機15の第3圧縮段15cで昇圧した第2分流空気をそのままの圧力で配管90から主熱交換器16に導入するようにしたものである。このように、膨張タービンの制動には、ブロワ制動以外の電動機制動やオイル制動を採用することができる。
 図6の第6形態例に示す空気液化分離装置は、原料空気圧縮機13で中圧塔11の運転圧力より高い第1設定圧力に昇圧され、吸着装置14で精製された後の昇圧精製空気と、循環圧縮機15で昇圧されて更に冷膨張タービン制動ブロワ22a及び温膨張タービン制動ブロワ22bで昇圧された後の昇圧帰還空気とを合流させるように形成している。
 すなわち、吸着装置14から配管91に導出された昇圧精製空気は、循環空気合流管路を構成する配管92と配管93とに分流する。一方、配管61の帰還空気を循環圧縮機15で昇圧した昇圧帰還空気は、冷膨張タービン制動ブロワ22aに向かう配管94と温膨張タービン制動ブロワ22bに向かう配管95とに分流する。
 配管94に分流して冷膨張タービン制動ブロワ22aで更に昇圧された昇圧帰還空気は、循環空気合流管路を構成する配管96を通って前記配管92からの昇圧精製空気と合流し、配管97を通って主熱交換器16に導入され、第2設定温度に冷却されて配管56に抜き出され、前記冷膨張用空気となって冷膨張タービン17aに導入される。
 配管95に分流して温膨張タービン制動ブロワ22bで更に昇圧された昇圧帰還空気は、循環空気合流管路を構成する配管98を通って前記配管93からの昇圧精製空気と合流し、配管99を通って主熱交換器16に導入され、一部が第3設定温度に冷却された段階で配管88に抜き出され、温膨張用空気となって温膨張タービン17bに導入され、残部は第1設定温度に冷却された後、配管54の中圧塔導入空気となって中圧塔11に導入される。
 なお、各形態例では、液体製品として、液体酸素LO、液体粗アルゴンLAr及び液体窒素LNを採取する例を挙げたが、液体製品として液体酸素LOのみを採取する空気液化分離装置にも適用可能であり、液体酸素LOと液体粗アルゴンLAr、液体酸素LOと液体窒素LNの組み合わせも可能である。また、循環圧縮機には、吸入圧力、吐出圧力、処理量に応じて4段以上の圧縮段を有する圧縮機を用いることができる。
 次に、前記第3形態例に示した空気液化分離装置を使用して、液体酸素1500Nm/h、液体窒素1000Nm/h及び液体アルゴン50Nm/hを採取する場合の具体例を説明する。なお、[Nm/h]は、0℃、1気圧に換算した1時間当たりの流量を表している。
 まず、原料空気(8800Nm/h)は、全量が原料空気圧縮機13で約850kPaGまで昇圧された後、活性アルミナゲル及びゼオライトを使用した吸着装置14に導入され、原料空気中に含まれている水蒸気や二酸化炭素等の不純物が吸着除去されて精製される。精製された原料空気(昇圧精製空気)は、循環圧縮機15の第1圧縮段15aと第2圧縮段15bとの間に導入され、第1圧縮段15aから吐出される昇圧帰還空気(12800Nm/h)と合流し、第2圧縮段15bにて2700kPaGに昇圧されて循環空気となる。
 循環空気の一部(第1分流空気7700Nm/h)は、温膨張タービン制動ブロワ22bで4000kPaGに昇圧されてから主熱交換器16に導入される。第1分流空気の一部(第3分流空気4000Nm/h)は、主熱交換器16で第3設定温度に冷却された段階で主熱交換器16から抜き出され、温膨張タービン17bに導入されて第2設定圧力に断熱膨張することにより第2低温空気となる。第1分流空気の残部(3700Nm/h)は、主熱交換器16で第1設定温度まで冷却され、弁31で中圧塔対応圧力に減圧された後、配管55を通って中圧塔11に導入される。
 循環空気の残部(第2分流空気13900Nm/h)は、冷膨張タービン制動ブロワ22aで4000kPaGに昇圧されて主熱交換器16に導入され、主熱交換器16で第2設定温度に冷却されてから冷膨張タービン17aに導入されて断熱膨張することにより第1低温空気となる。第1低温空気の一部(8800Nm/h)は、主熱交換器16に導入されて前記第2低温空気と合流し、原料空気(循環空気)の冷却源となることにより温度回復して帰還空気となる。第1低温空気の残部(5100Nm/h)は、弁32、配管60を通って中圧塔11の下部に導入される。
 中圧塔11に導入された原料空気(配管55からの3700Nm/h、配管60からの5100Nm/h)は、中圧塔11、低圧塔12及び粗アルゴン塔19で低温蒸留されることにより、液体酸素1500Nm/h、液体窒素1000Nm/h、液体アルゴン50Nm/hの液体製品と、酸素ガス、窒素ガスのガス製品と、廃ガスとになる。
 主要な配管を流れる気液の流量、温度、圧力、酸素組成を表1に示すとともに、本実施例における吸着装置と従来技術の吸着装置とを比較した吸着装置における主な仕様を表2に示す。なお、表2における活性アルミナ量以下は、従来装置を100としたときの相対値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 11…中圧塔、12…低圧塔、13…原料空気圧縮機、14…吸着装置、15…循環圧縮機、15a…第1圧縮段、15b…第2圧縮段、15c…第3圧縮段、16…主熱交換器、17…膨張タービン、17a…冷膨張タービン、17b…温膨張タービン、18…主凝縮器、19…粗アルゴン塔、20…アルゴン凝縮器、21…過冷器、22…制動ブロワ、22a…冷膨張タービン制動ブロワ、22b…温膨張タービン制動ブロワ、23…発電機、51…循環空気合流管路

Claims (8)

  1.  圧縮、精製、冷却した原料空気を中圧塔及び低圧塔にて低温蒸留することにより少なくとも液体酸素を製品として採取する空気液化分離方法であって、原料空気の全量を前記中圧塔の運転圧力より高い第1設定圧力に昇圧して昇圧原料空気とする原料空気圧縮工程と、該昇圧原料空気から不純物を吸着除去して昇圧精製空気とする吸着精製工程と、該昇圧精製空気と後述する昇圧帰還空気とを合流させて循環空気とする循環空気合流工程と、該循環空気を2分流した第1分流空気を第1設定温度に冷却して中圧塔導入空気とし、第2分流空気を前記第1設定温度より高い第2設定温度に冷却して膨張用空気とする冷却工程と、該膨張用空気を前記第1設定圧力より低い第2設定圧力に断熱膨張させることにより低温空気とする膨張工程と、該低温空気の一部を前記中圧塔に導入する工程と、該低温空気の残部を温度回復させて帰還空気とする昇温工程と、該帰還空気を昇圧して前記昇圧帰還空気とする循環圧縮工程と、前記中圧塔導入空気を前記中圧塔に導入する工程とを備えている空気液化分離方法。
  2.  圧縮、精製、冷却した原料空気を中圧塔及び低圧塔にて低温蒸留することにより少なくとも液体酸素を製品として採取する空気液化分離方法であって、原料空気の全量を前記中圧塔の運転圧力より高い第1設定圧力に昇圧して昇圧原料空気とする原料空気圧縮工程と、該昇圧原料空気から不純物を吸着除去して昇圧精製空気とする吸着精製工程と、該昇圧精製空気と後述する昇圧帰還空気とを合流させて循環空気とする循環空気合流工程と、該循環空気を3分流した第1分流空気を第1設定温度に冷却して中圧塔導入空気とし、第2分流空気を前記第1設定温度より高い第2設定温度に冷却して冷膨張用空気とし、さらに、第3分流空気を前記第2設定温度より高い第3設定温度に冷却して温膨張用空気とする冷却工程と、前記冷膨張用空気を前記第1設定圧力より低い第2設定圧力に断熱膨張させることにより第1低温空気とする第1膨張工程と、前記温膨張用空気を前記第2設定圧力に断熱膨張させることにより前記第1設定温度より高い温度の第2低温空気とする第2膨張工程と、該第1低温空気の一部を前記中圧塔に導入する工程と、該第1低温空気の残部と前記第2低温空気とを温度回復させて帰還空気とする昇温工程と、該帰還空気を昇圧して前記昇圧帰還空気とする循環圧縮工程と、前記中圧塔導入空気を前記中圧塔に導入する工程とを備えている空気液化分離方法。
  3.  前記循環空気を、前記第1設定圧力より高い圧力に昇圧する循環空気昇圧工程を備えている請求項1又は2記載の空気液化分離方法。
  4.  圧縮、精製、冷却した原料空気を中圧塔及び低圧塔にて低温蒸留することにより少なくとも液体酸素を製品として採取する空気液化分離装置であって、原料空気の全量を前記中圧塔の運転圧力より高い第1設定圧力に昇圧して昇圧原料空気とする原料空気圧縮機と、該昇圧原料空気から不純物を吸着除去して昇圧精製空気とする吸着装置と、該昇圧精製空気と後述する昇圧帰還空気とを合流させて循環空気とする循環空気合流管路と、該循環空気を2分流した第1分流空気を第1設定温度に冷却して中圧塔導入空気とし、第2分流空気を前記第1設定温度より高い第2設定温度に冷却して膨張用空気とする主熱交換器と、該膨張用空気を前記第1設定圧力より低い第2設定圧力に断熱膨張させて低温空気とする膨張タービンと、該低温空気の一部を前記中圧塔に導入する配管と、該低温空気の残部を前記主熱交換器で温度回復させた帰還空気を昇圧して前記昇圧帰還空気とする循環圧縮機と、前記中圧塔導入空気を前記中圧塔に導入する配管とを備えている空気液化分離装置。
  5.  圧縮、精製、冷却した原料空気を中圧塔及び低圧塔にて低温蒸留することにより少なくとも液体酸素を製品として採取する空気液化分離装置であって、原料空気の全量を前記中圧塔の運転圧力より高い第1設定圧力に昇圧して昇圧原料空気とする原料空気圧縮機と、該昇圧原料空気から不純物を吸着除去して昇圧精製空気とする吸着装置と、該昇圧精製空気と後述する昇圧帰還空気とを合流させて循環空気とする循環空気合流管路と、該循環空気を3分流した第1分流空気を第1設定温度に冷却して中圧塔導入空気とし、第2分流空気を前記第1設定温度より高い第2設定温度に冷却して冷膨張用空気とし、さらに、第3分流空気を前記第2設定温度より高い第3設定温度に冷却して温膨張用空気とする主熱交換器と、前記冷膨張用空気を前記第1設定圧力より低い第2設定圧力に断熱膨張させて第1低温空気とする冷膨張タービンと、前記温膨張用空気を前記第2設定圧力に断熱膨張させて第2低温空気とする温膨張タービンと、前記第1低温空気の一部を前記中圧塔に導入する配管と、該第1低温空気の残部と前記第2低温空気とを前記主熱交換器で温度回復させた帰還空気を昇圧して前記昇圧帰還空気とする循環圧縮機と、前記中圧塔導入空気を前記中圧塔に導入する配管とを備えている空気液化分離装置。
  6.  前記循環空気を、前記第1設定圧力より高い圧力に昇圧する循環空気圧縮機を備えている請求項4又は5記載の空気液化分離装置。
  7.  前記循環空気昇圧機は、前記膨張タービンに設けられた膨張タービン制動ブロワである請求項6記載の空気液化分離装置。
  8.  前記膨張タービンの制動を、ブロワ、発電機、油圧ポンプのいずれかで行う請求項4乃至6いずれか1項記載の空気液化分離装置。
PCT/JP2010/062158 2009-07-24 2010-07-20 空気液化分離方法及び装置 WO2011010630A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080032477.8A CN102472575B (zh) 2009-07-24 2010-07-20 空气液化分离方法及装置
US13/386,466 US20120131951A1 (en) 2009-07-24 2010-07-20 Air liquefaction separation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-173323 2009-07-24
JP2009173323A JP5643491B2 (ja) 2009-07-24 2009-07-24 空気液化分離方法及び装置

Publications (1)

Publication Number Publication Date
WO2011010630A1 true WO2011010630A1 (ja) 2011-01-27

Family

ID=43499102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062158 WO2011010630A1 (ja) 2009-07-24 2010-07-20 空気液化分離方法及び装置

Country Status (6)

Country Link
US (1) US20120131951A1 (ja)
JP (1) JP5643491B2 (ja)
KR (1) KR20120040685A (ja)
CN (1) CN102472575B (ja)
TW (1) TWI525298B (ja)
WO (1) WO2011010630A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518778B2 (en) 2012-12-26 2016-12-13 Praxair Technology, Inc. Air separation method and apparatus
US20150033792A1 (en) * 2013-07-31 2015-02-05 General Electric Company System and integrated process for liquid natural gas production
US10337792B2 (en) 2014-05-01 2019-07-02 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
US9291389B2 (en) * 2014-05-01 2016-03-22 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
CA2949450C (en) 2014-06-02 2018-11-06 Praxair Technology, Inc. Air separation system and method
US9731241B2 (en) * 2014-06-12 2017-08-15 Air Products And Chemicals, Inc. Radial flow adsorber ‘U’ configuration
US10082333B2 (en) 2014-07-02 2018-09-25 Praxair Technology, Inc. Argon condensation system and method
US10295252B2 (en) 2015-10-27 2019-05-21 Praxair Technology, Inc. System and method for providing refrigeration to a cryogenic separation unit
PL3196574T3 (pl) * 2016-01-21 2021-10-18 Linde Gmbh Sposób i urządzenie do wytwarzania gazowego azotu pod ciśnieniem przez kriogeniczną separację powietrza
US10302356B2 (en) * 2016-06-30 2019-05-28 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the production of air gases by the cryogenic separation of air
CN109642771B (zh) * 2016-06-30 2021-07-23 乔治洛德方法研究和开发液化空气有限公司 操作空气分离装置的方法和设备
RU2741174C2 (ru) * 2016-06-30 2021-01-22 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Способ получения воздушных газов путем криогенного разделения воздуха
US10260802B2 (en) * 2016-06-30 2019-04-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for operating an air separation plant
US10267561B2 (en) * 2016-06-30 2019-04-23 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for the production of air gases by the cryogenic separation of air
CN110090514A (zh) * 2018-01-29 2019-08-06 株式会社田村制作所 气体净化装置、气体净化方法以及输送加热装置
CN109855389B (zh) * 2019-01-04 2020-11-13 曹建喜 一种利用lng冷能和单塔精馏工艺生产液氧液氮的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117690A (en) * 1977-03-19 1978-10-14 Air Prod & Chem Method of producing liquid oxygen and*or liquid nitrogen and apparatus therefor
JPS5495552U (ja) * 1977-12-16 1979-07-06
JPS57182069A (en) * 1981-04-20 1982-11-09 Air Prod & Chem Method and device for separating air
US4705548A (en) * 1986-04-25 1987-11-10 Air Products And Chemicals, Inc. Liquid products using an air and a nitrogen recycle liquefier
JPH06159930A (ja) * 1992-07-20 1994-06-07 Air Prod And Chem Inc 空気の低温蒸留方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715873A (en) * 1986-04-24 1987-12-29 Air Products And Chemicals, Inc. Liquefied gases using an air recycle liquefier
FR2714721B1 (fr) * 1993-12-31 1996-02-16 Air Liquide Procédé et installation de liquéfaction d'un gaz.
JP2875206B2 (ja) * 1996-05-29 1999-03-31 日本エア・リキード株式会社 高純度窒素製造装置及び方法
US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117690A (en) * 1977-03-19 1978-10-14 Air Prod & Chem Method of producing liquid oxygen and*or liquid nitrogen and apparatus therefor
JPS5495552U (ja) * 1977-12-16 1979-07-06
JPS57182069A (en) * 1981-04-20 1982-11-09 Air Prod & Chem Method and device for separating air
US4705548A (en) * 1986-04-25 1987-11-10 Air Products And Chemicals, Inc. Liquid products using an air and a nitrogen recycle liquefier
JPH06159930A (ja) * 1992-07-20 1994-06-07 Air Prod And Chem Inc 空気の低温蒸留方法

Also Published As

Publication number Publication date
CN102472575A (zh) 2012-05-23
JP5643491B2 (ja) 2014-12-17
TWI525298B (zh) 2016-03-11
KR20120040685A (ko) 2012-04-27
CN102472575B (zh) 2014-11-05
TW201109602A (en) 2011-03-16
US20120131951A1 (en) 2012-05-31
JP2011027318A (ja) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5643491B2 (ja) 空気液化分離方法及び装置
CN111141110B (zh) 一种低能耗中压氮气制取工艺
CN103123203B (zh) 利用含氮废气进行再低温精馏制取纯氮的方法
US20160025408A1 (en) Air separation method and apparatus
JP5655104B2 (ja) 空気分離方法及び空気分離装置
CN106595221A (zh) 制氧系统和制氧方法
JP6092804B2 (ja) 空気液化分離方法及び装置
JP4401999B2 (ja) 空気分離方法および空気分離装置
JP3737611B2 (ja) 低純度酸素の製造方法及び装置
JP4336576B2 (ja) 窒素製造方法及び装置
JP5032407B2 (ja) 窒素製造方法及び装置
JP4447501B2 (ja) 空気液化分離方法及び装置
JP3738213B2 (ja) 窒素製造方法及び装置
JP4230094B2 (ja) 窒素製造方法及び装置
JP4447502B2 (ja) 空気液化分離方法及び装置
JP4202971B2 (ja) 窒素製造方法および装置
JP6159242B2 (ja) 空気分離方法及び装置
JPH07127971A (ja) アルゴンの分離装置
CN219607509U (zh) 一种空气过滤降温系统
JPH0792326B2 (ja) 空気液化分離方法
JP3667889B2 (ja) 窒素製造方法及び装置
JP2000018813A (ja) 窒素製造方法及び装置
JP3623850B2 (ja) 窒素又は窒素・酸素の製造方法及び装置
JP4230168B2 (ja) 窒素製造方法及び装置
JP4698989B2 (ja) 酸素製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032477.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117028238

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13386466

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10802250

Country of ref document: EP

Kind code of ref document: A1