WO2010150731A1 - ガス処理装置 - Google Patents

ガス処理装置 Download PDF

Info

Publication number
WO2010150731A1
WO2010150731A1 PCT/JP2010/060445 JP2010060445W WO2010150731A1 WO 2010150731 A1 WO2010150731 A1 WO 2010150731A1 JP 2010060445 W JP2010060445 W JP 2010060445W WO 2010150731 A1 WO2010150731 A1 WO 2010150731A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
container
gas
hydrogen sulfide
stainless steel
Prior art date
Application number
PCT/JP2010/060445
Other languages
English (en)
French (fr)
Inventor
高志 能登
悦朗 佐藤
喜次 吉川
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to KR1020117030680A priority Critical patent/KR101398615B1/ko
Publication of WO2010150731A1 publication Critical patent/WO2010150731A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/80Organic bases or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel

Definitions

  • the present invention relates to a gas processing apparatus used in a wet hydrogen sulfide environment for processing gas containing hydrogen sulfide, such as natural gas, petroleum-associated gas, and petroleum refined gas.
  • gas containing hydrogen sulfide such as natural gas, petroleum-associated gas, and petroleum refined gas.
  • the manganese sulfide layer described above is used when manganese sulfide, which has been reacted with manganese and sulfur added to remove impurity sulfur in a converter or the like for making a carbon steel ingot, stretches the carbon steel ingot to a steel plate with a roller. It is layered and remains in the carbon steel.
  • the above-described HIC-resistant steel is, for example, carbon steel without a manganese sulfide layer, and calcium is added to make sulfur a compound of calcium sulfide CaS when forming a carbon steel ingot.
  • CaS is produced in a spherical shape, and even when the carbon steel ingot is stretched to form a carbon steel plate, it remains in the carbon premises in a spherical state.
  • atomic hydrogen permeates through the carbon steel, atomic hydrogen is Without blocking, it is possible to prevent atomic hydrogen from being molecularized (gasified) in carbon steel.
  • CaS is also a non-metallic inclusion, and it is preferable that the content in the HIC steel is low.
  • HIC-resistant steel since it is difficult to increase the strength of HIC-resistant steel, for example, a container used in a wet hydrogen sulfide environment requires a sufficient plate thickness to obtain the required strength, and such a container is enlarged. When it does, it will have a big weight.
  • the amine absorption tower which is a pressure vessel of the above-described gas processing apparatus, the use of HIC-resistant steel that has not been increased in strength and the size of the amine absorption tower that exceeds 1000 tons have been made due to the increase in size.
  • the weight of the large pressure vessel exceeds 1000 tons
  • the following problems occur.
  • the bridge or road in the route for transporting the pressure vessel from the manufacturing plant to the installation site of the construction site cannot withstand a weight of 1000 tons or more, and it may be difficult to transport the pressure vessel. At this time, if transport is possible by passing the detour route, there is a possibility that the transport period becomes longer or the transport cost becomes higher.
  • a special crane capable of handling a weight of 1000 tons or more is required. The number of such special cranes is limited, and there is a possibility that the usable period of the crane is limited, and it is expensive to transport the crane.
  • the entire pressure vessel is not assembled at the production factory, and each part is transported to the construction site while being divided into parts.
  • a treatment such as annealing of the welded portion
  • standing up by the ginpole method there are problems in terms of schedule, quality control, and cost in actually assembling locally, and implementation is difficult.
  • the plate thickness necessary for the pressure vessel may exceed the production limit of the steel plate made of HIC steel.
  • the present invention has been made in view of the above circumstances, and provides a gas processing apparatus capable of reducing the weight by reducing the thickness of a steel plate used in a container of a gas processing apparatus used in a wet hydrogen sulfide environment.
  • the purpose is to provide.
  • the gas processing apparatus is a container used in a wet hydrogen sulfide environment for processing a gas containing hydrogen sulfide, such as natural gas, petroleum-associated gas, and petroleum refined gas.
  • a gas containing hydrogen sulfide such as natural gas, petroleum-associated gas, and petroleum refined gas.
  • a high-strength steel having a yield point of 300 N / mm 2 or more is used as the steel plate for the container, and austenitic stainless steel is lined over the entire surface of the high-tensile steel. It is characterized by.
  • the steel sheet used in the wet hydrogen sulfide environment is not a HIC-resistant steel, but a clad steel in which an austenitic stainless steel is lined on a high-tensile steel having a yield point of 300 N / mm 2 or more. Therefore, in the wet hydrogen sulfide environment, the stainless steel on the inner surface of the container comes into contact with hydrogen sulfide, but corrosion by hydrogen sulfide is prevented by the stainless steel. That is, generation of iron sulfide due to hydrogen sulfide is prevented on the inner surface of the container made of stainless steel. By preventing the generation of iron sulfide, generation of atomic hydrogen on the inner surface of the container is also prevented.
  • the gas processing device is a gas processing device including a container used in a wet hydrogen sulfide environment for processing a gas containing hydrogen sulfide, such as natural gas, petroleum-associated gas, and petroleum refined gas.
  • a gas containing hydrogen sulfide such as natural gas, petroleum-associated gas, and petroleum refined gas.
  • a high-strength steel having a yield point of 300 N / mm 2 or more is used as the steel plate for the container, and austenitic stainless steel is overlay welded to the entire surface of the high-tensile steel. .
  • the steel plate used in the wet hydrogen sulfide environment is not a HIC-resistant steel, but a steel plate obtained by overlay welding austenitic stainless steel to high-tensile steel having a yield point of 300 N / mm 2 or more. Therefore, as in the case of claim 1, it is possible to reduce the weight by reducing the plate thickness of the steel plate of the container while preventing HIC. In order to reduce the weight, it is advantageous to line the stainless steel than overlay welding because it can greatly reduce the plate thickness.
  • the plate thickness of the clad steel is limited in terms of production, depending on the size, required strength, etc. When the plate thickness of the high-tensile steel becomes thick, it can be dealt with by using overlay welding.
  • the gas treatment device according to claim 3 is the invention according to claim 1 or claim 2, wherein the type of the austenitic stainless steel is SUS301, SUS302, SUS303, SUS304, SUS304L, SUS305, SUS316, SUS316L in the JIS standard. , SUS317, SUS321, or SUS347.
  • an austenitic stainless steel having a nickel: Ni content of 6% or more, preferably 8% or more and a chromium: Cr content of 16% or more, preferably 18% or more.
  • the gas treatment device is the invention according to any one of claims 1 to 3, wherein the yield point as a mechanical property of the high-strength steel is 300 N / mm 2 or more, 900 N / mm 2 or less, a tensile strength of 490 N / mm 2 or more, and wherein the at 1200 N / mm 2 or less.
  • the plate thickness of the container can be made thinner than when HIC steel is used. .
  • the yield point and tensile strength are lower than the above values, there is little difference in plate thickness with HIC steel when the high-strength steel is lined or overlay welded with austenitic stainless steel. It becomes difficult to reduce the weight.
  • the weight of the container can be reduced by reducing the plate thickness of the container of the gas processing apparatus used in the wet hydrogen sulfide environment. Further, by reducing the weight of the container, it is possible to cope with a further increase in the size of a gas processing apparatus that processes a gas containing hydrogen sulfide.
  • FIG. 1 is a side view showing an amine absorption tower according to an embodiment of the present invention
  • FIG. 2 is a sectional view of a main part (nozzle part) of the amine absorption tower.
  • the gas processing apparatus of this example is, for example, an amine absorption tower 1 as a container provided in a gas processing facility when removing hydrogen sulfide contained in natural gas.
  • the amine absorption tower 1 is used in a process for removing hydrogen sulfide contained in natural gas. If natural gas containing hydrogen sulfide is used as fuel as it is, sulfurous acid gas is generated as a combustion product, which causes pollution, so it is necessary to remove hydrogen sulfide from natural gas. It is generally removed by a chemical absorption (acid-alkali reaction) acid gas removal process using potassium carbonate.
  • the above-described amine absorption tower 1 is used, a raw material gas is put into the lower part of the amine absorption tower 1, and a lean amine solution (solution before absorbing hydrogen sulfide) is introduced from the tower top 10 of the amine absorption tower 1.
  • the hydrogen sulfide is reacted and absorbed by countercurrent contact (gas-liquid contact) between the raw material gas (natural gas containing hydrogen sulfide) and the amine solution using a tray or packing in the amine absorption tower 1 and the like. Remove hydrogen sulfide.
  • the raw material gas from which hydrogen sulfide has been removed is sent to an apparatus that performs the next treatment process.
  • the amine solution that has reacted and absorbed hydrogen sulfide becomes a rich amine solution (solution after absorbing hydrogen sulfide), which is extracted from the amine absorption tower 1 and warmed in a heat exchanger, and is reduced in pressure to the amine regeneration tower.
  • Sent. A reboiler is installed at the bottom of the amine regeneration tower, and the rich amine solution is heated to generate steam to strip hydrogen sulfide from the amine solution.
  • a condenser is installed at the top of the tower, and water is condensed in this condenser, and is refluxed to the amine regeneration tower.
  • the hydrogen sulfide stripped in the amine regeneration tower is discharged and recovered as sulfur by a sulfur recovery device or the like.
  • the amine solution from which hydrogen sulfide has been removed in the amine regeneration tower is returned to the amine absorption tower 1 from the amine regeneration tower as a lean amine solution.
  • the inside becomes a wet hydrogen sulfide environment, which may cause problems such as the generation of HIC described above.
  • an austenitic stainless steel 3 (hereinafter abbreviated as stainless steel) is lined over the high-tensile steel 2. That is, clad steel 4 made of high-tensile steel 2 and stainless steel 3 is used for amine absorption tower 1.
  • the internal attachment metal fitting for attaching internal members such as a tray in the amine absorption tower 1, packing, etc. are formed with austenitic stainless steel, for example.
  • the tubular portion to which the pipe of the amine absorption tower 1 is attached is also lined or overlay welded with austenitic stainless steel.
  • the clad steel 4 in this example uses the high-tensile steel 2 as a base material and the stainless steel 3 as a clad material.
  • the base material and the clad material are metallurgically joined at the boundary portion between them.
  • the high strength steel the yield point of the its mechanical properties 300N / mm 2 or more, at 900 N / mm 2 or less, a tensile strength of 490 N / mm 2 or more, and has a 1200 N / mm 2 or less.
  • the yield point is 300 N / mm 2 or more and the tensile strength is 490 N / mm 2 or more, for example, with respect to the thickness of the container when the container is formed of HIC steel, It is possible to significantly reduce the thickness of the container made of the above clad steel.
  • the yield point when the yield point is smaller than 300 N / mm 2 and the tensile strength is smaller than 490 N / mm 2 , the difference in plate thickness from the container made of HIC steel cannot be increased.
  • stainless steel since stainless steel is lined, it is not possible to sufficiently reduce the weight by reducing the plate thickness.
  • the thickness of the high-strength steel 2 as the base material in the grad steel is determined by the pressure required in the pressure vessel, the size of the pressure vessel, and the like.
  • a thickness of about 200 mm is required, for example, when a high tensile steel having a yield point of 450 N / mm 2 and a tensile strength of 590 N / mm 2 is used, the thickness is about 110 mm to about 140 mm, for example. It becomes.
  • SUS301 Ni (6-8%), Cr (16-18%)
  • SUS302 Ni (8-10%), Cr (17-19%)
  • SUS303 Ni (8 to 10%), Cr (17 to 19%), Mo (0.60% or less can be added)
  • SUS305 Ni (10.5-13%), Cr (17-19%)
  • SUS316, SUS316L Ni (10-14%), Cr (16-18%), Mo (2-3%)
  • SUS317 Ni (11-15%), Cr (18-20%), Mo (3-4%)
  • SUS321 Ni (8 to 10.5%), Cr (18 to 20%), Ti (1 to 2%)
  • SUS347 Ni (8 to 10.5%), Cr (18 to 20%), Nb (1 to 2%)
  • the thickness of the stainless steel as the clad material is, for example, about 2 to 4 mm, it is possible to sufficiently prevent corrosion and prevent the generation of HIC.
  • all of the parts that become the wet hydrogen sulfide environment, other than the container part use the above-described clad steel 4 or those obtained by overlaying stainless steel, or HIC such as HIC-resistant steel. It is preferable to use a member whose generation is suppressed, and it is necessary to use a clad steel 4 or an overlay welded part for a portion where the weight is increased in a large container.
  • the natural gas flow rate as a design condition was 1500 MMSCFD (million standard cubic feet per day).
  • HIC-resistant steel those having mechanical properties shown in Table 2 were used, and similarly, as the high-tensile steel, those having mechanical properties shown in Table 2 were used.
  • SUS304 was used as stainless steel.
  • the plate thicknesses of the substantially hemispherical tower top 10, the substantially hemispherical tower bottom 11, and the cylindrical part 12 between the tower top 10 and the tower bottom 11 are the same. Calculation was based on the above design criteria. In addition, in the amine absorption tower 1 of HIC-resistant steel, the portion obtained by removing the corrosion allowance from the total plate thickness is shown in Table 2 as the calculated plate thickness. Further, in the amine absorption tower 1 made of the clad steel 4, the total plate thickness is obtained by adding the lining thickness of stainless steel to the calculated plate thickness of high-tensile steel.
  • the size of the amine absorption tower 1 was such that the inner diameter of the tower was 6500 mm and the height of the cylindrical portion 12 of the tower was 35 m, corresponding to the natural gas flow rate described above.
  • TL in Table 2 is a tangent line, indicating the boundary between the hemispherical portion and the cylindrical portion, and TL-TL is the length of the cylindrical portion 12 excluding the tower top 10 and the tower bottom 11.
  • the design temperature in the amine absorption tower 1 was 100 ° C., and the design pressure was 80 bar.
  • the total plate thickness including the corrosion allowance of the HIC steel in the cylindrical portion is 168 mm
  • the total plate thickness of the clad steel is 108 mm.
  • the total plate thickness including the corrosion allowance of the HIC steel is 87 mm at the tower top and the tower bottom, whereas the total plate thickness is 56 mm in the clad steel.
  • the thickness of the container of the gas processing apparatus used in the wet hydrogen sulfide environment can be reduced.
  • the absorption tower of HIC-resistant steel is 1230 tons, whereas in the case of clad steel made of high-tensile steel and stainless steel, it becomes 801 tons, about 35% It is possible to reduce the weight.
  • the weight of the amine absorption tower 1 can be reduced, and problems caused by handling heavy objects from manufacture to transportation and installation can be reduced, and cost can be reduced. it can.
  • the problem which becomes serious when the weight of the container exceeds 1000 tons can be solved by reducing the weight to 1000 tons or less.
  • a steel plate for a container of a gas treatment facility used in a wet hydrogen sulfide environment a steel plate of clad steel 4 lined with austenitic stainless steel is used as a high strength steel.
  • a steel plate obtained by overlay welding (overlay welding) of stainless steel may be used.
  • the overlay welding is performed by automatic welding.
  • the stainless steel layer is formed by overlay welding with an automatic welding machine on the inner peripheral surface of a steel plate made of high-strength steel formed in a cylindrical shape.
  • a stainless steel layer is formed with a thickness of about 5 to 15 mm, usually about 10 mm.
  • the thickness of the stainless steel part is thicker than in the case of the lining described above.
  • overlay welding can be used to overlay stainless steel on high-strength steel without any problem even if the thickness of high-strength steel increases, but in the case of clad steel 4 described above, the plate thickness of high-strength steel is large. Then, it becomes difficult to join the grad material to the base material.
  • the thickness of the high-strength steel becomes thick based on the container size, the pressure difference between the inside and outside of the container, etc., for example, from the condition when the above-mentioned plate thickness is obtained by calculation.
  • This is suitable when the plate thickness of the high-tensile steel exceeds, for example, 150 mm and becomes thicker under the condition that the thickness is increased. If the clad steel 4 can be produced even if the plate thickness of the high-tensile steel exceeds 150 mm, the clad steel 4 may be used.
  • the basic container structure is the same as that shown in FIGS. 1 and 2, for example, on the inside of high-strength steel.
  • the difference is whether the austenitic stainless steel is lined or overlay welded.
  • substantially the same operational effects as in the case of lining can be obtained.
  • the present invention is not limited to the amine absorption tower 1 of the above example, and the inside thereof is used to treat the gas containing hydrogen sulfide such as the above-mentioned natural gas, petroleum-associated gas, and petroleum refined gas. It can be applied to various containers of gas treatment equipment that has a wet hydrogen sulfide environment, and can be applied to containers such as amine regeneration towers, slag catchers, and gas oil separators. It can be suitably used for a container that becomes thick.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 硫化水素を含む天然ガスを処理するガス処理設備の容器は、大型化の傾向にあることから重量の増大が問題となっており、このような容器の重量の低減を図る。 ガス処理装置は、天然ガス、石油随伴ガス、石油精製ガス等の硫化水素が含まれるガスを処理するために湿潤硫化水素環境で用いられる容器を備えている。この容器用の鋼板として降伏点が300N/mm2以上の高張力鋼が用いられている。また、この容器を構成する高張力鋼の鋼板の内面には、オーステナイト系ステンレス鋼が内張りされるか、オーバーレイ溶接されている。これにより、容器内面の硫化水素による腐食を防止し、これによる原子水素発生を防止することで、水素誘起割れを防止する。さらに、高張力鋼を用いることで、容器の板厚の薄肉化を図ることにより、容器を軽量化する。

Description

ガス処理装置
 本発明は、天然ガス、石油随伴ガス、石油精製ガス等の硫化水素が含まれているガスを処理するために湿潤硫化水素環境で使用されるガス処理装置に関する。
 硫化水素が含まれている天然ガス、石油随伴ガス、石油精製ガスの処理プロセスは数多くあり、これらの装置では、取り扱われるガスが高圧であることが多い。また、これらの装置としては、例えば、スラグキャッチャ、ガスオイルセパレータ、アミン吸収塔、再生塔など大きな重量を有する場合が多い。
 上記処理プロセスとしての硫黄回収プロセス等で使われる機器の多くは腐食代を考慮した圧力容器用鋼板(炭素鋼)で製作されるのが通常である。これは鉄と硫化水素との反応でできる硫化鉄の膜が容器の流体側(容器の内側)の鉄の表面を覆い、これがある程度腐食進行を防ぐので、上述の腐食代を十分に確保すれば、炭素鋼の長期間の使用が可能となる。
 しかし、硫化鉄ができる際に生じる原子水素は極めて微小なために炭素鋼内に入り込んで、炭素鋼を透過してしまう。炭素鋼内に入り込んだ原子水素は、例えば、後述のように炭素鋼内に形成される硫化マンガンの層を透過することができず、この層の部分に溜って分子化し、水素ガスの状態となる。この炭素鋼内に溜った水素ガスにより割れが生じる。
 すなわち、上述のような硫化水素が含まれるガスを処理するプロセスで用いられる圧力容器等の容器、すなわち、湿潤硫化水素環境で使用される容器に通常の(圧力)容器用鋼板(炭層鋼)を使用すると水素誘起割れを起こすことになる。すなわちHIC(Hydrogen Induced Cracking)が生じる。基本的に炭素鋼中の非金属介在物が炭素鋼内を透過する原子水素を集積させて、HICの原因となることが知られている。
 そこで、上述の湿潤硫化水素環境では、炭素鋼として、製造時に特殊な処理をして非金属介在物の含有量を減らした耐HIC鋼を用いるのが常識となってきている(例えば、特許文献1参照)。
 なお、上述の硫化マンガンの層は、炭素鋼塊を作る転炉等で不純物の硫黄を取り除くために添加したマンガンと硫黄との反応できた硫化マンガンが炭素鋼塊をローラで鋼板に引き伸ばす際に層状になって炭素鋼内に残ったものである。
 それに対して、上述の耐HIC鋼は、例えば、硫化マンガンの層がない炭素鋼であり、炭素鋼塊を作る際にカルシウムを添加して硫黄を硫化カルシウムCaSの化合物とするものである。CaSは球状で生成され、かつ、炭素鋼塊を引き伸ばして炭素鋼板とした際にも球状の状態で炭素構内に残っており、上述のように炭素鋼を原子水素が透過する際に原子水素を遮ることがなく、原子水素が炭素鋼内で分子化(ガス化)するのを防止することができる。なお、CaSも非金属介在物であり、耐HIC鋼における含有量が少ない方が好ましい。
特開平10-237533号公報
 ところで、高強度の耐HIC鋼を製造するのが困難であるため、圧力容器に必要な強度を得ようとすると、圧力容器の板厚が厚くなり重量が大きくなってしまう。このような耐HIC鋼を必要とする上述の硫化水素を含むガスの処理設備を備える最近のプラントにおいては、設備が大型化の傾向にあり、これら圧力容器の重量が増加し、製作、輸送、建設においてその難しさを増してきている。
 すなわち、耐HIC鋼の高強度化が困難なことから、例えば、湿潤硫化水素環境で使用される容器では、必要な強度を得るのに十分な板厚を必要とし、このような容器が大型化した場合に、大きな重量を有するものとなってしまう。例えば、上述のガス処理装置の圧力容器であるアミン吸収塔では、高強度化されていない耐HIC鋼を用いることと、大型化により重量が1000トンを越えるものが作られるようになってきた。
 ここで、大型の圧力容器の重量が1000トンを越える場合に、以下のような問題が生じる。
 第1に、大型でかつ1000トンを越える重量を有する圧力容器を製造する設備を備えた製作工場が少なく、製作工場が限定されてしまう。この場合に、効率的な圧力容器の製造が難しくなるとともに、ガス処理装置の建設現場への輸送経路を確保するのが難しくなり、輸送にコストがかかる虞がある。
 第2に、製作工場から建設現場の設置場所に圧力容器を輸送するルート中の橋や道路が1000トン以上の重量に耐えられず、圧力容器の輸送が困難な場合が生じる。この際に、迂回ルートを通ることにより輸送が可能となる場合には、輸送期間が長くなったり、輸送コストが高くなる虞がある。
 第3に、圧力容器(処理塔)を建設現場で起立させて設置する場合に、1000トン以上の重量に対応できる特殊なクレーンを必要とする。このような特殊なクレーンは、数が限られており、当該クレーンの使用可能な期間が限られたり、当該クレーンの搬送にコストがかかる虞がある。
 上述のような問題を解消する方法として、製作工場で、圧力容器全体の組立を行わず、各部分に分割された状態のままで、各部分をそれぞれ建設現場に搬送し、現地で各部分を溶接して組み立てるとともに、溶接部分の焼鈍等の処理を行い、ジンポール工法により起立させる方法がある。
 しかし、実際に現地で組み立てるには、スケジュール、品質管理、コストの面で問題があり、実施が難しい。
 さらに、高い強度が必要な圧力容器の更なる大型化が進んだ場合に、圧力容器に必要な板厚が耐HIC鋼からなる鋼板の製造限界を超える虞が有る。
 本発明は、前記事情に鑑みて為されたもので、湿潤硫化水素環境で用いられるガス処理装置の容器に用いられる鋼板の板厚を薄肉化して重量の低減を図ることができるガス処理装置を提供することを目的とする。
 前記目的を達成するために、請求項1に記載のガス処理装置は、天然ガス、石油随伴ガス、石油精製ガス等の硫化水素が含まれるガスを処理するために湿潤硫化水素環境で用いられる容器を備えたガス処理装置であって、前記容器用の鋼板として降伏点が300N/mm2以上の高張力鋼が用いられ、かつオーステナイト系ステンレス鋼が前記高張力鋼からなる容器内全面に内張りされていることを特徴とする。
 請求項1に記載の発明においては、湿潤硫化水素環境で用いられる鋼板が、耐HIC鋼ではなく、降伏点が300N/mm2以上の高張力鋼にオーステナイト系ステンレス鋼を内張りしたクラッド鋼により形成されるので、湿潤硫化水素環境において、容器内面の前記ステンレス鋼が硫化水素に接触することになるが、前記ステンレス鋼により硫化水素による腐食が防止される。すなわち、前記ステンレス鋼からなる容器内面に硫化水素による硫化鉄の発生が防止される。硫化鉄の発生が防止されることにより、前記容器内面での原子水素の発生も防止される。
 したがって、クラッド材としてオーステナイト系ステレス鋼を用いることで、HICの発生が防止される。
 そして、容器用鋼板に用いられるクラッド鋼の母材として、前記高張力鋼が用いられているので、容器の板材の板厚を耐HIC鋼を用いた場合よりも、同じ強度でも薄くすることが可能となり、強度を確保したまま容器の軽量化を図ることができる。
 請求項2に記載のガス処理装置は、天然ガス、石油随伴ガス、石油精製ガス等の硫化水素が含まれるガスを処理するために湿潤硫化水素環境で用いられる容器を備えたガス処理装置であって、前記容器用の鋼板として降伏点が300N/mm2以上の高張力鋼が用いられ、かつオーステナイト系ステンレス鋼が前記高張力鋼からなる容器内全面にオーバーレイ溶接されていることを特徴とする。
 請求項2に記載の発明においては、湿潤硫化水素環境で用いられる鋼板が、耐HIC鋼ではなく、降伏点が300N/mm2以上の高張力鋼にオーステナイト系ステンレス鋼をオーバーレイ溶接した鋼板からなるので、請求項1に記載の場合と同様に、HICを防止しつつ、容器の鋼板の板厚を薄くして軽量化を図ることができる。
 軽量化を図る上では、前記ステンレス鋼をオーバーレイ溶接より内張りした方が板厚を大きく削減できて有利であるが、クラッド鋼の板厚には製造上の限界があり、サイズや必要強度等により高張力鋼の板厚が厚くなる場合には、オーバーレイ溶接を用いることで対応可能となる。
 請求項3に記載のガス処理装置は、請求項1または請求項2に記載の発明において、前記オーステナイト系ステンレス鋼の種類がJIS規格におけるSUS301、SUS302、SUS303、SUS304、SUS304L、SUS305、SUS316、SUS316L、SUS317、SUS321、SUS347のいずれかであることを特徴とする。
 請求項3に記載の発明においては、ニッケル:Niの含有量が6%以上、好ましくは8%以上で、クロム:Crの含有量が16%以上、好ましくは18%以上のオーステナイト系ステンレス鋼を用いることにより、湿潤硫化水素環境での硫化水素による腐食を防止し、これによりHICの発生を防止することができる。
 請求項4に記載のガス処理装置は、請求項1から請求項3のいずれか1項に記載の発明において、前記高張力鋼の機械的性質としての降伏点が300N/mm2以上、900N/mm2以下で、引張強さが490N/mm2以上、1200N/mm2以下であることを特徴とする。
 高張力鋼の降伏点を300N/mm2以上とし、引張強さを490N/mm2以上とすることにより、耐HIC鋼を用いた場合よりも明らかに容器の板厚を薄肉化することができる。言い換えれば、降伏点および引っ張り強さが上述の値よりも低いと、高張力鋼にオーステナイト系ステンレス鋼の内張りもしくはオーバーレイ溶接をした場合に、耐HIC鋼との板厚の差が少なく、十分な軽量化を図ることが困難となる。
 また、高張力鋼の降伏点を900N/mm2以上とし、引張強さを1200N/mm2より大きなものとすると、加工が困難になる虞がある。
 本発明によれば、湿潤硫化水素環境で使用されるガス処理装置の容器の板厚を薄くして容器の軽量化を図ることができる。また、容器の軽量化により、硫化水素を含むガスを処理するガス処理装置の更なる大型化に対応することができる。
本発明の実施の形態に係るアミン吸収塔を示す側面図である。 アミン吸収塔の要部断面図である。
 以下、図面を参照しながら、本発明の実施の形態について説明する。
 図1は本発明の実施の形態のアミン吸収塔を示す側面図であり、図2はアミン吸収塔の要部(ノズル部)の断面図である。
 この例のガス処理装置は、例えば、天然ガスに含まれる硫化水素を除去する際のガス処理設備に設けられる容器としてのアミン吸収塔1である。
 このアミン吸収塔1は、天然ガスに含まれる硫化水素を除去するプロセスで用いられるものである。硫化水素を含む天然ガスをそのまま燃料として使用すると、燃焼生成物として亜硫酸ガスが発生し、公害の要因となってしまうので、天然ガスから硫化水素を除去する必要があり、硫化水素はアミンあるいは熱炭酸カリを用いる化学吸収(酸-アルカリ反応)酸性ガス除去プロセスで除去するのが一般的である。
 このプロセスでは、例えば、上述のアミン吸収塔1が用いられ、アミン吸収塔1の下部に原料ガスを入れ、アミン吸収塔1の塔頂部10からリーンアミン溶液(硫化水素を吸収する前の溶液)を流し、アミン吸収塔1内のトレイあるいはパッキングなどにより、原料ガス(硫化水素を含む天然ガス)とアミン溶液と向流接触(気液接触)により、硫化水素を反応吸収させることで、原料ガスから硫化水素を除去する。
 また、硫化水素を除去された原料ガスは、次の処理プロセスを行う装置に送られる。また、硫化水素を反応吸収したアミン溶液は、リッチアミン溶液(硫化水素を吸収した後の溶液)となり、アミン吸収塔1から抜き出されて熱交換器で暖められ、減圧されてアミン再生塔に送られる。このアミン再生塔の底部にはリボイラーが設置されており、リッチアミン溶液を加熱して蒸気を発生させてアミン溶液から硫化水素をストリップする。塔頂部にはコンデンサが設置されており、このコンデンサで水分が凝縮し、リフラックスとなってアミン再生塔に還流される。
 アミン再生塔でストリップされた硫化水素は排出されて硫黄回収装置等により、硫黄として回収される。
 また、アミン再生塔で硫化水素が除去されたアミン溶液は、リーンアミン溶液としてアミン再生塔からアミン吸収塔1に返送される。
 このようなアミン吸収塔1においては、内部が湿潤硫化水素環境となり、上述のHICの発生等の問題を生じる虞がある。
 この例のアミン吸収塔1においては、アミン吸収塔1を構成する容器用鋼板として、高張力鋼2にオーステナイト系ステンレス鋼3(以下、ステンレス鋼と省略する)を全面内張りしている。すなわち、アミン吸収塔1には、高張力鋼2とステンレス鋼3とからなるクラッド鋼4が用いられている。なお、アミン吸収塔1内部のトレイやパッキング等の内部の部材を取り付けるための内部取付金具等は、例えば、オーステナイト系ステンレス鋼により形成される。また、アミン吸収塔1の配管が取り付けられる管状の部分も内部にオーステナイト系ステンレス鋼が内張りもしくはオーバーレイ溶接されている。
 この例におけるクラッド鋼4は、高張力鋼2を母材とし、ステンレス鋼3をクラッド材とするものである。なお、クラッド鋼4においては、母材とクラッド材とがそれらの境界部分で冶金的に接合している。
 高張力鋼としては、その機械的性質としての降伏点が300N/mm2以上、900N/mm2以下で、引張強さが490N/mm2以上、1200N/mm2以下となっている。
 高張力鋼2において、降伏点が300N/mm2以上で引張強さが490N/mm2以上となっていれば、例えば、耐HIC鋼で容器を形成した場合の容器の板厚に対して、上述のクラッド鋼からなる容器の板厚を有意に薄くすることが可能となる。
 逆に、高張力鋼2において、降伏点が300N/mm2より小さく、引張強さが490N/mm2より小さい場合には、耐HIC鋼製の容器との板厚の差を大きくできず、特にステンレス鋼が内張りされることから、板厚の薄肉化による軽量化が十分に行えない。
 また、高張力鋼の降伏点を900N/mm2以上とし、引張強さを1200N/mm2より大きなものとすると、加工が困難になりコストが増大する。
 グラッド鋼における母材としての高張力鋼2の厚さは、圧力容器で要求される圧力や、圧力容器のサイズ等によって決定されるものであるが、後述のように、耐HIC鋼で170mmから200mm程度の厚みが必要とされる場合に、例えば、降伏点が450N/mm2で、引張強さが590N/mm2の高張力鋼を用いた場合には、その厚みが例えば110mmから140mm程度となる。
 クラッド鋼におけるクラッド材としてのオーステナイト系ステンレス鋼としては、以下のJIS規格のものを好適に用いることができる。
・SUS301:Ni(6~8%)、Cr(16~18%)
・SUS302:Ni(8~10%)、Cr(17~19%)
・SUS303:Ni(8~10%)、Cr(17~19%)、Mo(0.60%以下の添加ができる)
・SUS304、SUS304L:Ni(8~10.5%)、Cr(18~20%)
・SUS305:Ni(10.5~13%)、Cr(17~19%)
・SUS316、SUS316L:Ni(10~14%)、Cr(16~18%)、Mo(2~3%)
・SUS317:Ni(11~15%)、Cr(18~20%)、Mo(3~4%)
・SUS321:Ni(8~10.5%)、Cr(18~20%)、Ti(1~2%)
・SUS347:Ni(8~10.5%)、Cr(18~20%)、Nb(1~2%)
 また、クラッド材としてのステンレス鋼の厚みは、例えば、2~4mm程度あれば、十分に腐食の防止を図り、HICの発生を防止することができる。
 また、ガス処理装置において、湿潤硫化水素環境となる部分については、容器部分以外でも、全て上述のクラッド鋼4を用いるか、ステンレス鋼をオーバーレイ溶接したものを用いるか、耐HIC鋼等のHICの発生が抑制される部材を用いることが好ましく、さらに大型の容器で重量が大きくなる部分に対しては、クラッド鋼4やオーバーレイ溶接したものを用いる必要がある。
 以下に、耐HIC鋼により構築されるアミン吸収塔1と、この例のクラッド鋼4で構築されるアミン吸収塔1における板厚、重量等の設計値を計算により求めた。
 この際の設計基準としてASME(American Society of Mechanical Engineers) Section viii Division 2(2007)を適用した。
 また、設計条件として、硫化水素を除去すべき天然ガスのガス組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 設計条件としての天然ガス流量は、1500MMSCFD(million standard cubic feet per day:100万標準立方フィート/日)とした。
 耐HIC鋼としては、表2に示される機械的性質を有するものを用い、同様に、高張力鋼としては、表2に示される機械的性質を有するものを用いた。また、ステンレス鋼としては、SUS304を用いた。
Figure JPOXMLDOC01-appb-T000002
 アミン吸収塔1については、略半球状の塔頂部10と、同様に略半球状の塔底部11と、これら塔頂部10と塔底部11との間の円筒部12とにおいて、それぞれの板厚を上述の設計基準に基づいて算出した。なお、耐HIC鋼のアミン吸収塔1においては、合計板厚から腐食代を除いた部分を計算板厚として表2に示した。また、クラッド鋼4からなるアミン吸収塔1においては、高張力鋼の計算板厚にステンレス鋼のライニング厚みを加えたものを合計板厚とした。
 また、アミン吸収塔1のサイズは、上述の天然ガス流量に対応するものとして、塔内径を6500mmとし、塔の円筒部12の高さを35mとした。なお、表2におけるTLは、タンジェントラインであり、半球状部分と円筒部分との境界を示し、TL-TLが塔頂部10と塔底部11を除く円筒部12の長さとなる。
 また、アミン吸収塔1における設計温度を100℃とし、設計圧力を80barとした。
 表2の計算結果に示されるように円筒部で耐HIC鋼の腐食代を含む合計板厚が168mmとなるのに対して、クラッド鋼では合計板厚が108mmとなる。同様に塔頂部および塔底部では、耐HIC鋼の腐食代を含む合計板厚が87mmとなるのに対して、クラッド鋼では合計板厚が56mmとなる。
 すなわち、高張力鋼2とステンレス鋼3からなるクラッド鋼4を用いることで、湿潤硫化水素環境で用いられるガス処理装置の容器の板厚の薄肉化を図ることができる。
 そして、Erection重量(建てた際の重量)では、耐HIC鋼の吸収塔が1230トンであるのに対して、高張力鋼およびステンレス鋼からなるクラッド鋼の場合に801トンとなり、35%程度の重量の削減を行うことが可能となっている。
 すなわち、アミン吸収塔1の重量の低減を図ることができ、製造から搬送して設置するまでの重量物を取り扱うことにより生じる問題を軽減することが可能となるとともに、コストの低減を図ることができる。特に容器の重量が1000トンを越えることにより深刻化する問題を1000トン以下として解消することができる。
 上記実施の形態では、湿潤硫化水素環境で用いられるガス処理設備の容器の容器用鋼板として、高張力鋼にオーステナイト系ステンレス鋼を内張りしたクラッド鋼4の鋼板を用いたが、高張力鋼に前記ステンレス鋼をオーバーレイ溶接(肉盛溶接)した鋼板を用いてもよい。なお、オーバーレイ溶接は、自動溶接により行われ、例えば、円筒状に形成された高張力鋼からなる鋼板の内周面に自動溶接機によりオーバーレイ溶接により前記ステンレス鋼の層が形成される。
 なお、オーバーレイ溶接では、5~15mm程度、通常10mm程度の厚みで、ステンレス鋼の層が形成される。上述の内張りの場合よりもステンレス鋼部分の厚みが厚くなる。
 また、オーバーレイ溶接は、高張力鋼の厚みが厚くなっても問題なく、高張力鋼にステンレス鋼をオーバーレイさせることができるが、上述のクラッド鋼4の場合に、高張力鋼の板厚が厚くなると、グラッド材を母材に接合することが困難となる。
 したがて、例えば、容器サイズや容器の内外の圧力差等に基づいて、高張力鋼の厚みが厚くなる場合、例えば、上述の板厚を計算で求めた場合の条件より、高張力鋼の厚みが厚くなる条件で、高張力鋼の板厚が例えば150mmを越え、さらに厚くなるような場合に適している。なお、高張力鋼の板厚が150mmを越えてもクラッド鋼4を製造可能ならば、クラッド鋼4で対応してもよい。
 また、高張力鋼の内側にオーバーレイ溶接で、ステンレス鋼の層を形成する場合も、基本的な容器の構造は、例えば、図1、図2に示す構造と同様となり、高張力鋼の内側にオーステナイト系ステンレス鋼を内張りするか、オーバーレイ溶接するかの違いとなる。
 そして、オーバーレイ溶接の場合も内張りの場合とほぼ同様の作用効果を得ることができる。
 また、本発明が適用されるのは上記例のアミン吸収塔1に限られるものではなく、上述の天然ガス、石油随伴ガス、石油精製ガス等の硫化水素を含むガスを処理するために内部が湿潤硫化水素環境となるガス処理装置の各種容器に適用することが可能であり、アミン再生塔、スラグキャッチャ、ガスオイルセパレータ等の容器に適用可能であり、特に、大型で強度的に板厚が厚くなってしまう容器に好適に用いることができる。
1   アミン吸収塔
2   高張力鋼
3   オーステナイト系ステンレス鋼

Claims (4)

  1.  天然ガス、石油随伴ガス、石油精製ガス等の硫化水素が含まれるガスを処理するために湿潤硫化水素環境で用いられる容器を備えたガス処理装置であって、
     前記容器用の鋼板として降伏点が300N/mm2以上の高張力鋼が用いられ、かつオーステナイト系ステンレス鋼が前記高張力鋼からなる容器内全面に内張りされていることを特徴とするガス処理装置。
  2.  天然ガス、石油随伴ガス、石油精製ガス等の硫化水素が含まれるガスを処理するために湿潤硫化水素環境で用いられる容器を備えたガス処理装置であって、
     前記容器用の鋼板として降伏点が300N/mm2以上の高張力鋼が用いられ、かつオーステナイト系ステンレス鋼が前記高張力鋼からなる容器内全面にオーバーレイ溶接されていることを特徴とするガス処理装置。
  3.  前記オーステナイト系ステンレス鋼の種類がJIS規格におけるSUS301、SUS302、SUS303、SUS304、SUS304L、SUS305、SUS316、SUS316L、SUS317、SUS321、SUS347のいずれかであることを特徴とする請求項1または請求項2に記載のガス処理装置。
  4.  前記高張力鋼の機械的性質としての降伏点が300N/mm2以上、900N/mm2以下で、引張強さが490N/mm2以上、1200N/mm2以下であることを特徴とする請求項1から請求項3のいずれか1項に記載のガス処理装置
PCT/JP2010/060445 2009-06-23 2010-06-21 ガス処理装置 WO2010150731A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020117030680A KR101398615B1 (ko) 2009-06-23 2010-06-21 가스 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-148349 2009-06-23
JP2009148349A JP5506255B2 (ja) 2009-06-23 2009-06-23 ガス処理装置

Publications (1)

Publication Number Publication Date
WO2010150731A1 true WO2010150731A1 (ja) 2010-12-29

Family

ID=43386500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060445 WO2010150731A1 (ja) 2009-06-23 2010-06-21 ガス処理装置

Country Status (3)

Country Link
JP (1) JP5506255B2 (ja)
KR (1) KR101398615B1 (ja)
WO (1) WO2010150731A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104804789A (zh) * 2015-03-25 2015-07-29 徐进 油井套管气洗涤罐
CN104804791A (zh) * 2015-04-08 2015-07-29 徐进 一种带碰撞筛板的油井套管气洗涤罐
US10421040B2 (en) 2017-07-03 2019-09-24 Jiangnan Environmental Protection Group Inc. Desulfurization absorption tower

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7057050B2 (ja) * 2018-09-06 2022-04-19 一般財団法人電力中央研究所 処理ガス反応塔
JP7233914B2 (ja) * 2018-12-19 2023-03-07 クボタ環境エンジニアリング株式会社 排ガス脱硫方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151922A (en) * 1976-06-14 1977-12-16 Chiyoda Chem Eng & Constr Co Ltd Pressure container with chrome steel overlay welded on it#s inner surface
JPS6099397U (ja) * 1982-06-29 1985-07-06 川崎製鉄株式会社 ガス貯蔵タンク
JPH03264647A (ja) * 1990-03-13 1991-11-25 Japan Steel Works Ltd:The 高温高圧用低合金鋼を母材とした剥離抵抗性の優れたオーバレイステンレスクラッド鋼
JPH09316470A (ja) * 1996-03-22 1997-12-09 Mitsubishi Heavy Ind Ltd ガス化燃料製造時の熱回収方法及び熱回収装置
JP2003320221A (ja) * 2002-05-07 2003-11-11 Sanwa Engineering Kk バイオガスの精製方法および精製装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241900A (ja) 1997-08-13 2002-08-28 Sumitomo Metal Ind Ltd 耐硫酸腐食性と加工性に優れたオーステナイト系ステンレス鋼

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151922A (en) * 1976-06-14 1977-12-16 Chiyoda Chem Eng & Constr Co Ltd Pressure container with chrome steel overlay welded on it#s inner surface
JPS6099397U (ja) * 1982-06-29 1985-07-06 川崎製鉄株式会社 ガス貯蔵タンク
JPH03264647A (ja) * 1990-03-13 1991-11-25 Japan Steel Works Ltd:The 高温高圧用低合金鋼を母材とした剥離抵抗性の優れたオーバレイステンレスクラッド鋼
JPH09316470A (ja) * 1996-03-22 1997-12-09 Mitsubishi Heavy Ind Ltd ガス化燃料製造時の熱回収方法及び熱回収装置
JP2003320221A (ja) * 2002-05-07 2003-11-11 Sanwa Engineering Kk バイオガスの精製方法および精製装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104804789A (zh) * 2015-03-25 2015-07-29 徐进 油井套管气洗涤罐
CN104804791A (zh) * 2015-04-08 2015-07-29 徐进 一种带碰撞筛板的油井套管气洗涤罐
US10421040B2 (en) 2017-07-03 2019-09-24 Jiangnan Environmental Protection Group Inc. Desulfurization absorption tower
US10427097B2 (en) 2017-07-03 2019-10-01 Jiangnan Environmental Protection Group Inc. Desulfurization absorption tower
US10556205B2 (en) 2017-07-03 2020-02-11 Jiangnan Environmental Protection Group Inc. Desulfurization absorption tower
US10561984B2 (en) 2017-07-03 2020-02-18 Jiangnan Environmental Protection Group Inc. Desulfurization absorption tower
US10618001B2 (en) 2017-07-03 2020-04-14 Jiangnan Environmental Protection Group Inc. Desulfurization absorption tower
EP3424584B1 (en) * 2017-07-03 2020-07-08 Jiangnan Environmental Protection Group Inc. Desulfurization absorption tower, method for setting up the same and method for operating the same

Also Published As

Publication number Publication date
JP2011006502A (ja) 2011-01-13
JP5506255B2 (ja) 2014-05-28
KR20120024821A (ko) 2012-03-14
KR101398615B1 (ko) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5506255B2 (ja) ガス処理装置
Speight Oil and gas corrosion prevention: From surface facilities to refineries
EP1642639B1 (en) Reactor
JPH0459243B2 (ja)
US11484826B2 (en) Process for purifying crude synthesis gas to produce an acid gas and acid gas separator
US20140377165A1 (en) Process for degassing condensed sulfur from a claus sulfur recovery system
JP2022539597A (ja) 尿素プラントのフェライト鋼部品
JP4436675B2 (ja) 水素及び一酸化炭素含有ガスの温度低下方法、及び該方法に使用される熱交換器
US5480609A (en) Austenitic stainless steel with high resistance to corrosion by chloride and sulphuric media and uses
JP5792905B2 (ja) 炭化水素流を処理する方法及び装置
Kane Corrosion in petroleum refining and petrochemical operations
CN106693690A (zh) 一种天然气的脱硫净化工艺
Ropital et al. Corrosion and degradation of metallic materials: understanding of the phenomena and applications in petroleum and process industries
US20130202907A1 (en) Equipment for use in corrosive environments and methods for forming thereof
WO2014204965A1 (en) Process for degassing condensed sulfur from a claus sulfur recovery system
Nair Control corrosion factors in ammonia and urea plants
US9352369B2 (en) Equipment for use in corrosive environments and methods for forming thereof
Harston et al. Amine unit corrosion in refineries
JPS60224764A (ja) 高温用n含有オ−ステナイトステンレス鋼
US20200238213A1 (en) Absorption column having external heat exchange circuit
Lahiri et al. Material Selection and Performance in Fertilizer Industry
JPWO2019008849A1 (ja) 芳香族炭化水素の製造方法
Siu et al. The Most Reliable and Cost Effective Advanced Sulphur Recovery Technologies for Saudi Arabia and the Middle Eastern Region
EA045846B1 (ru) Детали из ферритной стали в установках по производству карбамида
Watanabe A review of 28 years of work of the Japan welding engineering society's committee of chemical plant welding (CCPW)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117030680

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792049

Country of ref document: EP

Kind code of ref document: A1