WO2011003337A1 - 链路数据的保护方法、系统及装置 - Google Patents

链路数据的保护方法、系统及装置 Download PDF

Info

Publication number
WO2011003337A1
WO2011003337A1 PCT/CN2010/074815 CN2010074815W WO2011003337A1 WO 2011003337 A1 WO2011003337 A1 WO 2011003337A1 CN 2010074815 W CN2010074815 W CN 2010074815W WO 2011003337 A1 WO2011003337 A1 WO 2011003337A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface board
link
ima
standby
primary
Prior art date
Application number
PCT/CN2010/074815
Other languages
English (en)
French (fr)
Inventor
李娟�
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011003337A1 publication Critical patent/WO2011003337A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults

Definitions

  • the present invention relates to the field of transmission, and in particular to data transmission of an ATM network, and in particular to a method, system and apparatus for protecting link data.
  • the protection of data transmission in the ATM network is usually based on the backup of the primary and secondary interface boards.
  • the base station subsystem (BSS) in the wireless communication the traditional wireless BSS network.
  • the ⁇ port backup design framework is shown in Figure 1.
  • the base transceiver station (Base Transceiver Stat, BTS) and the base station controller (Base Stat Analyzer) (BSC) Asynchronous Transfer Mode (ATM) interface board Both the active and standby boards are backed up to protect the service link.
  • the ATM interface board can perform all processing from the physical layer to the transport convergence sublayer (TC layer)/asynchronous transfer mode (ATM) layer and the ATM adaptation layer (AAL layer) on the interface board.
  • ATM interface boards often use multiplex section protection (MSP) for protection switching, and common multiplex section protection includes MSP1+1 protection and MSP1: 1 protection.
  • MSP multiplex section protection
  • the MSP1+1 protection means that the same data is sent simultaneously on the active board and the standby board of the originating end, and the receiving end selects the current main board to receive data through the service processing board.
  • the transmission link of the main board fails, the active and standby boards are switched, the original board is reduced to the standby board, and the original board is upgraded to the main board. Since the original board has sent the same data as the original board, the switching speed is faster.
  • MSP1 1 protection means that the standby board of the originating end does not need to send the same data as the main board. As long as the optical port connection is normal, the multiplex section handshake of both parties can be normal. When the transmission link of the main board fails, a switchover occurs. The mainboard is lowered to the standby board, and the original standby board is upgraded to the main board. The original standby board restarts sending the data sent by the original main board, and the user data sent by the original main board is stopped. This switching protection is slightly slower than MSP1+1 backup. In the process of implementing the present invention, the inventors have found that at least the following problems exist in the above prior art:
  • an object of the present invention is to provide a method, a system, and a device for protecting link data, which are used to solve the problem that the switching protection wastes transmission resources in the prior art and the delay may occur in the switching process.
  • the embodiment of the present invention provides a method for protecting link data, which includes: configuring an active/standby link between the primary interface board and the standby interface board; The serial channel is connected to the main interface board.
  • the active and standby links are bundled into one ATM Inverse Mulplexing for ATM (IMA) group.
  • IMA ATM Inverse Mulplexing for ATM
  • an embodiment of the present invention further provides a link data protection system, including a main interface board, a backup interface board, a link configuration unit, and an inter-board communication unit, where the main interface board further includes a chain.
  • the link bundling unit is configured to configure a primary and backup link for the primary interface board and the standby interface board;
  • the inter-board communication unit is configured to connect the standby link of the standby interface board to the active interface board;
  • the link bundling unit is configured to bundle the active and standby links into one IMA group.
  • an embodiment of the present invention further provides a standby interface board, where the standby interface board is composed of an interface module, a frame processing module, and a T-block module.
  • the primary and backup links are logically bundled into one IMA, so that the data on the primary and backup links is not selected, and the data is not transmitted only on the primary link but through the primary and backup devices.
  • Link load sharing mode transmits service data, which improves the bandwidth utilization of the transmission link. Rate, which in turn reduces the waste of transmission resources.
  • IMA protocol when a link is disconnected, other links can still be activated, so that user data is not interrupted, service smoothing is ensured, and transmission reliability is improved.
  • FIG. 1 is a schematic diagram of a wireless BSS network interface backup design framework in the prior art
  • FIG. 2 is a structural diagram of a link data protection system according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of an ATM active/standby interface board according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of bundling the links of the active and standby boards into one IMA group according to an embodiment of the present invention
  • FIG. 5 is a link diagram of the link after the main and standby board links are bundled into one IMA group according to an embodiment of the present invention
  • FIG. 6 is a flowchart of an IMA polling task according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of another link data protection system according to another embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for protecting link data according to another embodiment of the present invention.
  • the standby link of the standby board is connected to the active board through the high-speed serial channel between the boards of the ATM interface board, and the active and standby links are bundled into the IMA group by using the IMA protocol.
  • Load-sharing transmission backup improves bandwidth utilization, transmission reliability, and transmission efficiency.
  • FIG. 2 is a structural diagram of a link data protection system according to an embodiment of the present invention.
  • the data link protection system includes: a primary interface board 100, a backup interface board 200, a link configuration unit 300, and a board.
  • the link configuration unit 300 and the inter-board communication unit 400 are respectively connected to the main interface board 100 and the backup interface board 200, and the link bundling unit 500 is disposed in the main interface board 100.
  • the link configuration unit 300 is mainly used to configure the primary and backup links for the primary interface board 100 and the standby interface board 200.
  • the ATM network is a connection-oriented call connection mode, so this is data transmission and primary backup data link protection.
  • the inter-board communication unit 400 is configured to connect the backup link of the standby interface board 200 to the main interface board 100.
  • the main interface board 100 and the backup interface board 200 are inserted on the back board.
  • Logically communicating through the high-speed serial channel between boards, and physically communicating through the back-board bus, the inter-board communication unit 400 utilizes the high-speed serial channel between the boards to reserve the spare interface board 200.
  • the link is connected to the main interface board 100.
  • the link bundling unit 500 is disposed in the main interface board 100, and bundles the standby link accessed by the inter-board communication unit 400 and the main link of the main interface board 100 into an IMA group.
  • the IMA status polling unit 600 is configured to start the IMA status polling task to cancel the faulty link when the interface board is started, which may be a single unit or two units respectively disposed in the main and standby boards. It is illustrated by an independent unit, which is respectively connected to the main interface board 100 and the standby interface board 200.
  • the following describes an embodiment of the present invention by taking an example of an ATM interface board of a BTS and a BSC in a radio network base station subsystem, but is not limited thereto.
  • FIG. 3 is a structural diagram of an ATM active/standby interface board according to an embodiment of the present invention.
  • the main interface board 100 includes an interface module 101, a frame processing module 102, and a time division multiplexing (Time Divi s ion Mul t iplex, T picture).
  • the block 105 and the ATM adapting module 106 are connected in sequence, and the data service is completed from the physical layer to the TC layer, to the ATM layer, and finally to the service adaptation layer, and the standby interface board 200 is interfaced.
  • the module 201, the frame processing module 202 and the T-picture module 203 are composed. Specifically, the left side of the main interface board 100 is a physical layer, and the right side is a service layer. After being adapted by the ATM adaptation module 106, various types of services enter the ATM module 105 to become a high-speed aggregated cell stream, and the ATM letter.
  • the element is the basic carrier for transmitting information in the ATM network.
  • the TC/IMA module 104 is a combination of the TC sublayer and the IMA sublayer. In fact, the IMA sublayer is a new sublayer located between the TC sublayer and the ATM layer, but it is modified by the TC sublayer. To achieve.
  • the IMA technology divides the ATM aggregate cell stream into multiple low-speed links, and then multiplexes multiple low-speed links together at the far end to restore the original aggregate cell stream. It supports high-speed ATM set cells. A practical method of flow. After the TC/IMA module 104 passes through the TC/IMA module 104, it is distributed to a plurality of physical links, and then processed by the TDM module 103, and then enters the frame processing module 102 for framing processing, and finally enters the transmission network via the interface module 101. By the same token, the service data is reversed in the remote interface board.
  • the TOM module 203 of the standby interface board 200 and the TC/ in the main interface board 100 are required.
  • a channel is established between the IMA modules 104 (shown in dashed lines in FIG. 3).
  • the active and standby boards are all inserted on the backplane, their interaction is performed through the backplane bus, and a physical channel can be directly established between the TOM module 203 and the TC/IMA module 104.
  • the inventors utilize a high speed serial channel 700 between the active and standby boards to implement the TC/IMA module 104 that connects the alternate link of the alternate interface board 200 to the primary interface board 100.
  • the high-speed serial channel 700 is the main channel for inter-board communication, which can realize high-speed transmission of data between boards. It can be seen from the figure that the high-speed serial channel 700 also passes through the backplane.
  • the TC/IAA module 104 in the primary interface board 100 will be accessed from the alternate interface board 200.
  • the backup link and the active link of the board are bundled into one IMA group through the IMA protocol.
  • the main and standby board links are bundled into one IMA group.
  • the binding principle of other link numbers is the same as that of this embodiment.
  • FIG. 5 is a link diagram of the link after the primary and backup links are bundled into one IMA group according to an embodiment of the present invention.
  • Figure 3 corresponds to the structure of the main and standby boards on the right side of Figure 5.
  • the ATM aggregate cell flows through the TC/IMA module 104 and then passes through the T picture module 103, the frame processing module 102, and the interface module 101 of the main interface board 100 to enter the transmission network A, and the other part passes through the backup interface board 200 in sequence.
  • the T-picture module 203, the frame processing module 202, and the interface module 201 enter the transport network B.
  • Transmission network A and transmission network B may be different SDH ring networks, microwave, satellite, etc. transmission networks, and combinations of these transmission networks.
  • the IMA protocol when there is a link failure in the IMA group, the IMA group remains " Activate "Status, other links are still available, user data will not be interrupted, but packet loss will occur.
  • the inventor uses the IMA status polling unit 600 to start the pair when the board is started. For the polling of the links in the IMA group, refer to FIG.
  • FIG. 6 is a flowchart of an IMA polling task according to an embodiment of the present invention.
  • the links in the IMA group are polled in turn. If the link is faulty, set the status of the faulty link to be unavailable (generally set it to unusab le) and prohibit it from participating in the IMA group. In the round rob in process, the round rob in process refers to the process of sending and receiving link data in the IMA group. If the link is normal, the IMA link state is maintained and normal processing continues. It should be noted that the IMA polling task of the embodiment is cyclically performed after the interface board is opened, and the faulty link is continuously retrieved. FIG. 6 is only one of the polling processes.
  • the polling technology detects the link failure and eliminates the faulty link, the delay of detecting the link fault is smaller than that of MSP1+1 and MSP1:1, so it can recover the normal transmission of data in the shortest time and solve the packet loss. problem.
  • the embodiments described above are based on different configurations of the active and standby boards. However, in practical applications, the application of the active and standby boards is the same, that is, the standby interface board 200 also has TC/IMA.
  • the module 204, the ATM module 205 and the ATM adaptation module 206 shown in the dashed box in FIG. 3). In this case, the following two advantages are obtained: 1. It is not necessary to make any changes to the original standby interface board, and only needs to change the configuration; 2.
  • FIG. 7 is a structural diagram of a standby interface board according to an embodiment of the present invention.
  • the standby interface board is composed only of the interface module 301, the frame processing module 3G2, and the TOM module 3G3.
  • FIG. 8 is a flowchart of a method for protecting link data according to still another embodiment of the present invention. The method comprises the following steps:
  • the primary and secondary links are configured by using the link configuration unit as the primary interface board and the standby interface board. Since the ATM network is a connection-oriented call connection mode, this is a data transmission and primary backup data link protection in the ATM network. First steps.
  • the standby link of the standby interface board is connected to the primary interface through the inter-board high-speed serial channel. Board. Take the ATM interface board of the BTS and the BSC in the BSS as an example. Referring to FIG. 3 again, the standby link of the standby interface board 200 is connected to the TC/IMA module 104 of the main interface board 100 by the TOM module 203 (as shown in the figure). 3 is shown in the dotted line). It should be noted that the path indicated by the dotted line in FIG. 3 is not a physical link path, and the interactive communication between the active and standby interface boards is realized by the high-speed serial channel 700 between them, the high-speed serial channel. The 700 is connected between the frame processing modules of the active and standby boards through the backplane bus.
  • the standby link of the standby interface board is connected to the TC/IMA unit 104 of the active interface board, where the TC/IMA unit 104 of the active interface board can perform the active/standby link according to the IMA protocol. Bundled into an IMA group.
  • IMA links there are multiple IMA links on the main interface board, one part of which is transmitted through the physical interface unit of the main interface board, and the other part is the high-speed serial channel between the boards, which is transmitted through the physical interface unit of the standby interface board. .
  • the direction of the IMA link can be seen in Figure 5.
  • IMA UNK 1#, IMA UNK 2#, LINK 3# and UNK 4# are bundled in the IMA Group, IMA LINK 1# and IMALINK 2# Using the physical channel of the interface board, IMA LINK 3# and IMA LINK 4# take the physical channel of the standby interface board, and the ATM aggregate cell stream is distributed on the above four links for load sharing transmission.
  • links IMA LINK 1# and IMA LINK 2#, IMA LINK 3# and IMA LINK 4# are connected to different transport networks A and transport networks B.
  • the transmissions The network may be a different SDH ring network, a microwave, a satellite, etc. transmission network, and a combination of these transmission networks.
  • the inventor also adds a polling manner to control the IMA group to detect and reject the faulty link.
  • FIG. 6 is a flowchart of an IMA polling task according to an embodiment of the present invention.
  • the IMA status polling unit polls the links in the IMA group in turn. If the link fails, set the status of the faulty link to be unavailable (usually set it to unusab le). It participates in the round rob in process of the IMA group, which The round rob in process refers to the process of sending and receiving link data in the IMA group; if the link is normal, the IMA link state is maintained and normal processing continues.
  • the IMA status polling unit culls it out of the round robin process. At this time, only the IMA LINK 1#, IMA LINK 3#, and IMA LINK 4# pair ATM collection cell streams Load sharing is performed. At the moment when the above link IMA LINK 2# fails, the service data will have a certain packet loss phenomenon, but the service will not be interrupted. In addition, the IMA status polling unit removes the faulty link, and the delay of restoring normal transmission is short. Therefore, the traditional multiplex section protection is more conducive to the smoothing of the service.
  • the IMA polling task of this embodiment is cyclically performed after the interface board is turned on, and the faulty link is continuously detected.
  • FIG. 6 is only one of the polling processes.
  • the embodiment of the present invention applies a high-speed serial channel between boards to implement logical bundling of links. Therefore, in the expansion of the network interface, the original transmission line can be connected to the new high-speed serial channel through the inter-board high-speed serial channel. On the interface board, you do not need to replace the transmission network link. You only need to update the configuration to achieve the effect of connecting the original interface board to the new interface board.
  • the specific embodiments of the present invention have been described in detail with reference to the preferred embodiments of the present invention. All modifications, equivalent substitutions, improvements, etc., made within the spirit and scope of the invention are intended to be included within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

链路数据的保护方法、 系统及装置 技术领域
本发明涉及传输领域, 具体的说是涉及 ATM 网络的数据传输, 特别是涉 及一种链路数据的保护方法、 系统及装置。
背景技术
目前, ATM 网络中对数据传输的保护通常都是采用主备接口板备份的方 式, 以无线通信中的基站子系统(Base Stat ion Sub-Sys tem, BSS )举例来 说, 传统的无线 BSS网^^口备份设计框架如图 1所示, 基站收发台 (Base Transceiver Stat ion, BTS )和基站控制器( Base Stat ion Control ler , BSC ) 的异步传输模式 ( Asynchronous Transfer Mode, ATM )接口单板都采用主备 单板备份的方式来对业务链路进行保护。 该 ATM接口单板可以在接口板上完 成从物理层到传输汇聚子层(TC层) /异步传输模式(ATM )层和 ATM适配层 ( AAL层)的所有处理。 在传输链路出现故障时, ATM接口板为了实现保护倒 换, 往往采用复用段保护 (Mul t iplex Sect ion Protect ion, MSP ) ,而常用 的复用段保护包括 MSPl+1保护和 MSP1: 1保护。
MSP1+1保护是指在发端的主用板和备用板上同时发出相同的数据, 收端 通过业务处理板来选择当前的主用板接收数据。 当主用板对应的传输链路发 生故障时, 则主备板倒换, 原主板降为备板, 原备板升为主板。 由于原备板 已经发送了和原主板相同的数据, 因此倒换速度比较快。
MSP1: 1保护是指发端的备用板无需发送与主用板相同的数据, 只要保持 光口连接正常, 双方的复用段握手能够正常; 当主用板传输链路发生故障时, 发生倒换, 原主板降为备板, 原备板升为主板, 原备板重新开始发送原主板 所发送的数据, 而此时原主用板发出的用户数据被停止。 这种倒换保护比 MSP1+1备份略慢。 在实现本发明的过程中, 发明人发现上述现有技术中至少存在着如下问 题:
第一. 无论是采用 MSP1+1或者 MSP1: 1保护技术, 都需要浪费掉 50%的传 输资源来进行保护, 尽管可靠性提高了, 但是对传输资源的浪费也相当明显; 第二. 当传输链路出现故障时, 需要通过倒换单板(或者是光口)来进 行备份, 这个过程往往需要双方通过协商完成, 耗时较长, 不利于业务的平 滑过渡。 发明内容
针对上述缺陷, 本发明实施例的目的在于提供一种链路数据的保护方法、 系统及装置, 用于解决现有技术中倒换保护浪费传输资源以及倒换过程可能 出现较长延时的问题。
为了实现上述目的, 本发明实施例提出了一种链路数据的保护方法, 其 包括:配置主用接口板和备用接口板的主备链路; 将备用接口板的备用链路通 过板间高速串行通道接入主用接口板; 在主用接口板内将主备链路捆绑成一 个 ATM反向复用 ( Inverse Mul t iplexing for ATM , IMA )组。
为了实现上述目的 , 本发明实施例还提出了一种链路数据的保护系统, 包括主用接口板、 备用接口板、 链路配置单元和板间通信单元, 所述主用接 口板还包括链路捆绑单元, 所述链路配置单元用以为主用接口板和备用接口 板配置主备链路; 所述板间通信单元用以将备用接口板的备用链路接入主用 接口板; 所述链路捆绑单元用以将主备链路捆绑成一个 IMA组。
为了实现上述目的, 本发明实施例还提出了一种备用接口板, 所述备用 接口板由接口模块、 帧处理模块和 T匿模块所组成。
本发明实施例通过将主备链路在逻辑上捆绑成一个 IMA , 从而不再对 主备链路上的数据进行选收, 也不是仅在主用链路上传送数据, 而是通过主 备链路负荷分担的方式对业务数据进行传输 , 即提高了传输链路的带宽利用 率, 进而减少了传输资源的浪费。 而根据 IMA协议的特性, 当有链路断开时, 其它链路仍然可以处于激活状态, 从而不会中断用户数据, 保证了业务的平 滑, 提高了传输的可靠性。 附图说明 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例 , 对于本领域普通技术人员来讲, 在不付出创造劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中无线 BSS网络接口备份设计框架图;
图 2为本发明实施例提供的一种链路数据的保护系统的结构图; 图 3为本发明实施例提供的一 ATM主备接口板的结构图;
图 4为本发明一实施例提供的将主备板链路捆绑成一个 IMA组的示意图; 图 5为本发明一实施例提供的将主备板链路捆绑成一个 IMA组后的链路 走向图;
图 6为本发明一实施例提供的 IMA轮询任务流程图;
图 7为本发明另一实施例提供的另一种链路数据的保护系统的结构图; 图 8为本发明再一实施例提供的链路数据的保护方法流程图。
具体实施方式
为了使本发明的目的、 技术方案和优点更加清楚明白, 下面结合具体 实施方式和附图, 对本发明做进一步详细说明。 在此, 本发明的示意性实 施方式及其说明用于解释本发明, 但并不作为对本发明的限定。 本发明实施例是通过 ATM接口板的板间高速串行通道将备用板的备用 链路接至主用板, 并利用 IMA协议将主备链路捆绑成 IMA组, 以此来实现 负荷分担式传输备份, 提高带宽利用率、 传输的可靠性和传输效率。
如图 2 所示为本发明实施例提供的一种链路数据的保护系统的结构 图, 该数据链路保护系统包括: 主用接口板 100、 备用接口板 200、 链路 配置单元 300、 板间通信单元 400、 链路捆绑单元 500和 IMA状态轮询单 元 600。 其中, 链路配置单元 300和板间通信单元 400都分别和主用接口 板 100及备用接口板 200相连, 而链路捆绑单元 500则设置在主用接口板 100内。 链路配置单元 300主要用于为主用接口板 100和备用接口板 200 配置主备链路, 我们知道, ATM网络是面向连接的呼叫接续方式, 所以这 是数据传输及主备份数据链路保护的一个首要步驟。 板间通信单元 400用 以将备用接口板 200的备用链路接入主用接口板 100, 在实际工作中, 主 用接口板 100和备用接口板 200都插于背板之上, 它们之间在逻辑上是通 过板间高速串行通道进行通信, 而在物理上则是通过背板总线进行通信, 板间通信单元 400正是利用了该板间高速串行通道将备用接口板 200的备 用链路接入了主用接口板 100。 链路捆绑单元 500设置在主用接口板 100 之内 , 其将板间通信单元 400接入的备用链路和主用接口板 100的主用链 路捆绑成一个 IMA组。 IMA状态轮询单元 600用以在启动接口板时启动 IMA 状态轮询任务以剔除故障链路, 其可以是一个单独的单元也可以是分别设 置在主备板内的两个单元, 图中是以独立单元举例绘示的, 其分别和主用 接口板 100和备用接口板 200相连。 下面以无线网络基站子系统中 BTS和 BSC的 ATM接口板为例来说明本 发明实施例, 但并不限于此。
如图 3所示为本发明实施例提供的一 ATM主备接口板的结构图。 在本实施例中, 主用接口板 100和备用接口板 200结构不同, 主用接 口板 100包括了接口模块 101、帧处理模块 102、时分复用(Time Divi s ion Mul t iplex, T画)模块 103、 TC (传输汇聚子层) /IMA模块 104、 ATM模 块 105和 ATM适配模块 106 , 且它们之间依次相连, 共同完成了数据业务 从物理层至 TC层, 再到 ATM层, 最后至业务适配层的所有处理, 备用接 口板 200则由接口模块 201、 帧处理模块 202和 T画模块 203所组成。 具体来说, 主用接口板 100左侧为物理层, 右侧为业务层, 各类业务 经 ATM适配模块 106适配后进入到 ATM模块 105 , 成为一高速的集合信元 流, ATM信元是 ATM网络中传送信息的基本载体。 TC/IMA模块 104是 TC 子层和 IMA子层的结合, 实际上, IMA子层是一个新的子层, 其位于 TC子 层与 ATM层之间, 但其是通过对 TC子层的修改来实现的。 IMA技术是将 ATM集合信元流分接到多个低速链路上, 在远端再将多个低速链路复接在 一起恢复成原来的集合信元流, 它是支持高速 ATM集合信元流的一种实用 方法。 集合信元流经过 TC/IMA模块 104后即分发到多条物理链路上, 然 后经过 TDM模块 103的交换处理, 再进入帧处理模块 102进行成帧处理, 最后经接口模块 101进入传输网络。 同样道理, 业务数据在远端的主用接 口板则反向进行上述步驟。
为了将备用接口板 200的备用链路接入主用接口板 100内以和主用链 路捆绑成一个 IMA组, 需要在备用接口板 200的 TOM模块 203和主用接口 板 100内的 TC/IMA模块 104之间建立一通道(如图 3中虚线所示) 。 在 实际应用中, 由于主备板都是插于背板之上, 它们的交互是通过背板总线 来进行的, 也可以在 TOM模块 203和 TC/IMA模块 104之间直接建立物理 通道实现本发明的目的。 作为一个实施例, 发明人利用了主备板间的高速 串行通道 700来实现将备用接口板 200的备用链路接入主用接口板 100的 TC/IMA模块 104。 高速串行通道 700是进行板间通信主要通道, 其可以实 现板间数据的高速传输, 从图中可见该高速串行通道 700也是通过背板总
主用接口板 100内的 TC/ IMA模块 104将从备用接口板 200内接入的 备用链路和本板的主用链路通过 IMA协议捆绑成一个 IMA組, 如图 4所示 为本发明一实施例提供的将主备板链路捆绑成一个 IMA组的示意图。 在本 实施例中,主用接口板 100内有两条链路(以实线表示),备用接口板 200 内也有两条链路(以虚线表示) , 当然, 这仅是本发明的一实施例, 其它 链路数的捆绑原理和本实施例相同。 经过 TC/IMA模块 104的捆绑后, 在 本端和远端的接口板内形成了一具有 4条链路的链路群。 此时, 如果一具 有 、 B、 C、 D四个信元的高速 ATM集合信元流经过 TC/IMA模块 104 , 就 会如图 4所示分发到 4条链路上, 然后经远端的 TC/IMA模块复接还原成 原 ATM集合信元流, 所以本发明实施例的业务数据可以说是在主用接口板 100和备用接口板 200上同时发送和接收的。 关于上述 4条链路的实际走向, 需要结合图 5和图 3来进行说明, 图 5为本发明一实施例提供的将主备链路捆绑成一个 IMA组后的链路走向图。 图 3对应的是图 5中右侧的主备板结构图。 ATM集合信元流经过经过 TC/IMA 模块 104后一部分依次通过主用接口板 100的 T画模块 103、 帧处理模块 102和接口模块 101进入传输网络 A, 而另一部分则依次通过备用接口板 200的 T画模块 203、 帧处理模块 202和接口模块 201进入传输网络 B。传 输网络 A和传输网络 B可以是不同的 SDH环网、 微波、 卫星等传输网络, 以及该些传输网络的组合。 虽然上述我们将备用接口板 200的链路称为备 用链路, 但实际上, 它和主用接口板 100是一种负荷分担的关系, 其分担 了主用链路一部分数据的传送。 正是这种负荷分担的方式, 使得传输链路 的带宽利用率, 进而减少了传输资源的浪费。 至于本发明实施例如何解决数据保护 , 其主要是通过 IMA协议的特性 以及 IMA状态轮询单元 600来实现的 , 根据 IMA协议, 当 IMA组中有链路 出现故障时, IMA组仍然保持在 "激活" 状态, 其它链路仍然可用, 用户 数据不会中断, 只是会出现丢包现象。 为了即时解决丢包现象, 恢复用户 数据的正常传输, 发明人利用 IMA状态轮询单元 600在启动单板时启动对 IMA組内的各条链路的轮询,请参见图 6 , 其为本发明一实施例提供的 IMA 轮询任务流程图。 在接口板启动时, 依次轮询 IMA组内的各条链路, 若链 路出现故障,设置该故障链路的状态为不可用(一般将其设为 unusab le ), 禁止其参与 IMA组的 round rob in过程,这里的 round rob in过程是指 IMA 组中链路数据的收发过程; 若链路都正常, 则保持 IMA链路状态, 继续正 常处理。 需要指出的是, 本实施例的 IMA轮询任务在接口板开启后就循环 往复的进行, 不停的检索故障链路, 图 6所示的仅仅是其中的一次轮询过 程。 由于该轮询技术相对于现有技术, 检测到链路故障并剔除故障链路的 延时要小于 MSP1+1和 MSP1: 1 , 所以其可以在最短时间内恢复数据的正常 传输, 解决丢包问题。 以上所述的实施例都是建立在主备板结构不同的基础上的, 然而在实 际应用中, 应用的较多的是主备板结构相同的情况, 即备用接口板 200也 具有 TC/ IMA模块 204、 ATM模块 205和 ATM适配模块 206 (如图 3中虚框 所示) 。 这种情况下具有以下两个优点: 1、 不需要对原有的备用接口板 做任何改动, 只需改变配置; 2、 当主用接口板故障导致主用接口板不可 用时, 还可以将业务倒换至备用接口板。 本发明实施例还提出了一种备用接口板, 如图 7所示为本发明实施例 提供的一种备用接口板的结构图。 该备用接口板仅由接口模块 301、 帧处 理模块 3G2和 TOM模块 3G3所组成。 请参见图 8, 其为本发明再一实施例提供的链路数据的保护方法流程 图。 该方法包括如下步驟:
S101:通过链路配置单元为主用接口板和备用接口板配置主备链路, 由于 ATM网络是面向连接的呼叫接续方式, 所以这是 ATM网络中数据传输 及主备份数据链路保护的一个首要步驟。
S102:将备用接口板的备用链路通过板间高速串行通道接入主用接口 板。 以 BSS中 BTS和 BSC的 ATM接口单板为例, 再请参见图 3 , 备用接口 板 200的备用链路通过由 TOM模块 203接入至主用接口板 100的 TC/ IMA 模块 104 (如图 3中虚线所示) 。 需要指出的是, 图 3中虚线所示路径并不是物理上的链路路径, 主备 接口板之间的交互通信是通过它们之间的高速串行通道 700来实现的, 该 高速串行通道 700经过背板总线连接在主备板的帧处理模块之间。
S103:在主用板内将主备链路捆绑成一个 IMA组。 经过步驟 S102后, 备用接口板的备用链路被接入至主用接口板的 TC/ IMA单元 104 , 在此, 主 用接口板的 TC/ IMA单元 104即可根据 IMA协议将主备链路捆绑为一个 IMA 组。 这样, 在主用接口板上就存在了多条 IMA链路, 其中一部分通过主用 接口板的物理接口单元传输, 另一部分则走板间高速串行通道, 通过备用 接口板的物理接口单元传输。 IMA链路的走向可以参考图 5 , 从图中可见 IMA UNK 1#、 IMA UNK 2#、 還 LINK 3#和還 UNK 4#被捆绑在 IMA Group 中, IMA LINK 1#和 IMALINK 2#走主用接口板的物理通道, 而 IMA LINK 3# 和 IMA LINK 4#走备用接口板的物理通道, ATM集合信元流分发到上述四 条链路之上进行负荷分担式传输。 作为本发明的一个实施例,链路 IMA LINK 1#和 IMA LINK 2#、 IMA LINK 3#和 IMA LINK 4#被接至不同的传输网络 A和传输网络 B中, 在实际应用 中, 该传输网络可以是不同的 SDH环网、 微波、 卫星等传输网络, 以及该 些传输网络的组合。 在本实施例的方法中, 发明人还加入了轮询的方式来对 IMA组进行控 制, 以检测并剔除出现故障的链路。 请参见图 6 , 其为本发明一实施例提 供的 IMA轮询任务流程图。 在接口板启动时, IMA状态轮询单元依次轮询 IMA组内的各条链路, 若链路出现故障, 设置该故障链路的状态为不可用 (一般将其设为 unusab le ) , 禁止其参与 IMA组的 round rob in过程, 这 里的 round rob in过程是指 IMA組中链路数据的收发过程;若链路都正常, 则保持 IMA链路状态, 继续正常处理。 比如当链路 IMA LINK 2#出现故障 的时候, IMA状态轮询单元将其剔除出 round robin过程, 此时就只有 IMA LINK 1#、 IMA LINK 3#和 IMA LINK 4#对 ATM集合信元流进行负荷分担式 传输了。 在上述链路 IMA LINK 2#故障的瞬间, 业务数据会出现一定的丢 包现象, 但是并不会中断业务, 加上 IMA状态轮询单元剔除故障链路, 恢 复正常传输的延时很短, 所以较传统的复用段保护更加有利于业务的平 滑。
需要指出的是, 本实施例的 IMA轮询任务在接口板开启后就循环往复 的进行, 不停的检测故障链路, 图 6所示的仅仅是其中的一次轮询过程。 本发明实施例应用了板间高速串行通道来实现链路的逻辑捆绑, 因此 在网络接口的扩容当中, 可以通过该方法将原有的传输线路通过板间高速 串行通道接入到新的接口板上, 这样就不需要更换传输网络链接, 而仅需 更新配置即可达到将原有接口板接入至新接口板的效果。 以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进 行了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方 式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内, 所做的任何修改、等同替换、改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1.一种链路数据的保护方法, 其特征在于该方法包括: 配置主用接口板和备用接口板的主备链路;
将备用接口板的备用链路通过板间高速串行通道接入主用接口板; 在主用接口板内将主备链路捆绑成一个异步传输模式反向复用 IMA组。
2.如权利要求 1所述的链路数据的保护方法, 其特征在于, 所述备用接 口板的时分复用 TOM模块和所述主用接口板的传输汇聚子层 /异步传输模式 反向复用 TC/IMA模块通过板间高速串行通道相连以传输业务数据。
3.如权利要求 2所述的链路数据的保护方法, 其特征在于, 在主用接口 板内用所述主用接口板的 TC/IMA模块将所述主备链路捆绑成一个 IMA组。
4.如权利要求 1或 3所述的链路数据的保护方法, 其特征在于, 还包括 在主用接口板内将主备链路捆绑成一个 IMA组之后, 启动主用接口板和备用 接口板时, 同时启动 IMA状态轮询以剔除故障链路。
5.如权利要求 4所述的链路数据的保护方法, 其特征在于, 所述 IMA状 态轮询任务包括:
依次轮询所述 IMA组内各条链路, 若链路出现故障, 设置该故障链路的 状态为不可用, 禁止其参与 IMA组的数据收发 round robin过程。
6.如权利要求 5所述的链路数据的保护方法, 其特征在于, 主用接口板 将主备链路捆绑成一个 IMA组后,将所述主备链路分别接入不同的传输网络。
7.如权利要求 6所述的链路数据的保护方法, 其特征在于, 业务数据从 所述主用接口板和所述备用接口板上同时发送和接收。
8.—种链路数据的保护系统, 其特征在于该系统包括主用接口板、 备用 接口板、 链路配置单元和板间通信单元, 所述主用接口板还包括链路捆绑单 元,
所述链路配置单元, 用于配置主用接口板和备用接口板的主备链路; 所述板间通信单元, 用于将备用接口板的备用链路通过板间高速串行通 道接入主用接口板;
所述链路捆绑单元, 用于将主备链路捆绑成一个 IMA组。
9.如权利要求 8所述的链路数据的保护系统, 其特征在于, 所述板间通 信单元将备用接口板的备用链路通过 T画模块后经板间高速串行通道连接至 所述主用接口板的 TC/IMA模块。
10.如权利要求 9 所述的链路数据的保护系统, 其特征在于, 所述链路 捆绑单元为主用接口板内的 TC/IMA模块。
11.如权利要求 8或 10所述的链路数据的保护系统, 其特征在于, 还包 括 IMA状态轮询模块, 其用于在启动主用接口板和备用接口板时启动 IMA状 态轮询以剔除故障链路。
12. 一种备用接口板, 其特征在于, 所述备用接口板由接口模块、 帧处 理模块和 TOM模块所组成。
PCT/CN2010/074815 2009-07-09 2010-06-30 链路数据的保护方法、系统及装置 WO2011003337A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910158684A CN101610143B (zh) 2009-07-09 2009-07-09 链路数据的保护方法、系统及装置
CN200910158684.7 2009-07-09

Publications (1)

Publication Number Publication Date
WO2011003337A1 true WO2011003337A1 (zh) 2011-01-13

Family

ID=41483744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074815 WO2011003337A1 (zh) 2009-07-09 2010-06-30 链路数据的保护方法、系统及装置

Country Status (2)

Country Link
CN (1) CN101610143B (zh)
WO (1) WO2011003337A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610143B (zh) * 2009-07-09 2012-09-19 华为技术有限公司 链路数据的保护方法、系统及装置
CN102083117A (zh) * 2011-03-01 2011-06-01 西安新邮通信设备有限公司 一种td-scdma rnc设备ima组故障处理方法
CN103117924B (zh) * 2013-02-22 2017-08-11 新华三技术有限公司 一种保护倒换方法和设备
CN105323873A (zh) * 2014-07-03 2016-02-10 中兴通讯股份有限公司 一种基站、基站负荷分担装置及方法
CN107465523A (zh) * 2016-06-02 2017-12-12 中兴通讯股份有限公司 一种业务的隔离方法和装置
CN109361453A (zh) * 2018-10-15 2019-02-19 江西山水光电科技股份有限公司 一种otn传送网设备中的主备倒换电路及倒换方法
CN112235192B (zh) * 2020-10-10 2022-07-08 苏州盛科通信股份有限公司 堆叠设备Linkagg端口切换方法及基于Linkagg的堆叠设备
CN113114349B (zh) * 2021-04-19 2022-11-04 国网湖北省电力有限公司信息通信公司 Sdh系统sncp保护业务检测方法及功率分配优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179917A2 (en) * 2000-08-11 2002-02-13 Orckit Communications Ltd. Protection against master unit failure in remote network access multiplexing
CN1738224A (zh) * 2004-08-19 2006-02-22 华为技术有限公司 Tdm数据与帧格式转换的电路及方法、传输交换系统及方法
CN1859417A (zh) * 2006-04-30 2006-11-08 西安交通大学 一种多台网络设备链路聚集的实现方法
CN1859175A (zh) * 2005-12-06 2006-11-08 华为技术有限公司 内部可靠互连的通信设备
CN101610143A (zh) * 2009-07-09 2009-12-23 华为技术有限公司 链路数据的保护方法、系统及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179917A2 (en) * 2000-08-11 2002-02-13 Orckit Communications Ltd. Protection against master unit failure in remote network access multiplexing
CN1738224A (zh) * 2004-08-19 2006-02-22 华为技术有限公司 Tdm数据与帧格式转换的电路及方法、传输交换系统及方法
CN1859175A (zh) * 2005-12-06 2006-11-08 华为技术有限公司 内部可靠互连的通信设备
CN1859417A (zh) * 2006-04-30 2006-11-08 西安交通大学 一种多台网络设备链路聚集的实现方法
CN101610143A (zh) * 2009-07-09 2009-12-23 华为技术有限公司 链路数据的保护方法、系统及装置

Also Published As

Publication number Publication date
CN101610143A (zh) 2009-12-23
CN101610143B (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2011003337A1 (zh) 链路数据的保护方法、系统及装置
US5959972A (en) Method of port/link redundancy in an ATM switch
US7266112B1 (en) Dial access stack architecture
JPH10154989A (ja) 交換通信ネットワーク内で無差別的にモニタリングを行うためのスイッチ
WO2012019464A1 (zh) 路由器集群中板间互联的装置及方法
JP2007088949A (ja) 情報処理装置、通信負荷分散方法および通信負荷分散プログラム
US7428208B2 (en) Multi-service telecommunication switch
JP2003234757A (ja) データを損失せずにアクティブ・スイッチ・ファブリックとスタンドバイ・スイッチ・ファブリックの間を切り換えるための方法および装置
US5774665A (en) Asynchronous transfer mode LAN switching hub device using IEEE P1355 standard and its control method
WO2010048875A1 (zh) 一种集群系统扩容方法、装置及集群系统
CN101883117B (zh) 接口业务集中处理方法和系统
WO2016082436A1 (zh) 一种业务混合集中处理方法和装置、存储介质
US6252846B1 (en) Automatic switching system
WO2011140873A1 (zh) 光传输层的数据传输方法及装置
US6690670B1 (en) System and method for transmission between ATM layer devices and PHY layer devices over a serial bus
US20080298231A1 (en) Ring node and redundancy method
CN1306769C (zh) 一种异步传输模式组网内的业务备份方法
WO2015035800A1 (zh) 一种端口状态同步方法、相关设备及系统
WO2012139452A1 (zh) 一种以太网保护倒换的实现方法和系统
WO2012031402A1 (zh) 光接口线路板的冗余备份方法、系统及光接口线路板
JPH10215296A (ja) Adslモデムを備えたデジタル伝送システム
JP3769537B2 (ja) 基地局内atmバス無瞬断切替方法及び基地局内atmバス無瞬断切替方式
JP3575432B2 (ja) 回線切替装置及び回線切替方法
CN101459501A (zh) 多框互连系统和框间数据传输方法
JP3657856B2 (ja) 通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10796714

Country of ref document: EP

Kind code of ref document: A1