WO2011001763A1 - 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品 - Google Patents

熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品 Download PDF

Info

Publication number
WO2011001763A1
WO2011001763A1 PCT/JP2010/058819 JP2010058819W WO2011001763A1 WO 2011001763 A1 WO2011001763 A1 WO 2011001763A1 JP 2010058819 W JP2010058819 W JP 2010058819W WO 2011001763 A1 WO2011001763 A1 WO 2011001763A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
mass
polylactic acid
composition according
Prior art date
Application number
PCT/JP2010/058819
Other languages
English (en)
French (fr)
Inventor
晃 上野
広志 山本
芳久 上田
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009153916A external-priority patent/JP2011006638A/ja
Priority claimed from JP2009254278A external-priority patent/JP5975371B2/ja
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011001763A1 publication Critical patent/WO2011001763A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes

Definitions

  • the present invention relates to a thermoplastic resin composition, a method for producing the thermoplastic resin composition, a molded product obtained by molding the thermoplastic resin composition, a desktop holder for a mobile phone, an internal chassis component of a mobile phone, an electronic device
  • the present invention relates to a housing for electronic equipment and an internal part for electronic equipment.
  • plastic materials that are biodegradable without being overly dependent on petroleum resources.
  • One such plastic material candidate is polylactic acid resin.
  • polylactic acid resin is easily hydrolyzed and is required to be imparted with hydrolysis resistance to the extent that it can be put into practical use.
  • polylactic acid resin is generally a hard and brittle material, and improvement in rigidity of the polylactic acid resin molded article, that is, improvement in tensile strength and tensile elastic modulus has been required in practice.
  • various measures for solving such problems have been studied.
  • an ethylene-glycidyl methacrylate copolymer acrylonitrile-styrene copolymer, a graft copolymer, a thermoplastic resin are used in order to increase the water resistance of the molded product and maintain the mechanical strength. It has been proposed that carbodiimide is added after blending with an aliphatic polyester resin typified by polylactic acid resin and chemically bonding them.
  • Japanese Patent Laid-Open No. 2008-291107 proposes to add a rubber component containing an epoxy group and a fibrillated fluororesin to a thermoplastic resin composition in order to improve the impact resistance of a molded product. .
  • the hydrolysis resistance of the polylactic acid resin is not always sufficient for practical use, and the durability of the molded product is not sufficient.
  • a polylactic acid resin-based resin composition having an excellent balance of hydrolysis resistance and rigidity such as tensile strength and tensile modulus of a molded product has not been realized.
  • the present invention has been made in view of the above points, and includes a thermoplastic resin composition containing a polylactic acid resin, having high hydrolysis resistance, and excellent balance between hydrolysis resistance and the rigidity of a molded product.
  • the purpose is to provide.
  • the present invention also provides a method for producing the thermoplastic resin composition, a molded product formed from the thermoplastic resin composition, a desktop holder for a mobile phone, an internal chassis component of a mobile phone, a casing for an electronic device, and an electronic device.
  • the purpose is to provide internal parts.
  • thermoplastic resin composition according to the present invention comprises a polylactic acid resin in an amount of 50 to 97.5% by mass, a composite of glycidyl methacrylate and silicone acrylic composite rubber in an amount of 1 to 20% by mass, talc in an amount of 1 to 30% by mass, and phosphine.
  • Zinc acid is contained in the range of 0.5 mass% or more.
  • thermoplastic resin composition has high rigidity.
  • the zinc phosphinate preferably has an average particle size in the range of 0.1 to 3 ⁇ m. In this case, zinc phosphinate effectively acts as a nucleating agent.
  • the average particle diameter of the zinc phosphinate is preferably in the range of 0.1 to 0.15 ⁇ m.
  • thermoplastic resin composition further contains a nucleating agent that dissolves in the polylactic acid resin.
  • the hydrolysis resistance of the polylactic acid resin is further improved.
  • thermoplastic resin composition preferably further contains a nucleating agent that does not dissolve in the polylactic acid resin.
  • the hydrolysis resistance of the polylactic acid resin is further improved.
  • thermoplastic resin composition further contains a carbodiimide compound.
  • the hydrolysis resistance of the polylactic acid resin is further improved.
  • thermoplastic resin composition further contains a polycarbonate resin.
  • hydrolysis resistance of the polylactic acid resin is further improved.
  • the molded product according to the present invention is formed from the thermoplastic resin composition.
  • the mobile phone desktop holder according to the present invention is formed by molding the thermoplastic resin composition.
  • the internal chassis component of the mobile phone according to the present invention is formed by molding the thermoplastic resin composition.
  • the casing for electronic equipment according to the present invention is formed by molding the thermoplastic resin composition.
  • the internal part for electronic equipment according to the present invention is formed by molding the thermoplastic resin composition.
  • the durability of a molded product formed from a thermosetting resin composition containing a polylactic acid resin is improved, and the balance between the durability and rigidity of the molded product is excellent.
  • thermoplastic resin composition according to the present embodiment has a polylactic acid resin of 50 to 97.5% by mass, a composite of glycidyl methacrylate and silicone acrylic composite rubber, 1 to 20% by mass, talc of 1 to 30% by mass, Zinc phosphinate is contained in the range of 0.5 mass% or more.
  • polylactic acid resin examples include a homopolymer of lactic acid and a copolymer of lactic acid and a hydroxycarboxylic acid other than lactic acid.
  • the polylactic acid resin is obtained by polymerizing lactic acid produced by fermentation of starch obtained from a plant such as corn by chemical synthesis.
  • lactic acid examples include L-lactic acid, D-lactic acid, and a lactone that is a dimer of lactic acid.
  • hydroxycarboxylic acids other than lactic acid that can be copolymerized with lactic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, and hydroxycaproic acid. These hydroxycarboxylic acids are used alone or in combination of two or more.
  • poly-L-lactic acid which is a polymer of L-lactic acid, as the polylactic acid resin.
  • poly-L-lactic acid an appropriate commercially available product can be used.
  • the weight average molecular weight of the polylactic acid resin is not particularly limited, but is preferably 10,000 or more, and more preferably 30,000 or more.
  • This weight average molecular weight is a standard polystyrene equivalent weight average molecular weight determined by gel permeation chromatography using chloroform as a solvent (mobile phase).
  • the content of polylactic acid with respect to the total amount of the thermoplastic resin composition is in the range of 50 to 97.5% by mass as described above. When this content is less than 50% by mass, it is difficult to improve the rigidity such as tensile strength and tensile modulus of a molded product formed from the thermoplastic resin composition. It becomes difficult to realize high hydrolysis resistance of polylactic acid resin.
  • the composite of glycidyl methacrylate and silicone acrylic composite rubber contained in the thermoplastic resin composition is a mixture of glycidyl methacrylate and silicone acrylic composite rubber.
  • the glycidyl methacrylate and silicone acrylic composite rubber in this composite may be a polymer in which all or a part thereof is copolymerized with glycidyl methacrylate and silicone acrylic composite rubber.
  • the silicone acrylic composite rubber is a polymer of an acrylic component made of alkyl acrylate and a silicone component made of silyl group-terminated polyether.
  • alkyl acrylate examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, stearyl methacrylate, octadecyl methacrylate, phenyl methacrylate, benzyl methacrylate, chloromethyl methacrylate, 2-chloroethyl methacrylate, 2-methacrylic acid 2- Hydroxyethyl, 3-hydroxypropyl methacrylate, 2,3,4,5,6-pentahydroxyhexyl methacrylate, 2,3,4,5-tetrahydroxypentyl methacrylate, aminoethyl acrylate, acrylic acid Propylaminoethyl , Dimethylaminoethyl methacrylate,
  • silyl group-terminated polyether polyethylene having a silyl group at the terminal, polypropylene, or the like is used.
  • the silyl group include halogens such as an alkylsilyl group such as a methylsilyl group, an ethylsilyl group, a propylsilyl group, and a butylsilyl group, a 3-chloropropylsilyl group, and a 3,3,3-trifluoropropylsilyl group.
  • Alkylsilyl groups such as alkylsilyl groups, vinylsilyl groups, allylsilyl groups, butenylsilyl groups, arylsilyl groups such as phenylsilyl groups, tolylsilyl groups, naphthylsilyl groups, cycloalkylsilyl groups such as cyclopentylsilyl groups, cyclohexylsilyl groups, benzyl Examples thereof include aryl-alkylsilyl groups such as silyl group and phenethylsilyl group. Only one kind of such silyl group-terminated polyether is used, or two or more kinds thereof are used in combination.
  • the composite of this glycidyl methacrylate and silicone acrylic composite rubber may have a multilayer structure.
  • the composite having a multilayer structure is composed of, for example, an innermost layer (core layer) and one or more layers (shell layer) covering the innermost layer (core layer), and a structure in which adjacent layers are composed of different types of polymers, so-called It has a structure called a core-shell type.
  • the composite having the core-shell structure can be obtained, for example, by graft polymerization of a latex of silicone acrylic composite rubber and glycidyl methacrylate added thereto.
  • a composite of glycidyl methacrylate and silicone acrylic composite rubber commercially available products can be used as appropriate.
  • there is a trade name Metabrene S2200 manufactured by Mitsubishi Rayon Co., Ltd. which is a composite having a core-shell structure in which the shell layer contains glycidyl methacrylate.
  • the content of the composite of glycidyl methacrylate and silicone acrylic composite rubber with respect to the total amount of the thermoplastic resin composition is in the range of 1 to 20% by mass, preferably in the range of 3 to 10% by mass.
  • this content is less than 1%, the hydrolysis resistance of the polylactic acid resin is not improved, and when this content is more than 30% by mass, the thermoplastic resin composition gels during kneading and becomes pellets. Difficulty in workability occurs, for example, making it difficult.
  • Talc is generally known as a filler material for resin molding materials.
  • talc a commercially available product may be used as appropriate.
  • the average particle size of talc is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the average particle size of talc is preferably 15 ⁇ m or less, and more preferably 12 ⁇ m or less.
  • the average particle size is a value measured by a laser diffraction / scattering method using a laser diffraction / scattering particle size analyzer (such as Microtrack MT3000II series manufactured by Nikkiso Co., Ltd.).
  • the content of talc with respect to the total amount of the thermoplastic resin composition is in the range of 1 to 30% by mass. When this content is less than 1% by mass, the tensile modulus of the molded product is not improved. In addition, when the content is more than 30% by mass, the processability is deteriorated, such as pelletization becomes difficult because a part of the talc does not bite into the screw during the kneading of the thermoplastic resin composition, and the molding is reduced. The nature will also decline.
  • the talc content is preferably 25% by mass or less, more preferably 15% by mass or less, and further preferably 8% by mass or less.
  • the content of the talc is preferably 3% by mass or more, and in this case, the effect of adding talc is particularly remarkably exhibited such that the elastic modulus of the molded product is further improved.
  • the thermoplastic resin composition contains zinc phosphinate.
  • zinc phosphinate include zinc phenylphosphinate and zinc diphenylphosphinate.
  • the phenyl group in the zinc phenylphosphinate or zinc diphenylphosphinate may have a substituent, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, Examples thereof include alkyl groups having 1 to 10 carbon atoms such as i-butyl group and t-butyl group, and alkoxycarbonyl groups having 1 to 10 carbon atoms such as methoxycarbonyl group and ethoxycarbonyl group.
  • zinc phosphinate examples include phenylphosphinic acid, 4-methylphenylphosphinic acid, 4-ethylphenylphosphinic acid, 4-n-propylphenylphosphinic acid, 4-i-propylphenylphosphinic acid, 4- n-butylphenylphosphinic acid, 4-i-butylphenylphosphinic acid, 4-t-butylphenylphosphinic acid, 3,5-dimethoxycarbonylphenylphosphinic acid, 3,5-diethoxycarbonylphenylphosphinic acid, 2,5- Dimethoxycarbonylphenylphosphinic acid, 2,5-diethoxycarbonylphenylphosphinic acid, etc., diphenylphosphinic acid, di-4-methylphenylphosphinic acid, di-4-ethylphenylphosphinic acid, di-4-t-butylphenylphosphine Acid, di-3
  • the average particle size of zinc phosphinate is preferably in the range of 0.1 to 3 ⁇ m, and particularly in the range of 0.1 to 0.15 ⁇ m. It is preferable.
  • the average particle diameter is a value measured by the laser diffraction scattering method as described above.
  • thermoplastic resin composition contains such zinc phosphinate
  • the crystallization speed during molding of the thermoplastic resin composition is increased. For this reason, crystallization is promoted during the molding of the thermoplastic resin composition, the heat resistance and elastic modulus of the molded product are improved, and the mold holding time during the molding can be shortened.
  • the content of zinc phosphinate with respect to the total amount of the thermoplastic resin composition is 0.5% by mass or more. When this content is less than 0.5% by mass, the tensile modulus of the molded article cannot be improved by adding zinc phosphinate.
  • the upper limit of the content of zinc phosphinate is not particularly limited, but when this content exceeds 3% by mass, the effect of improving the tensile modulus of the molded product is saturated, and there is no practical meaning.
  • the content is preferably 3% by mass or less.
  • the thermoplastic resin composition may contain a nucleating agent (crystal nucleating agent) other than the talc and polyphosphinic acid.
  • a nucleating agent such as a nucleating agent
  • the thermoplastic resin composition may contain a nucleating agent (crystal nucleating agent) that dissolves in the polylactic acid resin. Dissolving in a polylactic acid resin means that it becomes transparent when the polylactic acid resin and the nucleating agent are kneaded at a temperature equal to or higher than the melting point. When such a nucleating agent is used, the hydrolysis resistance of the polylactic acid resin is further improved.
  • an appropriate commercial product can be used as a nucleating agent that dissolves in the polylactic acid resin. Specific examples of such a nucleating agent include N, N ′, N ′′ -tricyclohexyltrimesic acid amide (product number TF1 manufactured by Shin Nippon Chemical Co., Ltd.) and the like.
  • the content of the nucleating agent dissolved in the polylactic acid resin with respect to the total amount of the thermoplastic resin composition is appropriately adjusted, but is preferably in the range of 0.5 to 3% by mass with respect to the total amount of the thermoplastic resin composition. If the content is 0.5% by mass or more, the hydrolysis resistance is sufficiently improved. However, if the content is more than 3% by mass, the effect of improving the hydrolysis resistance is saturated.
  • the thermoplastic resin composition may contain a nucleating agent that does not dissolve in the polylactic acid resin in the thermoplastic resin composition as a nucleating agent (crystal nucleating agent) other than the talc and polyphosphinic acid.
  • a nucleating agent crystal nucleating agent
  • the term “not dissolved in polylactic acid resin” means that it becomes opaque when they are kneaded at a temperature equal to or higher than the melting point of the polylactic acid resin and the nucleating agent.
  • An appropriate commercial product can be used as such a nucleating agent. Specific examples of such a nucleating agent include product number LAK401 manufactured by Takemoto Yushi Co., Ltd.
  • KX238B manufactured by Toyota (a master batch containing 10% polylactic acid-based crystal nucleating agent), N, N′-ethylenebis (12-hydroxystearic acid) amide (WX-1 manufactured by Kawaken Fine Chemical Co., Ltd.) Further, dimethyl sodium 5-sulfoisophthalate (manufactured by Tokyo Chemical Industry Co., Ltd.), dibenzoyl hydrazide octanedicarboxylic acid (T-1287N manufactured by Adeka Corporation), etc. may be used.
  • the content of the nucleating agent that does not dissolve in the polylactic acid resin with respect to the total amount of the thermoplastic resin composition is appropriately adjusted, but is preferably in the range of 0.5 to 3% by mass with respect to the total amount of the thermoplastic resin composition. If the content is 0.5% by mass or more, the hydrolysis resistance is sufficiently improved. However, if the content is more than 3% by mass, the effect of improving the hydrolysis resistance is saturated.
  • thermoplastic resin composition is prepared by mixing with.
  • the inorganic filler serves as a dusting agent, and aggregation of fine nucleating agents is suppressed.
  • This inorganic filler is particularly preferably talc.
  • the amount of the inorganic filler used for the premixing is preferably in the range of 100 to 200% by mass with respect to the nucleating agent not dissolved in the polylactic acid resin.
  • the average particle size of the inorganic filler is the polylactic acid resin.
  • the average particle size of the nucleating agent that does not dissolve in is preferably in the range of 1 to 2 times.
  • the thermoplastic resin composition may contain a carbodiimide compound such as a polycarbodiimide compound or a monocarbodiimide compound in addition to the above components.
  • a carbodiimide compound such as a polycarbodiimide compound or a monocarbodiimide compound in addition to the above components.
  • these compounds react with some or all of the carboxyl group ends of the polylactic acid to block the polylactic acid, thereby further improving the hydrolysis resistance of the polylactic acid resin. For this reason, the durability of the molded product in a high temperature and high humidity environment is further improved.
  • polycarbodiimide compound examples include poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, poly (1,3 , 5-triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide.
  • monocarbodiimide compound include N, N′-di-2,6-diisopropylphenylcarbodiimide.
  • carbodiimide compound commercially available products can be used as appropriate. Specific examples thereof include trade name carbodilite LA-1 (poly (4,4'-dicyclohexylmethanecarbodiimide)) manufactured by Nisshinbo Industries, Ltd. and the like.
  • the content of the carbodiimide compound with respect to the total amount of the thermoplastic resin composition is preferably in the range of 0.1 to 5% by mass. If the content is less than 0.1% by mass, the durability cannot be expected to improve much. When this content is more than 5% by mass, the mechanical strength of the molded product may tend to decrease, and excessive reaction occurs during melt kneading for preparing the composition, resulting in an increase in melt viscosity. Thus, the moldability may be impaired.
  • the thermoplastic resin composition may contain ABS (acrylonitrile-butadiene-styrene copolymer) resin.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • the hydrolysis resistance of the polylactic acid resin is further improved.
  • ABS resin is a rubbery resin.
  • the gel content in the ABS resin is preferably in the range of 5 to 90% by mass, more preferably in the range of 60 to 85% by mass.
  • ABS resin commercially available products can be used as appropriate.
  • the content of the ABS resin with respect to the total amount of the thermoplastic resin composition is preferably 60% by mass or less.
  • the content of the ABS resin with respect to the total amount of the thermoplastic resin composition is preferably 1% by mass or more.
  • the content of the ABS resin relative to the total amount of the thermoplastic resin composition is 20 The content of the ABS resin is preferably 20% by mass or more with respect to the total amount of the thermoplastic resin composition, from the viewpoint of improving the impact resistance and the elastic modulus of the molded product.
  • ABS resin it is preferable to use a resin synthesized by a continuous bulk polymerization method (bulk polymerization) without using an emulsifier and a coagulant.
  • the ABS resin synthesized by this method has few additional components at the time of synthesis, so that hydrolysis of the polylactic acid resin is hardly caused.
  • Examples of such ABS resin include Santac AT-05 and Santac AT-08 manufactured by Nippon A & L Co., Ltd.
  • thermoplastic resin composition may contain a polycarbonate resin.
  • the hydrolysis resistance of the polylactic acid resin is further improved.
  • the content of the polycarbonate resin with respect to the total amount of the thermoplastic resin composition is preferably in the range of 1 to 20% by mass. If the content is less than 1% by mass, the improvement in hydrolysis resistance of the polylactic acid resin cannot be expected so much. If the content is more than 20% by mass, the ratio of the polylactic acid resin to the entire resin component is lowered. There is a possibility that biodegradability, which is a characteristic of lactic acid resin, is lowered.
  • the thermoplastic resin composition may contain a (meth) acrylic acid ester polymer.
  • the (meth) acrylic acid ester polymer means at least one selected from a polymer of acrylic acid ester, a polymer of methacrylic acid ester, and a copolymer of acrylic acid ester and methacrylic acid ester.
  • the ester residue in the acrylic acid ester and methacrylic acid ester is preferably a lower alkyl group such as a methyl group or an ethyl group, or a phenyl group or a pentyl group.
  • the average molecular weight of the (meth) acrylic acid ester polymer is preferably in the range of 50,000 to 150,000.
  • this (meth) acrylic acid ester polymer a commercially available product can be used as appropriate.
  • the content of the (meth) acrylic acid ester polymer with respect to the total amount of the thermoplastic resin composition is preferably in the range of 2 to 10% by mass.
  • the content is less than 2%, the impact resistance of the molded product is not sufficiently improved by the (meth) acrylic acid ester polymer, and when the content is more than 10% by mass, the elastic modulus of the molded product is improved. Not enough.
  • thermoplastic resin composition is not contrary to the purpose of the present invention, and as long as the effect is not impaired, a stabilizer, pigment, dye, reinforcing agent (mica, clay, glass fiber, etc.), colorant, ultraviolet ray as necessary
  • a stabilizer, pigment, dye, reinforcing agent such as sia, clay, glass fiber, etc.
  • colorant such as an absorber, antioxidant, a lubricant, a mold release agent, a plasticizer, an antistatic agent, and an inorganic and organic antibacterial agent.
  • additives such as an absorber, antioxidant, a lubricant, a mold release agent, a plasticizer, an antistatic agent, and an inorganic and organic antibacterial agent. These components may be added during kneading of the thermoplastic resin composition, or may be added during molding.
  • the thermoplastic resin composition is prepared by mixing and kneading the above components.
  • the thermoplastic resin composition may be formed into pellets as necessary.
  • a twin screw extruder for example, a twin screw extruder, a Banbury mixer, a heating roll, or the like is used, and melt kneading using a twin screw extruder is particularly preferable.
  • a resin and other additives may be blended in the thermoplastic resin composition by side feed or the like.
  • thermoplastic resin composition Various molded products can be obtained by molding this thermoplastic resin composition by an appropriate molding method such as injection molding, blow molding, sheet molding, vacuum molding or the like.
  • the molded product thus obtained has high durability and excellent rigidity, and can be used in a wide range of fields such as home appliances, building materials, and sanitary fields that are expected to be used for a long time.
  • thermoplastic resin composition has high molding processability, impact resistance, and other characteristics, so it can be used for electronic device casings such as exteriors of desktop holders for mobile phones, and internal chassis parts for mobile phones. It is suitably used for producing internal parts for electronic devices.
  • a light reflecting sheet may be prepared from the thermoplastic resin composition.
  • a light reflecting sheet for reflecting light from a light source to increase the amount of emitted light is used in various fields such as a liquid crystal display device and a lighting device. In this way, the light reflecting sheet increases the amount of light emitted from the apparatus without increasing the amount of light emitted from the light source, thereby reducing power consumption and suppressing the amount of heat generated from the light source.
  • a light reflection sheet is produced from a thermoplastic resin composition, a light reflection sheet having excellent light reflectivity can be obtained without using a resin derived from petroleum resources.
  • the thermoplastic resin composition used for producing the light reflecting sheet preferably contains titanium oxide. Titanium oxide preferably has an average particle size of 0.6 ⁇ m or less, but is not limited thereto. The average particle diameter is a value measured by a laser diffraction / scattering method using a laser diffraction / scattering particle size analyzer (such as Microtrack MT3000II series manufactured by Nikkiso Co., Ltd.).
  • the content of titanium oxide in the thermoplastic resin composition used for producing the light reflecting sheet is preferably in the range of 5 to 15% by mass.
  • the content of titanium oxide is 5% by mass or more, very excellent light reflectivity is imparted to the light reflecting sheet. Moreover, if this content is 15 mass% or less, very excellent light reflectivity is provided to the light reflecting sheet. Even when the content is more than 15% by mass, the improvement in light reflectivity of the light reflecting sheet reaches its peak, and the use of unnecessary titanium oxide increases the manufacturing cost, or the specific gravity of the light reflecting sheet increases. There is a possibility that the weight of the apparatus including the light reflecting sheet increases and the light reflecting sheet becomes brittle and breakage such as cracking is likely to occur due to impact.
  • the thermoplastic resin composition used for producing the light reflecting sheet may contain an inorganic filler such as calcium carbonate and barium sulfate in addition to talc and titanium oxide.
  • an inorganic filler such as calcium carbonate and barium sulfate in addition to talc and titanium oxide.
  • the whiteness of the inorganic filler contained in the thermoplastic resin composition is preferably 90% or more.
  • the content of the inorganic filler excluding titanium oxide in the thermoplastic resin composition used for producing the light reflecting sheet is preferably in the range of 10 to 30% by mass.
  • the rigidity of a light reflection sheet improves because this content is 10 mass% or more. Further, when the content is 30% by mass or less, high moldability of the thermoplastic resin composition is ensured, and the light reflecting sheet is easily formed by extrusion molding or the like.
  • the thermoplastic resin composition used for the production of the light reflecting sheet may contain an antioxidant.
  • an antioxidant for example, Irganox 1010 (2,2-bis [[[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] oxy] methyl] propane manufactured by Ciba Geigy Japan -1,3-diol 1,3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]) and the like.
  • an antioxidant for example, Irganox 1010 (2,2-bis [[[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] oxy] methyl] propane manufactured by Ciba Geigy Japan -1,3-diol 1,3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]) and the like.
  • the content of the antioxidant in the thermoplastic resin composition is
  • thermoplastic resin composition used for the production of the light reflecting sheet contains other additives such as a crystal nucleating agent, a light stabilizer, a heat stabilizer, a lubricant, a dispersant, an ultraviolet absorber, and a fluorescent brightening agent. You may contain.
  • the light reflecting sheet is produced by an appropriate method, but is preferably produced by an extrusion method. According to the extrusion molding method, it is possible to reduce the thickness of the light reflecting sheet and reduce the cost, and it is possible to form a light reflecting sheet with a large area, and the usage of the light reflecting sheet is expanded.
  • the thickness of the light reflecting sheet is appropriately set, but is preferably in the range of 0.5 to 3 mm. If this thickness is less than 0.5 mm, the light reflecting sheet may easily transmit light and the light reflectivity may be reduced. If the thickness exceeds 3 mm, the cost increases and the weight of the light reflecting sheet increases. May be incurred.
  • the light reflecting sheet thus obtained has a structure in which titanium oxide and an inorganic filler are dispersed in a matrix made of polylactic acid.
  • This light reflecting sheet exhibits excellent light reflectivity, and a light reflecting sheet having a light reflectance of 90% or more can be obtained.
  • the light reflectance is a measured value of the light reflectance when the light reflecting sheet is irradiated with light having a wavelength of 550 nm.
  • Examples 1 to 48, Comparative Examples 1 to 9 About each Example and the comparative example, the component shown in Table 1 was used, and after performing a drying process previously for the resin component, these components were mixed with the tumbler for 10 minutes. The obtained mixture was extruded with a twin-screw extruder under conditions of a die vicinity temperature of 190 ° C. and an inlet vicinity temperature of 200 ° C. to obtain a strand. The strand was quickly cooled in a cooling bath and then cut with a cutter to obtain a pellet-shaped resin composition having a length of 2 to 4 mm.
  • the resin composition was dried by heating at 120 ° C. for 4 hours in a dehumidifying dryer, and then injection molded using a 100-ton injection molding machine to obtain a molded product.
  • the injection molding conditions were as follows: in Examples 1 to 35 and Comparative Examples 1 to 5, the cylinder temperature was set to 230 ° C. near the head, 220 ° C. near the material inlet, the mold temperature was set to 110 ° C., The in-mold holding time was set to 100 seconds. In Examples 36 to 48 and Comparative Examples 6 to 9, the cylinder temperature was set to 200 ° C. near the head, 190 ° C. near the material inlet, and the mold temperature was set to 110 ° C. The holding time in the mold was set to 100 seconds in Examples 22 to 33 and Comparative Examples 6 to 9, and 300 seconds in Example 34.
  • the molded product can be taken out from the mold without deformation after the resin composition is injected into the mold at the time of injection molding of the resin composition.
  • the holding time (cooling time) required to be measured was measured and used as an index of the molding cycle.
  • Polylactic acid A Poly-L-lactic acid resin (product number Ingeo 3001D manufactured by Nature Works).
  • Polylactic acid B Poly-L-lactic acid resin (product number Ingeo 4032D manufactured by Nature Works).
  • Polylactic acid C Poly-L-lactic acid resin (product number H-100 manufactured by Mitsui Chemicals, Inc.)
  • Core shell rubber A composite of glycidyl methacrylate and silicone acrylic composite rubber (trade name Metabrene S2200 manufactured by Mitsubishi Rayon Co., Ltd.).
  • -Talc Trade name TT talc manufactured by Takehara Chemical Co., Ltd., average particle size 7 ⁇ m.
  • Carbodiimide compound trade name Carbodilite LA-1 manufactured by Nisshinbo Chemical Co., Ltd. ABS resin: product name Clarastic AT08 manufactured by Nippon A & L Co., Ltd. Polycarbonate resin: Trade name Iupilon H4000 manufactured by Mitsubishi Engineering Plastics Co., Ltd. -Zinc phosphinate A: Zinc phenylphosphinate (trade name Eco Promote manufactured by Nissan Chemical Industries, Ltd., average particle size 1.5 ⁇ m).
  • Zinc phosphinate B Zinc phenylphosphinate (trade name Eco Promote NT, manufactured by Nissan Chemical Industries, Ltd., average particle size 0.2 ⁇ m.
  • Zinc phosphinate C A pulverized product obtained by subjecting zinc phosphinate A to wet pulverization and then spray drying, an average particle size of 0.1 ⁇ m.
  • Nucleating agent A Trimesic acid tricyclohexylamide (product number TF1 manufactured by Shin Nippon Rika Co., Ltd.)
  • Nucleating agent B dimethyl barium salt of sulfoisophthalic acid (product number LAK401 manufactured by Takemoto Yushi Co., Ltd.).
  • the tensile strength of the molded product is 50 MPa or more
  • the tensile elastic modulus is 2.8 GPa or more
  • the rigidity is high
  • the durability is evaluated for 250 hours.
  • the durability was excellent, and the rigidity and durability were high in a balanced manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 本発明は、ポリ乳酸樹脂を含有すると共にその耐加水分解性が高く、且つこの耐加水分解性と成形品の剛性とのバランスに優れる熱可塑性樹脂組成物を提供する。 本発明に係る熱可塑性樹脂組成物は、ポリ乳酸樹脂を50~97.5質量%、グリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体を1~20質量%、タルクを1~30質量%、ホスフィン酸亜鉛を0.5質量%以上の範囲で含有する。このため、ポリ乳酸樹脂の耐加水分解性が高くなると共にこの熱可塑性樹脂組成物から形成される成形品は高い剛性を有するようになる。

Description

熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品
 本発明は熱可塑性樹脂組成物、前記熱可塑性樹脂組成物の製造方法、並びに前記熱可塑性樹脂組成物を成形して得られる成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体、及び電子機器用内部部品に関する。
 近年の地球環境問題への関心の高まりから、石油資源に過度に依存することなく、しかも生分解性を有しているプラスチック材料の開発が望まれている。このようなプラスチック材料の候補の一つとしてポリ乳酸樹脂がある。
 しかしながら、ポリ乳酸樹脂は加水分解しやすく、実用化できる程度の耐加水分解性の付与が求められている。またポリ乳酸樹脂は一般的に硬くて脆い材料であり、ポリ乳酸樹脂成形品の剛性の改善、すなわち引っ張り強度や引っ張り弾性率の向上も実用上必要とされていた。そこで、従来、このような問題を解決するための方策が種々検討されている。
 例えば特開2007-145937号公報では、成形品の耐水性を高めると共に機械的強度を維持するために、エチレン-グリシジルメタクリレート共重合体アクリロニトリル-スチレン共重合体とグラフト共重合体と、熱可塑性樹脂とをポリ乳酸樹脂に代表される脂肪族ポリエステル樹脂に配合して化学的に結合した後、カルボジイミドを添加することが提案されている。また、特開2008-291107号公報では、成形品の耐衝撃性を改善するための、熱可塑性樹脂組成物にエポキシ基を含有したゴム成分とフィブリル化フッ素樹脂を添加することが提案されている。
 しかしながら、これらの従来の改善策においても、ポリ乳酸樹脂の耐加水分解性は必ずしも実用上充分ではなく、成形品の耐久性は充分ではなかった。またこの耐加水分解性と成形品の引っ張り強度や引っ張り弾性率等の剛性のバランスに優れたポリ乳酸樹脂系の樹脂組成物は実現されていない。
 本発明は前記の点に鑑みてなされたものであり、ポリ乳酸樹脂を含有し、耐加水分解性が高く、且つ耐加水分解性と成形品の剛性とのバランスに優れる熱可塑性樹脂組成物を提供することを目的とする。
 また、本発明は前記熱可塑性樹脂組成物の製造方法、並びにこの熱可塑性樹脂組成物から形成される成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品を提供することを目的とする。
 本発明に係る熱可塑性樹脂組成物は、ポリ乳酸樹脂を50~97.5質量%、グリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体を1~20質量%、タルクを1~30質量%、ホスフィン酸亜鉛を0.5質量%以上の範囲で含有する。
 このため、ポリ乳酸樹脂の耐加水分解性が高くなると共にこの熱可塑性樹脂組成物から形成される成形品は高い剛性を有するようになる。
 本発明においては、前記ホスフィン酸亜鉛の平均粒径が0.1~3μmの範囲であることが好ましい。この場合、ホスフィン酸亜鉛が有効に核剤として作用する。
 特に、前記ホスフィン酸亜鉛の平均粒径が0.1~0.15μmの範囲であることが好ましい。
 本発明においては、熱可塑性樹脂組成物が更にポリ乳酸樹脂に溶解する核剤を含有することが好ましい。この場合、ポリ乳酸樹脂の耐加水分解性が更に向上する。
 本発明においては、熱可塑性樹脂組成物が更にポリ乳酸樹脂に溶解しない核剤を含有することも好ましい。この場合、ポリ乳酸樹脂の耐加水分解性が更に向上する。
 本発明においては、熱可塑性樹脂組成物が更にカルボジイミド化合物を含有することも好ましい。この場合、ポリ乳酸樹脂の耐加水分解性が更に向上する。
 本発明においては、熱可塑性樹脂組成物が更にポリカーボネート樹脂を含有することも好ましい。この場合、ポリ乳酸樹脂の耐加水分解性が更に向上する。
 本発明に係る熱可塑性樹脂組成物の製造方法は、ポリ乳酸樹脂を50~97.5質量%、グリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体を1~20質量%、タルクを1~30質量%、ホスフィン酸亜鉛を0.5質量%以上の割合で混合する。
 本発明に係る成形品は、前記熱可塑性樹脂組成物から形成される。
 本発明に係る携帯電話機用卓上ホルダーは、前記熱可塑性樹脂組成物を成形してなる。
 本発明に係る携帯電話機の内部シャーシ部品は、前記熱可塑性樹脂組成物を成形してなる。
 本発明に係る電子機器用筐体は、前記熱可塑性樹脂組成物を成形してなる。
 本発明に係る電子機器用内部部品は、前記熱可塑性樹脂組成物を成形してなる。
 本発明によれば、ポリ乳酸樹脂を含有する熱硬化性樹脂組成物から形成される成形品の耐久性が向上し、更にこの成形品の耐久性と剛性とのバランスが優れたものとなる。
 本実施形態に係る熱可塑性樹脂組成物は、ポリ乳酸樹脂を50~97.5質量%、グリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体を1~20質量%、タルクを1~30質量%、ホスフィン酸亜鉛を0.5質量%以上の範囲で含有する。
 ポリ乳酸樹脂として、乳酸の単独重合体と、乳酸と乳酸以外のヒドロキシカルボン酸との共重合体とが挙げられる。ポリ乳酸樹脂は、例えばトウモロコシなどの植物から得られたデンプンが発酵することで生成する乳酸が、化学合成によりポリマー化することで得られる。
 乳酸としては、L-乳酸、D-乳酸、乳酸の二量体であるラクトン等が挙げられる。
 乳酸と共重合可能な乳酸以外のヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸等が挙げられる。これらのヒドロキシカルボン酸は一種のみが用いられ、或いは二種以上が併用される。
 ポリ乳酸樹脂として、特にL-乳酸の重合体であるポリ-L-乳酸が使用されることが好ましい。ポリ-L-乳酸としては、適宜の市販品が使用され得る。
 ポリ乳酸樹脂の重量平均分子量は特に制限されないが、1万以上であることが好ましく、3万以上であれば更に好ましい。この重量平均分子量は、溶媒(移動相)としてクロロホルムを用いたゲルパーミエーションクロマトグラフィーにより求められる、標準ポリスチレン換算の重量平均分子量である。
 熱可塑性樹脂組成物全量に対するポリ乳酸の含有量は前記のとおり50~97.5質量%の範囲である。この含有量が50質量%未満であると熱可塑性樹脂組成物から形成される成形品の引張り強度や引張り弾性率等の剛性が改善されることが難しく、97.5質量%を超える場合にはポリ乳酸樹脂の高い耐加水分解性の実現が難しくなる。
 熱可塑性樹脂組成物に含有されるグリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体は、グリシジルメタクリレートとシリコーンアクリル複合ゴムとの混合物である。この複合体におけるグリシジルメタクリレート及びシリコーンアクリル複合ゴムは、その全部若しくは一部がグリシジルメタクリレートとシリコーンアクリル複合ゴムとが共重合した重合体であってもよい。
 前記シリコーンアクリル複合ゴムは、アクリル酸アルキルからなるアクリル成分とシリル基末端ポリエーテルからなるシリコーン成分との重合体である。
 前記アクリル酸アルキルとしては、具体的には、メタアクリル酸メチル、メタアクリル酸エチル、メタアクリル酸n-プロピル、メタアクリル酸n-ブチル、メタアクリル酸t-ブチル、メタアクリル酸n-ヘキシル、メタアクリル酸2-エチルヘキシル、メタアクリル酸シクロヘキシル、メタアクリル酸ステアリル、メタアクリル酸オクタデシル、メタアクリル酸フェニル、メタアクリル酸ベンジル、メタアクリル酸クロロメチル、メタアクリル酸2-クロロエチル、メタアクリル酸2-ヒドロキシエチル、メタアクリル酸3-ヒドロキシプロピル、メタアクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、メタアクリル酸2,3,4,5-テトラヒドロキシペンチル、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチルなどが挙げられる。これらは一種のみが用いられ、或いは二種以上が併用される。
 前記シリル基末端ポリエーテルとしては、末端にシリル基を有するポリエチレン、ポリプロピレンなどが用いられる。前記シリル基としては、具体的には、メチルシリル基、エチルシリル基、プロピルシリル基、ブチルシリル基などのアルキルシリル基、3-クロロプロピルシリル基、3,3,3-トリフルオロプロピルシリル基などのハロゲン化アルキルシリル基、ビニルシリル基、アリルシリル基、ブテニルシリル基などのアルケニルシリル基、フェニルシリル基、トリルシリル基、ナフチルシリル基などのアリールシリル基、シクロペンチルシリル基、シクロヘキシルシリル基などのシクロアルキルシリル基、ベンジルシリル基、フェネチルシリル基などのアリール-アルキルシリル基などが挙げられる。このようなシリル基末端ポリエーテルは、一種のみが用いられ、或いは二種以上が併用される。
 このグリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体は、多層構造を有していてもよい。多層構造を有する複合体は、例えば最内層(コア層)とそれを覆う1以上の層(シェル層)から構成され、且つ隣接し合った層が互いに異種の重合体から構成される構造、いわゆるコアシェル型と呼ばれる構造を有する。このコアシェル構造を有する複合体は、例えばシリコーンアクリル複合ゴムのラテックスと、これに添加されたグリシジルメタクリレートとが、グラフト重合することで得られる。このようなグリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体として、市販品が適宜使用され得る。その具体例としては、シェル層がグリシジルメタクリレートを含有するコアシェル構造を有する複合体である三菱レイヨン株式会社製の商品名メタブレンS2200が挙げられる。
 熱可塑性樹脂組成物全量に対する、グリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体の含有量は、1~20質量%の範囲であり、好ましくは3~10質量%の範囲である。この含有量が1%未満の場合には、ポリ乳酸樹脂の耐加水分解性が向上せず、この含有量が30質量%より多い場合には、熱可塑性樹脂組成物が混練時にゲル化してペレット化が困難になる等、加工性において難点が生じる。
 タルクは、樹脂成形材料のフィラー材として一般的に知られている。タルクとして、市販品が適宜用いられてよい。タルクの平均粒径は0.5μm以上であることが好ましく、1μm以上であれば更に好ましい。また、タルクの平均粒径は15μm以下であることが好ましく、12μm以下であれば更に好ましい。尚、平均粒径は、レーザー回折・散乱式粒度分析計(日機装株式会社製のマイクロトラックMT3000IIシリーズなど)などを用いたレーザー回折散乱法により測定される値である。
 熱可塑性樹脂組成物全量に対するタルクの含有量は、1~30質量%の範囲内である。この含有量が1質量%未満の場合には成形品の引張り弾性率が向上しない。また、この含有量が30質量%より多い場合には熱可塑性樹脂組成物の混練時にタルクの一部がスクリューに食い込まなくなるなどしてペレット化が困難になる等、加工性が低下すると共に、成形性も低下してしまう。このタルクの含有量は、25質量%以下であることが好ましく、15質量%以下であればより好ましく、8質量%以下であれば更に好ましい。この含有量が25質量%以下であると成形品の耐衝撃性が更に向上し、8質量%以下であると複雑な形状の成形品を得る場合であってもウエルドの発生を充分に抑制することができる。また、このタルクの含有量は特に3質量%以上であることが好ましく、この場合、成形品の弾性率が更に向上するなど、タルクの添加の効果が特に顕著に発現するようになる。
 前記のとおり、熱可塑性樹脂組成物はホスフィン酸亜鉛を含有する。ホスフィン酸亜鉛としては、例えばフェニルホスフィン酸亜鉛やジフェニルホスフィン酸亜鉛が挙げられる。前記フェニルホスフィン酸亜鉛やジフェニルホスフィン酸亜鉛におけるフェニル基は置換基を有してもよく、この置換基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基等の炭素原子数1~10のアルキル基、メトキシカルボニル基、エトキシカルボニル基等の炭素原子数1~10のアルコキシカルボニル基が挙げられる。このようなホスフィン酸亜鉛の具体例としては、フェニルホスフィン酸、4-メチルフェニルホスフィン酸、4-エチルフェニルホスフィン酸、4-n-プロピルフェニルホスフィン酸、4-i-プロピルフェニルホスフィン酸、4-n-ブチルフェニルホスフィン酸、4-i-ブチルフェニルホスフィン酸、4-t-ブチルフェニルホスフィン酸、3,5-ジメトキシカルボニルフェニルホスフィン酸、3,5-ジエトキシカルボニルフェニルホスフィン酸、2,5-ジメトキシカルボニルフェニルホスフィン酸、2,5-ジエトキシカルボニルフェニルホスフィン酸等や、ジフェニルホスフィン酸、ジ-4-メチルフェニルホスフィン酸、ジ-4-エチルフェニルホスフィン酸、ジ-4-t-ブチルフェニルホスフィン酸、ジ-3,5-ジメトキシカルボニルフェニルホスフィン酸、ジ-3,5-ジエトキシカルボニルフェニルホスフィン酸等が挙げられる。
 このホスフィン酸亜鉛が核剤として有効に作用するためには、ホスフィン酸亜鉛の平均粒径は0.1~3μmの範囲内であることが好ましく、特に0.1~0.15μmの範囲であることが好ましい。尚、平均粒径は、前記と同様にレーザー回折散乱法により測定される値である。
 熱可塑性樹脂組成物がこのようなホスフィン酸亜鉛を含有すると、熱可塑性樹脂組成物の成形時における結晶化速度が速くなる。このため熱可塑性樹脂組成物の成形時に結晶化が促進されて成形品の耐熱性、弾性率等が向上し、且つ成形時の金型保持時間の短縮化が可能となる。
 熱可塑性樹脂組成物全量に対するホスフィン酸亜鉛の含有量は、0.5質量%以上である。この含有量が0.5質量%未満の場合には、ホスフィン酸亜鉛の添加による成形品の引張り弾性率の向上がなされなくなる。ホスフィン酸亜鉛の含有量の上限は特に制限されないが、この含有量が3質量%を超える場合には、成形品の引張り弾性率の向上効果が飽和してしまい、実用的な意味がないため、含有量は3質量%以下であることが好ましい。
 熱可塑性樹脂組成物中は、前記タルクやポリホスフィン酸以外の核剤(結晶核剤)を含有してもよい。このような核剤として、熱可塑性樹脂組成物が、ポリ乳酸樹脂に溶解する核剤(結晶核剤)を含有してもよい。ポリ乳酸樹脂に溶解するとは、ポリ乳酸樹脂と核剤の融点以上の温度で両者を混練した場合に透明になることをいう。このような核剤が使用されると、ポリ乳酸樹脂の耐加水分解性が更に向上する。ポリ乳酸樹脂に溶解する核剤として、適宜の市販品が使用され得る。このような核剤の具体例として、N,N′,N″-トリシクロヘキシルトリメシン酸アミド(新日本理化株式会社製の品番TF1)等が挙げられる。
 熱可塑性樹脂組成物全量に対するポリ乳酸樹脂に溶解する核剤の含有量は適宜調整されるが、熱可塑性樹脂組成物全量に対して0.5~3質量%の範囲であることが好ましい。この含有量が0.5質量%以上であれば前記耐加水分解性が充分に向上するが、この含有量が3質量%より多くなると耐加水分解性の向上効果が飽和してしまう。
 熱可塑性樹脂組成物は、前記タルクやポリホスフィン酸以外の核剤(結晶核剤)として、熱可塑性樹脂組成物中のポリ乳酸樹脂に溶解しない核剤を含有してもよい。ポリ乳酸樹脂に溶解しないとは、ポリ乳酸樹脂と核剤の融点以上の温度で両者を混練した場合に不透明になることをいう。このような核剤が使用されることで、ポリ乳酸樹脂の耐加水分解性が更に向上する。このような核剤として適宜の市販品が使用され得る。このような核剤の具体例として、竹本油脂株式会社製の品番LAK401等が挙げられる。
 また、核剤として、トヨタ社製KX238B(ポリ乳酸ベースの結晶核剤10%含有マスターバッチ)、N,N′-エチレンビス(12-ヒドロキシステアリン酸)アミド(川研ファインケミカル社製WX-1)、5-スルホイソフタル酸ジメチルナトリウム(東京化成工業社製)、オクタンジカルボン酸ジベンゾイルヒドラジド(アデカ社製T-1287N)などが使用されてもよい。
 熱可塑性樹脂組成物全量に対する、ポリ乳酸樹脂に溶解しない核剤の含有量は適宜調整されるが、熱可塑性樹脂組成物全量に対して0.5~3質量%の範囲であることが好ましい。この含有量が0.5質量%以上であれば前記耐加水分解性が充分に向上するが、この含有量が3質量%より多くなると耐加水分解性の向上効果が飽和してしまう。
 ポリ乳酸樹脂に溶解しない核剤の、熱可塑性樹脂組成物中での分散性が向上するためには、予めこの核剤が適宜の無機充填材と混合(予備混合)された後に、他の成分と混合されることで熱可塑性樹脂組成物が調製されることが好ましい。この場合、無機充填材が打粉剤の役割を果たし、微細な核剤どうしの凝集が抑制される。この無機充填材は、特にタルクが好ましい。この予備混合に使用される無機充填材の量は、ポリ乳酸樹脂に溶解しない核剤に対して100~200質量%の範囲であることが好ましく、この無機充填材の平均粒径はポリ乳酸樹脂に溶解しない核剤の平均粒径の1~2倍の範囲であることが好ましい。
 熱可塑性樹脂組成物は前記成分に加えて、ポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物を含有してもよい。この場合、これらの化合物が、ポリ乳酸のカルボキシル基末端の一部または全部と反応して封鎖する働きを発揮し、これにより、ポリ乳酸樹脂の耐加水分解性が更に向上する。このため、成形品の高温高湿環境下での耐久性が更に向上する。
 ポリカルボジイミド化合物としては、例えばポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5-トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5-トリイソプロピルベンゼン及び1,5-ジイソプロピルベンゼン)ポリカルボジイミド等が挙げられる。モノカルボジイミド化合物としては、例えばN,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド等が挙げられる。
 カルボジイミド化合物としては、市販品が適宜使用され得る。その具体例としては、日清紡績株式会社製の商品名カルボジライトLA-1(ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド))等が挙げられる。
 カルボジイミド化合物が使用される場合、熱可塑性樹脂組成物全量に対するカルボジイミド化合物の含有量は0.1~5質量%の範囲内であることが好ましい。この含有量が0.1質量%未満では前記耐久性の向上はあまり期待できない。この含有量が5質量%より多いと成形品の機械的強度が低下する傾向が現れる場合があり、また、組成物の調製のための溶融混練時に過剰な反応が生じて溶融粘度が上昇することで、成形性が損なわれるおそれもある。
 カルボジイミド化合物が使用される場合、熱可塑性樹脂組成物の調製時にポリ乳酸樹脂とカルボジイミド化合物のみが予め混合されてマスターバッチが調製されると、カルボジイミド化合物による前記作用が特に効果的に発揮される。
 熱可塑性樹脂組成物はABS(アクリロニトリル-ブタジエン-スチレン共重合体)樹脂を含有してもよい。この場合、ポリ乳酸樹脂の耐加水分解性が更に向上する。
 ABS樹脂はゴム質の樹脂である。ABS樹脂中のゲル含有量は5~90質量%の範囲であることが好ましく、60~85質量%の範囲内であれば更に好ましい。ABS樹脂としては、市販品が適宜使用され得る。
 成形品の強度及び耐久性の向上のためには、熱可塑性樹脂組成物全量に対するABS樹脂の含有量は60質量%以下であることが好ましい。ポリ乳酸樹脂の耐加水分解性の向上のためには、熱可塑性樹脂組成物全量に対するABS樹脂の含有量は1質量%以上であることが好ましい。更に、組成物中の樹脂成分全体に対するポリ乳酸樹脂の比率を向上してポリ乳酸樹脂の特徴である生分解性を維持する観点からは、熱可塑性樹脂組成物全量に対するABS樹脂の含有量は20質量%以下であることが好ましいが、成形品の耐衝撃性と弾性率の向上という観点からは、熱可塑性樹脂組成物全量に対するABS樹脂の含有量は20質量%以上であることが好ましい。
 このABS樹脂として、特に乳化剤、凝固剤を使用することなく連続塊重合法(バルク重合)により合成された樹脂が使用されることが好ましい。この方法で合成されるABS樹脂は、合成時の添加成分が少なく、このためポリ乳酸樹脂の加水分解が引き起こされにくくなる。このようなABS樹脂としては、日本エイアンドエル株式会社製のサンタックAT-05,サンタックAT-08等が挙げられる。
 熱可塑性樹脂組成物はポリカーボネート樹脂を含有してもよい。この場合、ポリ乳酸樹脂の耐加水分解性が更に向上する。
 ポリカーボネート樹脂としては、市販品が適宜使用され得る。熱可塑性樹脂組成物全量に対するポリカーボネート樹脂の含有量は1~20質量%の範囲内であることが好ましい。この含有量が1質量%未満ではポリ乳酸樹脂の耐加水分解性の向上はあまり期待できなくなり、この含有量が20質量%より多いと樹脂成分全体に対するポリ乳酸樹脂の比率が下がってしまい、ポリ乳酸樹脂の特徴である生分解性が低下するおそれがある。
 熱可塑性樹脂組成物は、(メタ)アクリル酸エステル重合体を含有してもよい。この場合、成形品の耐衝撃性及び弾性率が更に向上する。(メタ)アクリル酸エステル重合体とは、アクリル酸エステルの重合体、メタクリル酸エステルの重合体、及びアクリル酸エステルとメタアクリル酸エステルとの共重合体から選ばれる少なくとも一種のことをいう。アクリル酸エステル及びメタアクリル酸エステルにおけるエステル残基は、メチル基、エチル基等の低級アルキル基、或いはフェニル基、ペンジル基等であることが好ましい。(メタ)アクリル酸エステル重合体の平均分子量は、50000~150000の範囲であることが好ましい。この(メタ)アクリル酸エステル重合体としては、市販品が適宜使用され得る。
 熱可塑性樹脂組成物全量に対する(メタ)アクリル酸エステル重合体の含有量は2~10質量%の範囲であることが好ましい。この含有量が2%未満であると(メタ)アクリル酸エステル重合体による成形品の耐衝撃性の向上が充分ではなく、この含有量が10質量%より多いと成形品の弾性率の向上が充分ではなくなる。
 熱可塑性樹脂組成物は、本発明の目的に反せず、その効果を損なわない限りにおいて、必要に応じて安定剤、顔料、染料、補強剤(マイカ、クレー、ガラス繊維等)、着色剤、紫外線吸収剤、酸化防止剤、滑剤、離型剤、可塑剤、帯電防止剤、無機および有機系抗菌剤等の公知の添加剤を含有してもよい。これらの成分は、熱可塑性樹脂組成物の混練時に加えられてもよく、また成形時等に加えられてもよい。
 熱可塑性樹脂組成物は、前記のような成分が混合、混練されることで調製される。熱可塑性樹脂組成物は必要に応じてペレット状に成形されてもよい。前記混合、混練にあたっては、例えば、二軸押出機、バンバリーミキサー、加熱ロール等が用いられるが、特に二軸押出機による溶融混練が好ましい。またこの混合、混練にあたっては、必要に応じて、熱可塑性樹脂組成物中にサイドフィードなどにより樹脂やその他の添加剤が配合されてもよい。
 この熱可塑性樹脂組成物が射出成形、ブロー成形、シート成形、真空成形などの適宜の成形方法により成形されることで、各種成形品が得られる。
 このようにして得られる成形品は、耐久性が高く、且つ優れた剛性を有し、長期間の使用が想定される家電分野や建材、サニタリー分野など、広範囲の分野に使用され得る。
 例えば、この熱可塑性樹脂組成物は、高い成形加工性や、耐衝撃性等の特性を有することから、携帯電話機用卓上ホルダーの外装などの電子機器用筐体や、携帯電話機の内部シャーシ部品などの電子機器用内部部品を作製するために好適に用いられる。
 熱可塑性樹脂組成物から光反射シートが作製されてもよい。光源からの光を反射して出射光量を増大させるための光反射シートは、例えば液晶表示装置や照明装置などの種々の分野で使用される。このように光反射シートによって、光源からの発光光量が増大しなくとも装置からの出射光量が増大し、省電力化や光源からの発熱量の抑制などが図られる。熱可塑性樹脂組成物から光反射シートが作製されると、石油資源由来の樹脂を使用することなく、優れた光反射性を有する光反射シートが得られる。
 光反射シートの作製に使用される熱可塑性樹脂組成物は、酸化チタンを含有することが好ましい。酸化チタンは、その平均粒子径が0.6μm以下であることが好ましいが、これに限定されない。尚、この平均粒径は、レーザー回折・散乱式粒度分析計(日機装株式会社製のマイクロトラックMT3000IIシリーズなど)などを用いたレーザー回折散乱法により測定される値である。
 光反射シートの作製に使用される熱可塑性樹脂組成物中の酸化チタンの含有量は、5~15質量%の範囲であることが好ましい。酸化チタンの含有量が5質量%以上であると光反射シートに非常に優れた光反射性が付与される。また、この含有量が15質量%以下であれば、光反射シートに非常に優れた光反射性が付与される。この含有量が15質量%より多くなっても、光反射シートの光反射性の向上が頭打ちになり、不必要な酸化チタンを使用することによって製造コストが増大したり、光反射シートの比重が増大してこの光反射シートを備える装置の重量が増大したり、光反射シートが脆くなって衝撃により割れ等の破損が生じやすくなったりするおそれがある。
 光反射シートの作製に使用される熱可塑性樹脂組成物は、タルク及び酸化チタン以外にも、炭酸カルシウム、硫酸バリウム等の無機フィラーを含有してもよい。光反射シートの光反射性を阻害しないようにするためには、熱可塑性樹脂組成物が含有する無機フィラーの白色度が90%以上であることが好ましい。
 光反射シートの作製に使用される熱可塑性樹脂組成物中の、酸化チタンを除く無機フィラーの含有量は、10~30質量%の範囲であることが好ましい。この含有量が10質量%以上であることで、光反射シートの剛性が向上する。また、この含有量が30質量%以下であると、熱可塑性樹脂組成物の高い成形性が確保され、光反射シートが押出成形などにより容易に形成されるようになる。
 光反射シートの作製に使用される熱可塑性樹脂組成物は、酸化防止剤を含有してもよい。酸化防止剤としては、例えば日本チバガイギー株式会社製のイルガノックス1010(2,2-ビス[[[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]オキシ]メチル]プロパン-1,3-ジオール1,3-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート])など、適宜のものが挙げられる。酸化防止剤を含有する熱可塑性樹脂組成物から光反射シートが形成されると、この光反射シートが光源からの光や熱に曝された場合の変色が低減され、光反射シートの優れた光反射性が長期に亘って維持される。熱可塑性樹脂組成物中の酸化防止剤の含有量は、ポリ乳酸100質量部に対して0.1~1.0質量部の範囲であることが好ましい。
 更に、光反射シートの作製に使用される熱可塑性樹脂組成物は、結晶核剤、光安定剤、熱安定剤、滑剤、分散剤、紫外線吸収剤、蛍光増白剤等の他の添加剤を含有してもよい。
 光反射シートは適宜の方法で作製されるが、特に押出成形法により作製されることが好ましい。押出成形法によると、光反射シートの薄肉化が可能となるってコストダウンが図られ、且つ大面積の光反射シートが形成可能となって光反射シートの使用用途が広がる。
 この光反射シートの厚みは適宜設定されるが、特に0.5~3mmの範囲であることが好ましい。この厚みが0.5mmに満たないと光反射シートが光を透過させやすくなって光反射性が低下するおそれがあり、またこの厚みが3mmより大きくなるとコストアップや光反射シートの重量の増大化を招くおそれがある。
 このようにして得られる光反射シートは、ポリ乳酸からなるマトリックス内に、酸化チタンと無機フィラーとが分散した構造を有している。この光反射シートは優れた光反射性を発揮し、光反射率が90%以上の光反射シートを得ることも可能となる。この光反射率は、光反射シートに波長550nmの光を照射した場合の前記光の反射率の測定値である。
 [実施例1~48、比較例1~9]
 各実施例及び比較例について、表1に示す成分を用い、このうち樹脂成分には予め乾燥処理を施した上で、これらの成分をタンブラーで10分間混合した。得られた混合物を二軸押出機で、ダイス付近温度190℃、投入口付近温度200℃の条件で押し出してストランドを得た。このストランドを速やかに冷却槽で冷却した後、カッターで切断して、長さ2~4mmのペレット状の樹脂組成物を得た。
 この樹脂組成物を、除湿乾燥機にて120℃で4時間加熱することにより乾燥処理を施した後、100トン射出成形機を用いて射出成形し、成形品を得た。
 射出成形の条件は、実施例1~35並びに比較例1~5ではシリンダーの温度をヘッド付近で230℃、材料投入口付近で220℃に設定し、金型温度を110℃に設定し、金型内保持時間を100秒間に設定した。実施例36~48並びに比較例6~9では、シリンダーの温度をヘッド付近で200℃、材料投入口付近で190℃に設定し、金型温度を110℃に設定した。金型内保持時間については、実施例22~33並びに比較例6~9では100秒間、実施例34では300秒間に設定した。
 [成形サイクル評価]
 各実施例1~35及び比較例1~5につき、樹脂組成物の射出成形時における、金型への樹脂組成物の射出後、金型から成形品を変形が生じることなく取り出すことが可能となるまでに要した保持時間(冷却時間)を測定し、これを成形サイクルの指標とした。
 [引張り強度評価]
 各実施例及び比較例で得られた成形品の引張り強度を、ISO 527に準拠して測定した。
 [引張り弾性率評価]
 各実施例及び比較例で得られた成形品の引張り弾性率を、ISO 527に準拠して測定した。
 [耐久性(耐加水分解性)評価]
 各実施例及び比較例で得られた成形品を60℃、95%RHの雰囲気下に曝露した後、この成形品の引張り強度を、ISO 527に準拠して測定した。この試験を曝露時間を変化させて実行することで、曝露後の成形品の引張り強度が曝露前の成形品の引張り強度の80%以下に達する最短の曝露時間を特定し、これを耐久性の指標とした。
 [評価結果]
 以上の評価試験の結果を、各実施例及び比較例における配合組成と共に下記表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 表1及び表2に示される各成分の詳細は次の通りである。
・ポリ乳酸A:ポリ-L-乳酸樹脂(ネイチャワークス社製の品番Ingeo 3001D)。
・ポリ乳酸B:ポリ-L-乳酸樹脂(ネイチャワークス社製の品番Ingeo 4032D)。
・ポリ乳酸C:ポリ-L-乳酸樹脂(三井化学株式会社製の品番H-100)
・コアシェルゴム:グリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体(三菱レイヨン株式会社製の商品名メタブレン S2200)。
・タルク:竹原化学工業株式会社製の商品名TTタルク、平均粒径7μm。
・カルボジイミド化合物:日清紡ケミカル株式会社製の商品名カルボジライト LA-1。
・ABS樹脂:日本エイアンドエル株式会社製の商品名クララスチック AT08。
・ポリカーボネート樹脂:三菱エンジニアリングプラスチックス株式会社製の商品名ユーピロンH4000。
・ホスフィン酸亜鉛A:フェニルホスフィン酸亜鉛(日産化学工業株式会社製の商品名エコプロモート、平均粒径1.5μm)。
・ホスフィン酸亜鉛B:フェニルホスフィン酸亜鉛(日産化学工業株式会社製の商品名エコプロモートNT、平均粒径0.2μm。
・ホスフィン酸亜鉛C:ホスフィン酸亜鉛Aを湿式で粉砕した後、スプレードライを施すことにより得られた粉砕品、平均粒径0.1μm。
・核剤A:トリメシン酸トリシクロヘキシルアミド(新日本理化株式会社製の品番TF1)。
・核剤B:、スルホイソフタル酸ジメチルバリウム塩(竹本油脂株式会社製の品番LAK401)。
 表1及び表2に示す結果から明らかなように、実施例1~48では成形品の引張り強度が50MPa以上、引張り弾性率が2.8GPa以上であって剛性が高く、耐久性の評価が250hr以上となって耐久性に優れたものとなり、剛性と耐久性がバランス良く高いものであった。
 このうち、核剤A,Bを用いた実施例6,7,22,23,29,30,34,35,41,42、カルボジイミド化合物を用いた実施例8,9、21,24,25,31,34,35,40~42、ポリカーボネート樹脂を用いた実施例12,13,21,26,32,34,35,43~45、ABS樹脂を用いた実施例14,15,21,27,33~35では、耐久性が特に向上することが確認された。
 尚、比較例2,7では樹脂組成物の調製時(混練時)にゲル化が生じたため、樹脂組成物をペレット化することができず、また比較例4,9では樹脂組成物の調製時(混練時)にタルクの一部がスクリューに食い込まずペレット化することができなかったため、評価をすることができなかった。

Claims (13)

  1.  ポリ乳酸樹脂を50~97.5質量%、グリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体を1~20質量%、タルクを1~30質量%、ホスフィン酸亜鉛を0.5質量%以上の範囲で含有する熱可塑性樹脂組成物。
  2.  前記ホスフィン酸亜鉛の平均粒径が0.1~3μmの範囲である請求項1に記載の熱可塑性樹脂組成物。
  3.  前記ホスフィン酸亜鉛の平均粒径が0.1~0.15μmの範囲である請求項1に記載の熱可塑性樹脂組成物。
  4.  ポリ乳酸樹脂に溶解する核剤を含有する請求項1に記載の熱可塑性樹脂組成物。
  5.  ポリ乳酸樹脂に溶解しない核剤を含有する請求項1に記載の熱可塑性樹脂組成物。
  6.  カルボジイミド化合物を含有する請求項1に記載の熱可塑性樹脂組成物。
  7.  ポリカーボネート樹脂を含有する請求項1に記載の熱可塑性樹脂組成物。
  8.  ポリ乳酸樹脂を50~97.5質量%、グリシジルメタクリレートとシリコーンアクリル複合ゴムとの複合体を1~20質量%、タルクを1~30質量%、ホスフィン酸亜鉛を0.5質量%以上の割合で混合する熱可塑性樹脂組成物の製造方法。
  9.  請求項1に記載の熱可塑性樹脂組成物から形成された成形品。
  10.  請求項1に記載の熱可塑性樹脂組成物を成形してなる携帯電話機用卓上ホルダー。
  11.  請求項1に記載の熱可塑性樹脂組成物を成形してなる携帯電話機の内部シャーシ部品。
  12.  請求項1に記載の熱可塑性樹脂組成物を成形してなる電子機器用筐体。
  13.  請求項1に記載の熱可塑性樹脂組成物を成形してなる電子機器用内部部品。
PCT/JP2010/058819 2009-06-29 2010-05-25 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品 WO2011001763A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-153916 2009-06-29
JP2009153916A JP2011006638A (ja) 2009-06-29 2009-06-29 熱可塑性樹脂組成物
JP2009-254278 2009-11-05
JP2009254278A JP5975371B2 (ja) 2009-11-05 2009-11-05 ポリ乳酸樹脂組成物、ポリ乳酸樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品

Publications (1)

Publication Number Publication Date
WO2011001763A1 true WO2011001763A1 (ja) 2011-01-06

Family

ID=43410845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058819 WO2011001763A1 (ja) 2009-06-29 2010-05-25 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品

Country Status (1)

Country Link
WO (1) WO2011001763A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157597A1 (ja) * 2013-03-25 2014-10-02 帝人株式会社 樹脂組成物
WO2020042618A1 (zh) 2018-08-27 2020-03-05 北京越之康泰生物医药科技有限公司 多取代吡啶酮类衍生物及其在医药上的应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570696A (ja) * 1991-09-12 1993-03-23 Toppan Printing Co Ltd プラスチツク製容器
JPH0873721A (ja) * 1994-08-31 1996-03-19 Chuo Kagaku Kk 生分解性プラスチック組成物及びその成形品
JP2003286396A (ja) * 2002-01-24 2003-10-10 Toray Ind Inc 脂肪族ポリエステル樹脂組成物およびそれからなる成形品
WO2005068554A1 (ja) * 2004-01-20 2005-07-28 Takemoto Yushi Kabushiki Kaisha 脂肪族ポリエステル樹脂組成物及び脂肪族ポリエステル樹脂成形体並びに脂肪族ポリエステル樹脂成形体の製造方法
JP2005264147A (ja) * 2004-02-18 2005-09-29 Sony Corp 樹脂組成物、樹脂成形品、ポリエステル用核剤
JP2007077368A (ja) * 2005-09-16 2007-03-29 Fujitsu Ltd 樹脂筐体及びその製造方法
JP2007126589A (ja) * 2005-11-07 2007-05-24 Mitsubishi Plastics Ind Ltd 射出成形体
JP2007131795A (ja) * 2005-11-14 2007-05-31 Mitsui Chemicals Inc 乳酸系ポリマー組成物
JP2008291107A (ja) * 2007-05-24 2008-12-04 Canon Inc 熱可塑性樹脂組成物
JP2009067856A (ja) * 2007-09-11 2009-04-02 New Japan Chem Co Ltd ポリ乳酸系樹脂組成物、及びその成形体、並びに該成形体の製造方法
CN101423625A (zh) * 2008-12-03 2009-05-06 浙江海正生物材料股份有限公司 一种聚乳酸树脂的快速成核剂

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570696A (ja) * 1991-09-12 1993-03-23 Toppan Printing Co Ltd プラスチツク製容器
JPH0873721A (ja) * 1994-08-31 1996-03-19 Chuo Kagaku Kk 生分解性プラスチック組成物及びその成形品
JP2003286396A (ja) * 2002-01-24 2003-10-10 Toray Ind Inc 脂肪族ポリエステル樹脂組成物およびそれからなる成形品
WO2005068554A1 (ja) * 2004-01-20 2005-07-28 Takemoto Yushi Kabushiki Kaisha 脂肪族ポリエステル樹脂組成物及び脂肪族ポリエステル樹脂成形体並びに脂肪族ポリエステル樹脂成形体の製造方法
JP2005264147A (ja) * 2004-02-18 2005-09-29 Sony Corp 樹脂組成物、樹脂成形品、ポリエステル用核剤
JP2007077368A (ja) * 2005-09-16 2007-03-29 Fujitsu Ltd 樹脂筐体及びその製造方法
JP2007126589A (ja) * 2005-11-07 2007-05-24 Mitsubishi Plastics Ind Ltd 射出成形体
JP2007131795A (ja) * 2005-11-14 2007-05-31 Mitsui Chemicals Inc 乳酸系ポリマー組成物
JP2008291107A (ja) * 2007-05-24 2008-12-04 Canon Inc 熱可塑性樹脂組成物
JP2009067856A (ja) * 2007-09-11 2009-04-02 New Japan Chem Co Ltd ポリ乳酸系樹脂組成物、及びその成形体、並びに該成形体の製造方法
CN101423625A (zh) * 2008-12-03 2009-05-06 浙江海正生物材料股份有限公司 一种聚乳酸树脂的快速成核剂

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157597A1 (ja) * 2013-03-25 2014-10-02 帝人株式会社 樹脂組成物
US9745446B2 (en) 2013-03-25 2017-08-29 Teijin Limited Resin composition
WO2020042618A1 (zh) 2018-08-27 2020-03-05 北京越之康泰生物医药科技有限公司 多取代吡啶酮类衍生物及其在医药上的应用

Similar Documents

Publication Publication Date Title
JPWO2007015371A1 (ja) 樹脂組成物、その製造方法、それから得られる成形体
JP4572516B2 (ja) 樹脂組成物の製造方法
JP5583912B2 (ja) ポリ乳酸樹脂組成物の製造法
JP2017522442A (ja) オレフィン−無水マレイン酸コポリマーを用いたエンジニアリングプラスチックの改質
KR20100098367A (ko) 열가소성 수지 조성물 및 그것을 성형하여 이루어진 성형체
JP5226335B2 (ja) 樹脂組成物およびそれを成形してなる成形体
KR101263983B1 (ko) 블로우 성형성, 내충격성이 우수한 생활 용기용 폴리유산 함유 고분자 얼로이 조성물
WO2006132187A1 (ja) 生分解性ポリエステル樹脂組成物、その製造方法、同組成物を成形してなる成形体
WO2009130904A1 (ja) 難燃性ポリ乳酸系樹脂組成物およびそれを用いた成形体
JP2010144084A (ja) 難燃性樹脂組成物およびそれを成形してなる成形体
KR101685761B1 (ko) 백색도 및 기계적 물성이 향상된 생분해성 수지 조성물을 이용한 3차원 프린터용 필라멘트
CN102206406A (zh) 透明耐热聚乳酸改性材料的制备方法
JP4996668B2 (ja) ポリ乳酸樹脂組成物、ポリ乳酸樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品
WO2011001763A1 (ja) 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品
JP5409175B2 (ja) 樹脂組成物、該樹脂組成物の製造方法および該樹脂組成物からなる成形体
JP2011157538A (ja) 樹脂組成物
JP2014227470A (ja) ポリ乳酸系樹脂組成物
JP4953597B2 (ja) ポリブチレンサクシネート樹脂組成物、その製造方法、それからなる成形体
JP2006143829A (ja) ポリ乳酸系樹脂成形品及びその製造方法
JP5975371B2 (ja) ポリ乳酸樹脂組成物、ポリ乳酸樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品
JP5460261B2 (ja) ポリ乳酸系樹脂組成物
JP2011006639A (ja) 熱可塑性樹脂組成物
JP2012184296A (ja) ポリ乳酸樹脂組成物
JP2006124446A (ja) 梨地状外観を呈するポリ乳酸フィルムの製造方法
JP2011006638A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793934

Country of ref document: EP

Kind code of ref document: A1