WO2010150584A1 - 基板の処理方法、コンピュータ記憶媒体及び基板処理システム - Google Patents

基板の処理方法、コンピュータ記憶媒体及び基板処理システム Download PDF

Info

Publication number
WO2010150584A1
WO2010150584A1 PCT/JP2010/056065 JP2010056065W WO2010150584A1 WO 2010150584 A1 WO2010150584 A1 WO 2010150584A1 JP 2010056065 W JP2010056065 W JP 2010056065W WO 2010150584 A1 WO2010150584 A1 WO 2010150584A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimension
pattern
resist pattern
film
plane tendency
Prior art date
Application number
PCT/JP2010/056065
Other languages
English (en)
French (fr)
Inventor
恵 城坂
真任 田所
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2010150584A1 publication Critical patent/WO2010150584A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Definitions

  • the present invention relates to a substrate processing method, a computer storage medium, and a substrate processing system for forming a predetermined pattern on a film to be processed on a substrate such as a semiconductor wafer.
  • a resist coating process for coating a resist solution on a semiconductor wafer (hereinafter referred to as “wafer”) to form a resist film
  • an exposure process for exposing a predetermined pattern on the resist film A post-exposure baking process (hereinafter referred to as “PEB process”) for heating to promote the chemical reaction of the resist film after the exposure, a photolithography process for sequentially developing the exposed resist film, and the like are performed.
  • a predetermined resist pattern is formed on the wafer. Using the resist pattern as a mask, the processing target film on the wafer is etched, and then the resist film is removed to form a predetermined pattern on the processing target film.
  • the resist pattern described above determines the pattern shape of the underlying film to be processed and must be formed with strict dimensions. Therefore, after performing a photolithography process to form a resist pattern on the wafer and measuring dimensions such as the line width of the resist pattern, based on the dimension measurement results, for example, correcting the heating temperature of the PEB process, It has been proposed to optimize the dimensions of the resist pattern. In such a case, the correction of the heating temperature is performed, for example, by correcting the temperature of the hot plate that places and heats the wafer. For example, a heater that generates heat by power feeding is incorporated in the hot plate, and the hot plate is adjusted to a predetermined temperature by adjusting the temperature of the heater (Patent Document 1).
  • Patent Document 2 when correcting the heating temperature of the PEB process, it is proposed to calculate the in-plane tendency of the dimension from the measured resist pattern dimension and adjust the temperature of the hot plate based on the in-plane tendency. Has been. (Patent Document 2).
  • a parameter that affects only the dimension of the pattern of the film to be processed formed after the etching process may change over time.
  • the pattern of the film to be processed after the etching process may not be formed uniformly on the wafer surface.
  • the present invention has been made in view of such a point, and an object thereof is to uniformly form a predetermined pattern on a processing target film on a substrate within the substrate surface.
  • the present invention is a substrate processing method for forming a predetermined pattern on a film to be processed on a substrate, wherein the substrate is subjected to a photolithography process, and a resist is formed on the film to be processed on the substrate.
  • the dimension of a resist pattern means the line width of a resist pattern, for example.
  • ⁇ Xt ⁇ X1- ⁇ Xe (1)
  • ⁇ T 1 / ⁇ ⁇ F ⁇ 1 ( ⁇ Xt ⁇ Xl) (2)
  • ⁇ Xt target in-plane tendency of resist pattern dimension
  • ⁇ Xl in-plane tendency of measurement dimension of resist pattern
  • ⁇ Xe in-plane tendency of measurement dimension of film pattern to be processed
  • ⁇ T correction value of processing temperature
  • Conversion coefficient between processing temperature variation and resist pattern dimension
  • F Function of processing temperature variation and pattern dimension variation
  • the in-plane tendency of the measured dimension of the pattern to be processed is subtracted from the in-plane tendency of the measured dimension of the resist pattern, and the target in-plane tendency of the dimension of the resist pattern is calculated. is doing. That is, the target in-plane tendency of the resist pattern dimension is set so that the in-plane tendency of the pattern dimension of the film to be processed becomes zero. And using the said Formula (2), the process temperature of heat processing is correct
  • a readable computer storage medium storing a program that operates on a computer of a control device that controls the substrate processing system in order to cause the substrate processing system to execute the substrate processing method.
  • a photolithography process is performed on the substrate, a resist pattern is formed on the film to be processed, the dimension of the resist pattern is measured, and the in-plane tendency of the measurement dimension of the resist pattern is measured.
  • a step of calculating, etching the film to be processed using the resist pattern as a mask, forming a pattern on the film to be processed, measuring a dimension of the pattern of the film to be processed, and patterning the film to be processed Calculating an in-plane tendency of the measurement dimension of the resist pattern, an in-plane tendency of the measurement dimension of the resist pattern, and the treatment Based on the in-plane tendency of the measured dimension of the film pattern, using the following formula (1), the step of calculating the target in-plane tendency of the dimension of the resist pattern, and the target in-plane tendency of the dimension of the resist pattern, Using the following equation (2), calculating a correction value of the processing temperature of the heat treatment in the photolithography process, correcting the processing temperature based on the correction value of the processing temperature, and the corrected processing Performing a photolithography process including a heat treatment at a temperature and an etching process to form a predetermined pattern on a film to be processed on the substrate.
  • ⁇ Xt ⁇ X1- ⁇ Xe (1)
  • ⁇ T 1 / ⁇ ⁇ F ⁇ 1 ( ⁇ Xt ⁇ Xl) (2)
  • ⁇ Xt target in-plane tendency of resist pattern dimension
  • ⁇ Xl in-plane tendency of measurement dimension of resist pattern
  • ⁇ Xe in-plane tendency of measurement dimension of film pattern to be processed
  • ⁇ T correction value of processing temperature
  • Conversion coefficient between processing temperature variation and resist pattern dimension
  • F Function of processing temperature variation and pattern dimension variation
  • Another aspect of the present invention is a substrate processing system for forming a predetermined pattern on a film to be processed on a substrate, and performing a photolithography process on the substrate to form a resist pattern on the film to be processed on the substrate.
  • a coating and developing apparatus an etching apparatus that performs an etching process on the film to be processed using the resist pattern as a mask; and a pattern that forms a pattern on the film to be processed; a dimension measuring apparatus that measures a dimension of the resist pattern;
  • Another dimension measuring device for measuring the dimension of the pattern of the film to be processed, and a control device for correcting the processing temperature of the heat treatment in the photolithography process, and the control device is a resist measured by the dimension measuring device.
  • the in-plane tendency of the measurement dimension of the pattern is calculated, and the measurement dimension of the resist pattern measured by the other dimension measuring apparatus An in-plane tendency is calculated, and based on the in-plane tendency of the measured dimension of the resist pattern and the in-plane tendency of the measured dimension of the film to be processed, the target surface of the resist pattern dimension is calculated using the following equation (1). And calculating a correction value of the processing temperature of the heat treatment performed in the coating and developing apparatus using the following formula (2) based on a target in-plane tendency of the resist pattern dimensions. The processing temperature is corrected based on the temperature correction value.
  • ⁇ Xt ⁇ X1- ⁇ Xe (1)
  • ⁇ T 1 / ⁇ ⁇ F ⁇ 1 ( ⁇ Xt ⁇ Xl) (2)
  • ⁇ Xt target in-plane tendency of resist pattern dimension
  • ⁇ Xl in-plane tendency of measurement dimension of resist pattern
  • ⁇ Xe in-plane tendency of measurement dimension of film pattern to be processed
  • ⁇ T correction value of processing temperature
  • Conversion coefficient between processing temperature variation and resist pattern dimension
  • F Function of processing temperature variation and pattern dimension variation
  • FIG. 1 is an explanatory diagram showing an outline of a configuration of a substrate processing system 1 according to the present embodiment.
  • the substrate processing system 1 includes a coating and developing processing apparatus 2 that performs photolithography processing on a wafer as a substrate, and an etching processing apparatus 3 that performs etching processing on a film to be processed on the wafer. .
  • the coating and developing treatment apparatus 2 is a cassette that carries, for example, 25 wafers W in and out of the coating and developing treatment apparatus 2 from the outside in a cassette unit, and carries a wafer W into and out of the cassette C.
  • a station 10 an inspection station 11 that performs a predetermined inspection on the wafer W, a processing station 12 in which a plurality of various processing apparatuses that perform predetermined processing in a single-wafer type in photolithography processing are arranged in multiple stages,
  • the interface station 14 for transferring the wafer W to and from the exposure apparatus 13 provided adjacent to the processing station 12 is integrally connected.
  • a cassette mounting table 15 is provided, and the cassette mounting table 15 is capable of mounting a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 2).
  • the cassette station 10 is provided with a wafer transfer body 17 that can move on the transfer path 16 along the X direction.
  • the wafer carrier 17 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and selectively with respect to the wafers W arranged in the vertical direction in the cassette C. Accessible.
  • the wafer carrier 17 can be rotated around a vertical axis ( ⁇ direction), and can also access a transfer unit 21 on the inspection station 11 side described later.
  • An inspection station 11 adjacent to the cassette station 10 is provided with a dimension measuring device 20 that measures the dimension of a resist pattern formed on the film to be processed of the wafer W.
  • the dimension measuring device 20 is disposed, for example, on the negative side in the X direction (downward in FIG. 2) of the inspection station 11.
  • a delivery unit 21 for delivering the wafer W to and from the cassette station 10 is disposed.
  • the delivery unit 21 is provided with a placement unit 21a on which, for example, a wafer W is placed.
  • a wafer transfer body 23 that is movable along the X direction on the transfer path 22 is provided.
  • the wafer transfer body 23 is movable, for example, in the vertical direction and is also rotatable in the ⁇ direction, and each processing apparatus of the third processing apparatus group G3 to be described later on the dimension measuring apparatus 20, the transfer section 21, and the processing station 12 side. Can be accessed.
  • the processing station 12 adjacent to the inspection station 11 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages.
  • a first processing device group G1 and a second processing device group G2 are arranged in this order from the inspection station 11 side on the X direction negative direction (downward direction in FIG. 2) side of the processing station 12.
  • a third processing device group G3, a fourth processing device group G4, and a fifth processing device group G5 are sequentially arranged from the inspection station 11 side on the X direction positive direction (upward direction in FIG. 2) side of the processing station 12. Is arranged.
  • a first transfer device 30 is provided between the third processing device group G3 and the fourth processing device group G4.
  • the first transfer device 30 can selectively access each device in the first processing device group G1, the third processing device group G3, and the fourth processing device group G4 to transfer the wafer W.
  • a second transport device 31 is provided between the fourth processing device group G4 and the fifth processing device group G5. The second transfer device 31 can selectively access each device in the second processing device group G2, the fourth processing device group G4, and the fifth processing device group G5 to transfer the wafer W.
  • a liquid processing apparatus that supplies a predetermined liquid to the wafer W and performs processing, for example, a resist coating that forms a resist film by applying a resist solution to the wafer W Apparatuses 40, 41, and 42, and bottom coating apparatuses 43 and 44 that form an antireflection film for preventing reflection of light during the exposure process are stacked in five stages in order from the bottom.
  • liquid processing units for example, development processing units 50 to 54 for supplying a developing solution to the wafer W and performing development processing are stacked in five stages in order from the bottom.
  • chemical chambers 60 and 61 for supplying various processing liquids to the liquid processing apparatuses in the processing apparatus groups G1 and G2 are provided at the lowermost stage of the first processing apparatus group G1 and the second processing apparatus group G2. Are provided.
  • the third processing unit group G3 includes, for example, a temperature control unit 70, a transition unit 71 for transferring the wafer W, and a high-precision temperature control for adjusting the wafer temperature under high-precision temperature control.
  • the apparatuses 72 to 74 and the high temperature heat treatment apparatuses 75 to 78 for heat-treating the wafer W at a high temperature are sequentially stacked in nine stages from the bottom.
  • the fourth processing unit group G4 includes, for example, a high-accuracy temperature control unit 80, pre-baking units (hereinafter referred to as “PAB units”) 81 to 84 that heat-treat the resist-coated wafer W, and post-development processing units.
  • Post-baking apparatuses (hereinafter referred to as “POST apparatuses”) 85 to 89 for performing heat treatment of the wafer W are stacked in 10 stages in order from the bottom.
  • a plurality of heat processing apparatuses for heat-treating the wafer W for example, high-precision temperature control apparatuses 90 to 93, and a post-exposure baking apparatus (hereinafter referred to as “PEB apparatus”) for performing heat treatment as heat treatment on the wafer W.
  • PEB apparatus post-exposure baking apparatus
  • a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device 30, and an adhesion device 100 for hydrophobizing the wafer W as shown in FIG. 101, heat treatment apparatuses 102 and 103 for heat-treating the wafer W are stacked in four stages in order from the bottom.
  • a peripheral exposure device 104 that selectively exposes only the edge portion of the wafer W, for example, is disposed on the positive side in the X direction of the second transfer device 31.
  • the interface station 14 is provided with a wafer transfer body 111 that moves on a transfer path 110 that extends in the X direction, and a buffer cassette 112.
  • the wafer transfer body 111 is movable in the Z direction and rotatable in the ⁇ direction, and accesses the exposure apparatus 13 adjacent to the interface station 14, the buffer cassette 112, and the fifth processing apparatus group G5.
  • the wafer W can be transferred.
  • the dimension measuring device 20 has a casing 20 a in which a wafer W is loaded and unloaded (not shown) on the side surface.
  • a mounting table 120 for mounting the wafer W horizontally and an optical surface shape measuring instrument 121 are provided in the casing 20a.
  • the mounting table 120 can move, for example, in a two-dimensional direction in the horizontal direction.
  • the optical surface shape measuring instrument 121 includes, for example, a light irradiation unit 122 that irradiates light on the wafer W from an oblique direction, a light detection unit 123 that detects light irradiated from the light irradiation unit 122 and reflected by the wafer W, A measurement unit 124 that calculates the size of the resist pattern on the wafer W based on the light reception information of the light detection unit 123 is provided.
  • the dimension measuring apparatus 20 measures the dimension of the resist pattern using, for example, a scatterometry method.
  • the measuring unit 124 the light intensity distribution in the wafer surface detected by the light detecting unit 123, and The size of the resist pattern can be measured by checking the virtual light intensity distribution stored in advance and obtaining the size of the resist pattern corresponding to the virtual light intensity distribution thus checked.
  • the line width of the resist pattern is measured as the dimension of the resist pattern.
  • the dimension measuring apparatus 20 moves the wafer W relatively horizontally with respect to the light irradiation unit 122 and the light detection unit 123, so that a plurality of regions in the wafer surface, for example, each wafer region W as shown in FIG. can be measured dimension of the resist pattern at a plurality of measuring points for every 1 ⁇ W 5.
  • the wafer areas W 1 to W 5 correspond to hot plate areas R 1 to R 5 of PEB apparatuses 94 to 99 described later.
  • the number and shape of the regions in the wafer surface are not limited to the regions shown in FIG. 6 and can be arbitrarily selected.
  • the PEB apparatus 94 has a casing 94a in which a loading / unloading port (not shown) for the wafer W is formed on the side surface.
  • a lid body 130 that is located on the upper side and is movable up and down, and a hot plate housing part 131 that is located on the lower side and forms the processing chamber K integrally with the lid body 130.
  • the lid 130 has a substantially cylindrical shape with an open bottom surface.
  • An exhaust part 130 a is provided at the center of the upper surface of the lid 130.
  • the atmosphere in the processing chamber K is uniformly exhausted from the exhaust part 130a.
  • the hot plate accommodating portion 131 includes an annular holding member 141 that holds a hot plate 140 as a heat treatment plate and holds the outer peripheral portion of the hot plate 140, and a substantially cylindrical support ring 142 that surrounds the outer periphery of the holding member 141. I have.
  • the hot plate 140 is divided into a plurality of, for example, five hot plate regions R 1 , R 2 , R 3 , R 4 , R 5 .
  • the hot plate 140 is, for example, positioned in the center as viewed from the plane and divided into a circular hot plate region R 1 and hot plate regions R 2 to R 5 whose periphery is equally divided into four arcs.
  • Each of the hot plate regions R 1 to R 5 of the hot plate 140 has a built-in heater 143 that generates heat by power feeding, and can be heated for each of the hot plate regions R 1 to R 5 .
  • the amount of heat generated by the heater 143 in each of the hot plate regions R 1 to R 5 is adjusted by the temperature controller 144.
  • the temperature controller 144 can control the temperature of each of the hot plate regions R 1 to R 5 to a heating temperature as a predetermined processing temperature by adjusting the amount of heat generated by the heater 143.
  • the setting of the heating temperature in the temperature control device 144 is performed by, for example, the control device 400 described later.
  • lift pins 150 are provided for supporting the wafer W from below and lifting it.
  • the elevating pin 150 can be moved up and down by an elevating drive mechanism 151.
  • a through-hole 152 that penetrates the hot plate 140 in the thickness direction is formed near the center of the hot plate 140, and the lift pins 150 rise from below the hot plate 140 and pass through the through-hole 152, It can protrude above the plate 140.
  • PEB devices 95 to 99 is the same as that of the PEB device 94 described above, and a description thereof will be omitted.
  • the etching processing apparatus 3 includes a cassette station 200 that carries a wafer W into and out of the etching processing apparatus 3, a common transport unit 201 that transports the wafer W, and a film to be processed on the wafer W in a predetermined pattern. And etching apparatus 202 and 203 for etching, and dimension measuring apparatuses 204 and 205 as other dimension measuring apparatuses for measuring the dimension of the pattern of the film to be processed (hereinafter referred to as “processed film pattern”).
  • the line width of the film pattern to be processed is measured as the dimension of the film pattern to be processed.
  • the cassette station 200 has a transfer chamber 211 in which a wafer transfer mechanism 210 for transferring the wafer W is provided.
  • the wafer transfer mechanism 210 has two transfer arms 210a and 210b that hold the wafer W substantially horizontally, and is configured to transfer the wafer W while holding it by either of the transfer arms 210a and 210b.
  • a cassette mounting table 212 on which a cassette C capable of accommodating a plurality of wafers W arranged side by side is mounted on the side of the transfer chamber 211. In the illustrated example, a plurality of, for example, three cassettes C can be mounted on the cassette mounting table 212.
  • the transfer chamber 211 and the common transfer unit 201 are connected to each other via two load lock devices 213a and 213b that can be evacuated.
  • the common transfer unit 201 includes a transfer chamber chamber 214 having a sealable structure formed to have a substantially polygonal shape (in the illustrated example, a hexagonal shape) as viewed from above, for example.
  • a wafer transfer mechanism 215 for transferring the wafer W is provided in the transfer chamber 214.
  • the wafer transfer mechanism 215 has two transfer arms 215a and 215b that hold the wafer W substantially horizontally, and is configured to transfer the wafer W while holding it by either of the transfer arms 215a and 215b. .
  • Etching devices 202 and 203, dimension measuring devices 204 and 205, and load lock devices 213 b and 213 a are arranged outside the transfer chamber chamber 214 so as to surround the periphery of the transfer chamber chamber 214.
  • the etching devices 202 and 203, the dimension measuring devices 204 and 205, and the load lock devices 213b and 213a are arranged in this order in the clockwise direction when viewed from above, for example, and with respect to the six side surfaces of the transfer chamber 214, respectively. They are arranged so as to face each other.
  • the dimension measuring apparatuses 204 and 205 since it is the same as that of the dimension measuring apparatus 20 in the application
  • the control device 400 that controls the heating temperature in the PEB devices 94 to 99 and the exposure amount in the exposure device 13 will be described.
  • the control device 400 is constituted by, for example, a general-purpose computer including a CPU, a memory, and the like, and includes a measurement unit 124 of the dimension measurement device 20 shown in FIG. 5, a temperature control device 144 shown in FIGS. Connected to the devices 204 and 205.
  • the control device 400 includes, for example, an input unit 401 that receives the dimension measurement results from the dimension measuring devices 20, 204, and 205, and the correction value for the heating temperature of the PEB devices 94 to 99 based on the dimension measurement results.
  • a data storage unit 402 storing various information necessary for calculation
  • a program storage unit 403 storing various programs for calculating the correction value of the heating temperature, and executing the various programs
  • a calculation unit 404 for calculating the correction value, an output unit 405 for outputting the calculated correction value for the heating temperature to the PEB apparatuses 94 to 99, and the like are provided.
  • the plurality of in-plane tendency components ⁇ X i are expressed by decomposing the in-plane tendency ⁇ X (the variation tendency in the wafer surface) of the pattern measurement dimension into a plurality of components using, for example, a Zernike polynomial. is there.
  • the Zernike polynomial is explained here.
  • the Zernike polynomial is a complex function on a unit circle with a radius of 1 often used in the optical field (practically used as a real function), and a polar coordinate argument ( r, ⁇ ).
  • This Zernike polynomial is mainly used in the field of optics to analyze the aberration component of a lens.
  • each wavefront has an independent shape such as a mountain shape or a saddle shape. Can be known.
  • the dimension measurement values of a large number of points in the wafer surface are shown in the height direction on the wafer surface, and the points of the dimension measurement values are connected by a smooth curved surface.
  • the in-plane tendency ⁇ X is regarded as a wavefront that undulates up and down.
  • the in-plane tendency ⁇ X of the measurement dimension of the pattern is determined by using a Zernike polynomial, such as a vertical deviation component in the ⁇ X direction, an X direction inclination component, a Y direction inclination component, a curved component that curves in a convex shape or a concave shape, etc. It is decomposed into a plurality of in-plane tendency components ⁇ X i .
  • the magnitude of each in-plane tendency component ⁇ X i can be expressed by a Zernike coefficient.
  • the Zernike coefficient representing each in-plane tendency component ⁇ X i is specifically expressed by the following equation using polar coordinate arguments (r, ⁇ ).
  • the Zernike coefficient ⁇ X 1 is a dimension average value ( ⁇ X direction deviation component) in the wafer surface
  • the Zernike coefficient ⁇ X 2 is an X direction inclination component
  • the Zernike coefficient ⁇ X 3 is an Y direction inclination component
  • ⁇ X 9 indicates a curved component.
  • the program storage unit 403 uses the following equation (1) based on the in-plane tendency ⁇ Xl of the measurement dimension of the resist pattern and the in-plane tendency ⁇ Xe of the dimension of the film pattern to be processed.
  • the program P2 for calculating the target in-plane tendency ⁇ Xt of the resist pattern dimensions is stored.
  • ⁇ Xt ⁇ X1- ⁇ Xe (1)
  • the program storage unit 403 uses the following equation (2) based on the above-described target in-plane tendency ⁇ Xt of the resist pattern dimensions to heat the hot plate regions R 1 to R 5 in the PEB apparatuses 94 to 99.
  • a program P3 for calculating the temperature correction value ⁇ T is stored.
  • ⁇ T 1 / ⁇ ⁇ F ⁇ 1 ( ⁇ Xt ⁇ Xl) (2)
  • ⁇ T is a correction value of the heating temperature
  • is a resist thermal sensitivity that is a conversion coefficient between the variation amount of the heating temperature and the dimension of the resist pattern
  • F is a function of the variation amount of the heating temperature and the variation amount of the pattern dimension.
  • the function F in the above equation (2) is a calculation model M that is a matrix of, for example, the variation amount of the heating temperature and the variation amount of the pattern dimension.
  • the in-plane tendency ⁇ X of the measurement dimension of a pattern such as a resist pattern or a film pattern to be processed is expressed by using a plurality of in-plane tendency components ⁇ X i decomposed by the Zernike polynomial. Therefore, for example, as shown in FIG. 11, the calculation model M is a determinant of n (number of in-plane tendency components) rows ⁇ m (number of hot plate regions) columns expressed using Zernike coefficients under specific conditions.
  • the calculation model M is stored in the data storage unit 402, for example.
  • the temperature of each of the hot plate regions R 1 to R 5 of the hot plate 140 is raised by 1 ° C. in order, and the dimensions of the pattern of multiple points in the wafer surface in each case are measured. From the measured dimensions, the dimensional fluctuation amount of the pattern in the wafer surface corresponding to each in-plane tendency component ⁇ X i (Zernike coefficient) is calculated, and the dimensional fluctuation per unit temperature fluctuation of the hot plate regions R 1 to R 5
  • the program storage unit 403 based on the correction value ⁇ T of the heating temperature of the thermal plate regions R 1 ⁇ R 5 described above, using the following equation (3), the heating of the thermal plate regions R 1 ⁇ R 5 A program P4 for correcting the temperature is stored.
  • T Tl + ⁇ T (3)
  • T corrected heating temperature
  • Tl heating temperature before correction
  • the programs P1 to P4 for realizing the functions of the control device 400 are, for example, a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), memory card, etc. May be recorded in a computer-readable storage medium and installed in the control device 400 from the storage medium.
  • HD hard disk
  • FD flexible disk
  • CD compact disk
  • MO magnetic optical desk
  • FIG. 12 is a flowchart for explaining the inspection processing step for the inspection wafer E and the processing step for the wafer W.
  • a film to be processed is formed on the wafer W in advance.
  • Step S1 in FIG. 12 Details of the photolithography process will be described in the process of the wafer W described later.
  • the inspection wafer E on which the resist pattern is formed is transferred to the dimension measuring device 20 of the inspection station 11.
  • the inspection wafer E is mounted on the mounting table 120.
  • a predetermined portion of the inspection wafer E is irradiated with light from the light irradiation unit 122, and the reflected light is detected by the light detection unit 123.
  • the measurement unit 124 measures the dimension of the resist pattern on the inspection wafer E (step S2 in FIG. 12).
  • the dimension of the resist pattern in each of the wafer regions W 1 to W 5 is measured.
  • the measurement result of the resist pattern dimension of the inspection wafer E is output to the input unit 401 of the control device 400.
  • the inspection wafer E is transferred to the etching processing apparatus 3, and the processing target film of the inspection wafer E is etched using the resist pattern as a mask to form a pattern on the processing target film (FIG. 12). Step S3). Thereafter, the inspection wafer E is transferred to the dimension measuring device 204 in the etching processing apparatus 3.
  • the dimension of the film pattern to be processed is measured by the same method as the measurement of the dimension of the resist pattern in the dimension measuring apparatus 20 described above (step S4 in FIG. 12). At this time, the dimension of the film pattern to be processed in each of the wafer regions W 1 to W 5 is measured. The dimension measurement result of the film pattern to be processed on the inspection wafer E is output to the input unit 401 of the control device 400.
  • the calculation unit 404 calculates the in-plane tendency ⁇ Xl of the measurement dimension of the resist pattern using the program P1 based on the measurement dimension of the resist pattern of the inspection wafer E. Similarly, the in-plane tendency ⁇ Xe of the measurement dimension of the film to be processed is calculated based on the measurement dimension of the resist pattern of the film to be processed (step S5 in FIG. 12).
  • a target in-plane tendency ⁇ Xt of the dimension of the resist pattern is calculated using the program P2. Specifically, as shown in FIG. 13, the in-plane tendency ⁇ Xe of the measurement dimension of the film pattern to be processed is subtracted from the in-plane tendency ⁇ Xl of the measurement dimension of the resist pattern to calculate the target in-plane tendency ⁇ Xt of the dimension of the resist pattern. (Step S6 in FIG. 12).
  • the heating temperature of each of the hot plate regions R 1 to R 5 is corrected using the program P4 (step S8 in FIG. 12).
  • the corrected heating temperature T of each of the hot plate regions R 1 to R 5 is output from the output unit 405 to the PEB devices 94 to 99.
  • the wafers W are taken out one by one from the cassette C on the cassette mounting table 15 by the wafer transfer body 17 and sequentially transferred to the transfer unit 21 of the inspection station 11.
  • the wafer W transferred to the delivery unit 21 is transferred to the processing station 12 by the wafer transfer body 23.
  • the wafer W transferred to the processing station 12 is first transferred to the temperature adjusting device 70 belonging to the third processing unit group G3, and the temperature is adjusted to a predetermined temperature. Thereafter, the wafer W is transferred to the bottom coating device 43 by the first transfer device 30, and an antireflection film is formed.
  • the wafer W on which the antireflection film is formed is sequentially transferred to the heat treatment apparatus 102, the high temperature heat treatment apparatus 75, and the high precision temperature adjustment apparatus 80 by the first transfer apparatus 30, and is subjected to a predetermined process in each processing apparatus.
  • the Thereafter, the wafer W is transferred to the resist coating device 40 by the first transfer device 30, and a resist film is formed on the wafer W.
  • the wafer W on which the resist film is formed is transported to the PAB device 81 by the first transport device 30 and subjected to heat treatment, and then the peripheral exposure device 104 and the high-precision temperature control device 93 are transported by the second transport device 31. Are sequentially conveyed, and predetermined processing is performed in each apparatus. Thereafter, the wafer is transferred to the exposure apparatus 13 by the wafer transfer body 111 of the interface station 14, and a predetermined pattern is exposed on the resist film on the wafer W. The wafer W that has been subjected to the exposure processing is transferred to the PEB apparatus 94 of the processing station 12 by the wafer transfer body 111.
  • the wafer W transferred to the PEB apparatus 94 is transferred to the lift pins 150 that have been lifted and waited in advance, and after the lid 130 is closed, the lift pins 150 are lowered so that the wafer W becomes the hot plate 140. Placed on top. At this time, each of the hot plate regions R 1 to R 5 of the hot plate 140 is heated to the heating temperature corrected in step S8 described above. The wafer W is heated to a predetermined temperature by the heated hot plate 140.
  • the wafer W that has been subjected to the PEB processing in the PEB apparatus 94 is transferred to the high-precision temperature adjusting device 91 by the second transfer device 31 to be temperature-adjusted, and then transferred to the development processing device 50 where development processing is performed on the wafer W.
  • the resist film is developed.
  • the wafer W is transferred to the POST apparatus 85 by the second transfer apparatus 31 and post-baked, and then transferred to the high-precision temperature controller 72 by the first transfer apparatus 30 and the temperature is adjusted.
  • the wafer W is transferred to the transition device 71 by the first transfer device 30, transferred to the transfer unit 21 of the inspection station 11 by the wafer transfer unit 23, and returned from the transfer unit 21 to the cassette C by the wafer transfer unit 17. .
  • a series of wafer processing in the coating and developing treatment apparatus 2 is completed, and a predetermined resist pattern is formed on the wafer W (step S9 in FIG. 12).
  • the resist pattern on the wafer W is formed with the above-mentioned target in-plane tendency ⁇ Xt.
  • the cassette C containing the wafer W is unloaded from the coating / developing apparatus 2 and then loaded into the etching apparatus 3.
  • one wafer W is taken out from the cassette C on the cassette mounting table 212 by the wafer transfer mechanism 210 and loaded into the load lock apparatus 213 a.
  • the inside of the load lock device 213a is sealed and decompressed.
  • the inside of the load lock device 213a and the inside of the transfer chamber chamber 214 in a state where the pressure is reduced with respect to the atmospheric pressure (for example, substantially vacuum state) are communicated.
  • the wafer transfer mechanism 215 unloads the wafer W from the load lock device 213a and loads it into the transfer chamber 214.
  • the wafer W loaded into the transfer chamber chamber 214 is then transferred into the etching apparatus 202 by the wafer transfer mechanism 215, and the film to be processed on the wafer W is etched. Thereafter, the resist pattern and the antireflection film are removed, and a predetermined pattern is formed on the film to be processed (step S10 in FIG. 12). At this time, the in-plane tendency of the dimension of the film pattern to be processed is zero. . That is, the film pattern to be processed is uniformly formed on the wafer W within the wafer surface.
  • the wafer is returned back into the transfer chamber 214 by the wafer transfer mechanism 215. Then, the wafer is transferred to the wafer transfer mechanism 210 via the load lock device 213b and stored in the cassette C. Thereafter, the cassette C containing the wafers W is unloaded from the etching processing apparatus 3 and a series of wafer processing ends.
  • the in-plane tendency ⁇ Xe of the measurement dimension of the film pattern to be processed is subtracted from the in-plane tendency ⁇ Xl of the measurement pattern of the resist pattern, and the target surface of the dimension of the resist pattern An internal tendency ⁇ Xt is calculated. That is, the target in-plane tendency ⁇ Xt of the dimension of the resist pattern is set so that the in-plane tendency of the dimension of the film pattern to be processed becomes zero. Then, by using the above equation (2), the heating temperatures of the hot plate regions R 1 to R 5 in the PEB apparatuses 94 to 99 are adjusted so that the in-plane tendency of the resist pattern dimension becomes the target in-plane tendency ⁇ Xt. It is corrected.
  • the PEB process is performed at the heating temperature corrected as described above, and the photolithography process and the etching process are performed on the wafer W. Therefore, the resist pattern can be formed with the dimension of the target in-plane tendency ⁇ Xt, and the film to be processed The in-plane tendency of the pattern dimension can be made zero. Therefore, a predetermined pattern can be uniformly formed on the film to be processed on the wafer W within the wafer surface. This also improves the product yield.
  • the heating temperatures of the plurality of hot plate regions R 1 to R 5 are corrected in the hot plate 140 of the PEB apparatuses 94 to 99.
  • the wafer W can be heated for each of the wafer regions W 1 to W 5 . Therefore, a resist pattern can be formed on the wafer W with a target in-plane tendency ⁇ Xt with higher accuracy.
  • the wafer processing method of the present embodiment can also be applied to the case of performing so-called double patterning processing used when forming a fine resist pattern on the wafer W.
  • double patterning process first, the first exposure process and the development process are performed on the resist film on the wafer W to form a first pattern. Then, after etching the first pattern, the resist film is again subjected to a second exposure process and a development process to form a second pattern. Then, the first pattern and the second pattern are synthesized, and a fine resist pattern is formed on the wafer W.
  • the dimension of the first pattern is measured, and the in-plane tendency (corresponding to ⁇ Xe in the above embodiment) of the measured dimension is calculated.
  • the dimension of the second pattern is measured, and an in-plane tendency (corresponding to ⁇ X1 in the above embodiment) of the measured dimension is calculated.
  • a target in-plane tendency (corresponding to ⁇ Xt in the above embodiment) of the dimension of the second pattern is calculated using the above formula (1).
  • the heating temperature of the PEB process is corrected using the above formula (2). Then, when forming the second pattern, the PEB process is performed at the corrected heating temperature.
  • the in-plane tendency of the dimension of the first pattern and the in-plane tendency of the dimension of the second pattern can be matched. Accordingly, since the first pattern and the second pattern can be formed with the same in-plane tendency dimension, a predetermined resist pattern can be formed on the wafer W.
  • the heating temperature of the PEB process when forming the first pattern may also be corrected. That is, similarly to the method of the above embodiment, the heating temperature of the PEB process may be corrected in consideration of the in-plane tendency of the dimension of the film pattern to be processed after the etching process of the first pattern. In this case, after the PEB process is performed at the corrected heating temperature to form the first pattern, the film to be processed on the wafer W is etched using the first pattern as a mask, and the film pattern to be processed is formed within the wafer surface. It can be formed uniformly.
  • the in-plane tendency of the dimension of the first pattern and the in-plane tendency of the dimension of the second pattern can be matched, so that when the film to be processed is etched using the second pattern as a mask,
  • the film pattern to be processed can be uniformly formed in the wafer surface. Therefore, a predetermined pattern can be uniformly formed on the film to be processed on the wafer W within the wafer surface.
  • the line width of the pattern is adjusted as the dimension of the resist pattern or the film pattern to be processed.
  • the side wall angle of the pattern or the diameter of the contact hole is adjusted.
  • the heating temperatures of the POST devices 85 to 89 and the PAB devices 81 to 84 may be corrected instead of the heating temperatures of the PEB devices 94 to 99 corrected in the above embodiment.
  • the dimension measuring device 20 is provided in the inspection station 11, it may be provided in the processing station 12. Further, the dimension measuring devices 204 and 205 are disposed in the etching processing apparatus 3, but may be provided independently outside the etching processing apparatus 3. Further, the dimension measuring devices 20, 204, 205 measure the dimensions of the resist pattern and the film pattern to be processed in the wafer surface by, for example, irradiating the wafer W with an electron beam and acquiring an image of the surface of the wafer W. Also good.
  • the hot plate 140 whose temperature is set in the PEB devices 94 to 99 is divided into five regions, the number thereof can be arbitrarily selected. Further, the shape of the partition area of the hot plate 140 can be arbitrarily selected.
  • the present invention can also be applied to a case where the substrate is another substrate such as an FPD (flat panel display) other than the wafer W or a mask reticle for a photomask.
  • FPD flat panel display
  • the present invention is useful when a predetermined pattern is formed on a film to be processed on a substrate such as a semiconductor wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 基板上のレジストパターンと被処理膜のパターンの測定寸法の面内傾向を算出する。下記式(1)を用いてレジストパターンの寸法の目標面内傾向を算出する。下記式(2)を用いて熱処理の処理温度を補正する。補正後、フォトリソグラフィー処理とエッチング処理を行い、基板上の被処理膜に所定のパターンを形成する。 ΔXt=ΔXl-ΔXe・・・・(1) ΔT=1/α×F-1(ΔXt-ΔXl)・・・・(2) 但し、ΔXt:レジストパターンの寸法の目標面内傾向、ΔXl:レジストパターンの測定寸法の面内傾向、ΔXe:被処理膜のパターンの測定寸法の面内傾向、ΔT:処理温度の補正値、α:処理温度の変動量とレジストパターンの寸法との変換係数、F:処理温度の変動量とパターンの寸法の変動量との関数

Description

基板の処理方法、コンピュータ記憶媒体及び基板処理システム
 本発明は、例えば半導体ウェハ等の基板上の被処理膜に所定のパターンを形成する基板の処理方法、コンピュータ記憶媒体及び基板処理システムに関する。
 例えば半導体デバイスの製造工程では、例えば半導体ウェハ(以下、「ウェハ」という。)上にレジスト液を塗布してレジスト膜を形成するレジスト塗布処理、当該レジスト膜に所定のパターンを露光する露光処理、露光後にレジスト膜の化学反応を促進させるために加熱するポストエクスポージャーベーキング処理(以下、「PEB処理」という。)、露光されたレジスト膜を現像する現像処理などを順次行うフォトリソグラフィー処理が行われ、ウェハ上に所定のレジストパターンが形成される。このレジストパターンをマスクとして、ウェハ上の被処理膜のエッチング処理が行われ、その後レジスト膜の除去処理などが行われて、被処理膜に所定のパターンが形成される。
 上述したレジストパターンは、下地の被処理膜のパターン形状を定めるものであり、厳格な寸法で形成する必要がある。そこで、フォトリソグラフィー処理を行ってウェハ上にレジストパターンを形成し、そのレジストパターンの線幅などの寸法を測定した後、その寸法測定結果に基づいて、例えばPEB処理の加熱温度を補正して、レジストパターンの寸法の適正化を図ることが提案されている。かかる場合、加熱温度の補正は、例えばウェハを載置して加熱する熱板の温度を補正することにより行われる。熱板には例えば給電により発熱するヒータが内蔵されており、このヒータの温度を調節することによって、熱板は所定の温度に調節される(特許文献1)。
 また、PEB処理の加熱温度を補正する際には、測定されたレジストパターンの寸法から当該寸法の面内傾向を算出し、この面内傾向に基づいて、熱板の温度を調節することが提案されている。(特許文献2)。
日本国特開2006-228816号公報 日本国特開2008-118041号公報
 しかしながら、例えばウェハを連続処理する場合、エッチング処理後に形成される被処理膜のパターンの寸法にのみ影響するパラメータが経時的に変化することがある。この場合、上述したようにフォトリソグラフィー処理後のレジストパターンを適正化することができても、エッチング処理後の被処理膜のパターンをウェハ面内で均一に形成することができない場合があった。
 本発明は、かかる点に鑑みてなされたものであり、基板上の被処理膜に所定のパターンを基板面内で均一に形成することを目的とする。
 前記の目的を達成するため、本発明は、基板上の被処理膜に所定のパターンを形成する基板の処理方法であって、基板にフォトリソグラフィー処理を行い、当該基板の被処理膜上にレジストパターンを形成後、前記レジストパターンの寸法を測定し、当該レジストパターンの測定寸法の面内傾向を算出する工程と、前記レジストパターンをマスクとして前記被処理膜にエッチング処理を行い、当該被処理膜にパターンを形成した後、前記被処理膜のパターンの寸法を測定し、当該被処理膜のパターンの測定寸法の面内傾向を算出する工程と、前記レジストパターンの測定寸法の面内傾向と前記被処理膜のパターンの測定寸法の面内傾向に基づき、下記式(1)を用いて、レジストパターンの寸法の目標面内傾向を算出する工程と、前記レジストパターンの寸法の目標面内傾向に基づき、下記式(2)を用いて、フォトリソグラフィー処理における熱処理の処理温度の補正値を算出する工程と、前記処理温度の補正値に基づいて、前記処理温度を補正する工程と、前記補正された処理温度の熱処理を含むフォトリソグラフィー処理とエッチング処理を行い、基板上の被処理膜に所定のパターンを形成する工程と、を有する。なお、レジストパターンの寸法とは、例えばレジストパターンの線幅をいう。
ΔXt=ΔXl-ΔXe・・・・(1)
ΔT=1/α×F-1(ΔXt-ΔXl)・・・・(2)
但し、ΔXt:レジストパターンの寸法の目標面内傾向、ΔXl:レジストパターンの測定寸法の面内傾向、ΔXe:被処理膜のパターンの測定寸法の面内傾向、ΔT:処理温度の補正値、α:処理温度の変動量とレジストパターンの寸法との変換係数、F:処理温度の変動量とパターンの寸法の変動量との関数
 本発明によれば、上記式(1)において、レジストパターンの測定寸法の面内傾向から被処理膜のパターンの測定寸法の面内傾向を引き算し、レジストパターンの寸法の目標面内傾向を算出している。すなわち、被処理膜のパターンの寸法の面内傾向がゼロになるように、レジストパターンの寸法の目標面内傾向を設定している。そして、上記式(2)を用いて、レジストパターンの寸法の面内傾向が前記目標面内傾向になるように、熱処理の処理温度を補正している。その後、以上のように補正された処理温度で熱処理を行い、基板にフォトリソグラフィー処理とエッチング処理を行うので、レジストパターンを目標面内傾向の寸法で形成することができ、被処理膜のパターンの寸法の面内傾向をゼロにすることができる。したがって、基板上の被処理膜に所定のパターンを基板面内で均一に形成することができる。また、これによって、製品の歩留まりを向上させることができる。
 別な観点による本発明は、基板の処理方法を基板処理システムによって実行させるために、当該基板処理システムを制御する制御装置のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、前記基板の処理方法は、基板にフォトリソグラフィー処理を行い、当該基板の被処理膜上にレジストパターンを形成後、前記レジストパターンの寸法を測定し、当該レジストパターンの測定寸法の面内傾向を算出する工程と、前記レジストパターンをマスクとして前記被処理膜にエッチング処理を行い、当該被処理膜にパターンを形成した後、前記被処理膜のパターンの寸法を測定し、当該被処理膜のパターンの測定寸法の面内傾向を算出する工程と、前記レジストパターンの測定寸法の面内傾向と前記被処理膜のパターンの測定寸法の面内傾向に基づき、下記式(1)を用いて、レジストパターンの寸法の目標面内傾向を算出する工程と、前記レジストパターンの寸法の目標面内傾向に基づき、下記式(2)を用いて、フォトリソグラフィー処理における熱処理の処理温度の補正値を算出する工程と、前記処理温度の補正値に基づいて、前記処理温度を補正する工程と、前記補正された処理温度の熱処理を含むフォトリソグラフィー処理とエッチング処理を行い、基板上の被処理膜に所定のパターンを形成する工程と、を有する。
ΔXt=ΔXl-ΔXe・・・・(1)
ΔT=1/α×F-1(ΔXt-ΔXl)・・・・(2)
但し、ΔXt:レジストパターンの寸法の目標面内傾向、ΔXl:レジストパターンの測定寸法の面内傾向、ΔXe:被処理膜のパターンの測定寸法の面内傾向、ΔT:処理温度の補正値、α:処理温度の変動量とレジストパターンの寸法との変換係数、F:処理温度の変動量とパターンの寸法の変動量との関数
 また別な観点による本発明は、基板上の被処理膜に所定のパターンを形成する基板処理システムであって、基板にフォトリソグラフィー処理を行い、当該基板の被処理膜上にレジストパターンを形成する塗布現像処理装置と、前記レジストパターンをマスクとして前記被処理膜にエッチング処理を行い、当該被処理膜にパターンを形成するエッチング処理装置と、前記レジストパターンの寸法を測定する寸法測定装置と、前記被処理膜のパターンの寸法を測定する他の寸法測定装置と、フォトリソグラフィー処理における熱処理の処理温度を補正する制御装置と、を有し、前記制御装置は、前記寸法測定装置で測定されたレジストパターンの測定寸法の面内傾向を算出し、且つ前記他の寸法測定装置で測定されたレジストパターンの測定寸法の面内傾向を算出し、前記レジストパターンの測定寸法の面内傾向と前記被処理膜のパターンの測定寸法の面内傾向に基づき、下記式(1)を用いて、レジストパターンの寸法の目標面内傾向を算出し、前記レジストパターンの寸法の目標面内傾向に基づき、下記式(2)を用いて、前記塗布現像処理装置で行われる前記熱処理の処理温度の補正値を算出し、前記処理温度の補正値に基づいて、前記処理温度を補正する。
ΔXt=ΔXl-ΔXe・・・・(1)
ΔT=1/α×F-1(ΔXt-ΔXl)・・・・(2)
但し、ΔXt:レジストパターンの寸法の目標面内傾向、ΔXl:レジストパターンの測定寸法の面内傾向、ΔXe:被処理膜のパターンの測定寸法の面内傾向、ΔT:処理温度の補正値、α:処理温度の変動量とレジストパターンの寸法との変換係数、F:処理温度の変動量とパターンの寸法の変動量との関数
 本発明によれば、基板上の被処理膜に所定のパターンを基板面内で均一に形成することができる。
本実施の形態にかかる基板処理システムの構成の概略を示す説明図である。 塗布現像処理装置の構成の概略を示す平面図である。 塗布現像処理装置の構成の概略を示す側面図である。 塗布現像処理装置の構成の概略を示す側面図である。 寸法測定装置の構成の概略を示す縦断面図である。 分割されたウェハ領域を示す説明図である。 PEB装置の構成の概略を示す縦断面図である。 PEB装置の熱板の構成を示す平面図である。 エッチング処理装置の構成の概略を示す平面図である。 制御装置の構成を示すブロック図である。 算出モデルの一例を示す行列式である。 検査用ウェハの検査処理工程とウェハの処理工程を説明したフローチャートである。 レジストパターンの測定寸法の面内傾向から被処理膜のパターンの測定寸法の面内傾向を引き算し、レジストパターンの寸法の目標面内傾向を算出する様子を示す説明図である。
 以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる基板処理システム1の構成の概略を示す説明図である。
 基板処理システム1は、図1に示すように基板としてのウェハにフォトリソグラフィー処理を行う塗布現像処理装置2と、ウェハ上の被処理膜にエッチング処理を行うエッチング処理装置3とを有している。
 塗布現像処理装置2は、図2に示すように例えば25枚のウェハWをカセット単位で外部から塗布現像処理装置2に対して搬入出したり、カセットCに対してウェハWを搬入出したりするカセットステーション10と、ウェハWに対し所定の検査を行う検査ステーション11と、フォトリソグラフィー処理の中で枚葉式に所定の処理を施す複数の各種処理装置を多段に配置している処理ステーション12と、この処理ステーション12に隣接して設けられている露光装置13との間でウェハWの受け渡しをするインターフェイスステーション14とを一体に接続した構成を有している。
 カセットステーション10では、カセット載置台15が設けられ、当該カセット載置台15は、複数のカセットCをX方向(図2中の上下方向)に一列に載置自在になっている。カセットステーション10には、搬送路16上をX方向に沿って移動可能なウェハ搬送体17が設けられている。ウェハ搬送体17は、カセットCに収容されたウェハWのウェハ配列方向(Z方向;鉛直方向)にも移動自在であり、カセットC内に上下方向に配列されたウェハWに対して選択的にアクセスできる。ウェハ搬送体17は、鉛直方向の軸周り(θ方向)に回転可能であり、後述する検査ステーション11側の受け渡し部21に対してもアクセスできる。
 カセットステーション10に隣接する検査ステーション11には、ウェハWの被処理膜上に形成されるレジストパターンの寸法を測定する寸法測定装置20が設けられている。寸法測定装置20は、例えば検査ステーション11のX方向負方向(図2の下方向)側に配置されている。例えば検査ステーション11のカセットステーション10側には、カセットステーション10との間でウェハWを受け渡しするための受け渡し部21が配置されている。この受け渡し部21には、例えばウェハWを載置する載置部21aが設けられている。寸法測定装置20のX方向正方向(図2の上方向)には、例えば搬送路22上をX方向に沿って移動可能なウェハ搬送体23が設けられている。ウェハ搬送体23は、例えば上下方向に移動可能でかつθ方向にも回転自在であり、寸法測定装置20、受け渡し部21及び処理ステーション12側の後述する第3の処理装置群G3の各処理装置に対してアクセスできる。
 検査ステーション11に隣接する処理ステーション12は、複数の処理装置が多段に配置された、例えば5つの処理装置群G1~G5を備えている。処理ステーション12のX方向負方向(図2中の下方向)側には、検査ステーション11側から第1の処理装置群G1、第2の処理装置群G2が順に配置されている。処理ステーション12のX方向正方向(図2中の上方向)側には、検査ステーション11側から第3の処理装置群G3、第4の処理装置群G4及び第5の処理装置群G5が順に配置されている。第3の処理装置群G3と第4の処理装置群G4の間には、第1の搬送装置30が設けられている。第1の搬送装置30は、第1の処理装置群G1、第3の処理装置群G3及び第4の処理装置群G4内の各装置に対し選択的にアクセスしてウェハWを搬送できる。第4の処理装置群G4と第5の処理装置群G5の間には、第2の搬送装置31が設けられている。第2の搬送装置31は、第2の処理装置群G2、第4の処理装置群G4及び第5の処理装置群G5内の各装置に対して選択的にアクセスしてウェハWを搬送できる。
 図3に示すように第1の処理装置群G1には、ウェハWに所定の液体を供給して処理を行う液処理装置、例えばウェハWにレジスト液を塗布してレジスト膜を形成するレジスト塗布装置40、41、42、露光処理時の光の反射を防止する反射防止膜を形成するボトムコーティング装置43、44が下から順に5段に重ねられている。第2の処理装置群G2には、液処理装置、例えばウェハWに現像液を供給して現像処理する現像処理装置50~54が下から順に5段に重ねられている。また、第1の処理装置群G1及び第2の処理装置群G2の最下段には、各処理装置群G1、G2内の前記液処理装置に各種処理液を供給するためのケミカル室60、61がそれぞれ設けられている。
 図4に示すように第3の処理装置群G3には、例えば温度調節装置70、ウェハWの受け渡しを行うためのトランジション装置71、精度の高い温度管理下でウェハ温度を調節する高精度温度調節装置72~74及びウェハWを高温で加熱処理する高温度熱処理装置75~78が下から順に9段に重ねられている。
 第4の処理装置群G4には、例えば高精度温度調節装置80、レジスト塗布処理後のウェハWを加熱処理するプリベーキング装置(以下、「PAB装置」という。)81~84及び現像処理後のウェハWの加熱処理を行うポストベーキング装置(以下、「POST装置」という。)85~89が下から順に10段に重ねられている。
 第5の処理装置群G5では、ウェハWを熱処理する複数の熱処理装置、例えば高精度温度調節装置90~93、ウェハWに熱処理としての加熱処理を行うポストエクスポージャーベーキング装置(以下、「PEB装置」という。)94~99が下から順に10段に重ねられている。
 図2に示すように第1の搬送装置30のX方向正方向側には、複数の処理装置が配置されており、図4に示すようにウェハWを疎水化処理するためのアドヒージョン装置100、101、ウェハWを加熱処理する加熱処理装置102、103が下から順に4段に重ねられている。図2に示すように第2の搬送装置31のX方向正方向側には、例えばウェハWのエッジ部のみを選択的に露光する周辺露光装置104が配置されている。
 インターフェイスステーション14には、図2に示すようにX方向に向けて延伸する搬送路110上を移動するウェハ搬送体111と、バッファカセット112が設けられている。ウェハ搬送体111は、Z方向に移動可能でかつθ方向にも回転可能であり、インターフェイスステーション14に隣接した露光装置13と、バッファカセット112及び第5の処理装置群G5に対してアクセスしてウェハWを搬送できる。
 次に、上述した寸法測定装置20の構成について説明する。寸法測定装置20は、図5に示すように側面にウェハWを搬入出口(図示せず)が形成されたケーシング20aを有している。ケーシング20a内には、ウェハWを水平に載置する載置台120と、光学式表面形状測定計121が設けられている。載置台120は、例えば水平方向の2次元方向に移動できる。光学式表面形状測定計121は、例えばウェハWに対して斜方向から光を照射する光照射部122と、光照射部122から照射されウェハWで反射した光を検出する光検出部123と、当該光検出部123の受光情報に基づいてウェハW上のレジストパターンの寸法を算出する測定部124を備えている。寸法測定装置20は、例えばスキャトロメトリ(Scatterometry)法を用いてレジストパターンの寸法を測定するものであり、測定部124において、光検出部123により検出されたウェハ面内の光強度分布と、予め記憶されている仮想の光強度分布とを照合し、その照合された仮想の光強度分布に対応するレジストパターンの寸法を求めることにより、レジストパターンの寸法を測定できる。なお、本実施の形態においては、レジストパターンの寸法として、例えばレジストパターンの線幅が測定される。
 また、寸法測定装置20は、光照射部122及び光検出部123に対してウェハWを相対的に水平移動させることによって、ウェハ面内の複数領域、例えば図6に示すような各ウェハ領域W~W毎に複数の測定点においてレジストパターンの寸法を測定することができる。このウェハ領域W~Wは、後述するPEB装置94~99の熱板領域R~Rに対応している。なお、ウェハ面内の領域の数や形状は、図6に示した領域に限定されず、任意に選択することができる。
 次に、上述したPEB装置94~99の構成について説明する。PEB装置94は、図7に示すように側面にウェハWの搬入出口(図示せず)が形成されたケーシング94aを有している。ケーシング94a内には、上側に位置して上下動自在な蓋体130と、下側に位置して蓋体130と一体となって処理室Kを形成する熱板収容部131が設けられている。
 蓋体130は、下面が開口した略円筒形状を有している。蓋体130の上面中央部には、排気部130aが設けられている。処理室K内の雰囲気は、排気部130aから均一に排気される。
 熱板収容部131は、熱処理板としての熱板140を収容して熱板140の外周部を保持する環状の保持部材141と、その保持部材141の外周を囲む略筒状のサポートリング142を備えている。
 熱板140は、図8に示すように複数、例えば5つの熱板領域R、R、R、R、Rに区画されている。熱板140は、例えば平面から見て中心部に位置して円形の熱板領域Rと、その周囲を円弧状に4等分した熱板領域R~Rに区画されている。
 熱板140の各熱板領域R~Rには、給電により発熱するヒータ143が個別に内蔵され、各熱板領域R~R毎に加熱できる。各熱板領域R~Rのヒータ143の発熱量は、温度制御装置144により調節されている。温度制御装置144は、ヒータ143の発熱量を調節して、各熱板領域R~Rの温度を所定の処理温度としての加熱温度に制御できる。温度制御装置144における加熱温度の設定は、例えば後述する制御装置400により行われる。
 図7に示すように熱板140の下方には、ウェハWを下方から支持し昇降させるための昇降ピン150が設けられている。昇降ピン150は、昇降駆動機構151により上下動できる。熱板140の中央部付近には、熱板140を厚み方向に貫通する貫通孔152が形成されており、昇降ピン150は、熱板140の下方から上昇して貫通孔152を通過し、熱板140の上方に突出できる。
 なお、PEB装置95~99の構成については、上述したPEB装置94と同様であるので説明を省略する。
 エッチング処理装置3は、図9に示すようにエッチング処理装置3に対するウェハWの搬入出を行うカセットステーション200、ウェハWの搬送を行う共通搬送部201、ウェハW上の被処理膜を所定のパターンにエッチングするエッチング装置202、203、被処理膜のパターン(以下、「被処理膜パターン」という。)の寸法を測定する他の寸法測定装置としての寸法測定装置204、205を有している。なお、本実施の形態においては、被処理膜パターンの寸法として、例えば被処理膜パターンの線幅が測定される。
 カセットステーション200は、ウェハWを搬送するウェハ搬送機構210が内部に設けられた搬送室211を有している。ウェハ搬送機構210は、ウェハWを略水平に保持する2つの搬送アーム210a、210bを有しており、これら搬送アーム210a、210bのいずれかによってウェハWを保持しながら搬送する構成となっている。搬送室211の側方には、ウェハWを複数枚並べて収容可能なカセットCが載置されるカセット載置台212が備えられている。図示の例では、カセット載置台212には、カセットCを複数、例えば3つ載置できるようになっている。
 搬送室211と共通搬送部201は、真空引き可能な2つのロードロック装置213a、213bを介して互いに連結させられている。
 共通搬送部201は、例えば上方からみて略多角形状(図示の例では六角形状)をなすように形成された密閉可能な構造の搬送室チャンバー214を有している。搬送室チャンバー214内には、ウェハWを搬送するウェハ搬送機構215が設けられている。ウェハ搬送機構215は、ウェハWを略水平に保持する2つの搬送アーム215a、215bを有しており、これら搬送アーム215a、215bのいずれかによってウェハWを保持しながら搬送する構成となっている。
 搬送室チャンバー214の外側には、エッチング装置202、203、寸法測定装置204、205、ロードロック装置213b、213aが、搬送室チャンバー214の周囲を囲むように配置されている。エッチング装置202、203、寸法測定装置204、205、ロードロック装置213b、213aは、例えば上方からみて時計回転方向においてこの順に並ぶように、また、搬送室チャンバー214の6つの側面部に対してそれぞれ対向するようにして配置されている。
 なお、寸法測定装置204、205の構成については、上述した塗布現像処理装置2における寸法測定装置20と同様であるので説明を省略する。これら寸法測定装置204、205においても、各ウェハ領域W~W毎に複数の測定点において被処理膜パターンの寸法を測定することができる。
 次に、上述したPEB装置94~99における加熱温度と露光装置13における露光量を制御する制御装置400について説明する。制御装置400は、例えばCPUやメモリなどを備えた汎用コンピュータにより構成され、図5に示す寸法測定装置20の測定部124、図7及び図8に示す温度制御装置144、図9に示す寸法測定装置204、205に接続されている。
 制御装置400は、図10に示すように例えば寸法測定装置20、204、205からの寸法測定結果が入力される入力部401と、寸法測定結果からPEB装置94~99の加熱温度の補正値を算出するために必要な各種情報が格納されるデータ格納部402と、前記加熱温度の補正値を算出するための各種プログラムを格納するプログラム格納部403と、各種プログラムを実行して前記加熱温度の補正値を算出する演算部404と、算出された加熱温度の補正値をPEB装置94~99に出力する出力部405などを備えている。
 プログラム格納部403には、例えばウェハ面内のレジストパターンや被処理膜パターンの寸法測定結果から、そのパターンの測定寸法の複数の面内傾向成分ΔX(i=1~n、nは1以上の整数)を算出するプログラムP1が格納されている。この複数の面内傾向成分ΔXは、例えばゼルニケ(Zernike)多項式を用いて、パターンの測定寸法の面内傾向ΔX(ウェハ面内のばらつき傾向)を複数の成分に分解して表したものである。
 ここでゼルニケ多項式について説明を加えると、ゼルニケ多項式は、光学分野でよく使われる半径が1の単位円上の複素関数であり(実用的には実数関数として使用されている)、極座標の引数(r、θ)を有する。このゼルニケ多項式は、光学分野では主としてレンズの収差成分を解析するために使用されており、波面収差をゼルニケ多項式を用いて分解することで、各々独立した波面、例えば山型、鞍型等の形状に基づく収差成分を知ることができる。
 本実施の形態においては、例えばウェハ面内の多数点の寸法測定値をウェハ面上の高さ方向に示し、それらの寸法測定値の点を滑らかな曲面によって繋げることにより、パターンの測定寸法の面内傾向ΔXを上下にうねる波面として捉える。そしてそのパターンの測定寸法の面内傾向ΔXが、ゼルニケ多項式を用いて、例えば上下方向のΔX方向のずれ成分、X方向傾き成分、Y方向傾き成分、凸状或いは凹状に湾曲する湾曲成分などの複数の面内傾向成分ΔXに分解される。各面内傾向成分ΔXの大きさは、ゼルニケ係数により表すことができる。
 各面内傾向成分ΔXを表すゼルニケ係数は、具体的に極座標の引数(r、θ)を用いて以下の式により表せられる。
 ΔX(1)
 ΔX(r・cosθ)
 ΔX(r・sinθ)
 ΔX(2r-1)
 ΔX(r・cos2θ)
 ΔX(r・sin2θ)
 ΔX((3r-2r)・cosθ)
 ΔX((3r-2r)・sinθ)
 ΔX(6r-6r+1)
 ΔX10(r・cos3θ)
 ΔX11(r・sin3θ)
 ΔX12((4r-3r)・cos2θ)
 ΔX13((4r-3r)・sin2θ)
 ΔX14((10r-12r+3r)・cosθ)
 ΔX15((10r-12r+3r)・sinθ)
 ΔX16(20r-30r+12r-1)
  ・
  ・
 本実施の形態において、例えばゼルニケ係数ΔXはウェハ面内の寸法平均値(ΔX方向ずれ成分)、ゼルニケ係数ΔXはX方向傾き成分、ゼルニケ係数ΔX3はY方向の傾き成分、ゼルニケ係数ΔX、ΔXは湾曲成分を示す。
 また、プログラム格納部403には、下記式(1)を用いて、レジストパターンの測定寸法の面内傾向ΔXlと被処理膜パターンの寸法の面内傾向ΔXeに基づき、下記式(1)を用いてレジストパターンの寸法の目標面内傾向ΔXtを算出するプログラムP2が格納されている。
ΔXt=ΔXl-ΔXe・・・・(1)
 さらに、プログラム格納部403には、上述したレジストパターンの寸法の目標面内傾向ΔXtに基づき、下記式(2)を用いて、PEB装置94~99における各熱板領域R~Rの加熱温度の補正値ΔTを算出するプログラムP3が格納されている。
ΔT=1/α×F-1(ΔXt-ΔXl)・・・・(2)
但し、ΔT:加熱温度の補正値、α:加熱温度の変動量とレジストパターンの寸法との変換係数であるレジスト熱感度、F:加熱温度の変動量とパターンの寸法の変動量との関数
 上記式(2)における関数Fは、例えば加熱温度の変動量とパターンの寸法の変動量との行列である算出モデルMである。ここで、上述したようにレジストパターンや被処理膜パターンなどのパターンの測定寸法の面内傾向ΔXは、ゼルニケ多項式により分解された複数の面内傾向成分ΔXを用いて表す。したがって、算出モデルMは、例えば図11に示すように特定条件のゼルニケ係数を用いて表されたn(面内傾向成分数)行×m(熱板領域数)列の行列式になる。なお、この算出モデルMは、例えばデータ格納部402に格納されている。
 算出モデルMは、例えば熱板140の熱板領域R~Rの各々の温度を順に1℃上昇させ、その各場合のウェハ面内の多数点のパターンの寸法を測定し、その多数点の測定寸法から、各面内傾向成分ΔX(ゼルニケ係数)に対応するウェハ面内のパターンの寸法変動量を算出し、それらの熱板領域R~Rの単位温度変動あたりの寸法変動量を行列式の各要素Mi、j(1≦i≦n、1≦j≦m(本実施の形態では熱板領域数であるm=5)として表したものである。
 また、プログラム格納部403には、上述した各熱板領域R~Rの加熱温度の補正値ΔTに基づき、下記式(3)を用いて、各熱板領域R~Rの加熱温度を補正するプログラムP4が格納されている。
T=Tl+ΔT・・・・(3)
但し、T:補正された加熱温度、Tl:補正前の加熱温度
 なお、制御装置400の機能を実現するためのプログラムP1~P4は、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置400にインストールされたものであってもよい。
 次に、以上のように構成された基板処理システム1におけるウェハWの処理プロセスについて、検査用ウェハEの検査処理と共に説明する。図12は、これら検査用ウェハEの検査処理工程とウェハWの処理工程を説明したフローチャートである。なお、本実施の形態においては、ウェハW上に予め被処理膜が形成されている。
 先ず、PEB装置94~99の加熱温度を補正するために、塗布現像処理装置2によって検査用ウェハEに一連のフォトグラフィー処理を行い、検査用ウェハEの被処理膜上にレジストパターンを形成する(図12のステップS1)。このフォトリソグラフィー処理の詳細については、後述のウェハWの処理において説明する。レジストパターンが形成された検査用ウェハEは、検査ステーション11の寸法測定装置20に搬送される。
 寸法測定装置20では、検査用ウェハEが載置台120に載置される。次に、検査用ウェハEの所定部分に光照射部122から光が照射され、その反射光が光検出部123により検出される。そして測定部124において、検査用ウェハE上のレジストパターンの寸法が測定される(図12のステップS2)。この際、各ウェハ領域W~Wのレジストパターンの寸法が測定される。この検査用ウェハEのレジストパターンの寸法測定結果は、制御装置400の入力部401に出力される。
 その後、検査用ウェハEはエッチング処理装置3に搬送され、上述のレジストパターンをマスクとして検査用ウェハEの被処理膜にエッチング処理を行い、当該被処理膜にパターンが形成される(図12のステップS3)。その後、検査用ウェハEは、エッチング処理装置3内の寸法測定装置204に搬送される。
 寸法測定装置204では、上述した寸法測定装置20内でのレジストパターンの寸法の測定と同様の方法で、被処理膜パターンの寸法が測定される(図12のステップS4)。この際、各ウェハ領域W~Wの被処理膜パターンの寸法が測定される。この検査用ウェハEの被処理膜パターンの寸法測定結果は、制御装置400の入力部401に出力される。
 制御装置400では、先ず、演算部404において、検査用ウェハEのレジストパターンの測定寸法に基づき、プログラムP1を用いてレジストパターンの測定寸法の面内傾向ΔXlが算出される。また、同様に、被処理膜のレジストパターンの測定寸法に基づいて、被処理膜の測定寸法の面内傾向ΔXeが算出される(図12のステップS5)。
 続いて、レジストパターンの測定寸法の面内傾向ΔXlと被処理膜パターンの寸法の面内傾向ΔXeに基づき、プログラムP2を用いてレジストパターンの寸法の目標面内傾向ΔXtを算出する。具体的には、図13に示すようにレジストパターンの測定寸法の面内傾向ΔXlから被処理膜パターンの測定寸法の面内傾向ΔXeを引き算し、レジストパターンの寸法の目標面内傾向ΔXtが算出される(図12のステップS6)。
 その後、レジストパターンの寸法の目標面内傾向ΔXtに基づき、プログラムP3を用いてPEB装置94~99における各熱板領域R~Rの加熱温度の補正値ΔTが算出される(図12のステップS7)。
 そして、各熱板領域R~Rの加熱温度の補正値ΔTに基づき、プログラムP4を用いて各熱板領域R~Rの加熱温度が補正される(図12のステップS8)。補正された各熱板領域R~Rの加熱温度Tは、出力部405からPEB装置94~99に出力される。
 次に、例えば製品用のウェハWに一連のフォトリソグラフィー処理を行う。先ず、ウェハ搬送体17によって、カセット載置台15上のカセットC内から、ウェハWが一枚ずつ取り出され、検査ステーション11の受け渡し部21に順次搬送される。受け渡し部21に搬送されたウェハWは、ウェハ搬送体23によって処理ステーション12に搬送される。
 処理ステーション12に搬送されたウェハWは、先ず、第3の処理装置群G3に属する温度調節装置70に搬送され、所定温度に温度調節される。その後、ウェハWは第1の搬送装置30によってボトムコーティング装置43に搬送され、反射防止膜が形成される。反射防止膜が形成されたウェハWは、第1の搬送装置30によって加熱処理装置102、高温度熱処理装置75、高精度温度調節装置80に順次搬送され、各処理装置において所定の処理が施される。その後、ウェハWは、第1の搬送装置30によってレジスト塗布装置40に搬送され、ウェハW上にレジスト膜が形成される。
 レジスト膜が形成されたウェハWは、第1の搬送装置30によってPAB装置81に搬送され、加熱処理が施された後、第2の搬送装置31によって周辺露光装置104、高精度温度調節装置93に順次搬送され、各装置において所定の処理が施される。その後、インターフェイスステーション14のウェハ搬送体111によって露光装置13に搬送され、ウェハW上のレジスト膜に所定のパターンが露光される。露光処理の終了したウェハWは、ウェハ搬送体111によって処理ステーション12のPEB装置94に搬送される。
 PEB装置94に搬送されたウェハWは、予め上昇して待機していた昇降ピン150に受け渡され、蓋体130が閉じられた後、昇降ピン150が下降して、ウェハWが熱板140上に載置される。このとき、熱板140の各熱板領域R~Rは、上述のステップS8で補正された加熱温度に加熱されている。そして、ウェハWは、この加熱された熱板140によって所定の温度に加熱される。
 PEB装置94におけるPEB処理が終了したウェハWは、第2の搬送装置31によって高精度温度調節装置91に搬送されて温度調節され、その後現像処理装置50に搬送され、ウェハW上に現像処理が施され、レジスト膜が現像される。その後ウェハWは、第2の搬送装置31によってPOST装置85に搬送され、ポストベークが施された後、第1の搬送装置30によって高精度温度調節装置72に搬送され温度調節される。その後ウェハWは、第1の搬送装置30によってトランジション装置71に搬送され、ウェハ搬送体23によって検査ステーション11の受け渡し部21に受け渡され、受け渡し部21からウェハ搬送体17によってカセットCに戻される。こうして塗布現像処理装置2における一連のウェハ処理が終了し、ウェハWに所定のレジストパターンが形成される(図12のステップS9)。このとき、ウェハW上のレジストパターンは、上述した目標面内傾向ΔXtの寸法で形成される。
 塗布現像処理装置2においてウェハW上にレジストパターンが形成されると、ウェハWを収納したカセットCは、塗布現像処理装置2から搬出され、次にエッチング処理装置3に搬入される。
 エッチング処理装置3では、先ず、ウェハ搬送機構210によって、カセット載置台212上のカセットCから1枚のウェハWが取り出され、ロードロック装置213a内に搬入される。ロードロック装置213a内にウェハWが搬入されると、ロードロック装置213a内が密閉され、減圧される。その後、ロードロック装置213a内と大気圧に対して減圧された状態(例えば略真空状態)の搬送室チャンバー214内とが連通させられる。そして、ウェハ搬送機構215によって、ウェハWがロードロック装置213aから搬出され、搬送室チャンバー214内に搬入される。
 搬送室チャンバー214内に搬入されたウェハWは、次にウェハ搬送機構215によってエッチング装置202に搬入され、ウェハW上の被処理膜がエッチングされる。その後、レジストパターン及び反射防止膜が除去されて、被処理膜に所定のパターンが形成される(図12のステップS10)このとき、被処理膜パターンの寸法の面内傾向はゼロになっている。すなわち、ウェハW上に被処理膜パターンがウェハ面内で均一に形成されている。
 その後、ウェハ搬送機構215によって再び搬送室チャンバー214内に戻される。そして、ロードロック装置213bを介してウェハ搬送機構210に受け渡され、カセットCに収納される。その後、ウェハWを収納したカセットCがエッチング処理装置3から搬出されて一連のウェハ処理が終了する。
 以上の実施の形態によれば、上記式(1)において、レジストパターンの測定寸法の面内傾向ΔXlから被処理膜パターンの測定寸法の面内傾向ΔXeを引き算し、レジストパターンの寸法の目標面内傾向ΔXtを算出している。すなわち、被処理膜パターンの寸法の面内傾向がゼロになるように、レジストパターンの寸法の目標面内傾向ΔXtを設定している。そして、上記式(2)を用いて、レジストパターンの寸法の面内傾向が前記目標面内傾向ΔXtになるように、PEB装置94~99における各熱板領域R~Rの加熱温度を補正している。その後、以上のように補正された加熱温度でPEB処理を行い、ウェハWにフォトリソグラフィー処理とエッチング処理を行うので、レジストパターンを目標面内傾向ΔXtの寸法で形成することができ、被処理膜パターンの寸法の面内傾向をゼロにすることができる。したがって、ウェハW上の被処理膜に所定のパターンをウェハ面内で均一に形成することができる。また、これによって、製品の歩留まりを向上させることができる。
 以上の実施の形態では、PEB装置94~99の熱板140において、複数の熱板領域R~Rの加熱温度を補正している。このように補正された加熱温度でPEB処理を行うことによって、ウェハWをウェハ領域W~W毎に加熱することができる。したがって、ウェハW上に、レジストパターンをより精度良く目標面内傾向ΔXtの寸法で形成することができる。
 なお、本実施の形態のウェハ処理方法は、ウェハW上に微細なレジストパターンを形成する際に用いられる、いわゆるダブルパターニング処理を行う場合にも応用できる。ダブルパターニング処理では、先ず、ウェハW上のレジスト膜に1回目の露光処理、現像処理を行って、第1のパターンを形成する。その後、第1のパターンをエッチング処理した後、再びレジスト膜に2回目の露光処理、現像処理を行って、第2のパターンを形成する。そして、これら第1のパターンと第2のパターンを合成し、ウェハW上に微細なレジストパターンが形成される。
 このダブルパターニング処理において、先ず、第1のパターンの寸法を測定し、その測定寸法の面内傾向(前記実施の形態におけるΔXeに相当)を算出する。その後、第2のパターンの寸法を測定し、その測定寸法の面内傾向(前記実施の形態におけるΔXlに相当)を算出する。そして、上記式(1)を用いて、第2のパターンの寸法の目標面内傾向(前記実施の形態におけるΔXtに相当)を算出する。この第2のパターンの寸法の目標面内傾向に基づき、上記式(2)を用いて、PEB処理の加熱温度を補正する。そして、第2のパターンを形成する際に、補正された加熱温度でPEB処理を行う。
 かかる場合、第1のパターンの寸法の面内傾向と第2のパターンの寸法の面内傾向を一致させることができる。したがって、第1のパターンと第2のパターンを同一面内傾向の寸法で形成することができるので、ウェハWに所定のレジストパターンを形成することができる。
 また、この場合において、第1のパターンを形成する際のPEB処理の加熱温度も補正してもよい。すなわち、前記実施の形態の方法と同様に、第1のパターンのエッチング処理後の被処理膜パターンの寸法の面内傾向を考慮して、PEB処理の加熱温度を補正してもよい。かかる場合、補正された加熱温度でPEB処理を行い第1のパターンを形成後、この第1のパターンをマスクとしてウェハW上の被処理膜にエッチング処理し、被処理膜パターンをウェハ面内で均一に形成することができる。さらに、上述のように第1のパターンの寸法の面内傾向と第2のパターンの寸法の面内傾向を一致させることができるので、第2のパターンをマスクとして被処理膜をエッチングする際にも、被処理膜パターンをウェハ面内で均一に形成することができる。したがって、ウェハW上の被処理膜に所定のパターンをウェハ面内で均一に形成することができる。
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば以上の実施の形態では、レジストパターンや被処理膜パターンの寸法としてパターンの線幅の調節を行っていたが、これに代えて、パターンのサイドウォールアングルやコンタクトホールの径の調節を行ってもよい。かかる場合、前記実施の形態で補正していたPEB装置94~99の加熱温度に代えて、POST装置85~89やPAB装置81~84の加熱温度を補正してもよい。
 また、寸法測定装置20は、検査ステーション11に設けられていたが、処理ステーション12に設けられていてもよい。また、寸法測定装置204、205は、エッチング処理装置3内に配置されていたが、エッチング処理装置3の外部に独立して設けられていてもよい。さらに、寸法測定装置20、204、205は、例えば電子ビームをウェハWに照射し、ウェハW表面の画像を取得することによって、ウェハ面内のレジストパターンや被処理膜パターンの寸法を測定してもよい。
 また、PEB装置94~99において温度設定される熱板140は、5つの領域に区画されていたが、その数は任意に選択できる。また、熱板140の区画領域の形状も任意に選択できる。
 さらに、基板がウェハW以外のFPD(フラットパネルディスプレイ)、フォトマスク用のマスクレチクルなどの他の基板である場合にも適用できる。
 本発明は、例えば半導体ウェハ等の基板上の被処理膜に所定のパターンを形成する際に有用である。
  1  基板処理システム
  2  塗布現像処理装置
  3  エッチング処理装置
  94~99 PEB装置
  140 熱板
  20、204、205 寸法測定装置
  400 制御装置
  E  検査用ウェハ
  P1~P4  プログラム
  R~R  熱板領域
  W  ウェハ

Claims (11)

  1. 基板上の被処理膜に所定のパターンを形成する基板の処理方法であって、
    基板にフォトリソグラフィー処理を行い、当該基板の被処理膜上にレジストパターンを形成後、前記レジストパターンの寸法を測定し、当該レジストパターンの測定寸法の面内傾向を算出する工程と、
    前記レジストパターンをマスクとして前記被処理膜にエッチング処理を行い、当該被処理膜にパターンを形成した後、前記被処理膜のパターンの寸法を測定し、当該被処理膜のパターンの測定寸法の面内傾向を算出する工程と、
    前記レジストパターンの測定寸法の面内傾向と前記被処理膜のパターンの測定寸法の面内傾向に基づき、下記式(1)を用いて、レジストパターンの寸法の目標面内傾向を算出する工程と、
    前記レジストパターンの寸法の目標面内傾向に基づき、下記式(2)を用いて、フォトリソグラフィー処理における熱処理の処理温度の補正値を算出する工程と、
    前記処理温度の補正値に基づいて、前記処理温度を補正する工程と、
    前記補正された処理温度の熱処理を含むフォトリソグラフィー処理とエッチング処理を行い、基板上の被処理膜に所定のパターンを形成する工程と、を有する。
    ΔXt=ΔXl-ΔXe・・・・(1)
    ΔT=1/α×F-1(ΔXt-ΔXl)・・・・(2)
    但し、ΔXt:レジストパターンの寸法の目標面内傾向、ΔXl:レジストパターンの測定寸法の面内傾向、ΔXe:被処理膜のパターンの測定寸法の面内傾向、ΔT:処理温度の補正値、α:処理温度の変動量とレジストパターンの寸法との変換係数、F:処理温度の変動量とパターンの寸法の変動量との関数
  2. 請求項1に記載の基板の処理方法であって、
    前記熱処理は、複数の領域に区画された熱処理板を用いて行われ、
    前記処理温度は、前記熱処理板の各領域毎に補正される。
  3. 請求項1に記載の基板の処理方法であって、
    前記熱処理は、フォトリソグラフィー処理における露光処理後であって現像処理前に行われる加熱処理である。
  4. 請求項1に記載の基板の処理方法であって、
    前記面内傾向は、ゼルニケ多項式を用いて複数の面内傾向成分に分解されて表される。
  5. 請求項1に記載の基板の処理方法であって、
    前記パターンの寸法は、パターンの線幅である。
  6. 基板の処理方法を基板処理システムによって実行させるために、当該基板処理システムを制御する制御装置のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、
    前記基板の処理方法は、
    基板にフォトリソグラフィー処理を行い、当該基板の被処理膜上にレジストパターンを形成後、前記レジストパターンの寸法を測定し、当該レジストパターンの測定寸法の面内傾向を算出する工程と、
    前記レジストパターンをマスクとして前記被処理膜にエッチング処理を行い、当該被処理膜にパターンを形成した後、前記被処理膜のパターンの寸法を測定し、当該被処理膜のパターンの測定寸法の面内傾向を算出する工程と、
    前記レジストパターンの測定寸法の面内傾向と前記被処理膜のパターンの測定寸法の面内傾向に基づき、下記式(1)を用いて、レジストパターンの寸法の目標面内傾向を算出する工程と、
    前記レジストパターンの寸法の目標面内傾向に基づき、下記式(2)を用いて、フォトリソグラフィー処理における熱処理の処理温度の補正値を算出する工程と、
    前記処理温度の補正値に基づいて、前記処理温度を補正する工程と、
    前記補正された処理温度の熱処理を含むフォトリソグラフィー処理とエッチング処理を行い、基板上の被処理膜に所定のパターンを形成する工程と、を有する。
    ΔXt=ΔXl-ΔXe・・・・(1)
    ΔT=1/α×F-1(ΔXt-ΔXl)・・・・(2)
    但し、ΔXt:レジストパターンの寸法の目標面内傾向、ΔXl:レジストパターンの測定寸法の面内傾向、ΔXe:被処理膜のパターンの測定寸法の面内傾向、ΔT:処理温度の補正値、α:処理温度の変動量とレジストパターンの寸法との変換係数、F:処理温度の変動量とパターンの寸法の変動量との関数
  7. 基板上の被処理膜に所定のパターンを形成する基板処理システムであって、
    基板にフォトリソグラフィー処理を行い、当該基板の被処理膜上にレジストパターンを形成する塗布現像処理装置と、
    前記レジストパターンをマスクとして前記被処理膜にエッチング処理を行い、当該被処理膜にパターンを形成するエッチング処理装置と、
    前記レジストパターンの寸法を測定する寸法測定装置と、
    前記被処理膜のパターンの寸法を測定する他の寸法測定装置と、
    フォトリソグラフィー処理における熱処理の処理温度を補正する制御装置と、を有し、
    前記制御装置は、
    前記寸法測定装置で測定されたレジストパターンの測定寸法の面内傾向を算出し、且つ前記他の寸法測定装置で測定されたレジストパターンの測定寸法の面内傾向を算出し、前記レジストパターンの測定寸法の面内傾向と前記被処理膜のパターンの測定寸法の面内傾向に基づき、下記式(1)を用いて、レジストパターンの寸法の目標面内傾向を算出し、
    前記レジストパターンの寸法の目標面内傾向に基づき、下記式(2)を用いて、前記塗布現像処理装置で行われる前記熱処理の処理温度の補正値を算出し、
    前記処理温度の補正値に基づいて、前記処理温度を補正する。
    ΔXt=ΔXl-ΔXe・・・・(1)
    ΔT=1/α×F-1(ΔXt-ΔXl)・・・・(2)
    但し、ΔXt:レジストパターンの寸法の目標面内傾向、ΔXl:レジストパターンの測定寸法の面内傾向、ΔXe:被処理膜のパターンの測定寸法の面内傾向、ΔT:処理温度の補正値、α:処理温度の変動量とレジストパターンの寸法との変換係数、F:処理温度の変動量とパターンの寸法の変動量との関数
  8. 請求項7に記載の基板処理システムであって、
    前記熱処理は、複数の領域に区画された熱処理板を用いて行われ、
    前記制御装置は、前記熱処理板の複数の領域毎に前記処理温度を補正する。
  9. 請求項7に記載の基板処理システムであって、
    前記熱処理は、前記塗布現像処理装置において、露光処理後であって現像処理前に行われる加熱処理である。
  10. 請求項7に記載の基板処理システムであって、
    前記制御装置は、ゼルニケ多項式を用いて、前記面内傾向を複数の面内傾向成分に分解して表す。
  11. 請求項7に記載の基板処理システムであって、
    前記寸法測定装置と前記他の寸法測定装置は、前記パターンの寸法として、パターンの線幅をそれぞれ測定する。
PCT/JP2010/056065 2009-06-22 2010-04-02 基板の処理方法、コンピュータ記憶媒体及び基板処理システム WO2010150584A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-147356 2009-06-22
JP2009147356A JP2011003819A (ja) 2009-06-22 2009-06-22 基板の処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム

Publications (1)

Publication Number Publication Date
WO2010150584A1 true WO2010150584A1 (ja) 2010-12-29

Family

ID=43386365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056065 WO2010150584A1 (ja) 2009-06-22 2010-04-02 基板の処理方法、コンピュータ記憶媒体及び基板処理システム

Country Status (3)

Country Link
JP (1) JP2011003819A (ja)
TW (1) TW201118922A (ja)
WO (1) WO2010150584A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003164A (ja) * 2012-06-19 2014-01-09 Tokyo Electron Ltd 半導体装置の製造方法及び半導体装置並びに半導体装置の製造システム
JP6863114B2 (ja) * 2017-06-16 2021-04-21 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311406A (ja) * 2006-05-16 2007-11-29 Tokyo Electron Ltd 熱処理板の温度設定方法,プログラム,プログラムを記録したコンピュータ読み取り可能な記録媒体及び熱処理板の温度設定装置
JP2008235535A (ja) * 2007-03-20 2008-10-02 Sokudo:Kk 基板搬送装置および熱処理装置
JP2008270542A (ja) * 2007-04-20 2008-11-06 Tokyo Electron Ltd 熱処理板の温度設定方法、熱処理板の温度設定装置及びコンピュータ読み取り可能な記憶媒体
JP2009200388A (ja) * 2008-02-25 2009-09-03 Tokyo Electron Ltd 基板の処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311406A (ja) * 2006-05-16 2007-11-29 Tokyo Electron Ltd 熱処理板の温度設定方法,プログラム,プログラムを記録したコンピュータ読み取り可能な記録媒体及び熱処理板の温度設定装置
JP2008235535A (ja) * 2007-03-20 2008-10-02 Sokudo:Kk 基板搬送装置および熱処理装置
JP2008270542A (ja) * 2007-04-20 2008-11-06 Tokyo Electron Ltd 熱処理板の温度設定方法、熱処理板の温度設定装置及びコンピュータ読み取り可能な記憶媒体
JP2009200388A (ja) * 2008-02-25 2009-09-03 Tokyo Electron Ltd 基板の処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム

Also Published As

Publication number Publication date
TW201118922A (en) 2011-06-01
JP2011003819A (ja) 2011-01-06

Similar Documents

Publication Publication Date Title
KR101433391B1 (ko) 기판의 처리방법, 컴퓨터 기억매체 및 기판처리 시스템
JP4509820B2 (ja) 熱処理板の温度設定方法,熱処理板の温度設定装置,プログラム及びプログラムを記録したコンピュータ読み取り可能な記録媒体
JP4891139B2 (ja) 熱処理板の温度設定方法、熱処理板の温度設定装置及びコンピュータ読み取り可能な記憶媒体
JP5017147B2 (ja) 基板の処理方法、プログラム及びコンピュータ記憶媒体及び基板処理システム
JP2006228820A (ja) 熱処理板の温度設定方法,熱処理板の温度設定装置,プログラム及びプログラムを記録したコンピュータ読み取り可能な記録媒体
TWI305932B (ja)
JP5391055B2 (ja) 半導体装置の製造方法及び半導体装置の製造システム
TWI401547B (zh) A substrate processing method, and a substrate processing system
JP4666380B2 (ja) 基板処理装置、基板処理方法、基板処理プログラム、及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP4397836B2 (ja) フォトリソグラフィー工程における処理条件の設定方法,フォトリソグラフィー工程における処理条件の設定装置,プログラム及びプログラムを読み取り可能な記録媒体
WO2006085527A1 (ja) 熱処理板の温度設定方法,熱処理板の温度設定装置,プログラム及びプログラムを記録したコンピュータ読み取り可能な記録媒体
JP4664232B2 (ja) 熱処理板の温度設定方法,プログラム,プログラムを記録したコンピュータ読み取り可能な記録媒体及び熱処理板の温度設定装置
WO2010150584A1 (ja) 基板の処理方法、コンピュータ記憶媒体及び基板処理システム
JP5314461B2 (ja) 基板の処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム
JP5186264B2 (ja) 基板の処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム
US20090082911A1 (en) Temperature setting method of thermal processing plate, computer-readable recording medium recording gprogram thereon, and temperature setting apparatus for thermal processing plate
JP4969304B2 (ja) 熱処理板の温度設定方法、熱処理板の温度設定装置及びコンピュータ読み取り可能な記憶媒体
JP4920317B2 (ja) 基板の処理方法、プログラム、コンピュータ読み取り可能な記録媒体及び基板の処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791904

Country of ref document: EP

Kind code of ref document: A1