WO2012031402A1 - 光接口线路板的冗余备份方法、系统及光接口线路板 - Google Patents

光接口线路板的冗余备份方法、系统及光接口线路板 Download PDF

Info

Publication number
WO2012031402A1
WO2012031402A1 PCT/CN2010/076791 CN2010076791W WO2012031402A1 WO 2012031402 A1 WO2012031402 A1 WO 2012031402A1 CN 2010076791 W CN2010076791 W CN 2010076791W WO 2012031402 A1 WO2012031402 A1 WO 2012031402A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
combiner
optical interface
optical
splitter
Prior art date
Application number
PCT/CN2010/076791
Other languages
English (en)
French (fr)
Inventor
张俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2010/076791 priority Critical patent/WO2012031402A1/zh
Priority to CN201080003330.6A priority patent/CN102652399B/zh
Publication of WO2012031402A1 publication Critical patent/WO2012031402A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/74Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for increasing reliability, e.g. using redundant or spare channels or apparatus

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a redundancy backup method, system, and optical interface circuit board for an optical interface circuit board.
  • the chip scale and the complexity of the circuit board in the communication equipment are multiplied, and the overall failure rate of the circuit board is also multiplied. This is because the capacity of the circuit board is larger, and the integration degree is more High, the more prone to failure, and the greater the harm caused by the failure.
  • the reliability requirement is as high as 99.999% or even 99.9999%. If the reliability of the board or chip is increased, the above reliability requirements cannot be achieved.
  • the system architecture mainly includes: a plurality of circuit boards for processing communication messages, a plurality of switching network boards for data exchange between circuit boards, and two or more main control boards for controlling the operation of each board.
  • Each board occupies one slot and can be installed and replaced in the field.
  • the switching stencils have a backup relationship with each other.
  • the two main control boards also have the backup backup capability.
  • the circuit boards often do not have a backup relationship. If a circuit board fails, The line connected to it will not be able to continue communication, and the business data carried by the failed board will be lost.
  • FIG. 2 Another way is to design a communication device with N: 1 redundant backup.
  • the internal backup and connection relationship of this device is more complicated.
  • the logical relationship of the internalization is shown in Figure 2.
  • the circuit board is divided into an interface board and a line processing board according to logical functions. Under normal circumstances, one interface board corresponds to one line processing board. It is generally considered that the internal connection relationship of the interface board is relatively simple, so the failure rate is low, so in the implementation, only the line is The board processing board is backed up. After a line processing board fails, data of the interface board corresponding to the faulty line processing board needs to be transmitted to the standby line processing board through an additional switching device for processing. In this implementation, the additional design of the switching device makes the system design complicated and the cost increases.
  • the interface board does not have the redundancy backup capability. Although the interface board has low failure rate, the interface board is also powered by the integrated circuit. The device composition still has the possibility of failure. Therefore, the reliability of the system can only be raised to the inherent reliability level of the interface board.
  • the invention provides a redundancy backup method, a system and an optical interface circuit board of an optical interface circuit board, which can realize N:l redundancy backup of the circuit board and improve the reliability of the circuit board.
  • An embodiment of the present invention provides a method for redundancy backup of an optical interface circuit board, where the method includes: respectively connecting, by using an optical interface of a splitting end of a splitting/combining device, a circuit board and a standby circuit board of the circuit board;
  • the optical interface connecting the splitter/combiner on the circuit board is turned off, and the split circuit board is connected to the splitter/combiner and corresponding to the circuit board.
  • the optical interface receives the data signal originally sent to the circuit board through the optical interface on the standby circuit board, or transmits an optical signal that is originally required to be sent through the circuit board.
  • An optical interface circuit board includes:
  • a first optical interface module configured to connect an optical interface of the optical splitting end of the external optical/combiner, and the other optical interface of the splitting end of the optical splitter/combiner is connected to the standby circuit board of the circuit board;
  • the fault judging module is configured to determine whether the circuit board is faulty
  • a redundancy control module configured to: when the circuit board fails, turn off an optical interface of the circuit board that connects the light splitter/combiner, and open the standby circuit board to connect the light splitter/combiner and The optical interface corresponding to the circuit board.
  • a redundant backup system for an optical interface circuit board comprising:
  • a light splitting/combining device wherein the optical interfaces of the splitting ends of the splitting/combining devices are respectively connected to the circuit board and the standby circuit board of the circuit board;
  • the fault judging module is configured to determine whether the circuit board is faulty;
  • a redundancy control module configured to: when the circuit board fails, turn off an optical interface of the circuit board that connects the light splitter/combiner, and open the standby circuit board to connect the light splitter/combiner and The optical interface corresponding to the circuit board;
  • a spare circuit board configured to receive a data signal originally sent to the circuit board by connecting an optical interface corresponding to the optical splitter/combiner and the circuit board 50, or to transmit light originally required to be sent through the circuit board signal.
  • the optical signal transmitted by the optical fiber can perform the characteristics of splitting and combining light, realize mutual backup of any optical interface circuit board, and set the circuit board to connect the split/combiner, and the split/combiner has three links.
  • the other two channels are connected to the working circuit board and the standby circuit board.
  • the optical interface is such that the optical signal originally sent by the working circuit board is sent by the backup circuit board and transmitted to the opposite device; likewise, for the receiving direction, that is, the direction of the opposite device to the device, the circuit board cannot be faulty due to the fault.
  • the optical signal and the carried data information are processed and processed by the backup circuit board.
  • the two optical interfaces are 1:1 backup.
  • the number of optical interfaces on the backup line board is N times the number of optical interfaces on the circuit board, the N:l line backup relationship can be realized.
  • FIG. 1 is a schematic diagram of a distributed system architecture of a communication device in the prior art
  • FIG. 2 is a schematic diagram of an internal connection relationship of a N: l redundant backup communication device in the prior art
  • FIG. 3 is a schematic flowchart of a method for redundancy backup of an optical interface circuit board according to an embodiment of the present invention
  • Schematic diagram of a non-working redundant system model of an embodiment of the invention
  • FIG. 5 is a schematic structural diagram of an embodiment of a redundancy backup system for an optical interface circuit board according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a system for backing up multiple circuit boards of a spare circuit board according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an optical interface circuit board according to an embodiment of the present invention.
  • the backup of the circuit board is based on the implementation of the electrical layer.
  • the redundancy backup capability is generally fixed. For example, if the original design is a 2:1 backup relationship, the system must be redesigned when the redundancy backup ratio needs to be changed. The related interface boards, circuit processing boards, circuit boards of the switch boards, etc. may need to be redesigned.
  • the embodiment of the present invention provides a redundancy backup method for an optical interface circuit board. As shown in FIG. 3, the method may include the following steps:
  • Step 301 The optical interface of the splitting end of the splitting/combining device is respectively connected to the circuit board and the standby circuit board of the circuit board;
  • the optical signal transmitted by the optical fiber can perform the characteristics of splitting and combining light
  • the split/combiner is inserted into the optical fiber channel between the opposite end device and the optical interface circuit board of the local device, and the split/combiner is in the pair.
  • a three-way connection relationship is formed between the end device, the circuit board, and the backup circuit board.
  • the optical interface of the optical splitter of the splitter/combiner can be connected to the peer device.
  • Step 302 Perform fault detection on the circuit board.
  • Step 303 When it is found that the circuit board is faulty, turn off the optical interface connecting the splitter/combiner on the circuit board, and open the standby circuit board to connect the split/combiner with the The optical interface corresponding to the circuit board receives the data signal originally sent to the circuit board through the optical interface on the standby circuit board, or sends an optical signal that needs to be sent through the circuit board;
  • the standby circuit board replaces the circuit board to communicate with the opposite device that connects the optical interface of the optical splitter/combiner.
  • the optical signal transmitted by the optical fiber can perform the characteristics of splitting and combining light, realize mutual backup of any optical interface circuit board, and set the circuit board to connect the split/combiner, and the split/combiner has three links.
  • the other two channels are connected to the working circuit board and the standby circuit board.
  • the two optical interfaces are 1:1 backup.
  • step 301 There is no strict time limit between the step 301 and the step 302.
  • the content of the step 302 may be performed first, and then the content of the step 301 is performed, and the embodiment of the present invention is not specifically limited.
  • the optical interface provided by the standby circuit board is the same as the optical interface of the circuit board that is backed up.
  • the processing capability of the standby circuit board for the packet may be the same as or different from the backup circuit board. If the packet processing capability is the same, the interface of the standby board should have the convergence capability of N:l, where N is the number of boards that are backed up.
  • the so-called "convergence" means that when the interface bandwidth of the standby circuit board is greater than the processing capability, scheduling and selective packet discarding can be performed.
  • the advantage of this "converged" port selection method of the standby circuit board is that when multiple circuit boards are backed up by using one spare circuit board, when multiple circuit boards fail at the same time, the backup circuit board can also be backed up, only when When the traffic of the switched packet is greater than the processing bandwidth of the standby circuit board, some packets will be discarded.
  • the packets with the lower priority are discarded according to the priority of the packets. Packets with higher priority can be processed normally.
  • Those skilled in the art are in the "convergence" port When the method is set, it can be determined according to the actual application scenario, and the embodiment of the present invention is not specifically limited.
  • the processing capacity of the backup circuit board is greater than the processing capacity of the circuit board that is backed up, for example: when the processing capacity of the backup circuit board is twice that of the circuit board that is backed up, when two circuit boards fail simultaneously , due to the existence of the spare board, no data loss will occur.
  • the backup capacity coefficient q y/x of the standby circuit board determines the level of its backup capability.
  • determining whether the circuit board is faulty is obtained by detecting the state of the circuit board.
  • the circuit board may be configured to carry a self-checking mechanism to detect its own state; or, by using a detecting module other than the circuit board, to detect the state of the circuit board, for example, setting the detecting module on the main control board, The status of the circuit board is detected by the main control board.
  • fault detection of the board for example: For the memory, various data can be verified, for example: parity, ECC (Error Checking and Correcting); for clock detection
  • ECC Error Checking and Correcting
  • the phase-locked loop lock indication signal determines whether the clock is good or bad, or performs counting detection; for power supply detection, voltage detection can be performed; for environmental detection, temperature sensor detection can be performed.
  • the data output optical interface opens an optical interface corresponding to the circuit board on the standby circuit board, and communicates with the opposite device through the optical interface of the standby circuit board.
  • the message is performed.
  • the forwarded path information changes, so the forwarding path information needs to be updated.
  • the path information may have different representations for different communication devices. For example, for the router, the path information may be represented by a forwarding entry. When the path information changes, the forwarding entry is correspondingly performed according to the standby circuit board. Update to change the packets originally forwarded to the faulty board to be forwarded to the standby Use a circuit board.
  • the technical solution of the embodiment of the invention has a very flexible redundancy backup mode, and the standby circuit board can be inserted in any circuit board slot.
  • the user can back up multiple circuit boards with a spare circuit board as needed, such as 1:1, 2: 1, 3:1 and other backup relationships, the best balance between reliability and economy.
  • the optical interfaces of the spare boards are respectively connected to the branches of the splitter/combiner connected to the board to which they are backed up.
  • the splitter/combiner can be in the form of one-way two-way and two-way one-way, so that the two branch ports of the splitter/combiner are respectively connected to the two branch ports except the peer device. Connect the spare board and a board backed up by the spare board.
  • a plurality of the backup circuit boards can also be used to simultaneously back up one circuit board, and the split/combiner is a split/multiplexer split/combiner.
  • One of the plurality of branches of the split/multiplexer split/combiner is connected to the circuit board, and the remaining ports in the branch are respectively connected to the plurality of spare circuit boards.
  • multiple boards back up one board, that is, 1 :N backup the reliability of this type of backup will be higher, but the disadvantage is that the economy is not good.
  • multiple redundant circuit boards are used to back up redundant backup relationships of one circuit board, such as 1:2, 1:3.
  • This kind of backup relationship only needs to change the splitting/lighting device, that is, using a one-drive multi-channel passive splitting/lighting device, one port of the one-drive multi-channel splitter/combiner branch output is connected to the line Board, the remaining ports in the branch are connected to each spare board.
  • the spectroscopic/combiner is a passive spectro/combiner.
  • a planar optical waveguide circuit PLC, Planar Lightwave Circuit
  • PON Passive Optical Networks
  • FBT Fused Biconical Taper
  • planar optical waveguide splitter the optical signal is input from the combining end port, and a plurality of output optical signals can be separated through the V-shaped slot of the optical fiber array; on the contrary, the optical signal is input from multiple ports of the splitting end, and is combined The end port outputs a combined signal.
  • Planar optical waveguide splitters are available in a variety of sizes, such as 1 drive 2, 1 drive 16, 1 drive 32, 2 drive 16 and so on. Whether split or combined, the insertion loss of a split or combined light is 3 dB. This is only equivalent to the light energy consumed by about 6 kilometers of fiber.
  • the optical transmission capacity of optical modules is from a few hundred meters to hundreds of kilometers, so the additional consumption of 3dB can be compensated by using higher power optical modules.
  • Another type of passive split/combiner-fused cone-type optical splitter and planar optical waveguide splitter differ only in processing technology, and other applications and parameters are basically the same.
  • the technical solution of the embodiment of the present invention belongs to a non-working redundant system (or a bypass system) composed of two units (ie, a backup circuit board and a backup circuit board thereof), and the model is as shown in FIG. 4 . .
  • the feature of the model is that when one unit is working, the other unit is in a non-operating state.
  • the storage unit is replaced by the switching unit, which is equivalent to the embodiment of the present invention.
  • the standby circuit board does not participate in data transmission, and the data transmission is performed via the unfaulted circuit board.
  • the circuit board fails, the circuit board does not participate in data transmission, and the data transmission is transferred to the standby of the circuit board. The board is executed.
  • the embodiment of the present invention improves the reliability of the circuit board of the communication system by a plurality of orders of magnitude, so that the system that cannot meet the reliability requirements of the carrier-class can fully meet and exceed the reliability of the carrier-class.
  • an embodiment of the present invention further provides a redundant backup system for an optical interface circuit board, as shown in the figure.
  • the system includes: a circuit board 50 to be backed up, a backup circuit board 51, a fault judging module 52, a redundancy control module 53, and a splitter/combiner 54;
  • optical interfaces of the splitting ends of the splitter/combiner 54 are respectively connected to the circuit board and the spare circuit board of the circuit board;
  • the beam splitter/combiner 54 is configured to form a branch of the optical path, and connect data information carried in the form of light to the backup circuit board 51;
  • the fault judging module 52 is configured to determine whether the circuit board 50 is faulty
  • the redundancy control module 53 is configured to: when the circuit board 50 is faulty, turn off the optical interface of the circuit board 50 that is connected to the optical splitter/combiner, and open the standby circuit board 51 to connect the split/combined light And an optical interface corresponding to the circuit board 50;
  • a backup circuit board 51 for receiving a data signal originally sent to the circuit board through an optical interface connected to the splitter/combiner and corresponding to the circuit board 50, or transmitting a signal originally required to be sent through the circuit board Optical signal.
  • the optical signal transmitted by the optical fiber can perform the characteristics of splitting and combining light, realize mutual backup of any optical interface circuit board, and set the circuit board to connect the split/combiner, and the split/combiner has three links.
  • the other two paths are connected to the working circuit board and the standby circuit board respectively.
  • the fault judging module judges that the circuit board is faulty
  • the direction of the sending direction is the direction of the device to the peer device. Closing the data output optical interface of the circuit board, the optical interface stops emitting light, and the optical interface corresponding to the circuit board on the standby circuit board is turned on, so that the optical signal originally sent by the working circuit board is changed by the backup circuit board.
  • the device is transmitted to the peer device.
  • the circuit board cannot process the optical signal and the data information of the bearer due to the fault, and is processed by the backup circuit board.
  • the two optical interfaces are 1:1 backup.
  • the number of optical interfaces on the backup circuit board is N times the number of optical interfaces on the circuit board, the N:l circuit board backup relationship can be realized.
  • the redundancy backup ratio needs to be changed, it is not necessary to modify the electrical connection relationship of the interface board to realize the single and convenient, and the reliability of the optical splitter/combiner is high, which can greatly improve the reliability of the circuit board.
  • the optical interface provided by the standby circuit board is the same as the optical interface of the circuit board that is backed up.
  • the number of optical interfaces on the standby circuit board is the light of multiple circuit boards that are backed up. The sum of the number of interfaces. Users can choose to perform any redundancy ratio backup on any board. For example: If the user only wants to perform 1:1 backup protection on one board, only one additional spare board is required for the same protection board.
  • determining whether the circuit board is faulty is obtained by detecting the state of the circuit board by the fault judging module.
  • the circuit board can be set to carry a self-checking mechanism, and can detect its own state, that is, set the fault judging module in the internal structure of the circuit board; or, set the fault judging module outside the circuit board, so that
  • the fault judging module is a functional module independent of the circuit board, and the fault judging module detects the state of the circuit board.
  • the fault judging module is set on the main control board, and the main control board detects the state of the circuit board.
  • the redundant control module is similar to the implementation mechanism of the fault judging module, and the redundant control module can also be disposed in the internal structure of the circuit board; or the redundant control module is disposed outside the circuit board, so that the redundant control module It is a functional module that is independent of the board.
  • fault detection of the board for example: For the memory, various data can be verified, for example: parity, ECC (Error Checking and Correcting); for clock detection
  • ECC Error Checking and Correcting
  • the phase-locked loop lock indication signal determines whether the clock is good or bad, or performs counting detection; for power supply detection, voltage detection can be performed; for environmental detection, temperature sensor detection can be performed. Therefore, when implementing the embodiment of the present invention, the fault judging module may be provided with any fault detecting mechanism according to an actual application scenario.
  • the processing capability of the standby circuit board for the packet may be the same as or different from the backup circuit board. If the packet processing capability is the same, the interface of the standby board should have the convergence capability of N:l, where N is the number of boards that are backed up.
  • the so-called "convergence" means that when the interface bandwidth of the standby circuit board is greater than the processing capability, scheduling and selective packet discarding can be performed.
  • the advantage of this "converged" port selection method of the standby circuit board is that when multiple circuit boards are backed up by using one spare circuit board, when multiple circuit boards fail at the same time, the backup circuit board can also be backed up, only when When the traffic of the switched packet is greater than the processing bandwidth of the standby circuit board, some packets will be discarded.
  • the packets with the lower priority are discarded according to the priority of the packets. Packets with higher priority can be processed normally.
  • a person skilled in the art can determine the port mode of the "convergence" according to the actual application scenario, and the embodiment of the present invention is not specifically limited.
  • the redundant control module needs to enable the standby circuit board to receive the data signal originally sent to the circuit board.
  • the forwarding path information is modified, so that the redundancy control module forwards the data signal originally sent to the circuit board to the standby circuit board according to the update of the forwarding path information, thereby avoiding data loss.
  • the path information may have different representations for different communication devices.
  • the path information may be represented by a forwarding entry.
  • the forwarding entry is correspondingly performed according to the standby circuit board. Update to change the message originally forwarded to the failed board to be forwarded to the alternate board.
  • the technical solution of the embodiment of the invention has a very flexible redundancy backup mode, and the standby circuit board can be inserted in any circuit board slot.
  • the user can back up multiple circuit boards with a spare circuit board as needed, as shown in FIG. Relationships can be like 1:1, 2:1, 3:1, etc.
  • the optical interfaces of the spare boards are respectively connected to one port of the branch output of the split/combiner connected to the board to which it is backed up.
  • the splitter/combiner can be in the form of one drive and two paths, so that the two ports of the branch output of the splitter/combiner are respectively connected to the backup circuit board and a circuit board backed up by the backup circuit board.
  • a plurality of the backup circuit boards can also be used to simultaneously back up one circuit board, and the split/combiner is a multi-channel split/combiner, and the one drive is more One of the output ports of the splitter/combiner branch is connected to the circuit board, and the remaining ports in the branch are respectively connected to the respective standby circuit boards.
  • multiple redundant circuit boards are used to back up redundant backup relationships of one circuit board, such as 1:2, 1:3.
  • This kind of backup relationship only needs to change the splitting/lighting device, that is, using a one-drive multi-channel passive splitting/lighting device, one port of the one-drive multi-channel splitter/combiner branch output is connected to the line Board, the remaining ports in the branch are connected to each spare board.
  • the spectroscopic/combiner is a passive spectro/combiner.
  • a planar optical waveguide circuit PLC, Planar Lightwave Circuit
  • PON Passive Optical Networks
  • FBT Fused Biconical Taper
  • Embodiments of the present invention increase the reliability of a circuit board of a communication system by a plurality of orders of magnitude, enabling Systems that did not meet carrier-class reliability requirements fully met and exceeded carrier-grade reliability requirements.
  • the present invention is only costly to increase the reliability of the system only by adding a number of passive spectroscopic combining devices that are widely used in the market and are very inexpensive. Therefore, it is easy to implement and low in cost.
  • the redundant backup system of the optical interface circuit board shown in FIG. 5 and FIG. 6 , the redundant control module and the fault judgment module are all disposed outside the circuit board and become functional modules independent of the circuit board.
  • the embodiment of the present invention further provides an optical interface circuit board.
  • the circuit board 70 includes:
  • the first optical interface module 701 is configured to connect an optical interface of the optical splitter end of the external optical/combiner 702, and the other optical interface of the splitting end of the optical splitter/combiner 702 is connected to the spare circuit board 705 of the circuit board;
  • the fault judging module 703 is configured to determine whether the circuit board is faulty.
  • the redundancy control module 704 is configured to: when the circuit board fails, turn off the first optical interface 701, and control to turn on the light on the backup circuit board 705 that is connected to the optical splitter/combiner and corresponding to the circuit board. interface.
  • the redundancy control module forwards the data signal originally sent to the circuit board to the standby circuit board according to the update of the forwarding path information.
  • the split/combiner is a passive split/combiner, including: a planar optical waveguide splitter or a fused taper splitter.
  • optical interface circuit board For a description of the optical interface circuit board, refer to the detailed description in the foregoing embodiments, and the embodiments of the present invention will not be described.
  • system embodiment since it basically corresponds to the method embodiment, it is described as a comparison, and the relevant parts can be referred to the description of the method embodiment.
  • the system embodiments described above are merely illustrative, wherein the modules described as separate components may or may not be physically separate, and the components displayed as modules may or may not be physical modules, ie may be located A place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

光接口线路板的冗余备份方法、 系统及光接口线路板 技术领域
本发明涉及通信技术领域, 尤其涉及一种光接口线路板的冗余备份方法、 系统及光接口线路板。
背景技术
随着通信和电子技术的发展,通信设备中芯片规模以及线路板的复杂度在 成倍增加, 线路板的整体失效率也在成倍增加, 这是由于线路板的容量越大, 集成度越高, 就越容易出现故障, 而且故障所导致的危害也越大。 对于通信设 备来说, 往往可靠度要求高达 99.999 % , 甚至 99.9999 % , 如果仅靠提高线路 板或芯片的固有可靠性将不能达到上述可靠性要求。
目前的通信设备, 如路由器、 交换机, 往往采用分布式的系统架构, 典型 的系统如图 1所示。该系统架构中主要包括:若干用于处理通信报文的线路板、 多块用于线路板之间数据交换的交换网板和两块或多块用于控制各个单板运 行的主控板。每个单板占用一个槽位,一般可以在现场进行安装和更换。其中, 交换网板之间具有互为备份的关系, 两块主控板之间也具有主、备冗余备份能 力, 但线路板往往不具备互为备份关系, 如果一块线路板发生故障, 则与之相 连的线路将不能继续通信, 发生故障的线路板所承载的业务数据也会丟失。
为了解决这一问题,通常对线路板进行备份处理。现有技术中实现备份的 方式主要有以下两种形式:
一种方式是从网络层面进行优化, 即采用冗余的网络和通信设备, 例如现 有的双归属组网形式。 然而, 这种方式只能实现 1 : 1的冗余备份, 而且, 由 于需要两套通信设备和光纤链路, 用户必须额外付出设备、 光纤布线、 机拒、 安装机房等巨大的代价, 该双归属组网所导致的功耗和维护成本等也非常高 昂;
另一种方式是设计具有 N: 1冗余备份的通信设备, 这种设备内部备份和 连接关系较为复杂, 筒化的逻辑关系如图 2所示。 线路板按照逻辑功能划分为 接口板和线路处理板。 正常情况下, 一个接口板对应一个线路处理板。 通常认 为接口板内部连接关系比较筒单, 因而失效率低, 因此在该实现方案中只对线 路板处理板进行备份。在某一线路处理板失效之后, 需要通过额外的交换装置 将该故障线路处理板所对应的接口板的数据传输到备用线路处理板上进行处 理。 在这种实现方式中, 由于需要额外增加交换装置, 使得系统设计复杂, 成 本增加; 并且, 接口板不具备冗余备份能力, 虽然接口板失效率低, 但接口板 也是由集成电路等有源器件组成, 依然会存在失效的可能, 因此, 该系统可靠 性最多只能提升到接口板的固有可靠度水平。
发明内容
本发明提出一种光接口线路板的冗余备份方法、 系统及光接口线路板, 能 够实现线路板的 N:l冗余备份, 提高线路板的可靠度。
本发明的技术解决方案是:
本发明实施例提供一种光接口线路板的冗余备份方法, 所述方法包括: 利用分光 /合光器的分光端的光接口分别连接线路板以及所述线路板的备 用线路板;
对所述线路板进行故障检测;
当所述线路板发生故障时, 关闭所述线路板上连接所述分光 /合光器的光 接口, 开启所述备用线路板上连接所述分光 /合光器且与所述线路板对应的光 接口, 通过所述备用线路板上的该光接口接收原发往所述线路板的数据信号, 或者发送原来需要通过所述线路板发送的光信号。
一种光接口线路板, 包括:
第一光接口模块, 用于连接外部分光 /合光器的分光端的一个光接口, 所 述分光 /合光器的分光端的其他光接口连接所述线路板的备用线路板;
故障判断模块, 用于判断线路板是否发生故障;
冗余控制模块, 用于当线路板发生故障时, 关闭所述线路板上连接所述分 光 /合光器的光接口, 开启所述备用线路板上连接所述分光 /合光器且与所述线 路板对应的光接口。
一种光接口线路板的冗余备份系统, 所述系统包括:
分光 /合光器, 所述分光 /合光器的分光端的光接口分别连接线路板以及所 述线路板的备用线路板;
故障判断模块, 用于判断线路板是否发生故障; 冗余控制模块, 用于当线路板发生故障时, 关闭所述线路板上连接所述分 光 /合光器的光接口, 开启所述备用线路板上连接所述分光 /合光器且与所述线 路板对应的光接口;
备用线路板, 用于通过连接所述分光 /合光器且与所述线路板 50对应的光 接口接收原发往所述线路板的数据信号,或者发送原来需要通过所述线路板发 送的光信号。
本发明实施例中, 利用光纤传输的光信号可以进行分光和合光的特性, 实 现任意光接口线路板之间互为备份, 并设置线路板连接分光 /合光器, 分光 /合 光器具有三通特性, 除了与对端设备相连的一路外, 其余两路分别连接工作线 路板和备用线路板。 当工作线路板发生故障时, 对于发送方向, 即本设备到对 端设备的方向, 关闭所述线路板的数据输出光接口, 该光接口停止发光, 开启 备用线路板上与所述线路板对应的光接口,使得原来由工作线路板发出的光信 号改由备份线路板发出并传输到对端设备; 同样, 对于接收方向, 即对端设备 到本设备的方向, 所述线路板由于故障无法处理光信号及承载的数据信息, 改 由备份线路板进行处理。 通过分光 /合光器, 两个光接口为 1:1备份, 当备份线 路板的光接口数量是所述线路板光接口数量的 N倍时, 就可以实现 N:l的线 路板备份关系。
此外, 当冗余备份比例需要发生变化时, 无需对接口板的电层面连接关系 进行修改, 实现筒单、 方便, 且分光 /合光器可靠性高, 能够大大提高线路板 的可靠度。
附图说明
图 1为现有技术中通信设备的分布式的系统架构示意图;
图 2为现有技术中一种 N: l冗余备份的通信设备的内部连接关系示意图; 图 3为本发明实施例一种光接口线路板的冗余备份方法步骤流程示意图; 图 4为本发明实施例的非工作冗余系统模型示意图;
图 5 为本发明实施例一种光接口线路板的冗余备份系统实施例结构示意 图;
图 6为本发明实施例一块备用线路板备份多块线路板的系统结构示意图; 图 7为本发明实施例一种光接口线路板的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整的描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
通常,对线路板的备份都是基于电层面的实现方式, 冗余备份的能力一般 是固定的, 例如如果最初设计是 2:1的备份关系, 当需要改变冗余备份比例就 必须重新设计系统, 相关的接口板、 线路处理板、 交换板的电路连接关系等都 可能需要重新设计。
为了避免上述缺陷,本发明实施例提供了一种光接口线路板的冗余备份方 法, 如图 3所示, 所述方法可以包括以下步骤:
步骤 301、利用分光 /合光器的分光端的光接口分别连接线路板以及所述线 路板的备用线路板;
该步骤中, 利用光纤传输的光信号可以进行分光和合光的特性, 将分光 / 合光器插入到对端设备与本地设备光接口线路板之间的光纤通道, 通过分光 / 合光器在对端设备、 线路板和备用线路板三者之间形成三通连接关系, 其中, 分光 /合光器的合光端光接口可以连接对端设备。
步骤 302、 对所述线路板进行故障检测。
步骤 303、 当发现所述线路板发生故障时, 关闭所述线路板上连接所述分 光 /合光器的光接口, 开启所述备用线路板上连接所述分光 /合光器且与所述线 路板对应的光接口,通过所述备用线路板上的该光接口接收原发往所述线路板 的数据信号, 或者发送原来需要通过所述线路板发送的光信号;
该步骤中, 当线路板发生故障时, 由备用线路板替代该线路板与连接分光 /合光器合光端光接口的对端设备进行通信。
本发明实施例中, 利用光纤传输的光信号可以进行分光和合光的特性, 实 现任意光接口线路板之间互为备份, 并设置线路板连接分光 /合光器, 分光 /合 光器具有三通特性, 除了与对端设备相连的一路外, 其余两路分别连接工作线 路板和备用线路板。 当工作线路板发生故障时, 对于发送方向, 即本设备到对 端设备的方向, 关闭所述线路板的数据输出光接口, 该光接口停止发光, 开启 备用线路板上与所述线路板对应的光接口,使得原来由工作线路板发出的光信 号改由备份线路板发出并传输到对端设备; 同样, 对于接收方向, 即对端设备 到本设备的方向, 所述线路板由于故障无法处理光信号及承载的数据信息, 改 由备份线路板进行处理。 通过分光 /合光器, 两个光接口为 1 :1备份, 当备份线 路板的光接口数量是所述线路板光接口数量的 N倍时, 就可以实现 N:l的线 路板备份关系。
此外, 当冗余备份比例需要发生变化时,无需对接口板的电层面连接关系 进行修改, 实现筒单、 方便, 且分光 /合光器可靠性高, 能够大大提高线路板 的可靠度。
步骤 301和步骤 302之间没有严格的时序限制,在具体实施时,也可以先 执行步骤 302的内容, 再执行步骤 301的内容, 对此, 本发明实施例不做具体 限定。
通常,备用线路板提供的光接口与其所备份的线路板光接口相同, 当利用 一块备用线路板备份多块线路板时,备用线路板上的光接口数量是其所备份的 多块线路板的光接口数量之和。 例如, 需要进行备份的线路板有 4块, 每个线 路板有 10个 1000BASE-FX (千兆光纤端口以太网)接口, 则备份用的线路板 应提供 4 X 10 = 40个 1000BASE-FX接口。
用户可以选择对任意线路板进行任意冗余比例的备份,例如: 如果用户只 希望对一块线路板进行 1 :1备份保护, 则只需要额外一块与被保护线路板相同 的备用线路板。
需要说明的是, 备用线路板对报文的处理能力与其备份的线路板可以相 同, 也可以不同。 如果报文处理能力相同, 则备用线路板的接口应具有 N:l 的收敛能力, 这里的 N为其备份的线路板数目。 所谓 "收敛" 是指当备用线 路板的接口带宽大于处理能力时, 能够进行调度和有选择的进行报文丟弃。备 用线路板这种 "收敛"的端口选择方式的优点是利用一块备用线路板对多块线 路板进行备份时, 当多块线路板同时出现故障时, 该备用线路板也可以进行备 份, 只是当被切换的报文流量大于备用线路板处理带宽时,将有部分报文会被 丟弃,例如:按照报文的优先级进行排序,选择将优先级较低的报文进行丟弃, 以保证优先级较高的报文能够正常处理。 本领域技术人员在对 "收敛" 的端口 方式进行设置时, 可根据实际的应用场景进行确定, 对此, 本发明实施例并不 做具体限定。
另一种情形是备用线路板的处理能力大于其所备份的线路板的处理能力, 例如: 备份线路板的处理能力 2倍于其所备份的线路板, 则当两块线路板同时 发生故障时, 由于备用线路板的存在, 不会发生数据丟失的情形。 一般地说, 假设线路板的处理能力为 X , 备用线路板的处理能力为 y , 则备用线路板的备 份能力系数 q = y/x决定了其备份能力的高低, 如 q = 4时, 则四块线路板同时 发生故障时, 备用线路板进行数据保护倒换后不会发生报文丟失; 如 q = 0.5 时,若一块线路板原承载的数据报文流量为线速时,则当该线路板发生故障时, 大约有一半的数据报文会因备份线路板无法处理而丟弃。
本发明实施例中,判断线路板是否发生故障是通过对线路板的状态进行检 测获得。 在具体实施时, 可设置线路板携带自检机制, 能够对自身状态进行检 测; 或者, 通过线路板之外的检测模块对线路板的状态进行检测, 例如在主控 板上设置该检测模块, 由主控板对线路板的状态进行检测。
对于线路板的故障检测, 已有多种实现方式, 例如: 对于存储器可以通过 各种数据校验, 例如: 奇偶校验、 ECC ( Error Checking and Correcting, 错误 检查和纠正); 对于时钟检测可以通过锁相环锁定指示信号判断时钟好坏, 或 者进行计数检测; 对于电源检测可以通过电压的检测; 对于环境检测可以通过 温度传感器检测等。
当发现存在不能自动修复的故障, 例如, 时钟晶振无输出, 电压过高或过 低, 大量数据包丟失或阻塞,数据校验错误或者芯片状态寄存器反映存在严重 错误等, 关闭所述线路板的数据输出光接口, 开启备用线路板上与所述线路板 对应的光接口, 通过所述备用线路板的光接口与对端设备进行通信。
当确定线路板发生故障,需要由备用线路板处理和转发原发往所述线路板 的报文时, 或者原来由所述线路板发出的报文需由备用线路板发出时,对报文 进行转发的路径信息会发生变化, 因此, 需要更新转发路径信息。 所述路径信 息对于不同的通信设备可以具有不同的表现形式, 例如, 对于路由器来说, 路 径信息可以通过转发表项进行表示, 当路径信息发生变化时,相应将转发表项 按照备用线路板进行更新,使原来转发到故障线路板的报文, 更改为转发到备 用线路板。
本发明实施例的技术方案具有非常灵活的冗余备份方式,备用线路板可以 插在任意线路板槽位, 用户可以根据需要用一块备用线路板备份多块线路板, 如 1:1、 2:1、 3:1等备份关系, 在可靠性和经济性之间取得最佳的平衡。 此时, 备用线路板的光接口分别与对应其所备份的线路板相连接的分光 /合光器的分 支相连接。 可见, 该情形下, 分光 /合光器可以选用一分两路和两路合一路的 形式, 使得分光 /合光器的三个分支端口中, 除连接对端设备外的两个分支端 口分别连接备用线路板以及该备用线路板所备份的一块线路板。
在本发明的另一个实施例中,还可以利用多块所述备用线路板同时备份一 块线路板, 则所述分光 /合光器为一分多路和多路合一路的分光 /合光器, 所述 一分多路和多路合一路的分光 /合光器的多个分支中的一端口连接所述线路 板, 分支中其余端口分别连接多个备用线路板。此时多个线路板备份一个线路 板, 即 1 :N备份, 此种备份方式的可靠性会更高, 但缺点是经济性不好。
本发明实施例中, 实现多块备用线路板备份一块线路板的冗余备份关系, 如 1:2、 1 :3... ...。 这种备份关系只需要改变分光 /合光装置, 即使用一驱多路的 无源分光 /合光装置, 所述一驱多路分光 /合光器分支输出端中的一端口连接所 述线路板, 分支中其余端口分别连接各个备用线路板。
理论上, 多块线路板备份一块线路板的可靠性更高, 但是, 代价也更大, 而且需要驱动能力更强大的光模块,一般在实际应用中极少采用,但这种实现 方式可以为用户提供更多种备份的选择形式。
此外, 需要说明的是, 所述分光 /合光器为无源分光 /合光器。 可以使用光 无源网络( PON, Passive Optical Networks )中常用的平面光波导分路器( PLC , Planar Lightwave Circuit ), 或者熔融拉锥型 ( Fused Biconical Taper, FBT )分 光器。 由于分光 /合光为无源装置, 其使用寿命可做到与光纤一样长, 在没有 外力破坏情况下不会发生失效。
其中, 平面光波导分路器中, 光信号从合路端端口输入, 经过光纤阵列 V 型槽可以分出多个输出光信号; 反之, 光信号从分路端的多个端口输入, 在合 路端端口输出合路信号。 这部分内容属于本领域技术人员熟知的技术, 因此, 不再进行赘述。 平面光波导分路器有多种规格,如 1驱 2、 1驱 16、 1驱 32、 2驱 16等等。 无论是分光还是合光, 一次分光或合光的插入损耗都是 3 dB。 这仅相当于大 约 6公里光纤所消耗的光能量,一般光模块的光传输能力规格从几百米到上百 公里, 因此 3dB的额外消耗可以通过使用较高功率的光模块来弥补。
另外一种无源分光 /合光器一一熔融拉锥型光分路器与平面光波导分路器 的区别仅在加工工艺上的区别, 其他应用及参数基本相同。
按照可靠性理论, 本发明实施例的技术方案属于两个单元(即: 备用线路 板及其备份的线路板)组成的非工作冗余系统(或称旁联系统), 模型如图 4 所示。 该模型的特征是, 一个单元工作时, 则另一个单元处于非工作状态的储 备状态, 当工作单元发生故障时, 通过转换装置使储备的单元替换工作单元, 即相当于本发明实施例中, 当正常状态下, 备用线路板并不参与数据传输, 数 据传输经由未发生故障的线路板执行, 当线路板发生故障时, 则该线路板不参 与数据传输, 数据传输转由该线路板的备用线路板执行。
下面说明本发明实施例技术方案中的可靠度。若假定故障检测及切换的可 靠度为 100 % , E1 和 E2单元的失效率相同为 λ , 则上述冗余系统的可靠度 RS(t)为: RS(t)=exp(- t) x (l+ t), 其中 t为时间变量。 单个单元的可靠度为 R(t)= exp(- X t), 因此, 经过冗余备份后, 系统的可靠度提升了(1+ λ ί)倍。 为 说明可靠度提升对比效果, 举例如下:
假设一个单元可靠度为一个常数, R=exp (- λ t)=0.99, 则经过冗余备份后, 系统的可靠度为: RS=(l-ln(0.99))*0.99=0.99995; 当一个单元的可靠度 R=0.999 时, 经过冗余备份后的可靠度为: RS=(l-ln(0.999))*0.999=0.9999995。
由此可见, 本发明实施例使得通信系统的线路板可靠度提升了多个数量 级,能够使得原来不能满足电信级可靠度要求的系统完全达到并超过电信级可 靠度的要求。
另外,相对于其他线路板备份系统, 本发明在大大提升系统可靠度的代价 仅仅在于增加若干市场大量应用、且价格十分低廉的无源的分光合路装置。 因 此, 实现方便, 成本较低。 相应地, 本发明实施例还提供了一种光接口线路板的冗余备份系统, 如图 5所示, 所述系统包括: 待备份的线路板 50、 备用线路板 51、 故障判断模块 52、 冗余控制模块 53及分光 /合光器 54; 其中
所述分光 /合光器 54的分光端的光接口分别连接线路板以及所述线路板的 备用线路板;
所述分光 /合光器 54用于形成光路的分支, 将以光形式承载的数据信息连 接到所述备用线路板 51上;
故障判断模块 52, 用于判断线路板 50是否发生故障;
冗余控制模块 53 , 用于当线路板 50发生故障时, 关闭所述线路板 50上 连接所述分光 /合光器的光接口,开启所述备用线路板 51上连接所述分光 /合光 器且与所述线路板 50对应的光接口;
备用线路板 51 ,用于通过连接所述分光 /合光器且与所述线路板 50对应的 光接口接收原发往所述线路板的数据信号,或者发送原来需要通过所述线路板 发送的光信号。
本发明实施例中, 利用光纤传输的光信号可以进行分光和合光的特性, 实 现任意光接口线路板之间互为备份, 并设置线路板连接分光 /合光器, 分光 /合 光器具有三通特性, 除了与对端设备相连的一路外, 其余两路分别连接工作线 路板和备用线路板,当故障判断模块判断出线路板发生故障时,对于发送方向, 即本设备到对端设备的方向, 关闭所述线路板的数据输出光接口, 该光接口停 止发光, 开启备用线路板上与所述线路板对应的光接口,使得原来由工作线路 板发出的光信号改由备份线路板发出并传输到对端设备;同样,对于接收方向, 即对端设备到本设备的方向,所述线路板由于故障无法处理光信号及承载的数 据信息,改由备份线路板进行处理。通过分光 /合光器,两个光接口为 1 :1备份, 当备份线路板的光接口数量是所述线路板光接口数量的 N倍时, 就可以实现 N:l的线路板备份关系。 当冗余备份比例需要发生变化时, 无需对接口板的电 层面连接关系进行修改, 实现筒单、 方便, 且分光 /合光器可靠性高, 能够大 大提高线路板的可靠度。
通常,备用线路板提供的光接口与其所备份的线路板光接口相同, 当利用 一块备用线路板备份一块线路板时,备用线路板上的光接口数量是其所备份的 多块线路板的光接口数量之和。 用户可以选择对任意线路板进行任意冗余比例的备份, 例如: 如果用户只 希望对一块线路板进行 1 :1备份保护, 则只需要额外一块与被保护线路板相同 的备用线路板。
本发明实施例中,判断线路板是否发生故障是通过故障判断模块对线路板 的状态进行检测获得。 在具体实施时, 可设置线路板携带自检机制, 能够对自 身状态进行检测, 即, 将故障判断模块设置在线路板的内部结构中; 或者, 将 故障判断模块设置在线路板之外,使得该故障判断模块是独立于线路板的功能 模块,通过该故障判断模块对线路板的状态进行检测, 例如在主控板上设置该 故障判断模块, 由主控板对线路板的状态进行检测。
冗余控制模块与故障判断模块的实现机制相类似,同样可以将冗余控制模 块设置在线路板的内部结构中; 或者, 将冗余控制模块设置在线路板之外, 使 得该冗余控制模块是独立于线路板的功能模块。
对于线路板的故障检测, 已有多种实现方式, 例如: 对于存储器可以通过 各种数据校验, 例如: 奇偶校验、 ECC ( Error Checking and Correcting, 错误 检查和纠正); 对于时钟检测可以通过锁相环锁定指示信号判断时钟好坏, 或 者进行计数检测; 对于电源检测可以通过电压的检测; 对于环境检测可以通过 温度传感器检测等。 因此, 在实现本发明实施例时, 根据实际应用场景, 故障 判断模块可以具备任何一种的故障检测机制。
需要说明的是, 备用线路板对报文的处理能力与其备份的线路板可以相 同, 也可以不同。 如果报文处理能力相同, 则备用线路板的接口应具有 N:l 的收敛能力, 这里的 N为其备份的线路板数目。 所谓 "收敛" 是指当备用线 路板的接口带宽大于处理能力时, 能够进行调度和有选择的进行报文丟弃。备 用线路板这种 "收敛"的端口选择方式的优点是利用一块备用线路板对多块线 路板进行备份时, 当多块线路板同时出现故障时, 该备用线路板也可以进行备 份, 只是当被切换的报文流量大于备用线路板处理带宽时,将有部分报文会被 丟弃,例如:按照报文的优先级进行排序,选择将优先级较低的报文进行丟弃, 以保证优先级较高的报文能够正常处理。 本领域技术人员在对 "收敛" 的端口 方式进行设置时, 可根据实际的应用场景进行确定, 对此, 本发明实施例并不 做具体限定。 当故障检测模块确定出线路板发生故障的检测结果之后,需要由冗余控制 模块启用备用线路板接收原发往所述线路板的数据信号。 同时,修改转发路径 信息, 从而, 冗余控制模块根据转发路径信息的更新, 将原发往所述线路板的 数据信号转发至备用线路板, 避免数据的丟失。
所述路径信息对于不同的通信设备可以具有不同的表现形式, 例如,对于 路由器来说, 路径信息可以通过转发表项进行表示, 当路径信息发生变化时, 相应将转发表项按照备用线路板进行更新, 使原来转发到故障线路板的报文, 更改为转发到备用线路板。
本发明实施例的技术方案具有非常灵活的冗余备份方式,备用线路板可以 插在任意线路板槽位, 用户可以根据需要用一块备用线路板备份多块线路板, 如图 6所示, 备份关系可以如 1 :1、 2:1、 3:1等。 此时, 备用线路板的光接口 分别与对应其所备份的线路板相连接的分光 /合光器的分支输出端的一个端口 连接。 可见, 该情形下, 分光 /合光器可以选用一驱两路的形式, 使得分光 /合 光器的分支输出的两个端口分别连接备用线路板以及该备用线路板所备份的 一块线路板。
在本发明的另一个实施例中,还可以利用多块所述备用线路板同时备份一 块线路板, 则所述分光 /合光器为一驱多路分光 /合光器, 所述一驱多路分光 / 合光器分支输出端中的一端口连接所述线路板,分支中其余端口分别连接各个 备用线路板。
本发明实施例中, 实现多块备用线路板备份一块线路板的冗余备份关系, 如 1:2、 1 :3... ...。 这种备份关系只需要改变分光 /合光装置, 即使用一驱多路的 无源分光 /合光装置, 所述一驱多路分光 /合光器分支输出端中的一端口连接所 述线路板, 分支中其余端口分别连接各个备用线路板。
需要说明的是, 所述分光 /合光器为无源分光 /合光器。 可以使用光无源网 络( PON , Passive Optical Networks )中常用的平面光波导分路器( PLC , Planar Lightwave Circuit ), 或者熔融拉锥型 ( Fused Biconical Taper, FBT )分光器。 由于分光 /合光为无源装置, 其使用寿命可做到与光纤一样长, 在没有外力破 坏情况下不会发生失效。
本发明实施例使得通信系统的线路板可靠度提升了多个数量级,能够使得 原来不能满足电信级可靠度要求的系统完全达到并超过电信级可靠度的要求。 另夕卜,相对于其他线路板备份系统, 本发明在大大提升系统可靠度的代价 仅仅在于增加若干市场大量应用、且价格十分低廉的无源的分光合路装置。 因 此, 实现方便, 成本较低。 图 5和图 6中所示的光接口线路板的冗余备份系统,冗余控制模块与故障 判断模块均设置在线路板之外, 成为独立于线路板的功能模块。 当冗余控制模 块与故障判断模块均设置在线路板的内部结构中时,本发明实施例还提供了一 种光接口线路板, 如图 7所示, 该线路板 70包括:
第一光接口模块 701 ,用于连接外部分光 /合光器 702的分光端的一个光接 口, 所述分光 /合光器 702的分光端的其他光接口连接所述线路板的备用线路 板 705;
故障判断模块 703 , 用于判断线路板是否发生故障;
冗余控制模块 704, 用于当线路板发生故障时, 关闭所述第一光接口 701 , 控制开启所述备用线路板 705上连接所述分光 /合光器且与所述线路板对应的 光接口。
其中, 所述冗余控制模块根据转发路径信息的更新,将原发往所述线路板 的数据信号转发至所述备用线路板。 所述分光 /合光器为无源分光 /合光器, 包 括: 平面光波导分路器或熔融拉锥型分光器。
关于光接口线路板的相关说明可以参见前面实施例中的详细描述,本发明 实施例对此不再进行赞述。 对于系统实施例而言, 由于其基本相应于方法实施例, 所以描述得比较筒 单,相关之处参见方法实施例的部分说明即可。 以上所描述的系统实施例仅仅 是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上 分开的,作为模块显示的部件可以是或者也可以不是物理模块, 即可以位于一 个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的 部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出 创造性劳动的情况下, 即可以理解并实施。 对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的,本文中所定义的一般原理可以在不脱离本发明实施例的精神或范围的情况 下, 在其它实施例中实现。 因此, 本发明实施例将不会被限制于本文所示的这 些实施例, 而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

权 利 要 求
1、 一种光接口线路板的冗余备份方法, 其特征在于, 所述方法包括: 利用分光 /合光器的分光端的光接口分别连接线路板以及所述线路板的备 用线路板;
对所述线路板进行故障检测;
当所述线路板发生故障时, 关闭所述线路板上连接所述分光 /合光器的光 接口, 开启所述备用线路板上连接所述分光 /合光器且与所述线路板对应的光 接口, 通过所述备用线路板上的该光接口接收原发往所述线路板的数据信号, 或者发送原来需要通过所述线路板发送的光信号。
2、 根据权利要求 1所述的光接口线路板的冗余备份方法, 其特征在于, 所述方法还包括: 利用多块所述备用线路板同时备份一块线路板, 则所述分光 /合光器为一分多路分光 /合光器,所述一分多路分光 /合光器分支输出端中的一 端口连接所述线路板, 分支中其余端口分别连接所述备用线路板。
3、 根据权利要求 1所述的光接口线路板的冗余备份方法, 其特征在于, 根据转发路径信息的更新,将原发往所述线路板的数据信号转发至所述备用线 路板。
4、 根据权利要求 1-3 中任一项所述的光接口线路板的冗余备份方法, 其 特征在于, 所述分光 /合光器为无源分光 /合光器。
5、 根据权利要求 4所述的光接口线路板的冗余备份方法, 其特征在于, 所述无源分光 /合光器包括: 平面光波导分路器或熔融拉锥型分光器。
6、 一种光接口线路板, 其特征在于, 包括:
第一光接口模块, 用于连接外部分光 /合光器的分光端的一个光接口, 所 述分光 /合光器的分光端的其他光接口连接所述线路板的备用线路板;
故障判断模块, 用于判断线路板是否发生故障;
冗余控制模块, 用于当线路板发生故障时, 关闭所述线路板上连接所述分 光 /合光器的光接口, 开启所述备用线路板上连接所述分光 /合光器且与所述线 路板对应的光接口。
7、 根据权利要求 6所述的光接口线路板, 其特征在于, 所述冗余控制模 块根据转发路径信息的更新,将原发往所述线路板的数据信号转发至所述备用 线路板。
8、 根据权利要求 6或 7 所述的光接口线路板, 其特征在于, 所述分光 / 合光器为无源分光 /合光器。
9、 根据权利要求 8 所述的光接口线路板, 其特征在于, 所述无源分光 / 合光器包括: 平面光波导分路器或熔融拉锥型分光器。
10、 一种光接口线路板的冗余备份系统, 其特征在于, 所述系统包括: 分光 /合光器, 所述分光 /合光器的分光端的光接口分别连接线路板以及所 述线路板的备用线路板;
故障判断模块, 用于判断线路板是否发生故障;
冗余控制模块, 用于当线路板发生故障时, 关闭所述线路板上连接所述分 光 /合光器的光接口, 开启所述备用线路板上连接所述分光 /合光器且与所述线 路板对应的光接口;
备用线路板, 用于通过连接所述分光 /合光器且与所述线路板 50对应的光 接口接收原发往所述线路板的数据信号,或者发送原来需要通过所述线路板发 送的光信号。
11、根据权利要求 10所述的光接口线路板的冗余备份系统, 其特征在于, 所述备用线路板为多块, 用于同时备份一块线路板; 则所述分光 /合光器为一 分多路分光 /合光器, 所述一分多路分光 /合光器分支输出端中的一端口连接所 述线路板, 分支中其余端口分别连接所述备用线路板。
12、根据权利要求 10所述的光接口线路板的冗余备份系统, 其特征在于, 所述冗余控制模块根据转发路径信息的更新,将原发往所述线路板的数据信号 转发至所述备用线路板。
13、 根据权利要求 10-12中任一项所述的光接口线路板的冗余备份系统, 其特征在于, 所述分光 /合光器为无源分光 /合光器。
14、根据权利要求 13所述的光接口线路板的冗余备份系统, 其特征在于, 所述无源分光 /合光器包括: 平面光波导分路器或熔融拉锥型分光器。
PCT/CN2010/076791 2010-09-10 2010-09-10 光接口线路板的冗余备份方法、系统及光接口线路板 WO2012031402A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/076791 WO2012031402A1 (zh) 2010-09-10 2010-09-10 光接口线路板的冗余备份方法、系统及光接口线路板
CN201080003330.6A CN102652399B (zh) 2010-09-10 2010-09-10 光接口线路板的冗余备份方法、系统及光接口线路板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/076791 WO2012031402A1 (zh) 2010-09-10 2010-09-10 光接口线路板的冗余备份方法、系统及光接口线路板

Publications (1)

Publication Number Publication Date
WO2012031402A1 true WO2012031402A1 (zh) 2012-03-15

Family

ID=45810070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076791 WO2012031402A1 (zh) 2010-09-10 2010-09-10 光接口线路板的冗余备份方法、系统及光接口线路板

Country Status (2)

Country Link
CN (1) CN102652399B (zh)
WO (1) WO2012031402A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111833799A (zh) * 2019-04-15 2020-10-27 杭州海康威视数字技术股份有限公司 一种led接收组件及接收卡切换方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113709601B (zh) * 2020-05-20 2022-10-28 华为技术有限公司 一种光传输设备、系统及光传输方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661936A (zh) * 2004-02-25 2005-08-31 华为技术有限公司 实现多级通信设备备份的装置及其主备倒换的方法
CN1921357A (zh) * 2006-09-21 2007-02-28 杭州华为三康技术有限公司 一种全光纤保护装置及其方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661936A (zh) * 2004-02-25 2005-08-31 华为技术有限公司 实现多级通信设备备份的装置及其主备倒换的方法
CN1921357A (zh) * 2006-09-21 2007-02-28 杭州华为三康技术有限公司 一种全光纤保护装置及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111833799A (zh) * 2019-04-15 2020-10-27 杭州海康威视数字技术股份有限公司 一种led接收组件及接收卡切换方法
CN111833799B (zh) * 2019-04-15 2022-04-05 杭州海康威视数字技术股份有限公司 一种led接收组件及接收卡切换方法

Also Published As

Publication number Publication date
CN102652399B (zh) 2014-07-30
CN102652399A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
US7792016B2 (en) Network relay device for relaying data in a network and control method for the same
JP5021037B2 (ja) マスタ/スレーブ構造を有する通信システム
US8325598B2 (en) Automatic protection switching of virtual connections
US6738344B1 (en) Link extenders with link alive propagation
WO2006102826A1 (fr) Procede de realisation de sauvegarde de service de donnees
US20040085893A1 (en) High availability ethernet backplane architecture
CN101557313B (zh) 一种电信级宽带接入设备上联板卡保护的方法
US8416680B2 (en) Apparatus and method for controlling data communication
WO2009082894A1 (fr) Procédé, système et équipement pour la mise en œuvre d'une commutation automatique de protection entre cartes principales et de réserve
WO2011003337A1 (zh) 链路数据的保护方法、系统及装置
CA2302257C (en) Communication device for the transmission of information signals
EP1182903A1 (en) Point-to-point protection in point-to-multipoint networks
WO2012000374A1 (zh) 接口业务集中处理方法和系统
US20170142002A1 (en) Communication device and communication system
US11349704B2 (en) Physical layer interface with redundant data paths
US6895024B1 (en) Efficient implementation of 1+1 port redundancy through the use of ATM multicast
WO2012031402A1 (zh) 光接口线路板的冗余备份方法、系统及光接口线路板
WO2012103696A1 (zh) 光线路传输保护系统和方法
CN114095462B (zh) 一种雷达处理机srio通信系统的容错方法及系统
EP3449603B1 (en) Data center network
JP2009212668A (ja) 光伝送システム
KR20100047388A (ko) 디지털 회로를 이용한 10 기가 이더넷 용 장애 복구 장치
CN209930282U (zh) 一种利用控制面链路自动保护数据面链路的系统
WO2012139452A1 (zh) 一种以太网保护倒换的实现方法和系统
KR20040020727A (ko) 통신처리 시스템의 이더넷 스위칭 보드의 이중화 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003330.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856864

Country of ref document: EP

Kind code of ref document: A1