WO2011001876A1 - 荷重検出センサ - Google Patents

荷重検出センサ Download PDF

Info

Publication number
WO2011001876A1
WO2011001876A1 PCT/JP2010/060668 JP2010060668W WO2011001876A1 WO 2011001876 A1 WO2011001876 A1 WO 2011001876A1 JP 2010060668 W JP2010060668 W JP 2010060668W WO 2011001876 A1 WO2011001876 A1 WO 2011001876A1
Authority
WO
WIPO (PCT)
Prior art keywords
block body
load
load detection
detection sensor
force
Prior art date
Application number
PCT/JP2010/060668
Other languages
English (en)
French (fr)
Inventor
直也 篠崎
Original Assignee
新光電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新光電子株式会社 filed Critical 新光電子株式会社
Priority to EP10794045A priority Critical patent/EP2450685A4/en
Priority to US13/376,329 priority patent/US8770044B2/en
Priority to JP2011520876A priority patent/JP5575129B2/ja
Priority to CN2010900009675U priority patent/CN202661203U/zh
Publication of WO2011001876A1 publication Critical patent/WO2011001876A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/16Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of frequency of oscillations of the body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G21/00Details of weighing apparatus
    • G01G21/24Guides or linkages for ensuring parallel motion of the weigh-pans
    • G01G21/244Guides or linkages for ensuring parallel motion of the weigh-pans combined with flexure-plate fulcrums
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/10Measuring force or stress, in general by measuring variations of frequency of stressed vibrating elements, e.g. of stressed strings
    • G01L1/106Constructional details

Definitions

  • the present invention relates to a load detection sensor used for a platform scale and the like, and enables weighing with high accuracy.
  • Main methods of electronic balances include a load cell method using a strain gauge, a tuning fork vibration method using a tuning fork, and an electromagnetic force balance method using an electromagnet and an electromagnetic coil.
  • the load cell method the load is measured from the deformation amount of the strain gauge due to the load.
  • the tuning fork vibration system performs load measurement by utilizing the fact that the frequency of the tuning fork changes in proportion to the magnitude of the load applied to both ends of the tuning fork, as described in Patent Document 1 below.
  • the electromagnetic force balance method a mechanical balance mechanism whose equilibrium state is broken by a load is returned to the equilibrium state by passing a current through the electromagnetic coil, and the magnitude of the load is obtained from the magnitude of the current at that time.
  • the accuracy of the balance is higher in the tuning fork vibration method and electromagnetic force balance method than in the load cell method, while the manufacturing cost of the balance is highest in the electromagnetic force balance method with a complicated mechanism and lowest in the load cell method with a simple structure. Cost.
  • most of the platform scales having a weighing (measurement range) of 300 kg adopt the load cell method.
  • the present invention has been made in consideration of such circumstances, and an object thereof is to provide a load detection sensor capable of stably measuring a heavy object with high accuracy.
  • the load detection sensor includes a force sensor including a tuning fork vibrator, and a block body having a rectangular parallelepiped shape and transmitting the applied load to the force sensor by reducing the applied load with an insulator.
  • a force sensor including a tuning fork vibrator, and a block body having a rectangular parallelepiped shape and transmitting the applied load to the force sensor by reducing the applied load with an insulator.
  • This block body is cut and cut from the side to create the lever mechanism and the roberval mechanism, but it has a rectangular parallelepiped shape and has sufficient mechanical strength.
  • the operation of reducing the applied load can be performed stably.
  • the force sensor since the force sensor is coupled to the side surface of the block body, the force sensor does not increase the height of the load detection sensor. This is effective in reducing the floor of the platform scale.
  • the connecting piece connected to the force point of the insulator inside the block body is cut from both opposing side surfaces of the block body, and is near the center in the width direction of the block body. Forming. In this way, by providing the connecting piece connected to the power point of the insulator only in the vicinity of the center in the width direction of the block body, even when the block body is twisted due to an eccentric load, the influence of the twist on the force sensor is eliminated. be able to.
  • the load detection sensor of the present invention can stably perform highly accurate weighing. Further, by configuring the platform scale using this load detection sensor, it is possible to reduce the floor of the platform scale.
  • FIG. 8 is a perspective view of the force sensor of FIG. 1 is an exploded perspective view of a platform balance using the load detection sensor of FIG. 1 is an exploded perspective view of a load detection unit using the load detection sensor of FIG. 1 is an exploded perspective view of a sensor case of a platform scale using the load detection sensor of FIG.
  • FIG. 2 is a modified view of the cross section AA of the block body of FIG.
  • FIG. 10 shows an example of a platform scale configured using the load sensor of the present invention.
  • the platform scale includes an upper frame 10 that supports a loading table (not shown), two parallel base frames 20 and 20, and a load detection unit 30 spanned between the base frames 20 and 20.
  • the upper frame 10 is placed on the load detection unit 30.
  • the load detection unit 30 includes an upper surface support member 31 that supports the upper frame 10, and a sensor case 33 in which a load detection sensor and a circuit board are accommodated.
  • FIG. 12 shows the contents of the sensor case 33 in an exploded perspective view.
  • the sensor case 33 accommodates a load detection sensor 40 including a force sensor 41 including a tuning fork vibrator and a block body 42 made of an aluminum alloy.
  • a bolt 37 that transmits a load is fixed to the movable side of the block body 42.
  • the opening of the sensor case 33 that houses the load detection sensor 40 is sealed by the lid 35, and the gap between the bolt 37 and the hole 351 passing through the hole 351 of the lid 35 is the diaphragm 51 and the inner circle of the diaphragm 51.
  • a sealing mechanism including a clamping plate 53 that clamps the periphery of the diaphragm 51 with two discs, and a mounting plate 52 that fixes the outer edge of the diaphragm 51 to the back surface of the lid 35.
  • the clamping plate 53 has a hole 531 into which the bolt 37 is closely fitted, and the tip of the bolt 37 passing through the hole 531 is coupled to the screw hole 422 on the movable side of the block body 42.
  • the load applied to the upper frame 10 is transmitted to the upper surface support members 31 of the two load detection units 30 in contact with the upper frame 10, and the bolts 37 that support the upper surface support member 31 from the upper surface support member 31.
  • the movable side of the block body 42 of the load detection sensor 40 is displaced by the load applied to the bolt 37, and a signal corresponding to the displacement is output from the tuning fork vibrator of the force sensor 41.
  • This signal is converted into a digital signal by the circuit of the substrate housed in the sensor case 33 and output, and the digital signals output from the two load detection units 30 are added to display the load of the object to be measured on the display ( (Not shown).
  • a component force buffer 32 is interposed between the upper frame 10 and the upper surface support member 31 in order to release a horizontal component force acting on the upper surface support member 31 from the upper frame 10.
  • FIG. 1 shows an embodiment of a load detection sensor 40 in which a force sensor 41 is coupled to a side surface of a block body 42.
  • 2 shows the block body 42 with the force sensor 41 removed
  • FIGS. 8 and 9 show the force sensor 41 removed.
  • FIG. 8 is a plan view of the force sensor 41
  • FIG. 9 is a perspective view of the force sensor 41.
  • the block body 42 is made of an aluminum alloy having a rectangular parallelepiped outer shape, and a bolt hole 421 through which the bolt 43 is inserted and a screw hole 422 into which the bolt 37 is screwed are formed on the upper surface of the block body 42.
  • cutting and cutting are performed from the side surface along the longitudinal direction, and the lever mechanism and the roberval mechanism are formed inside the center of the block body 42.
  • FIG. 3 is a plan view of a processing portion viewed from the processing surface of the block body 42.
  • the block body 42 is provided with a parallel link portion 61 constituting a Roverval mechanism, a lever portion 62 constituting a lever mechanism, a fixing portion 63 integral with the fixing side of the block body 42, and a fulcrum of the lever portion 62.
  • a connecting piece 65 connected to the power point of the insulator 62 is formed.
  • the thin portion 64 constituting the fulcrum of the lever portion 62 is formed between the fixing portion 63 and the lever portion 62, and the other end of the connecting piece 65 whose one end is connected to the power point of the lever portion 62 is a block.
  • a fixed coupling hole 66 used for coupling the force sensor 41 is formed in the fixed portion 63, and an action point coupling portion 67 that couples the force sensor 41 is formed at the action point of the lever portion 62.
  • This lever mechanism operates as follows.
  • the connecting piece 65 is pulled downward, and accordingly, a downward force is applied to the force point of the lever portion 62. Therefore, the action point (position of the action point coupling part 67) of the lever part 62 supported by the fulcrum (thin wall part 64) is displaced upward.
  • FIG. 4 the lever mechanism and the roberval mechanism inside the block body 42, the bolt hole 421 and the screw hole 422 are visualized and displayed.
  • 5 is a sectional view taken on line AA (vertical sectional view at the position of the connecting piece 65) of FIG. 5
  • FIG. 6 is a sectional view taken on line BB (horizontal sectional view at the position of the fulcrum 64). It shows.
  • the parallel link part 61, the insulator part 62, the fixing part 63, and the thin part 64 are formed with the same width as the rectangular parallelepiped, but the connecting piece 65 is a rectangular parallelepiped.
  • An equal length is cut from both opposing side surfaces of the block body 42 so as to have a width of about 1/3 of the width of the block body 42.
  • the force sensor 41 is formed by hollowing out one relatively thin metal block, and a base 71 coupled to the fixing portion 63 of the block body 42, A force acting part 73 coupled to the action point coupling part 67 of the lever part 62 of the block body 42, a lever part 75 functioning as a lever, a connecting part 72 connecting between the force acting part 73 and the lever part 75; And a tuning fork vibrator 78.
  • the base portion 71 has a bolt hole 74, and a bolt 91 (FIG. 1) inserted through the bolt hole 74 is screwed into a fixed coupling hole 66 of the fixing portion 63 of the block body 42 to be fixed to the base portion 71.
  • the part 63 is coupled.
  • the force acting portion 73 has a bolt hole 79, and the bolt 92 (FIG. 1) inserted through the bolt hole 79 is screwed into the hole of the acting point coupling portion 67 of the block body 42 to force The action part 73 and the action point coupling part 67 are coupled.
  • the connecting portion 72 connects the force acting portion 73 and one end of the lever portion 75.
  • the base portion 71 is connected to the lever portion 75 via a thin portion 77 that acts as a fulcrum of the lever portion 75, and one end of the tuning fork vibrator 78 is fixed via the thin portion 80.
  • the tip of the lever portion 75 is connected to the other end of the tuning fork vibrator 78 through the thin portion 81.
  • the force sensor 41 operates as follows. When a load F is applied to the movable portion of the block body 42, a reduced force f obtained by multiplying the load F by L1 / L2 is transmitted from the action point coupling portion 67 of the lever portion 62 to the force acting portion 73, and the force acting portion. 73 is pulled up. Therefore, the connecting portion 72 pulls up the end portion of the lever portion 75 with the force f. The lever portion 75 pulls down the thin portion 81 connected to the tuning fork vibrator 78 with a force corresponding to the lever ratio, with the thin portion 77 connected to the base portion 71 as a fulcrum. The tuning fork vibrator 78 changes the vibration frequency according to a change in tension applied to both ends. The change in the vibration frequency of the tuning fork vibrator 78 is converted into a digital signal by the circuit of the substrate housed in the sensor case 33 and output.
  • the block body 42 is subjected to processing such as incision and cutting from the side surface in order to make the lever mechanism and the roberval mechanism therein.
  • the outer shape is maintained and it has sufficient mechanical strength. Therefore, even if the load transmitted from the bolt 37 is large, the load reducing operation can be stably performed, and the reduced load can be transmitted to the force sensor 41.
  • the force sensor 41 of the load detection sensor 40 can change the load transmitted from the block body 42 to a change in the vibration frequency of the tuning fork vibrator 78 with high accuracy.
  • the connecting piece 65 connected to the lever power point inside the block body 42 is cut by an equal length from both opposing side surfaces of the block body 42, so that the width direction of the block body 42 is reduced. Since the block body 42 is disposed only in the vicinity of the center, the block body 42 receives an eccentric load (a load having a different size is transmitted from each of the four bolts 37 fitted into the four screw holes 422) and is twisted. Even in this case, the influence of twisting on the force sensor 41 is minimized. Therefore, the load detection sensor 40 can be used to detect a load with high accuracy. In FIG.
  • the position of the connecting piece 65 inside the block body 42 is formed at the center position in the width direction of the block body 42, but the force is applied from the center position in the width direction of the block body 42 as shown in FIG. 13.
  • the force sensor 41 is fixed to the side surface of the block body 42, so the height of the load detection sensor 40 does not increase beyond the height of the block body 42. This is advantageous in reducing the floor of the platform scale.
  • the load detection sensor of the present invention can be provided not only to the user by being incorporated in the platform balance but also to the user in the form of the load detection unit 30 shown in FIG.
  • a user who has acquired the load detection unit 30 can, for example, configure a platform scale in a form suitable for the work site by arranging two load detection units 30 in parallel on a horizontal plane and placing a flat plate thereon. it can.
  • the load detection sensor of the present invention is capable of high-precision weighing, and is used in various fields such as factory production sites, distribution fields, medical fields, education / research fields, agriculture / fishery fields, and households. It can be widely used in weighing devices similar to those.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Force In General (AREA)

Abstract

(課題)重量物の計量を高精度に、且つ、安定的に行うことができる荷重検出センサを提供する。 (解決手段)この荷重検出センサ40は、音叉振動子を備える力センサ41と、直方体状の外形を有し、加えられた荷重を梃子で縮小して前記力センサに伝えるブロック体42とを具備し、このブロック体42が、長手方向に沿う側面から加工されて形成された梃子機構とロバーバル機構とを内蔵し、力センサ41が、ブロック体42の前記側面に結合されている。このブロック体42は、梃子機構及びロバーバル機構を作り込むために側面から切り込みや削り込みが行われているが、直方体状の外形を保っているため、十分な機械的強度を有しており、加えられた荷重の縮小動作を安定して行うことができる。

Description

荷重検出センサ
 本発明は、台秤などに用いる荷重検出センサに関し、高い精度での計量を可能にするものである。
 電子秤の主な方式には、歪みゲージを用いるロードセル方式、音叉を使用する音叉振動方式、電磁石及び電磁コイルを用いる電磁力平衡方式が存在する。
 ロードセル方式は、荷重による歪みゲージの変形量から荷重を測定する。音叉振動方式は、下記特許文献1に記載されているように、音叉の振動数が音叉の両端に加わる荷重の大きさに比例して変化することを利用して荷重測定を行う。また、電磁力平衡方式は、荷重により平衡状態が崩れた機械的バランス機構を、電磁コイルに電流を流して平衡状態に戻し、そのときの電流の大きさから荷重の大きさを求める。
 秤の精度は、ロードセル方式より音叉振動方式や電磁力平衡方式の方が高く、一方、秤の製造コストは、機構が複雑な電磁力平衡方式が最も高く、構造が簡単なロードセル方式が最も低コストである。
 現在、秤量(測定範囲)が300kgに及ぶ台秤の多くは、ロードセル方式を採用している。
特開2004-239827号公報
 しかし、生産現場では、例えば、ドラム缶入りの薬液原料等を計量する場合のように、重量物の重さを高い精度で測定する必要性が増えており、台秤の高精度化が求められている。
 台秤の精度向上は、単に、精度が高い計量方式を採用するだけでは実現できない。重量物に耐えられる機械的強度の確保が必要であり、また、加わる荷重が大きくても、安定した計量動作が実行できる荷重検出センサの存在が不可欠である。
 また、重量物を台秤の載荷台に載せたり降ろしたりする作業をし易くするため、台秤の低床化も必要である。
 本発明は、こうした事情を考慮して創案したものであり、重量物の計量を高精度に、且つ、安定的に行うことができる荷重検出センサを提供することを目的としている。
 本発明の荷重検出センサは、音叉振動子を備える力センサと、直方体状の外形を有し、加えられた荷重を梃子で縮小して前記力センサに伝えるブロック体とを具備し、前記ブロック体が、長手方向に沿う側面から加工されて形成された梃子機構とロバーバル機構とを内蔵し、前記力センサが、前記ブロック体の前記側面に結合されていることを特徴とする。
 このブロック体は、梃子機構及びロバーバル機構を作り込むために側面から切り込みや削り込みが行われているが、直方体状の外形を保っているため、十分な機械的強度を有しており、加えられた荷重の縮小動作を安定して行うことができる。また、力センサをブロック体の側面に結合しているため、この力センサにより、荷重検出センサの高さの増加は発生しない。これは、台秤の低床化を図る上で有効である。
 また、本発明の荷重検出センサでは、前記ブロック体の内部で前記梃子の力点に接続する連結片を、前記ブロック体の対向する両側面から削り込んで、前記ブロック体の幅方向の中央付近に形成している。
 このように、梃子の力点に接続する連結片をブロック体の幅方向の中央付近にのみ設けることで、ブロック体が偏置荷重を受けて捩じれる場合でも、力センサに及ぶ捩じれの影響を除くことができる。
 本発明の荷重検出センサは、高精度の計量を安定して行うことができる。
 また、この荷重検出センサを用いて台秤を構成することにより、台秤の低床化が可能になる。
本発明の実施形態に係る荷重検出センサの斜視図 図1の荷重検出センサのブロック体を示す斜視図 図2のブロック体における加工箇所の平面図 図2のブロック体の内部構造を示す図 図2のブロック体の側面図 図5のブロック体のA-A断面図 図5のブロック体のB-B断面図 図1の荷重検出センサの力センサを示す平面図 図8の力センサの斜視図 図1の荷重検出センサを用いた台秤の分解斜視図 図1の荷重検出センサを用いた荷重検出ユニットの分解斜視図 図1の荷重検出センサを用いた台秤のセンサケースの分解斜視図 図2のブロック体の断面A-Aの変形図
 図10は、本発明の荷重センサを用いて構成する台秤の一例を示している。
 この台秤は、載荷台(不図示)を支える上側フレーム10と、二本の並行する基礎フレーム20、20と、基礎フレーム20、20間に掛け渡された荷重検出ユニット30とを備えており、荷重検出ユニット30の上に上側フレーム10が載せられる。
 荷重検出ユニット30は、図11に示すように、上側フレーム10を支える上面支持部材31と、荷重検出センサや回路基板が収納されるセンサケース33とを有している。
 図12は、センサケース33の中身を分解斜視図で示している。
 センサケース33には、音叉振動子を含む力センサ41と、アルミ合金で作られたブロック体42とから成る荷重検出センサ40が収容され、このブロック体42の固定側が、ボルト43でセンサケース33の底部に固定され、ブロック体42の可動側に、荷重を伝達するボルト37が固定される。
 また、荷重検出センサ40を収容したセンサケース33の開口は、蓋体35により封鎖され、蓋体35の孔351を通るボルト37と孔351との隙間が、ダイヤフラム51と、ダイヤフラム51の内円の周縁を二枚の円板で挟持する挟持板53と、ダイヤフラム51の外縁を蓋体35の裏面に固定する取付板52とから成る封鎖機構で封鎖される。
 挟持板53は、ボルト37が密に嵌合される孔531を有しており、この孔531を通ったボルト37の先端がブロック体42の可動側の螺子孔422に結合される。
 そのため、この台秤では、上側フレーム10に加わる荷重が、上側フレーム10に接触する二つの荷重検出ユニット30の上面支持部材31に伝わり、上面支持部材31から、上面支持部材31を支えているボルト37に伝わり、ボルト37に加わる荷重によって荷重検出センサ40のブロック体42の可動側が変位し、その変位に応じた信号が力センサ41の音叉振動子から出力される。この信号は、センサケース33に収容された基板の回路でデジタル信号に変換されて出力され、二つの荷重検出ユニット30から出力されたデジタル信号が加算されて、被計量物の荷重が表示器(不図示)に表示される。
 なお、上側フレーム10と上面支持部材31との間には、上側フレーム10から上面支持部材31に作用する水平方向の分力を逃がすために、分力緩衝装置32を介在させている。
 図1は、ブロック体42の側面に力センサ41が結合された荷重検出センサ40の実施形態を示している。また、図2は、力センサ41を取り外したブロック体42を示し、図8及び図9は、取り外された力センサ41を示している。図8は力センサ41の平面図、図9は力センサ41の斜視図である。
 ブロック体42は、直方体状の外形を有するアルミ合金から成り、ブロック体42の上面には、ボルト43が挿通されるボルト孔421と、ボルト37が螺合される螺子孔422とが形成され、また、長手方向に沿う側面から切り込みや削り込みの加工が施されて、ブロック体42の中央内部に梃子機構及びロバーバル機構が作り込まれている。
 図3は、ブロック体42の加工面から見た加工箇所の平面図である。この加工により、ブロック体42には、ロバーバル機構を構成する平行リンク部61と、梃子機構を構成する梃子部62と、ブロック体42の固定側と一体の固定部63と、梃子部62の支点を構成する薄肉部64と、梃子部62の力点に接続する連結片65とが形成されている。
 梃子部62の支点を構成する薄肉部64は、固定部63と梃子部62との間に形成されており、また、梃子部62の力点に一端が接続する連結片65の他端は、ブロック体42の可動側のブロックに結合している。また、固定部63には、力センサ41の結合に用いる固定結合孔66が形成され、梃子部62の作用点には、力センサ41を結合する作用点結合部67が形成されている。
 この梃子機構は、次のように動作する。
 ブロック体42の可動側が荷重を受けて下方に変位すると、連結片65が下側に引っ張られ、それに伴って、梃子部62の力点に下向きの力が加わる。そのため、支点(薄肉部64)で支えられた梃子部62の作用点(作用点結合部67の位置)が上方に変位する。
 このとき、支点と力点との距離をL1、支点と作用点との距離をL2、力点に働く下向きの力をF1、作用点に働く力をF2とすると、L1×F1=L2×F2の関係があるから、力点に働く力F1がL1/L2の値に従って縮小されて作用点に働くことになる。
 図4には、ブロック体42内部の梃子機構及びロバーバル機構、並びに、ボルト孔421及び螺子孔422を可視化させて表示している。
 また、図5に示すブロック体42のA-A断面図(連結片65位置での垂直断面図)を図6に示し、B-B断面図(支点64位置での水平断面図)を図7に示している。
 図4、図6、図7から分かるように、平行リンク部61、梃子部62、固定部63及び薄肉部64は、直方体の幅と同じ幅で形成されているが、連結片65は、直方体の幅の略1/3の幅を持つように、ブロック体42の対向する両側面から等しい長さだけ削り込まれている。
 このように、梃子部62の力点に接続する連結片65をブロック体42の幅方向の中央付近にのみ設けることで、ブロック体42が偏置荷重を受けて捩じれた場合でも、捩れの影響が作用点結合部67に現われ難くなる。
 一方、力センサ41は、図8、図9に示すように、1個の比較的薄肉の金属ブロックを刳り抜いて作られており、ブロック体42の固定部63に結合される基部71と、ブロック体42の梃子部62の作用点結合部67に結合される力作用部73と、梃子として機能するレバー部75と、力作用部73及びレバー部75の間を接続する連結部72と、音叉振動子78とを備えている。
 基部71は、ボルト孔74を有しており、このボルト孔74に挿通されたボルト91(図1)がブロック体42の固定部63の固定結合孔66に螺合されて、基部71と固定部63とを結合する。
 また、力作用部73は、ボルト孔79を有しており、このボルト孔79に挿通されたボルト92(図1)がブロック体42の作用点結合部67の孔に螺合されて、力作用部73と作用点結合部67とを結合する。
 連結部72は、力作用部73とレバー部75の一端とを接続している。基部71は、レバー部75の支点として作用する薄肉部77を介してレバー部75に接続し、薄肉部80を介して音叉振動子78の一端を固定している。また、レバー部75の先端は、薄肉部81を介して音叉振動子78の他方に接続している。
 この力センサ41は、次のように動作する。
 ブロック体42の可動部に荷重Fが加わると、その荷重FにL1/L2を乗じた縮小された力fが、梃子部62の作用点結合部67から力作用部73に伝わり、力作用部73が引き上げられる。そのため、連結部72は、レバー部75の端部を力fで引き上げる。レバー部75は、基部71に接続された薄肉部77を支点にして、レバー比に応じた力で音叉振動子78に接続する薄肉部81を引き下げる。音叉振動子78は、両端に加わる張力の変化に応じて振動周波数を変える。
 この音叉振動子78の振動周波数の変化が、センサケース33に収容された基板の回路でデジタル信号に変換されて出力される。
 このように、この荷重検出センサ40では、ブロック体42が、その内部に梃子機構やロバーバル機構を作り込むために、側面から切り込みや削り込み等の加工が施こされているが、直方体状の外形を保っており、十分な機械的強度を有している。そのため、ボルト37から伝達される荷重が大きくても、その荷重の縮小動作を安定して行うことができ、縮小した荷重を力センサ41に伝えることができる。
 また、この荷重検出センサ40の力センサ41は、ブロック体42から伝えられた荷重を、高い精度で音叉振動子78の振動周波数の変化に変えることができる。
 また、この荷重検出センサ40では、ブロック体42の内部で梃子の力点に接続する連結片65を、ブロック体42の対向する両側面から等しい長さだけ削り込んで、ブロック体42の幅方向の中央付近にだけ配置しているため、ブロック体42が偏置荷重を受けて(4つの螺子孔422に嵌合する4本のボルト37のそれぞれから大きさの異なる荷重が伝達されて)捩じれる場合でも、力センサ41に及ぶ捩じれの影響が極小化される。
 そのため、この荷重検出センサ40を用いることにより、高精度の荷重検出が可能になる。
 なお、図6では、ブロック体42内部の連結片65の位置が、ブロック体42の幅方向の中央位置に形成されているが、図13のようにブロック体42の幅方向の中央位置から力センサ41の反対側にずらすことで、力センサ41をブロック体42の側面に取り付けることにより発生する偏力を補償し、偏置荷重を受けたときの梃子部62の捩れを防止することも可能である。
 また、この荷重検出センサ40では、力センサ41をブロック体42の側面に固定しているため、荷重検出センサ40の高さが、ブロック体42の高さ以上に増えない。これは、台秤の低床化を図る上で有利である。
 なお、本発明の荷重検出センサは、台秤に組み込んでユーザに提供するだけでなく、図11に示す荷重検出ユニット30の形態でユーザに提供することも可能である。この荷重検出ユニット30を取得したユーザは、例えば、二つの荷重検出ユニット30を水平面上に並行に配置し、その上に平板を載せるだけで、作業現場に合った形態の台秤を構成することができる。
 本発明の荷重検出センサは、高精度の計量が可能であり、工場の生産現場を始めとして、流通分野、医療分野、教育・研究分野、農業・漁業分野、家庭など、各分野で用いられる台秤やそれに類する秤量装置に広く用いることができる。
 10  上側フレーム
 20  基礎フレーム
 30  荷重検出ユニット
 31  上面支持部材
 32  分力緩衝装置
 33  センサケース
 35  蓋体
 37  ボルト
 41  力センサ
 42  ブロック体
 43  ボルト
 51  ダイヤフラム
 52  取付板
 53  挟持板
 61  平行リンク部
 62  梃子部
 63  固定部
 64  薄肉部
 65  連結片
 66  固定結合孔
 67  作用点結合部
 71  基部
 72  連結部
 73  力作用部
 74  ボルト孔
 75  レバー部
 77  薄肉部
 78  音叉振動子
 79  ボルト孔
 80  薄肉部
 81  薄肉部
 91  ボルト
 92  ボルト
 351 孔
 421 ボルト孔
 422 螺子孔

Claims (2)

  1.  音叉振動子を備える力センサと、
     直方体状の外形を有し、加えられた荷重を梃子で縮小して前記力センサに伝えるブロック体と、
    を具備し、前記ブロック体が、長手方向に沿う側面から加工されて形成された梃子機構とロバーバル機構とを内蔵し、前記力センサが、前記ブロック体の前記側面に結合されていることを特徴とする荷重検出センサ。
  2.  請求項1に記載の荷重検出センサであって、前記ブロック体の内部で前記梃子の力点に接続する連結片が、前記ブロック体の対向する両側面から削り込まれて、前記ブロック体の幅方向の中央付近に形成されていることを特徴とする荷重検出センサ。
PCT/JP2010/060668 2009-06-30 2010-06-23 荷重検出センサ WO2011001876A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10794045A EP2450685A4 (en) 2009-06-30 2010-06-23 CHARGE DETECTION SENSOR
US13/376,329 US8770044B2 (en) 2009-06-30 2010-06-23 Load detection sensor
JP2011520876A JP5575129B2 (ja) 2009-06-30 2010-06-23 荷重検出センサ
CN2010900009675U CN202661203U (zh) 2009-06-30 2010-06-23 载重检测传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009155213 2009-06-30
JP2009-155213 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011001876A1 true WO2011001876A1 (ja) 2011-01-06

Family

ID=43410951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060668 WO2011001876A1 (ja) 2009-06-30 2010-06-23 荷重検出センサ

Country Status (5)

Country Link
US (1) US8770044B2 (ja)
EP (1) EP2450685A4 (ja)
JP (1) JP5575129B2 (ja)
CN (1) CN202661203U (ja)
WO (1) WO2011001876A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11698309B2 (en) * 2020-03-05 2023-07-11 Delta Electronics, Inc. Linear actuator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277936A (ja) * 1987-05-09 1988-11-15 Shimadzu Corp 電子天びん
JP2004239827A (ja) 2003-02-07 2004-08-26 Shinko Denshi Kk はかり機構
JP2006208045A (ja) * 2005-01-25 2006-08-10 Shinko Denshi Kk はかり
JP2009121949A (ja) * 2007-11-15 2009-06-04 Shinko Denshi Kk 力測定機構

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1013709B (zh) * 1987-05-09 1991-08-28 株式会社岛津制作所 电子秤
DE3808232A1 (de) * 1988-03-11 1989-09-21 Sauter August Gmbh Plattformwaage
US5313023A (en) * 1992-04-03 1994-05-17 Weigh-Tronix, Inc. Load cell
GB9219074D0 (en) 1992-09-09 1992-10-21 Gec Avery Technology Improvements in or relating to weighing machines
DE19820637A1 (de) * 1998-05-08 1999-11-11 Mettler Toledo Gmbh Waage mit einem Ankopplungsbereich für ein Kalibriergewicht
DE19923207C1 (de) * 1999-05-20 2000-10-12 Sartorius Gmbh Wägeaufnehmer
US6693245B2 (en) * 2000-09-29 2004-02-17 Anritsu Corporation Electronic balance which is easily assembled, maintained, downsized and improved with respect to weighing performance, and method for manufacturing the same
JP2002365123A (ja) * 2001-06-11 2002-12-18 Yamato Scale Co Ltd 水晶振動子を用いた荷重センサ
JP2003065834A (ja) * 2001-08-29 2003-03-05 Shimadzu Corp 電子天びん
JP3670648B2 (ja) * 2003-02-07 2005-07-13 新光電子株式会社 荷重測定機構
US7091428B2 (en) * 2004-06-24 2006-08-15 Shinko Denshi Co., Ltd. Weighing apparatus with Roberval mechanism
DE102005005369C5 (de) * 2005-02-05 2010-01-21 Sartorius Ag Wägesystem
DE102006002711C5 (de) * 2006-01-19 2009-11-12 Wipotec Wiege- Und Positioniersysteme Gmbh Wägeaufnehmer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277936A (ja) * 1987-05-09 1988-11-15 Shimadzu Corp 電子天びん
JP2004239827A (ja) 2003-02-07 2004-08-26 Shinko Denshi Kk はかり機構
JP2006208045A (ja) * 2005-01-25 2006-08-10 Shinko Denshi Kk はかり
JP2009121949A (ja) * 2007-11-15 2009-06-04 Shinko Denshi Kk 力測定機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450685A4 *

Also Published As

Publication number Publication date
EP2450685A4 (en) 2012-12-19
US8770044B2 (en) 2014-07-08
JP5575129B2 (ja) 2014-08-20
CN202661203U (zh) 2013-01-09
US20120073387A1 (en) 2012-03-29
EP2450685A1 (en) 2012-05-09
JPWO2011001876A1 (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
KR100235129B1 (ko) 하중 셀
US4838369A (en) Load cell having digital output
WO2011001875A1 (ja) 台秤及び荷重検出ユニット
GB2528897A (en) Low-profile load cell assembly
JP5524208B2 (ja) 分力緩衝装置とそれを用いた台秤
JP2013011489A (ja) 小型台秤
EP1288636B1 (en) Electronic balance
JP5575129B2 (ja) 荷重検出センサ
JP2014109438A (ja) 起歪体、ロードセル、及び計量装置
JP4168275B2 (ja) 重量測定装置
KR20110066655A (ko) 중량 측정장치
JP2008101955A (ja) ロードセルおよび該ロードセルを備えた計量装置
US7091428B2 (en) Weighing apparatus with Roberval mechanism
CN102183329B (zh) 一种大载荷宽频带功率流测量装置
WO2019229549A1 (en) Load-cell device
JP5097510B2 (ja) 力測定機構
CN216433193U (zh) 应变基片、称重传感器以及底座组件
CN213422361U (zh) 槽车地磅称安装座
JP5080344B2 (ja) 防水秤及びそれに用いる計量ブロック
JPH0228413Y2 (ja)
JPH025376Y2 (ja)
JP2006138714A (ja) 校正装置を内蔵したはかり
KR20010024325A (ko) 계량저율
EP3830532A1 (en) Load cell
JPH09243436A (ja) 複合ロードセル秤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201090000967.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520876

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13376329

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010794045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010794045

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1008747

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1008747

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110805