WO2011006277A1 - 一种采用叉指或螺旋电极的压电扬声器 - Google Patents

一种采用叉指或螺旋电极的压电扬声器 Download PDF

Info

Publication number
WO2011006277A1
WO2011006277A1 PCT/CN2009/000795 CN2009000795W WO2011006277A1 WO 2011006277 A1 WO2011006277 A1 WO 2011006277A1 CN 2009000795 W CN2009000795 W CN 2009000795W WO 2011006277 A1 WO2011006277 A1 WO 2011006277A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
piezoelectric
interdigital
piezoelectric ceramic
ceramic sheet
Prior art date
Application number
PCT/CN2009/000795
Other languages
English (en)
French (fr)
Other versions
WO2011006277A8 (zh
Inventor
褚祥诚
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2009/000795 priority Critical patent/WO2011006277A1/zh
Publication of WO2011006277A1 publication Critical patent/WO2011006277A1/zh
Publication of WO2011006277A8 publication Critical patent/WO2011006277A8/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the invention belongs to the technical field of loudspeakers, and in particular relates to a piezoelectric speaker using an interdigital or spiral electrode.
  • the speaker is an electro-force-acoustic transducer that is an important component in audio equipment. Speakers are widely used in people's daily life, bringing a lot of convenience. In the fields of electronics such as automobiles, radio, television, speakers, mobile phones, MP4, computers, etc., the application of speakers is almost everywhere. There are many types of speakers. According to their energy conversion principle, they can be divided into electric type (ie moving coil type), electrostatic type (ie capacitive type), electromagnetic type (ie reed type), piezoelectric type, etc. It is divided into subwoofer, midrange speaker and tweeter, among which dynamic coil speakers are the most widely used. Piezoelectric speakers, due to their small size, thinness and lightness, have an extremely bright future and future in the trend of miniaturization of today's devices.
  • the basic principle of the vibration sounding part of most piezoelectric speakers is:
  • the electrode is connected to the alternating current, and the piezoelectric ceramic piece generates vibration due to the inverse piezoelectric effect, causing the metal diaphragm to be bent and deformed, thereby generating vibration, thereby pushing the air vibration, Produces sound pressure and makes a sound.
  • the thickness of the piezoelectric speaker is extremely thin. Compared with the moving coil speaker, the piezoelectric speaker can be installed in a narrow space, which makes it very competitive in today's market;
  • Piezoelectric speaker has the characteristics of light weight, the weight is generally less than lg, 50%-80% lighter than the traditional dynamic speaker; 4. Piezoelectric speaker has low power consumption, generally less than 15mW, which is 1/5-1/2 of the power consumption of the moving coil speaker, which greatly prolongs the battery life of the device;
  • the piezoelectric speaker has a simple acoustic design and requires little space on the back side, eliminating the need for a cavity for moving the sound level to increase the sound pressure level.
  • a piezoelectric speaker has a higher first-order resonant frequency and a slightly lower frequency characteristic. This is mainly related to the size and constraint of the piezoceramic. Piezoelectric speakers require a high driving voltage, and the driving voltage depends on the type of piezoelectric material used, the size of the piezoelectric layer (including thickness and volume), and the number of layers of the piezoelectric layer.
  • multi-layer piezoelectric loudspeakers have formed the dispersion of electrical parameters of ceramics and loudspeakers prepared in production due to thermal matching between ceramic dielectric layer and internal electrode layer, electrical fatigue and physical fatigue, and complicated preparation process.
  • the static capacitance has a discrete range of 300nF
  • the lowest frequency has a discrete range of 300 ⁇ 400Hz
  • the impedance discrete range has 200 ohms
  • the average sound pressure level has a discrete range of 10dB.
  • the object of the present invention is to provide a piezoelectric speaker using an interdigital finger or a spiral electrode which has a simple structure, low cost and excellent performance, and the structure thereof comprises a diaphragm 3, a piezoelectric ceramic sheet 2 bonded to the diaphragm 3, and a pressure
  • the electrode 1 on the surface of the electric ceramic sheet 2 is used to constrain the frame 5 of the diaphragm 3, wherein the electrode 1 is divided into two parts, a positive electrode 4a and a negative electrode 4b, and the electrode 1 is an interdigitated structure and an interdigitated spiral structure.
  • Arranged, round The interdigitated helical structure is arranged, and the polygonal interdigitated helical structure is arranged.
  • the electrodes 1 are also arranged in a circular or polygonal concentric staggered configuration.
  • the piezoelectric ceramic sheet 2 has a circular cross section, an elliptical shape or a rectangular shape.
  • the electrode 1 is bonded to the surface of the piezoelectric ceramic sheet 2 or embedded in the piezoelectric ceramic sheet 2.
  • the positive electrode 4a and the negative electrode 4b are located on the same side of the piezoelectric ceramic sheet 2, or are respectively located on both sides of the piezoelectric ceramic sheet 2, and are kept staggered in plan view.
  • the piezoelectric ceramic sheet 2 is an insulating material.
  • the diaphragm 3 bonds the piezoelectric ceramic sheet 2 on one side or the piezoelectric ceramic sheet 2 on both sides.
  • the distance between the positive electrode 4a and the negative electrode 4b is less than twice the thickness of the piezoelectric ceramic sheet.
  • the internal electrode structure of silver palladium (Ag Pb) is not used. Since the speaker electrode material does not use precious metal palladium, the manufacturing cost of the device can be significantly reduced by 40% to 50%, making the future The performance of the new piezoelectric speaker produced is close to that of a multilayer piezoelectric speaker, and the cost is only half that of a multilayer speaker;
  • the multilayer piezoelectric speaker adopts a casting process, and the piezoelectric ceramic dielectric layer and the internal electrode layer are alternately covered to form a multilayer structure, and the piezoelectric ceramic and the internal electrode are fired once in the furnace.
  • the electrode treatment process is separated from the casting process. After the ceramic is sintered, the electrode is processed after inspection and the internal electrode is wasted due to the scrapping of the ceramic in the conventional technology;
  • the polarization of the ceramic dielectric layer can achieve several micrometer-scale electrode spacing, and the future target performance can exceed the multi-layer flat panel speaker; in addition, the multilayer piezoelectric speaker is co-fired by the ceramic and the internal electrode, causing internal electricity Extremely discontinuous, reducing the total piezoelectric constant of the multilayer piezoelectric ceramic by nearly 40%, and the piezoelectric speaker of the present invention does not have this problem.
  • FIG. 1 is a schematic structural view of a sounding portion of a conventional piezoelectric speaker
  • FIG. 1 is an isometric side view of Embodiment 1 of the present invention.
  • Figure 3 is an isometric side view of Embodiment 2 of the present invention.
  • Figure 5a is a schematic view showing the assembly of Embodiment 4 of the present invention.
  • Figure 5b is a front elevational view showing a ceramic sheet and an electrode according to Embodiment 4 of the present invention.
  • Figure 5c is a rear elevational view of the ceramic sheet and the electrode of Embodiment 4 of the present invention.
  • Figure 6 is a schematic view showing the assembly of Embodiment 5 of the present invention.
  • FIG. 7a is a schematic view showing the assembly of Embodiment 6 of the present invention.
  • Figure 7b is a front elevational view of a ceramic sheet and an electrode according to Embodiment 6 of the present invention.
  • Figure 7c is a rear elevational view of the ceramic sheet and the electrode of Example 6 of the present invention.
  • Figure 8 is a schematic view showing the assembly of Embodiment 7 of the present invention.
  • the present invention provides a piezoelectric speaker using an interdigital or helical electrode, and the present invention will be further described below in conjunction with the drawings and specific embodiments.
  • the vibration deformation of the metal diaphragm of a piezoelectric speaker is usually due to the extension of the piezoelectric ceramic in the plane of the diaphragm. Caused by the contraction movement.
  • 1 is a schematic view showing the structure of a sounding portion of a conventional piezoelectric speaker. Since the electrode 1 is located on the upper and lower surfaces of the piezoelectric ceramic sheet 2, the polarization direction is also perpendicular to the plane of the diaphragm 3, and the strain and electric field in the plane of the diaphragm 3 are shown.
  • the electrode material is a conductive metal such as silver, and the pitch of the positive electrode 4a and the negative electrode 4b is less than twice the thickness of the piezoelectric ceramic sheet.
  • FIG. 2 is an isometric side view of Embodiment 1 of the present invention.
  • the electrode 1 is a helical interdigitated structure, and the electrode 1 is divided into a positive electrode 4a and a negative electrode 4b, and is plated on the upper surface of the piezoelectric ceramic sheet 2, and the piezoelectric ceramic sheet 2 is attached to the diaphragm 3, and is fixed by the frame 5 Diaphragm 3.
  • the thickness of the piezoelectric ceramic sheet 2 is less than lmrn, it can be considered that the electric field generated by the electrode is located in the plane of the diaphragm 3, and the polarization direction of the piezoelectric ceramic sheet 2 is also located in the plane of the diaphragm 3, SP: in the piezoelectric dielectric layer
  • the direction of polarization is consistent with the direction of the electric field.
  • the piezoelectric ceramic sheet 2 of the present invention is in the case of ignoring nonlinear factors and having the same electric field strength in the polarization direction.
  • the strain in the plane direction of the diaphragm 3 is more than twice the corresponding strain of the conventional piezoelectric speaker, which inevitably causes the sound pressure level produced by the present invention to be greatly improved compared with the conventional piezoelectric speaker. .
  • Figure 3 is an isometric side view of Embodiment 2 of the present invention.
  • the positive electrode 4a and the negative electrode 4b are spiral-shaped interdigital spiral structures, and the diaphragm 3 and the piezoelectric ceramic sheet 2 have a circular axial cross section, and the rest of the structure is the same as that of the first embodiment.
  • Example 3 4 is a schematic view showing the assembly of Embodiment 3 of the present invention.
  • the electrode 1 has a square interdigitated structure, and the positive electrode 4a and the negative electrode 4b are alternately arranged.
  • the positive electrode lead 7a and the negative electrode lead 7b pass through the positive electrode and the positive lead connecting point 6a and the negative electrode, respectively.
  • the negative electrode lead connection point 6b is turned on, and the rest of the structure is the same as that of the first embodiment.
  • FIG. 5a is a front view of a ceramic sheet and an electrode according to a fourth embodiment of the present invention
  • FIG. 5c is a rear view of the ceramic sheet and the electrode of the fourth embodiment of the present invention.
  • the positive electrode 4a and the negative electrode 4b are arranged in a square concentric staggered structure, and the positive electrode 4a and the negative electrode 4b are respectively located on both sides of the piezoelectric ceramic sheet 2, but are maintained in a top view (the line of sight is perpendicular to the surface of the ceramic sheet).
  • the staggered arrangement is carried out by the positive electrode lead 7a and the negative electrode lead 7b through the positive electrode and the positive electrode lead connection point 6a and the negative electrode and the negative electrode lead connection point 6b, respectively, and the rest of the structure is the same as that of the first embodiment.
  • FIG. 6 is a schematic view showing the assembly of Embodiment 5 of the present invention.
  • the electrodes 1 are arranged in a circular concentric staggered structure, and the positive electrode 4a and the negative electrode 4b are alternately arranged, and the positive electrode lead 7a and the negative electrode lead 7b are respectively connected between the positive electrode and the positive lead by a positive electrode lead 7a and a negative electrode lead 7b, respectively.
  • the electrode and the negative electrode lead connection point 6b were turned on, and the rest of the structure was the same as that of the first embodiment.
  • Figure 7a is a front view of a ceramic sheet and an electrode according to a sixth embodiment of the present invention
  • Figure 7b is a front view of a ceramic sheet and an electrode according to a sixth embodiment of the present invention.
  • the electrodes 1 are arranged in a circular concentric staggered structure, and the positive electrode 4a and the negative electrode 4b are respectively located on both sides of the piezoelectric ceramic sheet 2, but are staggered in a top view (the line of sight is perpendicular to the surface of the ceramic sheet), and the same
  • the other portions of the electrode are electrically connected to the positive electrode lead connection point 6a and the negative electrode and the negative electrode lead connection point 6b through the positive electrode lead 7a and the negative electrode lead 7b, respectively, and the rest of the structure is the same as that of the first embodiment.
  • FIG 8 is a schematic view showing the assembly of Embodiment 7 of the present invention.
  • the electrode 1 is an interdigitated structure, and the positive electrode 4a and the negative electrode 4b are alternately arranged.
  • the positive electrode lead 7a and the negative electrode lead 7b pass through the positive electrode and the positive lead connecting point 6a and the negative electrode, respectively.
  • the negative electrode lead connection point 6b was turned on, and the piezoelectric ceramic piece 2 and the diaphragm 3 were all rectangular, and the rest of the structure was the same as that of the first embodiment.
  • the lowest resonant frequency of the speaker is adjusted by the thickness of the piezoelectric ceramic and the material of the diaphragm and its boundary conditions, and the electric field strength and sound pressure level in the ceramic medium are adjusted by the shape of the interdigitated or spiral electrode of the ceramic surface and the electrode spacing. This avoids the thickness of the ceramic and the thickness of the single layer in the conventional piezoelectric speaker design, which affects the lowest resonant frequency of the piezoelectric speaker and affects the electric field strength in the dielectric layer.
  • the speaker of the surface interdigital or spiral electrode avoids the constraints between the sound pressure level and the lowest resonant frequency, making the design and preparation of the piezoelectric speaker easier.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Description

说 明 书
一种采用叉指或螺旋电极的压电扬声
技术领域
本发明属于扬声器技术领域,特别涉及一种采用叉指或螺旋电极的压电扬声 器。
背景技术
扬声器是一种电-力-声换能器, 它是音响设备中的重要元件。 扬声器在人们 平时的日常生活中广泛被使用, 带来了很多的便利, 汽车、 广播、 电视、 音箱、 手机、 MP4、 电脑等电子产品领域中, 扬声器的应用几乎随处可见。 扬声器的种 类很多, 按其能量转换原理可分为电动式(即动圈式)、 静电式(即电容式)、 电磁 式(即舌簧式)、 压电式等几种; 按频率范围可分为低音扬声器、 中音扬声器、 高 音扬声器, 其中动圈式扬声器应用最为广泛。 而压电扬声器因其小、 薄、 轻的特 点, 在当今器件小型化的趋势下, 具有极其光明的前景与未来。
目前大多数压电扬声器的振动发声部分的基本原理为: 电极接通交流电, 由 于逆压电效应,压电陶瓷片产生振动,使金属振膜发生弯曲变形,从而产生振动, 进而推动空气振动, 产生声压, 发出声音。
与传统的动圈扬声器相比, 压电扬声器有以下几点优势:
1. 压电扬声器结构中不需要磁铁, 从而也不会存在任何的磁场对周围的电 路产生干扰和影响;
2. 压电扬声器的厚度超薄, 相比动圈式扬声器, 压电扬声器可安装于更为 狭小的空间中, 这一点使其在当今市场极具有竞争力;
3. 压电扬声器具有轻便的特点, 重量一般都小于 lg, 比传统的动圈扬声器 轻 50%-80%; 4.压电扬声器功耗低,一般小于 15mW,是动圈式扬声器消耗功率的 1/5-1/2, 这大大延长了器件的电池寿命;
5. 压电扬声器的声学设计简单, 背面只需很少空间, 不需要对于动圈扬声 器所必须的用于提高声压级的空腔。
在相比于传统扬声器具备很大优势的同时, 普通压电扬声器也存在一些缺 点。 例如, 压电扬声器第一阶谐振频率较高, 低频特性稍差。 这主要跟压电陶瓷 的尺寸和约束方式相关。 压电扬声器需要很高的驱动电压, 驱动电压的高低取决 于所使用的压电材料的类型、 压电层的大小 (包括厚度和体积) 以及压电层的层 数。
在总厚度不变的情况下, 采用多层压电陶瓷会使驱动电压相应地降低, 这是 一种目前主流的解决方法,但也会带来加工工艺复杂、成本提高的弊端。尤其是, 压电扬声器一旦采用多层陶瓷结构,则生产工艺上必须考虑采用 Ag-Pb银钯贵金 属内电极, 以及压电陶瓷低温烧结技术, 这些目前最先进的陶瓷烧成技术势必增 加压电扬声器的生产成本和产品的后续研发成本。 另外, 目前多层压电扬声器由 于陶瓷介质层与内电极层之间热匹配、 电致疲劳与物理性疲劳、 制备工艺复杂等 因素, 形成了生产中所制备的陶瓷和扬声器电学参数的离散性较大。 如: 静态电 容离散范围有 300nF, 最低频率的离散范围有 300〜400Hz, 阻抗离散范围有 200 欧姆, 平均声压级离散范围有 10dB。
发明内容
本发明的目的是提供一种结构简单、 成本低、 性能优良的采用叉指或螺旋电 极的压电扬声器, 其结构包括振膜 3, 粘结在振膜 3上的压电陶瓷片 2, 压电陶 瓷片 2表面的电极 1, 用来约束振膜 3的边框 5, 其特征在于, 电极 1分为正电 极 4a和负电极 4b两部分, 且电极 1为叉指结构排列、 叉指螺旋结构排列、 圆形 叉指螺旋结构排列、 多边形叉指螺旋结构排列。
所述电极 1还为圆形或多边形同心交错结构排列。
所述压电陶瓷片 2的轴向截面为圆形、 椭圆或矩形。
所述电极 1粘结于压电陶瓷片 2的表面, 或嵌入压电陶瓷片 2中。
所述正电极 4a和负电极 4b位于压电陶瓷片 2的同侧, 或分别位于压电陶瓷 片 2的两侧, 并在俯视图下保持交错排列。
所述正电极 4a和负电极 4b分别位于压电陶瓷片 2的两侧的情况时, 压电陶 瓷片 2为绝缘材料。
所述振膜 3仅一面粘结压电陶瓷片 2, 或双面均粘结压电陶瓷片 2。
所述正电极 4a与负电极 4b之间的距离小于压电陶瓷片厚度的两倍。
本发明的有益效果为:
( 1 )在保持传统平板扬声器优异性能的基础上, 不采用银钯(Ag Pb) 内电 极结构, 由于扬声器电极材料不采用贵金属钯, 可明显降低器件的制造成本 40 %〜50%, 使得未来所制备的新型压电扬声器的性能接近于多层压电扬声器, 而 成本却只有多层扬声器的一半;
(2) 目前多层压电扬声器采用流延工艺, 压电陶瓷介质层与内电极层交替 覆盖, 形成多层结构, 并将压电陶瓷与内电极在炉子中一次烧成 ·, 本专利提出的 新型扬声器, 其电极处理工艺与流延工艺分离, 陶瓷烧结后, 检验合格再进行电 极处理, 避免了传统技术中因陶瓷报废而造成内电极浪费的现象;
(3 )采用激光照射快速电极成型工艺, 可以明显提高压电扬声器的成品率、 一致性和生产效率, 明显减小陶瓷静态电容和谐振频率的离散性;
(4) 可实现几个微米尺度电极间距的陶瓷介质层的极化, 未来目标性能可 超过多层平板扬声器; 另外, 多层压电扬声器由于陶瓷与内电极共烧, 引起内电 极不连续, 降低多层压电陶瓷的总压电常数近 40%,而本发明所述压电扬声器不 存在该问题。
附图说明
图 1为现有压电扬声器的发声部分结构示意图;
图 2为本发明实施例 1的等轴侧视图;
图 3为本发明实施例 2的等轴侧视图;
图 4为本发明实施例 3的组装示意图;
图 5a为本发明实施例 4的组装示意图;
图 5b为本发明实施例 4的陶瓷片及电极的正面视图;
图 5c为本发明实施例 4的陶瓷片及电极的背面视图;
图 6为本发明实施例 5的组装示意图;
图 7a为本发明实施例 6的组装示意图;
图 7b为本发明实施例 6的陶瓷片及电极的正面视图;
图 7c为本发明实施例 6的陶瓷片及电极的背面视图;
图 8为本发明实施例 7的组装示意图。
图中标号:
1 -电极; 2-压电陶瓷片; 3-振膜; 4a-正电极; 4b-负电极;
5-边框; 6a-正电极与正极引线连接点; 6b-负电极与负极引线连接点; 7a-正极引线; 7b-负极引线。
具体实施方式
本发明提供了一种采用叉指或螺旋电极的压电扬声器, 下面结合附图说明和 具体实施方式对本发明做进一步说明。
压电扬声器的金属振膜的振动变形通常是由于压电陶瓷在振膜平面内的伸 缩运动引起的。 图 1为现有压电扬声器的发声部分结构示意图, 压电扬声器由于 电极 1位于压电陶瓷片 2的上下表面, 极化方向亦垂直于振膜 3平面, 振膜 3平 面内的应变与电场强度的关系如下: = i3 iE3, 其中, 为与极化方向垂直的 应变(即振膜平面内的应变), ^31为压电应变系数, 为极化方向的电场强度。
以下各个实施例中, 电极材料均为银等导电金属, 正电极 4a和负电极 4b的 间距小于压电陶瓷片厚度的两倍。
实施例 1
图 2为本发明实施例 1的等轴侧视图。 电极 1为叉指螺旋状结构, 电极 1分 为正电极 4a和负电极 4b, 电镀于压电陶瓷片 2的上表面, 压电陶瓷片 2粘贴于 振膜 3上, 并用边框 5来约束固定振膜 3。 由于压电陶瓷片 2的厚度小于 lmrn, 可以认为电极产生的电场方向位于振膜 3平面内, 压电陶瓷片 2的极化方向亦位 于振膜 3平面内, SP : 压电介质层中的极化方向与电场方向一致。 这样, 振膜 3 平面内的应变与电场强度的关系如下: x3 = d33E3, 其中, 为与极化方向的应 变 (即振膜 3平面内的应变), 3为压电应变系数, 为极化方向的电场强度。
对于各种常见的压电陶瓷材料, 通常满足 3 > 2^/31, 由此可见, 在忽略非线 性因素, 极化方向有相同的电场强度的情况下, 本发明中压电陶瓷片 2在振膜 3 平面方向的应变是传统压电扬声器相应应变的两倍以上, 这必然会使本发明产生 的声压级较传统的压电扬声器有很大的提高。 .
实施例 2
图 3为本发明实施例 2的等轴侧视图。 本实施例中, 正电极 4a和负电极 4b 为螺线型叉指螺旋结构, 振膜 3和压电陶瓷片 2的轴向截面均为圆形, 其余结构 与实施例 1相同。
实施例 3 图 4为本发明实施例 3的组装示意图。 本实施例中, 电极 1为方形叉指状结 构, 正电极 4a和负电极 4b交错排列, 同性电极各部分间分别由正极引线 7a和 负极引线 7b通过正电极与正极引线连接点 6a和负电极与负极引线连接点 6b导 通, 其余结构与实施例 1相同。
实施例 4
图 5a为本发明实施例 4的组装示意图; 图 5b为本发明实施例 4的陶瓷片及 电极的正面视图; 图 5c为本发明实施例 4的陶瓷片及电极的背面视图。 本实施 例中, 正电极 4a和负电极 4b为方形同心交错结构排列, 正电极 4a和负电极 4b 分别位于压电陶瓷片 2的两侧, 但在俯视图 (视线垂直于陶瓷片表面)下保持交 错排列, 同性电极各部分间分别由正极引线 7a和负极引线 7b通过正电极与正极 引线连接点 6a和负电极与负极引线连接点 6b导通, 其余结构与实施例 1相同。
实施例 5
图 6为本发明实施例 5的组装示意图。 本实施例中, 电极 1为圆形同心交错 结构排列, 正电极 4a和负电极 4b交错排列, 同性电极各部分间分别由正极引线 7a和负极引线 7b通过正电极与正极引线连接点 6a和负电极与负极引线连接点 6b导通, 其余结构与实施例 1相同。
实施例 6
图 7a为本发明实施例 6的组装示意图; 图 7b为本发明实施例 6的陶瓷片及 电极的正面视图; 图 7c为本发明实施例 6的陶瓷片及电极的背面视图。 本实施 例中, 电极 1为圆形同心交错结构排列, 正电极 4a和负电极 4b分别位于压电陶 瓷片 2的两侧, 但在俯视图 (视线垂直于陶瓷片表面)下保持交错排列, 同性电 极各部分间分别由正极引线 7a和负极引线 7b通过正电极与正极引线连接点 6a 和负电极与负极引线连接点 6b导通, 其余结构与实施例 1相同。 图 8为本发明实施例 7的组装示意图。 本实施例中, 电极 1为叉指状结构, 正电极 4a和负电极 4b交错排列, 同性电极各部分间分别由正极引线 7a和负极 引线 7b通过正电极与正极引线连接点 6a和负电极与负极引线连接点 6b导通, 压电陶瓷片 2, 振膜 3均为矩形, 其余结构与实施例 1相同。
扬声器的最低谐振频率用压电陶瓷的厚度和振膜材质及其边界条件调整, 而 陶瓷介质中的电场强度和声压级由陶瓷表面的叉指或螺旋电极的形状和电极间 距来调整。 这样避免传统压电扬声器设计中陶瓷的厚度和单层厚度, 既会影响到 压电扬声器的最低谐振频率, 又会影响到介质层中电场强度。 表面叉指或螺旋电 极的扬声器就避免了声压级与最低谐振频率相互之间的制约, 使压电扬声器的设 计与制备变得更加简单。
以上所述的实施例, 只是本发明的几个较佳的具体实施方式, 本领域的技术 人员可以在所附权利要求的范围内做出各种修改。

Claims

权 利 要 求 书
1. 一种采用叉指或螺旋电极的压电扬声器, 其结构包括振膜 (3), 粘结在 振膜(3 ) 上的压电陶瓷片 (2), 压电陶瓷片 (2 )表面的电极 (1 ), 用来约束振 膜 (3 ) 的边框 (5), 其特征在于, 电极 (1 ) 分为正电极 (4a) 和负电极 (4b) 两部分, 且电极 (1 ) 为叉指结构排列、 叉指螺旋结构排列、 圆形叉指螺旋结构 排列、 多边形叉指螺旋结构排列。
2. 根据权利要求 1所述的一种采用叉指或螺旋电极的压电扬声器, 其特征 在于, 所述电极 (1 ) 还为圆形或多边形同心交错结构排列。
3. 根据权利要求 1所述的一种采用叉指或螺旋电极的压电扬声器, 其特征 在于, 所述压电陶瓷片 (2 ) 的轴向截面为圆形、 椭圆或矩形。
4. 根据权利要求 1所述的一种采用叉指或螺旋电极的压电扬声器, 其特征 在于, 所述电极 (1 )粘结于压电陶瓷片 (2) 的表面或嵌入压电陶瓷片 (2 ) 中。
5. 根据权利要求 1所述的一种采用叉指或螺旋电极的压电扬声器, 其特征 在于, 所述正电极 (4a) 和负电极 (4b) 位于压电陶瓷片 (2 ) 的同侧, 或分别 位于压电陶瓷片 (2 ) 的两侧, 并在俯视图下保持交错排列。
6. 根据权利要求 5所述的一种采用叉指或螺旋电极的压电扬声器, 其特征 在于, 所述正电极 (4a) 和负电极 (4b) 分别位于压电陶瓷片 (2 ) 的两侧的情 况时, 压电陶瓷片 (2 ) 为绝缘材料。
7. 根据权利要求 1所述的一种采用叉指或螺旋电极的压电扬声器, 其特征 在于,所述振膜(3 )仅一面粘结压电陶瓷片(2), 或双面均粘结压电陶瓷片(2)。
8. 根据权利要求 1 所述的一种采用叉指或螺旋电极的压电扬声器, 其特征 在于, 所述正电极(4a) 与负电极(4b)之间的距离不大于压电陶瓷片厚度的两 倍。
PCT/CN2009/000795 2009-07-14 2009-07-14 一种采用叉指或螺旋电极的压电扬声器 WO2011006277A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000795 WO2011006277A1 (zh) 2009-07-14 2009-07-14 一种采用叉指或螺旋电极的压电扬声器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000795 WO2011006277A1 (zh) 2009-07-14 2009-07-14 一种采用叉指或螺旋电极的压电扬声器

Publications (2)

Publication Number Publication Date
WO2011006277A1 true WO2011006277A1 (zh) 2011-01-20
WO2011006277A8 WO2011006277A8 (zh) 2011-03-03

Family

ID=43448856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000795 WO2011006277A1 (zh) 2009-07-14 2009-07-14 一种采用叉指或螺旋电极的压电扬声器

Country Status (1)

Country Link
WO (1) WO2011006277A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162749A (zh) * 2020-01-08 2020-05-15 武汉大学 一种新型谐振器结构
WO2020225808A1 (en) * 2019-05-06 2020-11-12 Waves Audio Ltd. Micro electrostatic speaker
WO2022094490A1 (en) * 2020-10-30 2022-05-05 Resonant Inc. Transversely-excited film bulk acoustic resonator with spiral interdigitated transducer fingers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611967B (zh) * 2011-12-09 2014-07-16 张家港市玉同电子科技有限公司 双晶压电陶瓷片及由其制备的双晶压电陶瓷扬声器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825902A (en) * 1995-10-06 1998-10-20 Murata Manufacturing Co., Ltd. Spherical piezoelectric speaker
US6831985B2 (en) * 2000-07-13 2004-12-14 Toshitaka Takei Piezoelectric speaker
CN101061749A (zh) * 2004-11-18 2007-10-24 黄庆焕 混合扬声器
CN201248132Y (zh) * 2008-09-05 2009-05-27 西安康弘新材料科技有限公司 移动通讯用多层压电扬声器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825902A (en) * 1995-10-06 1998-10-20 Murata Manufacturing Co., Ltd. Spherical piezoelectric speaker
US6831985B2 (en) * 2000-07-13 2004-12-14 Toshitaka Takei Piezoelectric speaker
CN101061749A (zh) * 2004-11-18 2007-10-24 黄庆焕 混合扬声器
CN201248132Y (zh) * 2008-09-05 2009-05-27 西安康弘新材料科技有限公司 移动通讯用多层压电扬声器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225808A1 (en) * 2019-05-06 2020-11-12 Waves Audio Ltd. Micro electrostatic speaker
CN113795336A (zh) * 2019-05-06 2021-12-14 波音频有限公司 微型静电扬声器
CN113795336B (zh) * 2019-05-06 2023-06-23 波音频有限公司 微型静电扬声器
CN111162749A (zh) * 2020-01-08 2020-05-15 武汉大学 一种新型谐振器结构
WO2022094490A1 (en) * 2020-10-30 2022-05-05 Resonant Inc. Transversely-excited film bulk acoustic resonator with spiral interdigitated transducer fingers

Also Published As

Publication number Publication date
WO2011006277A8 (zh) 2011-03-03

Similar Documents

Publication Publication Date Title
CN103959816B (zh) 压电发声体和使用其的电子设备
CN102111702B (zh) 一种陶瓷片呈分布式排列的压电平板扬声器
WO2007083497A1 (ja) 圧電アクチュエータおよび電子機器
WO2005024966A1 (ja) 圧電セラミックス素子および携帯機器
JP2013046069A (ja) 積層セラミックキャパシタの回路基板実装構造
JP2018011090A (ja) 積層キャパシター、積層キャパシターが実装された基板
WO2011006277A1 (zh) 一种采用叉指或螺旋电极的压电扬声器
CN101877810B (zh) 一种采用叉指或螺旋电极的压电扬声器
JP2012033651A (ja) セラミックコンデンサ
CN1706216A (zh) 平行六面体型电容式传声器
KR100838251B1 (ko) 굴곡부를 가지는 필름 스피커 및 그 제조 방법
CN201319667Y (zh) 多层压电扬声器
KR20010007382A (ko) 압전 발음체 및 그 제조 방법
KR101392744B1 (ko) 적층형 압전 스피커 장치
KR101765419B1 (ko) 압전 스피커 및 이의 제조방법
CN1710994A (zh) 压电扬声器
CN201515490U (zh) 采用叉指或螺旋电极的压电扬声器
JP2012033632A (ja) セラミックコンデンサ
EP2693771B1 (en) Oscillator and electronic device
JPH10241993A (ja) 積層セラミック電子部品
CN2886967Y (zh) 叠层共烧压电陶瓷蜂鸣片
JP5832000B2 (ja) 圧電発音体及びそれを利用した電子機器
JP7055950B2 (ja) 振動発生装置及び電子機器
JP2007221532A (ja) 音響振動発生素子
CN202395984U (zh) 电容式驻极体传声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847202

Country of ref document: EP

Kind code of ref document: A1