WO2011003270A1 - 一种具备高溶解性能的低酰基结冷胶的后提取方法 - Google Patents

一种具备高溶解性能的低酰基结冷胶的后提取方法 Download PDF

Info

Publication number
WO2011003270A1
WO2011003270A1 PCT/CN2010/000783 CN2010000783W WO2011003270A1 WO 2011003270 A1 WO2011003270 A1 WO 2011003270A1 CN 2010000783 W CN2010000783 W CN 2010000783W WO 2011003270 A1 WO2011003270 A1 WO 2011003270A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
gellan gum
solution
alkali metal
group
Prior art date
Application number
PCT/CN2010/000783
Other languages
English (en)
French (fr)
Inventor
吴荣明
钟燕飞
郭琪
沈月强
沈丽萍
Original Assignee
浙江帝斯曼中肯生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江帝斯曼中肯生物科技有限公司 filed Critical 浙江帝斯曼中肯生物科技有限公司
Priority to JP2012518728A priority Critical patent/JP5972165B2/ja
Priority to US13/142,407 priority patent/US8652549B2/en
Priority to EP10796647.5A priority patent/EP2348054B1/en
Publication of WO2011003270A1 publication Critical patent/WO2011003270A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof

Definitions

  • the invention relates to the field of extracting microbial fermentation materials, in particular to a post extraction method of low acyl gellan gum with high solubility.
  • Gellan gum is an anionic linear microbial polysaccharide with a molecular weight of up to 2 ⁇ 3 X 10 5 Daltons.
  • the bacteria producing gellan gum was originally called Pseudomonas elodea, and was further confirmed as a Gram-negative aerobic bacillus based on the characteristics of r-RNA and containing sphingosine glycolipid... Sphingomonas paucimobilis.
  • Gellan gum is one of the most excellent thickeners and stabilizers with excellent gel properties.
  • Gellan gum gel is easy to use, has good flavor release, high thermal stability, easy to melt in the mouth, high transparency, time and temperature regulation of gel, gel is not susceptible to pH, product is stable, Various texture characteristics, etc.
  • Gellan gum has two forms. One is a low acyl gellan gum, that is, the acyl group on the backbone of the gellan gum molecule is completely or partially removed by hot alkali treatment; the other is a natural gellan gum, that is, a high acyl gellan gum. High acyl gellan gum produces a soft, elastic and non-brittle gel, while low acyl gellan gum produces a solid, non-elastic, but brittle gel. In order to exert a gelling effect, the cold gel must first ensure that the colloid is fully dissolved in the aqueous solution.
  • the dissolution process of gellan gum comprises two steps. First, it is uniformly dispersed in cold water, followed by hydration with water molecules under heating conditions to form a gellan gum solution, thereby achieving sufficient dissolution.
  • the uniform dispersion of hydrophilic colloids is very important, sometimes in production
  • a large amount of agitation treatment avoids "fish eyes" caused by insufficient hydration due to colloidal agglomeration and agglomeration of the agglomerates.
  • the gellan gum and chelating agent, white sugar or other ingredients dry powder, vegetable oil, propylene glycol, etc. can be advanced in the case of formula and production process. Mix them together and put them into cold water. This treatment can separate the fine particles of gellan gum to achieve uniform dispersion in water, but some special foods will not use other ingredients, which will significantly affect the dispersion properties of low acyl gellan gum. .
  • low acyl gellan gum The hydration temperature of low acyl gellan gum is very sensitive to the ionic environment, especially for divalent cations.
  • Low acyl gellan gum is mixed with salts and can only be partially hydrated in cold deionized water. Colloidal hydration is further impeded by other divalent cations in other water quality environments, such as in hard water. At this point the colloid must be fully hydrated by the addition of a chelating agent, heating or both.
  • the method for extracting low-acyl gellan gum with high solubility of the invention comprises enzymatic treatment of gellan gum fermentation broth, flocculation treatment of acid/chelator/lower alcohol mixture system, deacylation treatment, clarification treatment of deacylated gellan gum solution , ion exchange treatment, dehydration treatment of deacylated gellan gum solution, drying and granulation, the specific steps are -
  • different enzyme preparations are added to the fermentation broth, and the enzyme solution is inactivated to remove insoluble impurities and bacterial fragments in the fermentation broth as much as possible. More specifically, after adding an enzyme preparation to insulate and digest, another enzyme is added to insulate and digest, and so on.
  • the enzyme-treated fermentation liquid is flocculated by adding an acid/chelating agent/lower alcohol mixed system, and then solid-liquid separation; to remove most of the water and the pigment in the fermentation liquid to obtain a concentrated crude gellan gum;
  • the flocculating product obtained in the step (2) is redissolved and deacylated by high temperature alkali treatment;
  • Step (3) the obtained deacylated solution is subjected to filtration treatment to obtain a clarified low acyl gellan gum solution;
  • the gellan gum obtained in the step (5) is chopped into fine particles, and most of the divalent cations in the gellan gum are removed by an ion exchange process; the treated solution is pressed and dehydrated, and the dehydrated gellan gum is reused.
  • the lower alcohol is soaked, stirred and filtered to achieve a complete decolorization effect;
  • the post extraction method of the present invention is more specifically:
  • the protease is a neutral protease or an acid protease.
  • the fermentation broth after the step (1) is cooled to 30 ° C or lower, and an acid/chelating agent/lower alcohol mixture system is added to form a fibrous flocculation, which is separated by solid-liquid separation by pressing.
  • an acid/chelating agent/lower alcohol mixture system is added to form a fibrous flocculation, which is separated by solid-liquid separation by pressing.
  • the acid/chelator the acid, the chelating agent and the lower alcohol in the lower alcohol may be added first, or may be added in order.
  • step (3) Dissolve the flocculated product obtained in step (2), dissolve it with 10 ⁇ 20 times by weight of deionized water, raise the temperature to 80 ⁇ 90 °C, stir well to achieve complete dissolution;
  • step (3.2) By adding alkali in the gellan gum solution obtained in step (3.1), the pH value is adjusted within the range of 9.5 to 11, and the temperature is maintained between 85 and 90 ° C for 10 to 15 minutes. Removing the glyceryl group and acetyl group from the gellan gum backbone;
  • step (3.3) Add acid to the deacylated gellan gum solution obtained in step (3.2) to adjust the pH to neutral.
  • the plated or box filter press, high-speed centrifugation or microfiltration membrane filtration, the deacylated gellan gum solution obtained in the step (3.3) is clarified, and the temperature during the clarification treatment is preferably above 60 ° C to prevent the solution.
  • the gel is formed, and the clear solution obtained should have a transmittance of 92% or more.
  • the low acyl gellan gum obtained by the step (5) having a water content of about 80% is chopped into small particles, and is put into 3 to 5 times by weight of water added with an appropriate monovalent metal salt, soaked and stirred at high speed for ion exchange.
  • the method converts the colloid from the divalent cation salt form into a monovalent cation salt form; the treated gellan gum solution is pressed and dehydrated, and then added to a 2 times weight lower alcohol solution, soaked and stirred at a high speed, and then filtered to reach Completely remove the effect of pigmentation.
  • the enzymes and conditions added in step 1 are: the cellulase concentration is preferably 500 to 2000 ppm, more preferably 1000 to 1500 ppm; the enzymatic hydrolysis temperature is preferably 40 to 50 ° C, more preferably 43 to 45 ° C; the enzymatic hydrolysis time is preferably 4 to 8 hours, more preferably 5 to 6 hours.
  • the lysozyme concentration is preferably 50 to 300 ppm, more preferably 100 to 200 ppm; the enzymatic hydrolysis temperature is preferably 30 to 40 ° C, more preferably 35 to 37 ° C ; and the enzymatic hydrolysis time is preferably 2 In 4 hours, more preferably 2.5 to 3.5 hours.
  • the protease concentration is preferably from 100 to 1000 ppm, more preferably from 300 to 500 ppm; the enzymatic hydrolysis temperature is preferably from 30 to 40 ° C, more preferably from 30 to 35 ° C; and the enzymatic hydrolysis time is preferably from 1 to 5 Hours, more preferably 2 to 3 hours.
  • the protease is a neutral protease or an alkaline protease, and the concentration is based on the fermentation broth. ⁇
  • the acid in the acid/chelating agent/lower alcohol mixed system used in the step 2 may be selected from a mineral acid or an organic acid.
  • the inorganic acid may be selected from one or more of hydrochloric acid, sulfuric acid or phosphoric acid; the organic acid may be selected from one or more of formic acid, acetic acid, citric acid, malic acid or tartaric acid.
  • the acid to be preferably used is a mineral acid, and more preferably hydrochloric acid.
  • the amount of acid used is such that the pH of the fermentation broth system can be adjusted to 2.5 to 3.5.
  • the acid used in step 2 is preferably first formulated into a solution having a concentration of 10%.
  • the chelating agent in the acid/chelator/lower alcohol mixed system used in step 2 may be selected from, but not limited to, One or more of sodium citrate, tripotassium citrate, sodium hexametaphosphate, potassium hexametaphosphate, sodium pyrophosphate, potassium polyphosphate.
  • the chelating agent preferably used is selected from the group consisting of sodium citrate and sodium hexametaphosphate, more preferably sodium citrate.
  • the amount of the chelating agent to be added is preferably 200 to 1000 ppm in the fermentation broth, more preferably
  • the lower alcohol in the acid/chelator/lower alcohol mixed system used in the step 2 may be one or more selected from the group consisting of ethanol, isopropanol and n-butanol, preferably selected from the group consisting of ethanol and isopropanol, more preferably It is isopropyl alcohol.
  • the amount used is preferably 2 to 4 times the volume of the fermentation liquid, more preferably 2.5 to 3.5 times.
  • the solid-liquid separation equipment used in step 2 can be selected, but not limited to, a box type polypropylene plate frame filter press or a bag press, preferably a van type polypropylene plate frame filter press.
  • the length of the gellan gum fiber after the dispersion in step 3.1 is preferably not more than 10 cm, and the moisture content in the fiber is about 80%.
  • Step 3.1 The dispersed gellan gum is dissolved in 10 to 20 times by weight of deionized water, more preferably 15 to 20 times of deionized water.
  • the solution is heated to a temperature of 80 to 95 ° C, more preferably 85 to 90 ° (:.
  • step 3.2 the alkali used to adjust pH, but not limited to the selection of NaOH, KOH, Na ⁇ C0 3 , K 2 C0 3, one or more of, the preferred choice of NaOH, KOH, a better choice of NaOH.
  • step 3.2 the pH is adjusted to a range of 9.5 to 11 using a base, and a better pH is about 10.
  • step 3.2 keep the temperature between 85 ⁇ 90 °C, and better maintain the temperature between 86 ⁇ 88 °C.
  • 'hold time 10 ⁇ 15 minutes, better hold time is about 10 minutes.
  • the pH-adjusting base is preferably first formulated into a solution having a concentration of 10%.
  • the pH-adjusting acid may be an inorganic acid or an organic acid.
  • the inorganic acid may include, but is not limited to, one or more of hydrochloric acid, sulfuric acid, and phosphoric acid; and the organic acid may be selected from one or more of formic acid, acetic acid, citric acid, malic acid, or tartaric acid.
  • the acid preferably used is a mineral acid, more preferably hydrochloric acid. The amount of acid used is such that the pH of the fermentation broth system can be adjusted to about ⁇ .
  • the pH-adjusting acid is preferably first formulated into a solution having a concentration of 10%.
  • the clarification device may be, but not limited to, a plate frame or a box filter press, a high speed centrifugation or a microporous membrane filter, preferably a plate frame or a chamber filter press.
  • the temperature during the clarification treatment is preferably 65 ⁇ or more to prevent the solution from forming a gel, and the temperature is preferably about 75 °C.
  • the alkali metal salt added at the time of forming the gel includes, but not limited to, a monovalent alkali metal (for example, one or more selected from the group consisting of potassium chloride, sodium chloride, potassium sulfate, and sodium sulfate), and divalent.
  • a monovalent alkali metal for example, one or more selected from the group consisting of potassium chloride, sodium chloride, potassium sulfate, and sodium sulfate
  • An alkali metal for example, one or more selected from the group consisting of calcium chloride and magnesium chloride
  • a polyvalent alkali metal e.g., ferric chloride.
  • Monovalent and divalent alkali metal salts are preferred; divalent alkali metal salts may be more preferred in view of cost factors.
  • the monovalent alkali metal salt when added when forming the gel, it is 0.8 to 1.2% by weight of the clarified glue, and when the divalent metal salt is added, it is 0.05 to 0.1% (weight%) of the clarified glue. .
  • the metal salt added at the time of gel formation is preferably first formulated into a 30% strength solution.
  • Step 5 The solid-liquid separation equipment used in press dewatering can be selected, but not limited to, a box-type polypropylene plate and frame filter press or a bag press, preferably a van-type polypropylene plate and frame filter press.
  • step 6 a low-acyl gellan gum is chopped into columnar small particles using a rubber cutter, with a particle diameter of less than 3 mm and a length of less than 12 mm. .
  • the monovalent metal salt used in the step 6 includes, but is not limited to, a soluble monovalent alkali metal salt (for example, one or more selected from the group consisting of potassium chloride, sodium chloride, potassium sulfate, and sodium sulfate).
  • a soluble monovalent alkali metal salt for example, one or more selected from the group consisting of potassium chloride, sodium chloride, potassium sulfate, and sodium sulfate.
  • the concentration in the solution is 5,000 to 10,000 ppm, more preferably 6,000 to 8,000 ppm.
  • the dewatering press equipment used in step 6 is selected from a bag press.
  • the lower alcohol used in the step 6 may be one or more selected from the group consisting of ethanol, isopropanol and n-butanol, preferably selected from the group consisting of ethanol and isopropanol, and more preferably isopropanol.
  • the amount used is preferably 2 to 4 times, more preferably 2.5 to 3.5 times, the weight of the cold gel wet particles.
  • the drying equipment used in step 7 may be selected from, but not limited to, vacuum drying and boiling, temperature control between 75 and 80 ° C, and time control between 1 and 1.5 hours.
  • the granulated granules in step 7 need to pass 95% through a 40 mesh screen.
  • the invention is specifically described in connection with the following examples, which are not to be construed as limiting the scope of the invention.
  • the filter cake obtained from B is first broken into short fibers by a dispersing machine, and deionized water is added in an amount of 15 times by weight, and the solution is heated to raise the temperature to 90 °C.
  • the pH was adjusted to 10.0 by the addition of 10% KOH, and the mixture was slowly stirred at 90 ° C for 10 minutes. Further, 10% strength hydrochloric acid was added to adjust the pH to 7.0, and the resulting solution was passed to the next step.
  • D Add appropriate amount of diatomaceous earth to the solution obtained from C, stir evenly, and control the temperature at 75 °C. Circulate and filter the gellan gum solution with a box-type polypropylene plate filter press precoated with diatomaceous earth filter aid until it is obtained. The clarified gellan gum was measured by a spectrophotometer with a transmittance greater than 92%. After clarification, the solution was passed to a gel pot.
  • the temperature of the clarified gellan gum solution obtained from D should be maintained above 65 °C to prevent gel formation. Then add 400L of 30% potassium chloride solution to the solution, and slowly stir for 5 minutes and then forcefully cool down to 50 °. Below C.
  • the colloid forming the hard brittle gel was pressed by a box-type polypropylene plate frame filter press to obtain 450 kg of gellan gum film or rubber block having a water content of about 80%.
  • the gellan gum block or film obtained by E is chopped into small columnar particles by a rubber cutter with a particle diameter of less than 3 mm and a length of less than 12 mm. Put the gellan gum small particles into 3 times the mass of deionized water, add potassium chloride solution to the concentration of 5000ppm, slowly stir the solution for 10 minutes, then filter the filter cloth; the filter residue is then soaked with 2.5 times the weight of ethanol solution and quickly Stir for 30 minutes; remove the ethanol solution with a bag J1 press to obtain 450 kg of wet gellan gum loose particles.
  • the product obtained from F was dried by a boiling dryer at 75 ° C, pulverized, and granulated, and passed 95% through a 40 mesh screen. The obtained low acyl gellan gum product was 90 kg.
  • the filter cake obtained from B is first broken into short fibers by a dispersing machine, and the deionized water is added in an amount of 15 times by weight, and the solution is heated to raise the temperature to 9Q °C.
  • the pH was adjusted to 10.0 by the addition of 10% NaOH, and the mixture was slowly stirred at 90 ° C for 10 minutes. An additional 10% acetic acid was added and the pH was adjusted back to 7.0 and the resulting solution was passed to the next step.
  • the solution obtained from C is clarified by high-speed centrifugation until the obtained clear gellan gum solution is measured by a spectrophotometer with a transmittance of more than 92%. After clarification, the solution is connected to the gel tank.
  • the temperature of the clarified gellan gum solution obtained from D should be maintained above 65 °C to prevent gel formation. Then add 400L of 30% sodium chloride solution to the solution, and slowly stir for 5 minutes and then forcefully cool down to 50 °. Below C. The colloid forming the hard brittle gel was pressed with a bag press to obtain a gel-filled film or a 500 kg water-blocking film of about 80%. .
  • the gellan gum block or film obtained from E is chopped into small columnar particles by a rubber cutter with a particle diameter of less than 3 mm and a length of less than 12 mm. Put the gellan gum small particles into 3 times the mass of deionized water, add sodium chloride to the concentration of 7000ppm, slowly stir the solution for 10 minutes, then filter with filter cloth; filter residue and then soak with 2.5 times the weight of isopropyl alcohol solution And stirring rapidly for 30 minutes; using a bag press to remove the isopropanol solution to obtain 450 kg of wet gellan gum loose particles.
  • the product obtained from F is dried by a boiling dryer at 75 ° C, pulverized, and granulated. Allow 95% to pass through a 40 mesh screen.
  • the obtained low acyl gellan gum product was 90 kg.
  • the filter cake obtained from B is first broken into short fibers by a dispersing machine, and the deionized water is added in an amount of 15 times by weight, and the solution is heated to warm the chamber at 90 °C.
  • the pH was adjusted to 10.0 by the addition of 10% NaOH, and the mixture was slowly stirred at 90 ° C for 10 minutes. Additional 10% strength phosphoric acid was added and the pH was adjusted back to '7.0. The resulting solution was passed to the next step.
  • the solution obtained from C is filtered through a microporous membrane until the obtained clear gellan gum solution is measured by a spectrophotometer with a transmittance of more than 92%. After clarification, the solution is introduced into the gel tank.
  • the temperature of the clear gelatin solution from D should be maintained above 65 °C to prevent gel formation, then add 30L of 30% sodium chloride solution to the solution, slowly stir for 5 minutes and then force cooling to 50. Below °C.
  • the colloid forming the hard brittle gel was pressed by a box-type polypropylene plate frame filter press to obtain a gel-free film or a 500 kg piece of gelatinous film having a water content of about 80%.
  • R The gellan gum block or film obtained from E is chopped into small columnar particles by a rubber cutter with a particle diameter of less than 3 mm and a length of less than 12 mm.
  • the small particles of Jiangjie cold glue were put into 3 times of deionized water, and potassium sulfate was added to make the concentration reach 8000ppm.
  • the solution was slowly stirred for 10 minutes and then filtered with a filter cloth; the filter residue was further soaked with 2.5 times weight of ethanol solution and stirred rapidly. 30 minutes; The ethanol solution was removed by a bag press to obtain 450 kg of wet gellan gum loose particles.
  • the product obtained from F was dried by a vacuum dryer at 75 ° C, pulverized, and granulated to pass 95% through a 40 mesh screen.
  • the obtained low acyl gellan gum product was 90 kg.
  • the advantages of using the process of the present invention over the subsequent post-extraction of low acyl gellan gum are: 1.
  • the solubility of the product is greatly improved. It can be well dispersed and dissolved at around 30 °C. Generally, the gellan gum product is easy to hold and must be dissolved above 80 °C.
  • the quality of the products has been greatly improved and reached the advanced level in foreign countries.
  • the product has good appearance, high transparency and high gel strength. Specifically in the color greater than 83%, more than 87% transmittance, while the gel strength of greater than 1000g / cm 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

一种具备高溶解性能的低酰基结冷胶的后提取方法 技术领域
本发明涉及微生物发酵物质的提取领域, 特别是一种具备高溶解性能的低 酰基结冷胶的后提取方法。
背景技术
结冷胶是一种分子量高达 2~3 X 105道尔顿的阴离子线型微生物多糖。 结冷 胶的产生菌原来称为伊乐藻假单胞杆菌 (Pseudomonas elodea) ,后来基于 r-RNA 特征及含有鞘氨醇糖脂被进一步确认为一种革兰氏阴性好氧杆状菌…少动鞘氨 醇单胞菌 (Sphingomonas paucimobilis 。
结冷胶可以说是目前性能最为优异的增稠剂、 稳定剂之一, 并具有优良的 凝胶特性。 结冷胶凝胶易于使用、 有良好的风味释放性、 较高的热稳定性、 在 口中易融化、 透明度高、 凝胶的时间及温度可调控、 凝胶不易受 pH影响、 产品 稳定、 具有多样的质构特性等。 结冷胶有两种形式。 一种是低酰基结冷胶, 即 结冷胶分子主链上的酰基通过热碱处理被完全或部分脱除; 另一种是天然的结 冷胶, 即高酰基结冷胶。 高酰基型结冷胶可以产生柔软、 富有弹性和不具有脆 性的凝胶, 而低酰基结冷胶产生的是坚实、 不具有弹性, 但是很脆的凝胶。 结 冷胶要发挥凝胶作用, 首先必须保证胶体在水溶液中得到充分的溶解。
很多亲水性胶体由于溶解不充分而影响了胶体性能的发挥, 实际生产中, 不少用户因为不了解结冷胶的溶解特性而无法正确使用结冷胶。 因此结冷胶的 凝胶性能影响因素中首先要注意的就是胶体的溶解。
结冷胶的溶解过程包括两个步骤, 首先是均匀分散在冷水中, 接着是在加 热的条件下与水分子发生水合形成结冷胶溶液, 从而达到充分的溶解。
在食品工业中, 亲水性胶体的均匀分散是非常重要的, 生产中有时候需要 大量的搅拌处理以避免由于胶体抱团、 结块溶胀导致水合不充分而产生的 "鱼 眼"。 在目前食品工业操作中, 要使得低酰基结冷胶有好的分散性, 在配方和生 产工艺允许的情况下, 可以将结冷胶与螯合剂、 白糖或其他配料干粉、 植物油、 丙二醇等先行混合起来, 再一并投入到冷水中。 这种处理可以将结冷胶细小颗 粒分隔开来, 达到在水中均匀分散的效果, 但有些特殊的食品中不会用到其他 配料, 这就会显著影响到低酰基结冷胶的分散性能。
低酰基结冷胶的水合温度对于离子环境非常敏感, 特别是对于二价阳离子。 低酰基结冷胶中混有盐类, 只能在冷的去离子水中部分水合。 胶体的水合会进 一步在其它的水质环境, 如在硬水中被二价阳离子所阻碍。 此时胶体必须通过 加入螯合剂, 加热或者同时使用上述两方法而达到充分水合。
由此, 我们可以看出, 低酰基结冷胶在溶解过程中必须保证其充分的分散 及水合。 如果以上两个条件都不能满足或只能满足一个, 则会出现凝胶效能大 大下降、 凝胶质构达不到理想要求等情况。
而目前大规模工业生产的食品级低酰基结冷胶在溶解性能上存在很大不 足, 主要体现在: 1. 分散性很差, 单独溶解在冷水中容易发生抱团, 必须通过 高速搅拌或千混入其他粉状配料才能改善分散性能。 如果配方中不存在其他粉 状配料或操作过程中不允许高速搅拌, 则产品的低分散性会严重影响到后期的 处理。 2. 产品水合性能差。 要保证充分的水合, 0.5%浓度低酰基结冷胶产品水 溶液必须加热到 80°C以上并保持 5分钟。如果食品配方中存在热不稳定性配料, 则会严重影响该配料的性能。 另外还有一些特殊食品, 在生产加工过程中要一 直保持常温, 加工温度维持在 35°C以下, 对于这种食品, 一般性能的低酰基结 冷胶将无法使用。 因此, 生产提供出一种具备高溶解性能的低酰基结冷胶对结 冷胶在食品工业中的应用具有很大的推动作用。
发明内容
本发明的目的在于提供一种具有高分散性及水合性能, 即高溶解性能的低 酰基结冷胶的提取方法。
本发明的具备高溶解性能的低酰基结冷胶的提取方法包括结冷胶发酵液的 酶处理、 酸 /螯合剂 /低级醇混合体系絮凝处理、 脱酰基处理、 脱酰基结冷胶溶液 澄清处理、 离子交换处理、 脱酰基结冷胶溶液脱水处理、 干燥及造粒, 其具体 步骤为-
( 1 ) 发酵液的酶处理;
依此向发酵液中加入不同酶制剂, 保温酶解, 以尽可能地除去发酵液中不 溶性的杂质和菌体碎片。 更具体地为, 加入一种酶制剂保温酶解后, 再加入另 一种酶保温酶解, 依此类推。
(2) 发酵液的絮凝;
在步骤 (1 ) 酶处理后的发酵液中, 加入酸 /螯合剂 /低级醇混合体系絮凝, 然后固液分离; 以除去发酵液中大部分水以及色素, 得到浓缩的结冷胶粗品;
(3 ) 脱酰基处理
将步骤 (2 ) 得到的絮凝产物重新溶解, 并通过高温碱处理脱酰基;
(4 ) 脱酰溶液澄清处理 、
将步骤 (3 ),得到的脱酰基溶液通过过滤处理, 得到澄清的低酰基结冷胶溶 液;
(5 ) 澄清脱酰基结冷胶溶液脱水处理
在步骤(4 )得到的结冷胶脱酰基澄清溶液中,通过加入碱金属盐形成凝胶, 并压榨脱水;
(6 ) 离子交换及脱色处理
将步骤 (5 )得到的结冷胶切碎成细小颗粒, 通过离子交换工艺将结冷胶中 的二价阳离子大部分去除; 将处理后的溶液压搾脱水, 脱水后的结冷胶再用低 级醇浸泡并搅拌、 过滤以达到彻底脱色效果;
( 7) 干燥粉碎; 将步骤 (6λ中获得的结冷胶固体物料干燥并粉碎、 造粒, 得到高透明度低 酰基结冷胶产品。
本发明的后提取方法更具体地为:
1. 发酵液的酶处理;
依此向发酵液中加入不同浓度已经用少量水溶解分散的纤维素酶、 溶菌酶 及蛋白酶, 保温酶解, 维持不同时间。 其中蛋白酶为中性蛋白酶或酸性蛋白酶。
2. 发酵液絮凝处理
将步骤 (1 ) 酶处理后的发酵液降温至 30°C以下, 加入酸 /螯合剂 /低级醇混 合体系形成纤维状絮凝, 通过压榨法固液分离。 其中酸 /螯合剂.低级醇中的酸、 螯合剂和低级醇可以先混合后加入, 也可以依次加入。
3. 脱酰基处理
(3.1 ) 将步骤 (2) 中制得的絮凝产物, 打散后用 10~20倍重量的去离子 水溶解, 升温到 80~90°C, 充分搅拌以达到完全溶解;
(3.2) 通过在步骤(3.1 ).得到的结冷胶溶^¾中加入碱,调节 pH值在 9.5~11 范围之内, 保持温度 85~90°C之间, 时间 10~15分钟, 以脱除结冷胶主链上的甘 油酰基及乙酰基;
(3.3 ) 在歩骤 (3.2) 得到的脱酰基结冷胶溶液中加入酸, 调节 pH值到中 性。
4. 脱酰溶液澄清处理
采用板框或厢式压滤, 高速离心或微孔滤膜过滤, 将步骤 (3.3 ) 中得到的 脱酰基结冷胶溶液澄清处理, 澄清处理时的温度优选在 60°C以上, 以防止溶液 形成凝胶, 得到的澄清溶液透光度应在 92%以上。
5. 脱酰基结冷胶溶液脱水处理
向步骤(4)得到的脱酰基澄清结冷胶溶液中加入适当质量的碱金属阳离子 盐类, 形成的凝胶通过压搾脱水, 得到含水量 80%左右的低酰基结冷胶胶块或 胶片。
6.离子交换及脱色处理
将步骤(5 )得到的含水量 80%左右的低酰基结冷胶切碎为小颗粒, 投入到 3〜5倍重量的加入适当一价金属盐处理的水中,浸泡并高速搅拌, 以离子交换的 方式将胶体由二价阳离子盐形式转化成为一价阳离子盐形式; 处理后的结冷胶 溶液压搾脱水, 再加入 2倍重量的低级醇溶液中, 浸泡并高速搅拌, 之后再过 滤以达到彻底去除色素的效果。
7.干燥粉碎; 将步骤 (6) 中制得的产物于 75~80°C下进行干燥, 并粉碎, 然后造粒, 使其 95%通过 40目筛网。
本发明各步骤更具体的工艺条件是:
步骤 1 中加入的酶及条件分别为: 纤维素酶浓度较佳地为 500~2000ppm, 更佳的为 1000~1500ppm; 酶解温度较佳的为 40~50°C, 更佳的为 43~45°C ; 酶 解时间较佳的为 4到 8 小时, 更佳的为 5 到 6小时。 溶菌酶浓度较佳的为 50~300ppm, 更佳的为 100~200ppm; 酶解温度较佳的为 30〜40°C, 更佳的为 35~37°C ; 酶解时间较佳的为 2到 4小时, 更佳的为 2.5到 3.5小时。 蛋白酶浓 度较佳为 100~1000ppm, 更佳的为 300〜500ppm; 酶解温度较佳的为 30~40°C, 更佳的为 30~35°C ; 酶解时间较佳的为 1到 5小时, 更佳的为 2到 3小时。其中 蛋白酶是中性蛋白酶或碱性蛋白酶, 浓度以发酵液为基准。 ·
步骤 2 中所用的酸 /螯合剂 /低级醇混合体系中的酸可以选自无机酸或有机 酸。 无机酸可以选自但不限于盐酸、 硫酸或磷酸中的一种或多种; 有机酸可以 选自但不限于甲酸、醋酸、柠檬酸、苹果酸或酒石酸中的一种或多种。 实际生 产中, 较佳使用的酸为无机酸, 更佳的为盐酸。酸的用量为能将发酵液体系 pH调节到 2.5~3.5。
步骤 2中所用的酸优选先配成浓度为 10%的溶液。
步骤 2中所用的酸 /螯合剂 /低级醇混合体系中的螯合剂可以选自但不只限于 柠檬酸钠、 柠檬酸三钾、 六偏磷酸钠、 六偏磷酸钾、 焦磷酸钠、 聚磷酸钾中的 一种或多种。 较佳使用的螯合剂选自柠檬酸钠和六偏磷酸钠, 更佳的为柠檬酸 钠。 所加入的螯合剂用量较佳的为在发酵液中浓度 200~1000ppm, 更佳的为
Figure imgf000007_0001
步骤 2中使用的酸 /螯合剂 /低级醇混合体系中的低级醇可以选自乙醇、异丙 醇和正丁醇中的一种或多种, 较佳的选自乙醇和异丙醇, 更佳的为异丙醇。 用 量较佳的为发酵液体积的 2~4倍, 更佳的为 2.5~3.5倍。
步骤 2 中使用的固液分离的设备可以选用但不只限于厢式聚丙烯板框压滤 机或布袋压搾机, 优选厢式聚丙烯板框压滤机。
步骤 3.1中打散后的结冷胶纤维长度优选为不超过 10厘米, 纤维中水份含 量在 80%左右。 '
步骤 3.1打散的结冷胶纤维用 10到 20倍重量的去离子水溶解, 更佳的为 15~20倍去离子水。 加热溶液使之升温至 80~95°C, 更佳的为 85~90° (:。
步骤 3.2中,用于调整 pH的碱选用但不只限于 NaOH、KOH、Na^C03、K2C03 中的一种或多种, 较佳的选用 NaOH、 KOH, 更佳的选用 NaOH。
步骤 3.2中, 使用碱将 pH值调节到 9.5~11范围之内, 更佳的 pH值为 10 左右。
步骤 3.2中, 保持温度 85~90°C之间, 更佳的保持温度在 86~88°C之间。 步骤 3.2中,'保持时间 10〜15分钟, 更佳的保持时间在 10分钟左右。
步骤 3.2中, 调整 pH的碱优选先配成浓度为 10%的溶液。
步骤 3.3中, 调整 pH的酸可以是无机酸, 也可以是有机酸。 其中无机酸包 括但不限于盐酸、 硫酸及磷酸中的一种或多种; 有机酸可以选自但不限于甲酸、 醋酸、 柠檬酸、 苹果酸或酒石酸中的一种或多种。 实际生产中, 较佳使用的 酸为无机酸,更佳的为盐酸。酸的用量为能将发酵液体系 pH调节到 Ί左右。
步骤 3.3中, 调整 pH的酸优选先配成浓度为 10%的溶液。 步骤 4 中, 澄清设备可以采用但不限于板框或厢式压滤, 高速离心或微孔 滤膜过滤, 优选板框或厢式压滤。
步骤 4中, 澄清处理时的温度优选在 65Γ以上, 以防止溶液形成凝胶, 更 佳的温度为 75°C左右。
步骤 5 中, 形成凝胶时加入的碱金属盐包括但不限于一价碱金属 (如, 选 自氯化钾、 氯化钠、 硫酸钾、 硫酸钠中的一种或多种)、 二价碱金属 (如, 选自 氯化钙、 氯化镁中的一种或多种)及多价碱金属 (如, 氯化铁) 等,。 优选一价 和二价碱金属盐类; 考虑到成本因素, 可以更优选二价碱金属盐类。
步骤 5中, 形成凝胶时加入一价碱金属盐时, 为澄清胶液的 0.8~1.2% (重 量百分比), 加入二价金属盐时, 为澄清胶液的 0.05~0.1% (重量百分比)。
步骤 5中, 形成凝胶时加入的金属盐优选先配成 30%浓度的溶液。
步骤 5 中压搾脱水中使用的固液分离设备可以选用但不只限于厢式聚丙烯 板框压滤机或布袋压搾机, 优选厢式聚丙烯板框压滤机。
步骤 6中使用切胶机,将低酰基结冷胶切碎为柱状小颗粒,颗粒直径小于 3 毫米, 长度小于 12毫米。 .
步骤 6 中所用的一价金属盐包括但不限于可溶性一价碱金属盐(如, 选自 氯化钾、 氯化钠、 硫酸钾、 硫酸钠中的一种或多种), 用量较佳的为在溶液中浓 度达到 5000~10000ppm, 更佳的为 6000~8000ppm。
步骤 6中使用的脱水压搾设备选用布袋压榨机。
步骤 6 中使用的低级醇可以选自乙醇、 异丙醇和正丁醇中的一种或多种, 较佳的选自乙醇和异丙醇, 更佳的为异丙醇。 用量较佳的为结冷胶湿颗粒重量 的 2~4倍, 更佳的为 2.5~3.5倍。
步骤 7 中使用的干燥设备可以选自但不限于真空干燥和沸腾千燥, 温度控 制在 75~80°C之间, 时间控制在 1到 1.5小时之间。
步骤 7中造粒后的颗粒需使其 95%通过 40目筛网。 结合以下实施例来具体说明, 以更好地理解本发明, 但这些实施例为非限 制性的, 仅用于说明本发明而不用于限制本发明的范围。
实施例 1
A.在装有 10m3结冷胶发酵液的絮凝罐中, 搅拌下加入 15kg纤维素酶, 温 度 45°C, 缓慢搅拌 5.5小时; 之后再加入 2kg溶菌酶, 温度 35Ό , 缓慢搅拌 3 小时; 之后再加入 4kg中性蛋白酶, 温度 33°C, 缓慢搅拌 2.5小时。
B. 向上述料液中缓慢 ¾1入盐酸(10%溶液) /六偏磷酸钠 /乙醇溶液体系, 至 料液 pH2.5, 搅拌维持 lOmin, 将料通过泵打入厢式板框压滤机进行过滤, 滤液 进入废水处理站, 得到 850kg滤饼待用。
C. 由 B得到的滤饼先用打散机打散为短纤维, 按重量的 15倍量加入去离 子水, 加热溶液使之升温至 90°C。 加入 10%浓度的 KOH调整 pH至 10.0, 在 90°C条件下缓慢搅拌 10分钟。再加入 10%浓度的盐酸, 回调 pH至 7.0, 得到的 溶液进入下一步骤。 D. 由 C得到的溶液中加入适量硅藻土, 搅拌均匀, 温度控 制在 75°C ,用预涂硅藻土助滤剂的厢式聚丙烯板框压滤机循环过滤结冷胶溶液, 直至得到的澄清结冷胶溶 用分光光度计测定透光度大于 92%, 澄清后溶液接 入凝胶罐。
E. 由 D得到的澄清结冷胶溶液温度应维持在 65°C以上以防止凝胶形成,再 向溶液中加入 30%浓度的氯化钾溶液 400L, 缓慢搅拌 5分钟后强制降温到 50 °C以下。 形成坚硬脆性凝胶的胶体用厢式聚丙烯板框压滤机压搾, 得到含水量 80%左右的结冷胶胶片或胶块 450kg。
F. 由 E得到的结冷胶胶块或胶片通过切胶机切碎成柱状小颗粒, 颗粒直径 小于 3毫米,长度小于 12毫米。将结冷胶小颗粒投入到 3倍质量的去离子水中, 同时加入氯化钾溶液其浓度达到 5000ppm,缓慢搅拌溶液 10分钟后甩滤布过滤; 滤渣再用 2.5倍重量的乙醇溶液浸泡并快速搅拌 30分钟; 用布袋 J1榨机脱去乙 醇溶液, 得到湿的结冷胶松散颗粒 450kg。 G. 由 F得到的产物通过沸腾干燥机, 于 75°C下进行干燥, 粉碎后造粒, 使其 95%通过 40目筛网。 得到的低酰基结冷胶产品 90kg。
实施例 2
A. 在装有 10m3结冷胶发酵液的絮凝罐中, 搅拌下加入 10kg纤维素酶, 温 度 43°C, 缓慢搅拌 5小时; 之后再加入 lkg溶菌酶, 温度 37°C, 缓慢搅拌 2.5 小时; 之后再加入 4kg碱性蛋白酶, 温度 35°C, 缓慢搅拌 3.0小时。
B. 向上述料液中缓慢加入醋酸(10%溶液) /柠檬酸钠 /异丙醇溶液体系, 至 料液 pH2.5, 搅拌维持 10min, 将料通过泵打入厢式板框压滤机进行过滤, 滤液 进入废水处理站, 得到 850kg滤饼待用。
C. 由 B得到的滤饼先用打散机打散为短纤维, 按重量的 15倍量加入去离 子水, 加热溶液使之升温至 9Q°C。 加入 10%浓度的 NaOH调整 pH至 10.0, 在 90°C条件下缓慢搅拌 10分钟。再加入 10%浓度的醋酸, 回调 pH至 7.0, 得到的 溶液进入下一步骤。
D. 由 C得到的溶液采用高速离心进行澄清操作,直至得到的澄清结冷胶溶 液用分光光度计测定透光度大于 92%, 澄清后溶液接入凝胶罐。
E. 由 D得到的澄清结冷胶溶液温度应维持在 65°C以上以防止凝胶形成,再 向溶液中加入 30%浓度的氯化钠溶液 400L, 缓慢搅拌 5分钟后强制降温到 50 °C以下。 形成坚硬脆性凝胶的胶体用布袋式压榨机压搾, 得到含水量 80%左右 的结冷胶胶片或胶块 500kg。 .
F. 由 E得到的结冷胶胶块或胶片通过切胶机切碎成柱状小颗粒, 颗粒直径 小于 3毫米,长度小于 12毫米。将结冷胶小颗粒投入到 3倍质量的去离子水中, 同时加入氯化钠使其浓度达到 7000ppm, 缓慢搅拌溶液 10分钟后用滤布过滤; 滤渣再用 2.5倍重量的异丙醇溶液浸泡并快速搅拌 30分钟; 用布袋压搾机脱去 异丙醇溶液, 得到湿的结冷胶松散颗粒 450kg。
G. 由 F得到的产物通过沸腾干燥机, 于 75°C下进行干燥, 粉碎后造粒, 使其 95%通过 40目筛网。 得到的低酰基结冷胶产品 90kg。
实施例 3
A. 在装有 10m3结冷胶发酵液的絮凝罐中, 搅拌下加入 10kg纤维素酶, 温 度 43°C , 缓慢搅拌 5小时; 之后再加入 lkg溶菌酶, 温度 37°C, 缓慢搅拌 2.5 小时; 之后再加入 4kg碱性蛋白酶, 温度 35°C, 缓慢搅拌 3.0小时。
B. 向上述料液中缓慢加入磷酸 (10%溶液) /焦磷酸钠 /乙醇溶液体系, 至 料液 pH3.0, 搅拌维持 10min, 将料通过泵打入厢式板框压 ¾机进行过滤, 滤液 进入废水处理站, 得到 850kg滤饼待用。
C. 由 B得到的滤饼先用打散机打散为短纤维, 按重量的 15倍量加入去离 子水, 加热溶液使之升温室 90°C。 加入 10%浓度的 NaOH调整 pH至 10.0, 在 90°C条件下缓慢搅拌 10分钟。再加入 10%浓度的磷酸, 回调 pH至' 7.0, 得到的 溶液进入下一步骤。
D. 由 C得到的溶液采用微孔滤膜过滤,直至得到的澄清结冷胶溶液用分光 光度计测定透光度大于 92%, 澄清后溶液接入凝胶罐。
E. 由 D得 ^的澄清结冷胶溶液温度应维持在 65°C以上 μ防止凝胶形成,再 向溶液中加入 30%浓度的氯化钠溶液 400L, 缓慢搅拌 5分钟后强制降温到 50 °C以下。 形成坚硬脆性凝胶的胶体用厢式聚丙烯板框压滤机压搾, 得到含水量 80%左右的结冷胶胶片或胶块 500kg。R 由 E得到的结冷胶胶块或胶片通过切胶 机切碎成柱状小颗粒, 颗粒直径小于 3毫米, 长度小于 12毫米。 蒋结冷胶小颗 粒投入到 3倍质量的去离子水中, 同时加入硫酸钾使其浓度达到 8000ppm, 缓 慢搅拌溶液 10分钟后用滤布过滤; 滤渣再用 2.5倍重量的乙醇溶液浸泡并快速 搅拌 30分钟; 用布袋压搾机脱去乙醇溶液, 得到湿的结冷胶松散颗粒 450kg。 G. 由 F得到的产物通过真空干燥机, 于 75°C下进行干燥,,粉碎后造粒, 使其 95%通过 40目筛网。 得到的低酰基结冷胶产品 90kg。
采用本发明的工艺相对于现有的低酰基结冷胶的后提取方法, 优势之处在于: 1.产品溶解性大幅度提升, 在 30°C左右即能有良好的分散及溶解, 而一般 结冷胶产品很容易抱团且必须在 80°C以上才能完全溶解。
2. 产品质量大为改善, 达到国外先进水平。 产品外观好、 透光度高、 产品 凝胶强度高。 具体表现在色度大于 83%, 透光度在 87%以上, 同时凝胶强度大 于 1000g/cm2
3.通过后期的螯合工艺除去绝大部分二价金属阳离子, 使得形成的凝胶略 微发白现象消失, 提升了产品的质量。

Claims

1. 一种具备高溶解性能的低酰基结冷胶的后提取方法, 其包括步骤:
( 1 ) 发酵液的酶处理: 依此向发酵液中加入不同的酶制剂, 保温酶解;
(2) 发酵液的絮凝: 在步骤(1 ) 酶处理后的发酵液中, 加入酸 /螯合剂 /低级醇 混合体系絮凝, 然后固液分离;
(3 ) 脱酰基处理: 将步骤 (2) 得到的絮凝产物重新溶解, 并通过高温碱处理 脱酰基;
(4) 脱酰溶液澄清处理: 将步骤 (3 ) 得到的脱酰基溶液通过过滤处理, 得到 澄清的低酰基结冷胶溶液;
(5 ) 澄清脱酰基结冷胶溶液脱水处理: 在步骤 (4) 得到的结冷胶脱酰基澄清 溶液中, 通过加入碱金属盐形成凝胶, 并压搾脱水;
(6) 离子交换及脱色处理: 将步骤 (5 ) 得到的结冷胶切碎成细小颗粒, 通过 离子交换工艺将结冷胶中的二价阳离子大部分去除; 将处理后的溶液压搾脱水, 脱水后的结冷胶再用低级醇浸泡并搅拌、 过滤;
(7) 干燥粉碎: 将步骤 (6) 中获得的结冷胶固体物料干燥并粉碎、 造粒。
2. 根据权利要求 1 的方法, 其中步骤 (1 ) 中依次加入纤维素酶、 溶菌酶和蛋 白酶。
3. 根据权利要求 2 的方法, 其中纤维素酶浓度为 500~2000ppm, 酶解温度为 40~50°C , 酶解时间为 4 到 8 小时; 溶菌酶浓度为 50~300ppm, .酶解温度为 30〜40°C, 酶解时间为 2到 4小时; 蛋白酶浓度为 100~1000ppm, 酶解温度为 30〜40°C, 酶解时间为 1到 5小时。
4. 根据权利要求 3的方法, 其中纤维素酶浓度为 1000~1500ppm, 酶解温度为 43〜45°C, 酶解时间为 5 到 6 小时; 溶菌酶浓度为 100~200ppm, 酶解温度为 35~37°C , 酶解时间为 2.5到 3.5小时; 蛋白酶浓度为 300~500ppm, 酶解温度为 30-35 °C, 酶解时间为 2到 3小时。
5. 权利要求 3或 4的方法, 其中蛋白酶为中性蛋白酶或碱性蛋白酶。
6. 权利要求 1的方法, 其中步骤(2) 中所用的酸 /螯合剂 /低级醇混合体系中的 酸为无机酸或有机酸。
7. 权利要求 6的方法, 其中酸为无机酸。
8. 权利要求 7的方法, 其中无机酸选自盐酸、 硫酸或磷酸中的一种或多种。
9. 权利要求 8的方法, 其中酸为盐酸。
10. 权利要求 6的方法, 其中有机酸选自甲酸、 醋酸、 柠檬酸、 苹果酸或酒石 酸中的一种或多种。
11. 权利要求 6的方法, 其中所用的酸 /螯合剂 /低级醇混合体系中的螯合剂选 自柠檬酸钠、 柠檬酸三钾、 六偏磷酸钠、 六偏磷酸钾、 焦磷酸钠、 聚磷酸钾中 的一种或多种。
12. 权利要求 11的方法, 其中螯合剂选自柠檬酸钠和六偏磷酸钠。
13. 权利要求 12的方法, 其中螯合剂为柠檬酸钠。
14. 权利要求 6的方法, 其中所用的酸 /螯合剂 /低级醇混合体系中的低级醇选自 乙醇、 异丙醇和正丁醇中的一种或多种。
15. 权利要求 14的方法, 其中所用的低级醇选自乙醇和异丙醇。
16. 权利要求 15的方法, 其中所用的低级醇是异丙醇。
17. 权利要求 1的方法, 其中步骤(2) 中使用厢式聚丙烯板框压滤机或布袋压 搾机进行固液分离。
18. 权利要求 17的方法, 其中使用厢式聚丙烯板框压滤机进行固液分离。
19. 权利要求 1的方法, 其中步骤(3 )脱酰基处理分为-
(3.1 ) 将步骤(2) 中制得的絮凝产物, 打散后用 10〜20倍重量的去离子水 溶解, 升温到 80〜90°C, 充分搅拌以达到完全溶解;
(3.2) 通过在步骤(3.1 )得到的结冷胶溶液中加入碱, 调节 pH值在 9.5~11 范围之内, 保持温度 85~90°C之间, 时间 10~15分钟; (3.3 )在步骤(3.2)得到的脱酰基结冷胶溶液中加入酸, 调节 pH值到中性。
20. 权利要求 19的方法, 其中 (3.1 )中使用 15~20倍重量的去离子水, 升温至 85-90 °C ; (3.2) '中调节 pH值为 10, 保持温度 86〜88°C, 时间 10分钟。
21.权利要求 19的方法,其中(3.2)中调整 pH所用的碱为 NaOH、KOH、Na2C03, K2C03中的一种或多种。
22. 权利要求 21的方法, 其中所用碱为 NaOH, KOH。
23. 权利要求 22的方法, 其中所用碱为 NaOH。
24. 权利要求 19的方法, 其中 (3.3 ) 中所用酸为无机酸或有机酸。
25. 权利要求 24的方法, 其中酸为无机酸。
26. 权利要求 25的方法, 其中无机酸选自盐酸、 硫酸或磷酸中的一种或多种。
27. 权利要求 26的方法, 其中酸为盐酸。
28. 权利要求 24的方法, 其中有机酸选自甲酸、 醋酸、 柠檬酸、 苹果酸或酒石 酸中的一种或多种。
29. 权利要求 1的方法, 其中步骤(4)采用板框或厢式压滤, 高速离心或微孔 滤膜过滤, 将步骤 (3 ) 中得到的脱酰基结冷胶溶液澄清处理。
30. 权利要求 29的方法, 其中采用板框或厢式压滤进行脱酰基结冷胶溶液澄清 处理。
31.权利要求 29或 30的方法,其中步骤(4)中澄清处理时的温度在 65°C以上。
32. 权利要求 31的方法, 其中步骤(4) 中澄清处理时的温度为 75°C。
33. 权利要求 1的方法, 其中步骤(5) 中所用的碱金属盐选自一价碱金属、 二 价碱金属和多价碱金属。
34. 权利要求 33的方法, 其中碱金属盐选自一价和二价碱金属盐。 ·
35. 权利要求 33或 34的方法, 其中碱金属盐为二价碱金属盐。
36. 权利要求 33或 34的方法, 其中一价碱金属选自氯化钾、 氯化钠、 硫酸钾、 硫酸钠中的一种或多种。
37. 权利要求 35的方法, 其中二价碱金属选自氯化钙、 氯化镁。
38. 权利要求 33的方法, 其中多价碱金属为氯化铁。
39. 权利要求 1或 33的方法, 其中步骤 (5 ) 中使用厢式聚丙烯板框压滤机或 布袋压搾机进行压搾脱水。
40. 权利要求 39的方法, 其中使用厢式聚丙烯板框压滤机进行压搾脱水。
41. 权利要求 1的方法, 其中步骤(6) 中使用切胶机, 将低酰基结冷胶切碎为 柱状小颗粒, 颗粒直径小于 3毫米, 长度小于 12毫米。
42. 权利要求 1的方法, 其中步骤(6) 中所用的一价金属盐为可溶性一价碱金 属盐, 用量为在溶液中浓度达到 5000〜10000ppm。
43.权利要求 42的方法,其中一价金属盐用量为溶液中浓度达到 6000~8000ppm。
44. 权利要求 42或 43方法, 其中可溶性一价碱金属盐选自氯化钾、 氯化钠、 硫酸钾、 硫酸钠 '中的一种或多种。
45. 权利要求 42 的方法, 其中步骤(6) 中使用的脱水压搾设备选用布袋压搾 机。
46. 权利要求 41 的方法, 其中步骤(6) 中使用的低级醇选自乙醇、 异丙醇和 正丁醇中的一种或多种。
47. 权利要求 46的方法, 其中低级醇选自乙醇和异丙醇。
48. 权利要求 47的方法, 其中低级醇为异丙醇。
49. 权利要求 41或 46的方法, 其中低级醇的用量为结冷胶湿颗粒重量的 2~4 倍。
50. 权利要求 49的方法, 其中低级醇的用量为结冷胶湿颗粒重量的 2.5~3.5倍。
51. 权利要求 1 的方法, 其中步骤(7)干燥粉碎为将步骤 (6) 中制得的产物 于 75~80°C下进行干燥, 并粉碎, 然后造粒。
52. 权利要求 51的方法, 其中干燥设备选自真空干燥和沸腾干燥, 干燥时间控 制在 1到 1.5小时之间。
PCT/CN2010/000783 2009-07-09 2010-06-02 一种具备高溶解性能的低酰基结冷胶的后提取方法 WO2011003270A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012518728A JP5972165B2 (ja) 2009-07-09 2010-06-02 高溶解性を有する低次アシル化ジェランゴムのポスト抽出方法
US13/142,407 US8652549B2 (en) 2009-07-09 2010-06-02 Method for post-extracting low acyl gellan gum with high solubility
EP10796647.5A EP2348054B1 (en) 2009-07-09 2010-06-02 Method for post-extracting low acyl gellan gum with high solubility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910158367.5 2009-07-09
CN2009101583675A CN101597341B (zh) 2009-07-09 2009-07-09 一种具备高溶解性能的低酰基结冷胶的后提取方法

Publications (1)

Publication Number Publication Date
WO2011003270A1 true WO2011003270A1 (zh) 2011-01-13

Family

ID=41418954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000783 WO2011003270A1 (zh) 2009-07-09 2010-06-02 一种具备高溶解性能的低酰基结冷胶的后提取方法

Country Status (5)

Country Link
US (1) US8652549B2 (zh)
EP (1) EP2348054B1 (zh)
JP (1) JP5972165B2 (zh)
CN (1) CN101597341B (zh)
WO (1) WO2011003270A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117180215A (zh) * 2023-11-07 2023-12-08 成都通德药业有限公司 一种胰激肽原酶肠溶片及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597341B (zh) * 2009-07-09 2011-10-26 浙江帝斯曼中肯生物科技有限公司 一种具备高溶解性能的低酰基结冷胶的后提取方法
CN102627699A (zh) * 2012-03-30 2012-08-08 杭州健恒生物技术有限公司 一种高酰基结冷胶的提取方法
CN103113488B (zh) * 2013-02-22 2015-12-23 天茁(上海)生物科技有限公司 一种易分散及溶解的低酰基透明型结冷胶的提取方法
CN103204949A (zh) * 2013-04-18 2013-07-17 天茁(上海)生物科技有限公司 低酰基非清型结冷胶的提取方法
TWI708846B (zh) * 2014-01-23 2020-11-01 日商日產化學工業股份有限公司 培養基組成物的製造方法
CN104193841B (zh) * 2014-08-07 2016-08-24 新疆阜丰生物科技有限公司 一种低成本低酰基透明型结冷胶提取工艺
CN108690143A (zh) 2017-04-07 2018-10-23 帝斯曼知识产权资产管理有限公司 一种高透明低酰基结冷胶的生产方法
CN116655821A (zh) * 2023-06-13 2023-08-29 嘉保生物科技(保山)有限公司 一种低酰基透明型结冷胶的后提取方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605461B2 (en) * 2000-07-24 2003-08-12 Shin-Etsu Bio., Inc. Production of exopolysaccharides unattached to the surface of bacterial cells
CN1932026A (zh) * 2006-09-12 2007-03-21 山东大学 一种结冷胶发酵液的脱蛋白方法
CN101062957A (zh) * 2006-04-24 2007-10-31 上海众伟生化有限公司 无有机溶剂结冷胶及其生产工艺
CN101191138A (zh) * 2006-11-28 2008-06-04 尹洪波 从结冷胶发酵液生产结冷胶成品的方法
US20080145505A1 (en) * 2006-12-15 2008-06-19 Cp Kelco U.S., Inc. High Performance Gellan Gums and Methods for Production Thereof
CN101597341A (zh) * 2009-07-09 2009-12-09 浙江中肯生物科技有限公司 一种具备高溶解性能的低酰基结冷胶的后提取方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503084A (en) * 1983-05-31 1985-03-05 Merck & Co., Inc. Non-heated gellan gum gels
CN1023605C (zh) * 1991-06-02 1994-01-26 范炳基 卡拉胶制造方法的改进
CN1069738A (zh) * 1991-08-23 1993-03-10 梁芳亭 灵芝菌丝体蛋白多糖酸法生产技术
CN1071170A (zh) * 1991-09-25 1993-04-21 梁芳亭 猴头菌丝体蛋白多糖酸法生产技术
JP3584340B2 (ja) * 1994-12-07 2004-11-04 信越化学工業株式会社 精製キサンタンガムの製造方法
CN1259426C (zh) * 2004-11-19 2006-06-14 张禹 结冷胶的后提取方法
CN101591400B (zh) * 2009-07-09 2012-01-18 浙江帝斯曼中肯生物科技有限公司 一种低酰基清型结冷胶的后提取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605461B2 (en) * 2000-07-24 2003-08-12 Shin-Etsu Bio., Inc. Production of exopolysaccharides unattached to the surface of bacterial cells
CN101062957A (zh) * 2006-04-24 2007-10-31 上海众伟生化有限公司 无有机溶剂结冷胶及其生产工艺
CN1932026A (zh) * 2006-09-12 2007-03-21 山东大学 一种结冷胶发酵液的脱蛋白方法
CN101191138A (zh) * 2006-11-28 2008-06-04 尹洪波 从结冷胶发酵液生产结冷胶成品的方法
US20080145505A1 (en) * 2006-12-15 2008-06-19 Cp Kelco U.S., Inc. High Performance Gellan Gums and Methods for Production Thereof
CN101597341A (zh) * 2009-07-09 2009-12-09 浙江中肯生物科技有限公司 一种具备高溶解性能的低酰基结冷胶的后提取方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117180215A (zh) * 2023-11-07 2023-12-08 成都通德药业有限公司 一种胰激肽原酶肠溶片及其制备方法
CN117180215B (zh) * 2023-11-07 2024-02-02 成都通德药业有限公司 一种胰激肽原酶肠溶片及其制备方法

Also Published As

Publication number Publication date
EP2348054A1 (en) 2011-07-27
CN101597341B (zh) 2011-10-26
CN101597341A (zh) 2009-12-09
EP2348054A4 (en) 2014-06-25
JP5972165B2 (ja) 2016-08-17
EP2348054B1 (en) 2019-10-09
JP2012532236A (ja) 2012-12-13
US20110268843A1 (en) 2011-11-03
US8652549B2 (en) 2014-02-18

Similar Documents

Publication Publication Date Title
WO2011003270A1 (zh) 一种具备高溶解性能的低酰基结冷胶的后提取方法
CN101591400B (zh) 一种低酰基清型结冷胶的后提取方法
CN101591399B (zh) 一种适用于组织培养基的低酰基结冷胶提取方法
US8609377B2 (en) Method for post-extracting low acyl gellan gum
CN104788510A (zh) 一种自发酵液提取氨基葡萄糖的方法
CN103113488B (zh) 一种易分散及溶解的低酰基透明型结冷胶的提取方法
CN103570842A (zh) 一种普鲁兰多糖的提取方法
CN113735991B (zh) 一种从高粘度发酵液中提取普鲁兰多糖的工艺
WO2007016547A2 (en) Low-sediment acidic protein beverages
JP2012532235A5 (zh)
US20070026125A1 (en) Low-sediment acidic protein beverages
JP5321059B2 (ja) 新規な安定性を有する水溶性多糖類及びその製造法
CN107383128A (zh) 一种甜菊糖苷水提取液的脱色方法
CN107529804B (zh) 胞外多糖胶产品及其制造方法和使用方法
WO2010139191A1 (zh) 一种高酰基结冷胶的后提取方法
CN112321746A (zh) 一种高纯超低黏度海藻酸钠的提取工艺
CN115368486A (zh) 一种三元低共熔溶剂及其在克氏原螯虾壳甲壳素提取中的应用
CN103947915B (zh) 一种精炼刺槐豆胶的制备方法
JP5889669B2 (ja) ガラクトマンナンの製造方法
CN107641159B (zh) 一种低粘度增白卡拉胶的生产工艺
JP7489656B2 (ja) バクテリアセルロース複合化粉末およびその製造方法
CN116655821A (zh) 一种低酰基透明型结冷胶的后提取方法
KR20210094704A (ko) 활성분자키토산 원료와 그 제조방법
CN112608396A (zh) 一种利用氧化剂降粘提取β-1,3-葡聚糖的方法
EP1458761A2 (fr) Effet de synergie entre l'agar de faible force de gel et les farines de galactomannanes, et procede de production d'une telle composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010796647

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13142407

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012518728

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE