WO2010150375A1 - 改変型ビオチン結合タンパク質 - Google Patents
改変型ビオチン結合タンパク質 Download PDFInfo
- Publication number
- WO2010150375A1 WO2010150375A1 PCT/JP2009/061530 JP2009061530W WO2010150375A1 WO 2010150375 A1 WO2010150375 A1 WO 2010150375A1 JP 2009061530 W JP2009061530 W JP 2009061530W WO 2010150375 A1 WO2010150375 A1 WO 2010150375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- residue
- seq
- biotin
- amino acid
- modified
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
- C07K14/375—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Basidiomycetes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
- C07K2319/22—Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a Strep-tag
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/195—Assays involving biological materials from specific organisms or of a specific nature from bacteria
- G01N2333/36—Assays involving biological materials from specific organisms or of a specific nature from bacteria from Actinomyces; from Streptomyces (G)
Definitions
- the present invention relates to a modified biotin-binding protein.
- Avidin is a basic glycoprotein derived from egg white and binds strongly to biotin (vitamin H).
- streptavidin is an avidin-like protein derived from Streptomyces avidinii, and its isoelectric point is neutral and does not contain a sugar chain. Both proteins form a tetramer and bind to one molecule of biotin per subunit. The molecular weight is about 60 kDa.
- Avidin has an isoelectric point exceeding 10, and due to its high basicity or the presence of sugar chains, nonspecific binding to biomolecules such as DNA and proteins may be problematic.
- Biotin has a small molecular weight of 244 and is stable to pH change and heat, so it is often used for labeling substances.
- As a biotinylation method there is a method in which chemically modified biotin is bound to various functional groups such as amino group, carboxyl group, and aldehyde group of protein.
- Such biotinylation reagents are commercially available, and proteins and nucleic acids can be biotinylated using these reagents.
- a fusion protein of a target protein and a sequence that is biotinylated by biotin ligase in vivo is expressed as a recombinant protein and fused by the same enzyme in the host cell.
- biotinylating proteins An example of such a biotinylated sequence is BioEase Tag (registered trademark), which is commercially available as a system for expressing proteins in E. coli, Drosophila cells, or mammalian cells in a biotinylated state in vivo.
- avidin and streptavidin with reduced biotin binding properties have been reported so far.
- nitrated avidin and nitrated streptavidin in which a tyrosine residue contributing to the binding to biotin is nitrated have been developed. They bind strongly to biotin when acidic to neutral (pH 4 to 7.5) and dissociate when alkaline (pH 10).
- Nitrated avidin-agarose is commercially available as CaptAvidin-agarose. However, nitration takes time and the efficiency is not constant. Moreover, extreme pH changes may adversely affect biotinylated proteins and the like.
- each subunit is named A, B, C, D
- the 55th in subunit A Is present at a position close to the 59th arginine of subunit B.
- the 76th threonine in subunit A is located very close to the 76th threonine and 59th alanine on subunit B.
- the 109th leucine in subunit B interacts with the 125th valine on subunit A.
- 125th valine in subunit A is 109th leucine on subunit D, 120th tryptophan, 123th threonine, 125th valine, 109th leucine on subunit B, on subunit C It interacts extensively with the 107th glutamine. Therefore, by substituting these amino acids with highly polar amino acids such as arginine, lysine, histidine, aspartic acid, glutamic acid, asparagine, glutamine, threonine, etc., charge repulsion between subunits and steric hindrance are caused. It can be expected to generate. Among polar amino acids, arginine with the lowest Hydrophathy index is considered to have a great effect.
- the dissociation constant KD
- M 10 ⁇ 7
- the biotin binding ability is too strong to efficiently dissociate the desired biotinylated substance. This is because the desired biotinylated substance cannot be sufficiently bound due to its weak ability (Wu and Wong (2006) Protein Expr. Purif. 46: 268-27).
- Mutants with dissociation constants of 10 ⁇ 8 to 10 ⁇ 7 (M) have moderate biotin binding capacity for applications such as affinity chromatography (Queshi and Wong (2002) Protein Expr. Purif. 25: 409-415; Wu and Wong (2006) Protein Expr. Purif. 46: 268-273).
- affinity chromatography Queshi and Wong (2002) Protein Expr. Purif. 25: 409-415; Wu and Wong (2006) Protein Expr. Purif. 46: 268-273.
- Affinity chromatography often uses a crude cell extract mixed with various substances, but the crude cell extract often contains proteases, and monomers are not suitable for use in such applications. There was a problem.
- the hydrophobic region hidden by the bond between the subunits is exposed, so that the solubility of the whole protein may be lowered, and it may cause reaggregation.
- monomers designed so far with avidin as a model for example, Promega SoftLink Soft Release Avidin Resin
- avidin for example, Promega SoftLink Soft Release Avidin Resin
- the monomers associate to form a tetramer.
- the affinity with biotin is increased.
- biotin capable of sufficiently binding a desired biotinylated substance and having a biotin-binding ability that can be dissociated, highly soluble in Escherichia coli, and further resistant to protease.
- No binding protein has been known so far.
- tamavidin 1 and tamavidin 2 which are novel avidin-like biotin-binding proteins from edible mushrooms (Pueurotus koncopiae) (WO02 / 072817). Tamavidin 1 and tamavidin 2 can be expressed in large quantities in E. coli, and tamavidin 2 was particularly easily prepared by purification using an iminobiotin column (WO02 / 072817). Tamavidin 1 and tamavidin 2 bound very strongly to biotin. In particular, tamavidin 2 showed a biotin binding activity at almost the same level as avidin and streptavidin. Tamavidin 2 is a biotin-binding protein that is superior in heat resistance as compared to avidin and streptavidin, and that has less non-specific binding than avidin.
- the problem to be solved by the present invention is to provide a biotin-binding protein that can be highly expressed in Escherichia coli and that can be easily purified with a biotin-immobilized carrier.
- the present inventors have the ability to bind to a desired biotinylated substance sufficiently and have a biotin-binding ability that can be dissociated. Furthermore, the present inventors have succeeded in obtaining a stable modified biotin-binding protein having protease resistance, and arrived at the present invention.
- the present invention relates to modified biotin having the above properties by modifying the amino acid sequence (SEQ ID NO :) of natural tamavidin 2 (hereinafter sometimes referred to as “TM2” in the present specification). A binding protein was obtained.
- SEQ ID NO : amino acid sequence of natural tamavidin 2
- the present invention preferably includes the following embodiments.
- Aspect 1 In a protein showing biotin-binding activity, comprising the amino acid sequence shown in SEQ ID NO: 2, or an amino acid sequence having one to a plurality of amino acid mutations in this sequence, or an amino acid sequence having 80% or more identity with this sequence , The following groups: 1) Substitution of the 36th serine residue of SEQ ID NO: 2 with an amino acid residue that does not form a hydrogen bond; 2) substitution of the 80th tryptophan residue of SEQ ID NO: 2 with a hydrophilic amino acid residue; 3) Substitution of the 116th aspartic acid residue of SEQ ID NO: 2 to an amino acid residue that does not form a hydrogen bond; 4) Substitution of the 46th proline residue of SEQ ID NO: 2 with a threonine, serine or tyrosine residue, and substitution of the 78th threonine residue with an amino acid residue that does not form a hydrogen bond; 5) Sub
- a protein showing biotin-binding activity comprising the amino acid sequence shown in SEQ ID NO: 2, or an amino acid sequence having one to a plurality of amino acid mutations in this sequence, or an amino acid sequence having 80% or more identity with this sequence .
- A) -l) below a) the 14th asparagine residue of SEQ ID NO: 2 is unaltered or substituted with glutamine or aspartic acid; b) the 18th serine residue of SEQ ID NO: 2 is not modified or substituted with threonine or tyrosine; c) the 34th tyrosine residue of SEQ ID NO: 2 is not modified or substituted with serine or threonine; d) the 36th serine residue of SEQ ID NO: 2 is not modified or substituted with threonine or tyrosine; e) The 40th aspartic acid residue of SEQ ID NO: 2 is not modified or substituted with a residue other than asparagine; f) The 69th tryptophan residue of SEQ ID NO: 2 is not modified; g) the 76th serine residue of SEQ ID NO: 2 is not modified or substituted with threonine or tyrosine; h) the 78th thre
- a modified TM2 having a biotin-binding activity with an appropriate strength that enables high-soluble expression in Escherichia coli and enables binding and dissociation with biotin is provided.
- the modified TM2 of the present invention can be immobilized on a carrier, for example, and subjected to affinity chromatography for purifying a biotinylated substance.
- FIG. 1A is a photograph showing the purification of wild type tamavidin 2 (WT-TM2: left side) and TM2 S36A (right side), FIG. 1B is TM2 T78A, and FIG. 1C is TM2 D116A purified by biotin-agarose. After each protein was bound to biotin-agarose, elution was performed by adding PBS (pH 7.4) containing 10 mM biotin. An equal amount of 2 ⁇ SDS Sample Buffer was added to each fraction solution, treated at 95 ° C. for 10 minutes, and applied to SDS-PAGE, followed by Coomassie Brilliant Blue (CBB) staining.
- WT-TM2 wild type tamavidin 2
- TM2 S36A right side
- FIG. 1B is TM2 T78A
- FIG. 1C is TM2 D116A purified by biotin-agarose. After each protein was bound to biotin-agarose, elution was performed by adding PBS (pH
- FIG. 2A is a photograph showing the purification of TM2 P46TD116A
- FIG. 2B is the purification of TM2 P46TT78AD116A
- FIG. 2C is the purification of T78AD116A with biotin-agarose. Elution was performed by adding PBS (pH 7.4) containing 10 mM biotin.
- FIG. 2D is a photograph showing the purification of TM2 P46TT78A with iminobiotin-agarose and biotin-agarose.
- FIG. 3A is a photograph showing the purification of TM2 S36A-D116A
- FIG. 3B is the purification of TM2 S36A-T78A-D116A using biotin-agarose.
- TM2 S36A-D116A is bound to biotin-agarose at pH 5, or pH 6, or pH 7, and when bound at pH 5 and pH 6, when bound at pH 7 with a pH 4 potassium phosphate buffer containing 500 mM NaCl. Were washed with a pH 7 potassium phosphate buffer containing 500 mM NaCl. Thereafter, 1 mL of pH 7 potassium phosphate buffer was added when bound at pH 5 or pH 6, and 1 mL of pH 7.4 PBS containing 10 mM biotin was added when bound at pH 7.
- TM2 S36A-T78A-D116A was combined with biotin-agarose in a pH 4 or pH 7 potassium phosphate buffer or a pH 12 50 mM CAPS buffer, and then washed, and a pH 7 100 mM potassium phosphate buffer was added. 1 mL was added and eluted. An equal amount of 2 ⁇ SDS Sample Buffer was added to each fraction solution, followed by treatment at 95 ° C. for 10 minutes, and after donating to SDS-PAGE, CBB staining was performed.
- FIG. 4 shows various modified tamavidins 2 (TM2 S36A (FIG. 4A), TM2 T78A, TM2 D116A, TM2 T78A-D116A (above FIG.
- FIG. 4C shows various modified tamavidins 2 (TM2 S36A-D116A (FIG. 5A, C), TM2 T78A, TM2 P46T-T78A (above FIG.
- FIG. 5A is a photograph showing the Protease resistance of TM2, W80K, TM2, P46T-T78A-D116A (FIG. 5D).
- FIG. 6 is a photograph showing the thermal stability of TM2 T78A.
- TM2 T78A was heat-treated for 20 minutes in 1 ⁇ SDS Sample Buffer at a predetermined temperature in the presence and absence of biotin, and then donated to SDS-PAGE for CBB staining.
- FIG. 7 is a photograph showing the purification of biotinylated BSA by TM2 S36A-Sepharose.
- FIG. 8A is a photograph showing purification of biotinylated BSA by TM2 D116A-Sepharose, FIG. 8B by TM2 P46TT78A-Sepharose, and FIG. 8C by TM2 P46TD116A-Sepharose.
- Biotinylated BSA or Escherichia coli extract and biotinylated BSA are purified with each carrier before purification (total), through column (flow-through) fraction (FT), washed fraction (W), elution fraction An equal amount of 2 ⁇ SDS Sample Buffer was added to each minute (Elu) solution, treated at 95 ° C. for 10 minutes, and supplied to SDS-PAGE.
- FIG. 9 is a photograph showing the pH dependence of the binding of biotinylated BSA to TM2 S36A-D116A-sepharose.
- Tamavidin Tamavidin are novel biotin-binding proteins that were discovered from Basidiomycetes Pleurotus cornucopiae (Pleurotus conucopiae) an edible mushroom (WO02 / 072817).
- the literature includes: -Amino acid homology between tamavidin 1 and tamavidin 2 is 65.5% and binds strongly to biotin; -Tamavidin 2 is highly expressed in the soluble fraction in E. coli; and -When tamavidin 2 is expressed in E. coli, about 4.5 mg of purified purified recombinant protein per 50 ml of culture is obtained in 4.5 hours of culture. Obtained. This is very high compared to avidin and streptavidin known as biotin-binding proteins; It is described.
- “Tamavidin 2” in the present specification means tamavidin 2 (TM2) or a variant thereof.
- the present invention provides a modified TM2 that enables a reversible reaction with biotin by modifying a specific amino acid residue of TM2 or a variant thereof.
- the terms “tamavidin 2” and “TM2” mean wild-type TM2 and variants thereof unless otherwise specified. However, depending on the meaning of the sentence, it may be used as a general term for the wild type, mutant type, and modified type of the present invention, including the modified TM2 of the present invention.
- TM2 is sometimes referred to as “biotin-binding protein” in the present specification because TM2 exhibits biotin-binding properties.
- TM2 wild type is typically a protein comprising the amino acid sequence of SEQ ID NO: 2 or a protein encoded by a nucleic acid comprising the base sequence of SEQ ID NO: 1, Good.
- TM2 is a variant of a protein comprising the amino acid sequence of SEQ ID NO: 2 or a protein encoded by a nucleic acid comprising the base sequence of SEQ ID NO: 1, and has the same biotin binding as tamavidin 2 It may be a protein having activity.
- the variant of TM2 may be a protein comprising an amino acid sequence containing one or more amino acid deletions, substitutions, insertions and / or additions in the amino acid sequence of SEQ ID NO: 2.
- the substitution may be a conservative substitution, which is the replacement of a particular amino acid residue with a residue having similar physicochemical characteristics.
- conservative substitutions include substitutions between aliphatic group-containing amino acid residues such as substitutions between Ile, Val, Leu or Ala, Lys and Arg, Glu and Asp, Gln and Asn Substitution between polar residues such as substitution is included.
- Mutants resulting from amino acid deletion, substitution, insertion and / or addition may be performed on, for example, site-directed mutagenesis (for example, Nucleic Acid Research, Vol. 10, No. 20), which is a well-known technique, to DNA encoding a wild-type protein. , P. 6487-6500, 1982, the entire contents of which are incorporated herein by reference).
- site-directed mutagenesis for example, Nucleic Acid Research, Vol. 10, No. 20
- one or more amino acids means amino acids that can be deleted, substituted, inserted and / or added by site-directed mutagenesis.
- “one or more amino acids” may mean one or several amino acids depending on the case.
- Site-directed mutagenesis can be performed, for example, using a synthetic oligonucleotide primer complementary to the single-stranded phage DNA to be mutated, in addition to the specific mismatch that is the desired mutation, as follows: . That is, the synthetic oligonucleotide is used as a primer to synthesize a strand complementary to the phage, and a host cell is transformed with the obtained double-stranded DNA. Transformed bacterial cultures are plated on agar and plaques are formed from single cells containing phage. Then, theoretically 50% of the new colonies contain phages with mutations as single strands and the remaining 50% have the original sequence.
- the obtained plaque is hybridized with a synthetic probe labeled by kinase treatment at a temperature that hybridizes with the DNA having the desired mutation and that does not hybridize with DNA having the original strand. .
- plaques that hybridize with the probe are picked up and cultured to recover DNA.
- TM2 in the present invention is a protein having an amino acid sequence in which 1 to 10 amino acids are deleted, substituted or added in SEQ ID NO: 2 and having biotin-binding activity.
- the variant of TM2 is further at least 80% or more, preferably 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more with the amino acid sequence of SEQ ID NO: 2. More preferably, it may be a protein comprising an amino acid sequence having 99.3% or more amino acid identity and having a biotin-binding activity similar to that of TM2.
- The% identity between two amino acid sequences may be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two protein sequences can be determined by Needleman, S .; B. And Wunsch, C.I. D. (J. Mol. Biol., 48: 443-453, 1970) and determined by comparing sequence information using the GAP computer program available from the University of Wisconsin Genetics Computer Group (UWGCG). May be.
- Preferred default parameters for the GAP program include: (1) Henikoff, S .; And Henikoff, J.H. G. (Proc. Natl. Acad. Sci. USA, 89: 10915-10919, 1992), scoring matrix, blossum 62; (2) gap weight of 12, (3) gap length weight of 4; And (4) no penalty for end gaps.
- the percent identity can be determined by comparison with sequence information using, for example, the BLAST program described in Altschul et al. (Nucl. Acids. Res., 25, p. 3389-3402, 1997).
- the program can be used on the Internet from the National Center for Biotechnology Information (NCBI) or the DNA Data Bank of Japan (DDBJ) website.
- NCBI National Center for Biotechnology Information
- DDBJ DNA Data Bank of Japan
- Various conditions (parameters) for identity search by the BLAST program are described in detail on the same site, and some settings can be changed as appropriate, but the search is usually performed using default values.
- the percent identity between two amino acid sequences can be determined by genetic information processing software GENETYX Ver. It may be determined using a program such as 7 (manufactured by Genetics) or the FASTA algorithm. At that time, the default value may be used for the search.
- the percent identity between two nucleic acid sequences can be determined by visual inspection and mathematical calculation, or more preferably, this comparison is made by comparing the sequence information using a computer program.
- a typical preferred computer program is the Wisconsin package, version 10.0 program “GAP” from the Genetics Computer Group (GCG; Madison, Wis.) (Devereux, et al., 1984, Nucl. Acids Res. , 12: 387).
- GAP Genetics Computer Group
- two amino acid sequences can be compared, and a nucleic acid sequence and an amino acid sequence can be compared.
- GAP GCG run of an unary comparison matrix for nucleotides (including values of 1 for identical and 0 for non-identical), and Schwartz and Dayhoff supervised “Atlas of Polypeptide Sequence and Structure” National Biomedical Research Foundation, pages 353-358, 1979, Gribskov and Burgess, Nucl. Acids Res. 14: 6745, 1986 weighted amino acid comparison matrix; or other comparable comparison matrix; (2) 30 penalties for each gap of amino acids and one additional penalty for each symbol in each gap; or nucleotide sequence Includes 50 penalties for each gap and an additional 3 penalties for each symbol in each gap; (3) no penalty to end gaps; and (4) no maximum penalty for long gaps.
- sequence comparison programs used by those skilled in the art are available, for example, at the National Library of Medicine website: http://www.ncbi.nlm.nih.gov/blast/bl2seq/bls.html
- a BLASTN program, version 2.2.7, or UW-BLAST 2.0 algorithm can be used. Standard default parameter settings for UW-BLAST 2.0 are described at the following Internet site: http://blast.wustl.edu.
- the BLAST algorithm uses a BLOSUM62 amino acid scoring matrix and the selection parameters that can be used are: (A) Segments of query sequences with low compositional complexity (Woughton and Federhen SEG program (Computers and Chemistry, 1993); Woton and Federhen, 1996 “Analysis of compositional weight region in sequence database (Analysis of compositionally-biased in sequence data bases): 71-66”.
- E-score Karlin and Altschul, 1990
- the preferred E-score threshold value is 0.5 or, in order of increasing preference, 0.25, 0.1, 0.05, 0.01, 0.001, 0 .0001, 1e-5, 1e-10, 1e-15, 1e-2 A 1e-25,1e-30,1e-40,1e-50,1e-75 or 1e-100,.
- a variant of TM2 is also a protein encoded by a nucleic acid comprising a base sequence that hybridizes to a complementary strand of the base sequence of SEQ ID NO: 1 under stringent conditions and has the same binding activity as TM2. It may be.
- under stringent conditions means to hybridize under moderately or highly stringent conditions.
- moderately stringent conditions can be easily determined by those skilled in the art having general techniques based on, for example, the length of the DNA.
- Basic conditions are shown in Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd edition, Chapter 6, Cold Spring Harbor Laboratory Press, 2001, for example, 5 ⁇ SSC, 0.5% SDS, 1.0 mM EDTA (PH 8.0) pre-wash solution, about 50% formamide at about 42 ° C., 2 ⁇ to 6 ⁇ SSC, preferably 5 ⁇ to 6 ⁇ SSC, 0.5% SDS (or about 42 ° C.
- hybridization solutions such as Stark solution in 50% formamide
- moderately stringent conditions include hybridization conditions (and washing conditions) of about 50 ° C., 6 ⁇ SSC, 0.5% SDS.
- High stringency conditions can also be readily determined by one skilled in the art based on, for example, the length of the DNA.
- these conditions include hybridization at higher temperatures and / or lower salt concentrations than moderately stringent conditions (eg, containing about 0.5% SDS, about 65 ° C., 6 ⁇ SSC to 0. 2 ⁇ SSC, preferably 6 ⁇ SSC, more preferably 2 ⁇ SSC, more preferably 0.2 ⁇ SSC, or even 0.1 ⁇ SSC) and / or washing, for example hybridization as described above Defined with conditions and washing at approximately 65 ° C. to 68 ° C., 0.2 ⁇ to 0.1 ⁇ SSC, 0.1% SDS.
- moderately stringent conditions eg, containing about 0.5% SDS, about 65 ° C., 6 ⁇ SSC to 0. 2 ⁇ SSC, preferably 6 ⁇ SSC, more preferably 2 ⁇ SSC, more preferably 0.2 ⁇ SSC, or even 0.1 ⁇ SSC
- moderately stringent conditions eg, containing about 0.5% SDS, about 65 ° C., 6 ⁇ SSC to 0. 2 ⁇ SSC
- SSC 1 ⁇ SSC is 0.15 M NaCl and 15 mM sodium citrate
- SSPE 1 ⁇ SSPE is 0.15 M NaCl, 10 mM NaH 2 PO 4 , and 1. 25 mM EDTA, pH 7.4
- washing is performed for 15 minutes to 1 hour after hybridization is completed.
- hybridization kit that does not use a radioactive substance for the probe can be used.
- hybridization using an ECL direct labeling & detection system can be mentioned.
- ECL direct labeling & detection system manufactured by Amersham
- For stringent hybridization for example, 5% (w / v) Blocking reagent and 0.5M NaCl are added to the hybridization buffer in the kit, and the reaction is performed at 42 ° C. for 4 hours.
- a condition is that 20% is performed twice at 55 ° C. for 20 minutes in 4% SDS, 0.5 ⁇ SSC, and once at room temperature for 5 minutes in 2 ⁇ SSC.
- the biotin-binding activity of the TM2 mutant can be measured by any known method. For example, it may be measured by a method using fluorescent biotin as described in Kada et al. (Biochim. Biophys. Acta., 1427: 33-43 (1999)). This method is an assay system utilizing the property that the fluorescence intensity of fluorescent biotin disappears when fluorescent biotin binds to the biotin binding site of the biotin binding protein. Alternatively, the biotin-binding activity of the mutant protein can be evaluated using a sensor capable of measuring the binding between the protein and biotin, such as a biosensor based on surface plasmon resonance.
- Modified tamavidin (type I) of the present invention has as one aspect, A protein having biotin-binding activity, comprising the amino acid sequence shown in SEQ ID NO: 2, or an amino acid sequence having one to a plurality of amino acid mutations in this sequence, or an amino acid sequence having 80% or more identity with this sequence ( TM2 or TM2 (mutant))
- the following groups 1) Substitution of the 36th serine residue of SEQ ID NO: 2 with an amino acid residue that does not form a hydrogen bond; 2) substitution of the 80th tryptophan residue of SEQ ID NO: 2 with a hydrophilic amino acid residue; 3) Substitution of the 116th aspartic acid residue of SEQ ID NO: 2 to an amino acid residue that does not form a hydrogen bond; 4) Replacement of the 46th proline residue of SEQ ID NO: 2 with a threonine, serine or tyrosine residue, and replacement of the 78th threonine residue with an amino acid residue that does
- tamavidin 2 (TM2) is as defined above.
- substitution with an amino acid residue that does not form a hydrogen bond means substitution with an amino acid residue that is considered not to form a hydrogen bond with biotin.
- Specific examples include, but are not limited to, amino acids with nonpolar or hydrophobic R groups such as alanine (A), valine (V), leucine (L), isoleucine (I), methionine ( M), tryptophan (W), phenylalanine (F), proline (P), and the like may be substituted from amino acid residues other than these.
- a modified form in which serine, threonine or aspartic acid is substituted with alanine (A) in the following modified TM2 is described.
- substitution with a hydrophilic amino acid residue means substitution with an amino acid residue that is generally considered to be hydrophilic in this technical field. Specific examples include, but are not limited to, polar amino acids, among which lysine (K), arginine (R), and histidine (R) having a positively charged R group at physiological pH. H), substitution with aspartic acid (D) or glutamic acid (E) having an R group having a negative charge at physiological pH, and tryptophan is converted to lysine (K) in the following modified TM2. State the replacement.
- Such a modified TM2 is preferably 1-a) Modified biotin-binding protein (TM2 S36A) in which the serine residue at position 36 in SEQ ID NO: 2 is substituted with alanine, 2-a) Modified biotin-binding protein (TM2 W80K) in which the 80th tryptophan residue of SEQ ID NO: 2 is substituted with lysine, 3-a) a modified biotin-binding protein (TM2 D116A) in which the 116th aspartic acid residue of SEQ ID NO: 2 is substituted with alanine, 4-a) a modified biotin-binding protein (TM2 P46T-T78A) in which the 46th proline residue of SEQ ID NO: 2 is substituted with threonine and the 78th threonine residue is substituted with alanine, 5-a) a modified biotin-binding protein (TM2 P46T-D116A) in which the 46th proline residue of SEQ ID NO: 2 is
- Such modified TM2 preferably has the following properties: i) Purification using biotin is possible. ii) maintaining the tetrameric structure of the protein consisting of the amino acid sequence of SEQ ID NO: 2; iii) resistant to proteases, iv) high expression in the soluble fraction of E. coli, 1 to all of
- purification using biotin means that the target protein has an appropriate biotin-binding ability and can bind and dissociate with biotin.
- biotinylated substance such as biotinylated protein
- the modified TM2 is a low-affinity tamavidin having a smaller biotin binding ability than the wild-type TM2.
- “maintaining a tetrameric structure” means substantially maintaining the tetrameric subunit structure of natural TM2. Specifically, it means a state having the same molecular weight as wild type TM2.
- the molecular weight of the modified TM2 can be measured by high-speed protein liquid chromatography (Fast protein liquid chromatography (FPLC)) and compared with the molecular weight of TM2.
- FPLC protein liquid chromatography
- “having resistance to protease” means that the protein is not enzymatically degraded or substantially not degraded by the protease treatment.
- treatment with protease K is performed at 30 ° C. for 15 minutes.
- “Non-enzymatic degradation” means that the tetramer, dimer and / or monomer bands of the protein can be clearly detected even after SDS-PAGE after enzyme treatment, as in wild-type TM2. means.
- proteins that are not resistant to proteases are degraded to small molecules by protease treatment, and tetramer, dimer, and monomer bands cannot be detected in SDS-PAGE after protease treatment.
- the tetramer structure is maintained without being completely decomposed by protease treatment. And in SDS-PAGE, it is detected as a tetramer and / or a dimer or monomer band from which the tetramer is dissociated.
- “high expression in the soluble fraction of E. coli” means that a desired gene is incorporated into an expression vector, introduced into E. coli, and then expressed in an appropriate medium at an appropriate temperature and under conditions for inducing expression.
- the recombinant protein is produced in Escherichia coli in a soluble fraction after disruption of the cells sufficiently to be identifiable, preferably about the same as or more than wild type TM2.
- Means. it means that 1 mg or more, preferably 5 mg or more, 10 mg or more, 15 mg or more, particularly preferably 20 mg or more is expressed per liter of culture solution.
- TM2 S36A and TM2 D116A are modified in TM2 that are considered to be hydrogen-bonded to biotin and highly expressed in the soluble fraction of E. coli.
- these variants TM2 maintain a tetrameric structure and have high resistance to proteases.
- biotin-binding ability of these modified TM2s is a single amino acid variant, the ability to bind biotin to it is reduced to a degree sufficient to cause a reversible reaction with biotin, Biotinylated proteins can be purified very efficiently.
- TM2 S36A and “TM2 D116A” are very excellent biotin reversible binding proteins that can solve the problems of conventional low binding ability biotin binding proteins.
- TM2 W80K is a modified part of TM2 that is considered to be hydrophobically bound to biotin, and is obtained by modifying the 80th tryptophan of wild type TM2 (SEQ ID NO: 2) to lysine.
- TM2 W80K is highly expressed in the soluble fraction of E. coli. In addition, it maintains the tetramer structure and has high resistance to proteases. Furthermore, the biotin-binding ability of these mutants has been reduced to a degree sufficient to cause a reversible reaction with biotin, even though it is a single amino acid variant. It can be purified very efficiently. Moreover, even if an iminobiotin column is used, it can be purified very efficiently. Therefore, W80K is a very excellent protein having the property of reversibly binding biotin, which has solved the problems of conventional low-binding ability biotin-binding proteins.
- TM2 P46T-T78A and TM2 P46T-D116A are modified sites that are considered to be involved in binding between tamavidin subunits and that are considered to be hydrogen-bonded to biotin.
- the amino acid homology of both is 48% as a whole
- the 55th valine (Val) and 76th threonine (Thr) in streptavidin were examined.
- 109th leucine (Leu) and 125th valine (Val) are 46th proline (Pro), 66th alanine (Ala), 97th leucine (Leu), 113th respectively in TM2. It was thought to be valine (Val).
- TM2 P46T in which the 46th proline considered to be involved in the intersubunit binding of TM2 is changed to threonine is a mutant intended to weaken the intersubunit binding, but maintains the tetramer. ing. And the biotin binding ability is very high unexpectedly, and even if an excessive amount of biotin is added, the biotinylated substance cannot be eluted.
- the mutant in which the 78th threonine or 116th aspartic acid is modified to alanine in this TM2 P46T, which is considered to be a hydrogen bond with biotin has a biotin binding ability changed to an appropriate level and biotinylation The material can be fully purified.
- TM2 P46T-T78A-D116A combining all these mutations can also sufficiently purify the biotinylated substance.
- Modified tamavidin (type II) of the present invention has one aspect, A protein having biotin-binding activity, comprising the amino acid sequence shown in SEQ ID NO: 2, or an amino acid sequence having one to a plurality of amino acid mutations in this sequence, or an amino acid sequence having 80% or more identity with this sequence ( TM2 or TM2 (mutant)) 6) It has the substitution to the amino acid residue which does not form the hydrogen bond of the 78th threonine residue of sequence number 2.
- Such a modified TM2 is preferably 6-a) A modified biotin-binding protein (TM2 T78A) in which the 78th threonine residue of SEQ ID NO: 2 is substituted with an alanine residue.
- TM2 T78A modified biotin-binding protein
- tamavidin 2 (TM2) is as defined above.
- substitution with an amino acid residue that does not form a hydrogen bond is as defined above.
- Such modified TM2 preferably has the following properties: i) Purification using biotin is possible. ii) maintaining the tetrameric structure of the protein consisting of the amino acid sequence of SEQ ID NO: 2; iii) resistant to proteases, v) It has higher heat resistance than the protein consisting of the amino acid sequence described in SEQ ID NO: 2. 1 to all of
- “having high heat resistance” means having heat resistance equivalent to or higher than that of the wild type.
- the Tr value temperature at which the quantity ratio of monomer to tetramer is 1: 1 when heat-treated for 20 minutes in the presence of SDS is compared to natural TM2, In the absence of biotin, it means preferably about the same, more preferably 5 ° C. or higher, more preferably 10 ° C. or higher.
- TM2 T78A has a low recovery rate by iminobiotin-agarose from E. coli soluble fraction, but a high recovery rate by biotin-agarose (about 95%), maintains a tetramer and has protease resistance.
- TM2 T78A is a single amino acid variant like TM2 S36A and TM2 D116A, biotin-binding ability is moderately reduced, and biotinylated protein can be purified (recovery rate is 40 % To 50%).
- TM2 T78A has a Tr value of 88 ° C in the absence of biotin, which is 10 ° C higher than that of TM2 (78 ° C), and has a Tm value of 100 ° C or higher when biotin is bound. Is a very high protein.
- the modified TM2 of the present invention has one aspect, A protein having biotin-binding activity, comprising the amino acid sequence shown in SEQ ID NO: 2, or an amino acid sequence having one to a plurality of amino acid mutations in this sequence, or an amino acid sequence having 80% or more identity with this sequence ( TM2 or TM2 (mutant))
- the following groups 7) Substitution of the 36th serine residue of SEQ ID NO: 2 to an amino acid residue that does not form a hydrogen bond, and substitution of the 116th aspartic acid residue to an amino acid residue that does not form a hydrogen bond; and 8) Substitution of the 36th serine residue of SEQ ID NO: 2 to an amino acid residue that does not form a hydrogen bond, substitution of the 78th threonine residue to an amino acid residue that does not form a hydrogen bond, and the 116th aspartic acid residue It is characterized by having a substitution selected from substitutions with amino acid residues that do not form
- tamavidin 2 (TM2) is as defined above.
- substitution with an amino acid residue that does not form a hydrogen bond is as defined above.
- Such a modified TM2 is preferably 7-a) Modified biotin-binding protein (TM2 S36A-D116A) in which the 36th serine residue of SEQ ID NO: 2 is substituted with alanine and the 116th aspartic acid residue is substituted with alanine And 8-a) the 36th serine residue of SEQ ID NO: 2 is substituted with alanine, the 78th threonine residue is substituted with alanine, and the 116th aspartic acid residue is replaced with alanine Replaced modified biotin binding protein (TM2 S36A-T78A-D116A) Selected from the group consisting of
- Such modified TM2 has the following properties: i) purification with biotin is possible; iii) resistant to proteases, vi) binds to biotin under mildly acidic conditions and does not bind to biotin under neutral conditions; 1 to all of
- the modified tamavidin of this embodiment shows a special pH dependency.
- weakly acidic means a hydrogen ion index in the range of pH 4 to pH 6.
- Negtral means a hydrogen ion index in the range of pH 7 to pH 8.
- TM2 S36A-D116A has a recovery rate from the E. coli soluble fraction of 95%, a purity of 95% (when bound at pH 4 and dissociated at pH 7), maintains a tetramer, and has protease resistance. It has a very specific pH dependency with respect to biotin binding. To date, no biotin-binding protein that does not bind to biotin near neutrality (around pH 7) has been known. This “TM2 S36A-D116A” binds biotin very efficiently under mildly acidic conditions (about pH 4-6), whereas it does not bind biotin at all under neutral and alkaline conditions (pH 7, pH 12). It has completely different characteristics from conventional biotin-binding proteins. Therefore, if this modified substance is used, the target substance can be purified under mild conditions without being denatured by exposure to strong alkaline conditions.
- alkaline condition means a hydrogen ion index within a range of pH 9 to pH 13.
- TM2 S36A-T78A-D116A is highly expressed in the soluble fraction of E. coli. In addition, it maintains the dimer structure and has high resistance to proteases.
- TM2 S36A-T78A-D116A like “TM2 S36A-D116A”, binds efficiently to biotin under mildly acidic conditions (about pH 4-6), whereas it does not bind to biotin under neutral conditions (pH 7). It has a completely different characteristic from conventional biotin-binding proteins that it does not bind. However, under alkaline conditions, unlike “TM2 S36A-D116A”, it was efficiently bound to biotin in the same manner as under weakly acidic conditions.
- TM2 S36A-T78A-D116A also has a feature that it does not bind to iminobiotin at all and cannot be purified with iminobiotin. This is in common with the later-described IV type and property vii). The significance of “cannot be purified with iminobiotin” will be described in detail in the description of type IV.
- Modified tamavidin (type IV) of the present invention has one aspect, A protein having biotin-binding activity, comprising the amino acid sequence shown in SEQ ID NO: 2, or an amino acid sequence having one to a plurality of amino acid mutations in this sequence, or an amino acid sequence having 80% or more identity with this sequence ( TM2 or TM2 (mutant)) 9)
- tamavidin 2 (TM2) is as defined above.
- substitution with an amino acid residue that does not form a hydrogen bond is as defined above.
- Such a modified TM2 is preferably 9-a) Modified biotin-binding protein (TM2 T78A-D116A) in which the 78th threonine residue of SEQ ID NO: 2 is substituted with alanine and the 116th aspartic acid residue is substituted with alanine It is.
- TM2 T78A-D116A Modified biotin-binding protein
- Such modified TM2 has the following properties: i) Purification using biotin is possible. ii) maintaining the tetrameric structure of the protein consisting of the amino acid sequence of SEQ ID NO: 2; iii) resistant to proteases, iv) high expression in the soluble fraction of E. coli, vii) 1 to all that cannot be purified with iminobiotin.
- Iminobiotin cannot be purified means that the target protein does not bind to iminobiotin or the target protein bound to iminobiotin cannot be eluted, so that purification using iminobiotin is impossible. It means that.
- TM2 T78A-D116A is highly expressed in the soluble fraction of E. coli. It also maintains the tetramer structure and has high resistance to proteases. This variant has a unique property that has never been known that it cannot be purified with iminobiotin but can be purified with biotin very well.
- the modified body can be used for the following uses, for example.
- these variants are first injected into the specimen and bound to endogenous biotin in the blood of the specimen. Subsequently, a specific antibody against the antigen is iminobiotinylated, introduced into a specimen, and the cells are labeled with iminobiotin. Finally, a cell can be specifically labeled by injecting into the specimen a protein that binds strongly to biotin, such as radioisotope-labeled or fluorescently-labeled avidin, streptavidin, or tamavidin.
- biotin such as radioisotope-labeled or fluorescently-labeled avidin, streptavidin, or tamavidin.
- the endogenous biotin levels are reduced with these variants in advance, so the background is low, and these variants bind to biotin but not iminobiotin. Do not combine.
- the biotin-binding protein binds to both iminobiotin and biotin, the above-described system cannot be established unless these variants are used.
- Amino acid modification method The method for modifying the amino acid of TM2 to obtain the modified TM2 of the present invention is not particularly limited, and a known method for mutating an amino acid sequence can be used.
- the base sequence of the nucleic acid encoding the altered protein of the present invention is modified and altered.
- the target variant can be obtained by performing PCR using a primer containing a mismatch codon of the target mutation, producing a DNA encoding the target variant and expressing it.
- a variant by amino acid deletion, substitution, insertion and / or addition can be prepared by a method such as performing site-directed mutagenesis, which is a well-known technique as described above, to a DNA encoding a wild-type protein. .
- Modification of amino acid residues in the modified TM2 of the modified TM2 modified not be desirable amino acid residues present invention in the present invention, such as purification by modified TM2 has suitable biotin affinity allows modification It is.
- biotin pocket of streptavidin which is one of the biotin-binding proteins, has already been elucidated.
- the homology between the amino acid sequences of streptavidin and TM2 is only about 50%, but the inventors compared the amino acid sequences of TM2 and streptavidin in parallel to obtain knowledge about the biotin pocket of TM2.
- residues N23, S27, Y43, S45, N49, W79, S88, T90, W92, W108, W120, D128 corresponds to N14, S18, Y34, S36, D40, W69, S76, T78, W80, W96, W108, and D116, respectively, in TM2, and is very well preserved. It was found that The biotin binding pockets of TM2 and streptavidin have very similar structures, and these amino acid residues are thought to be greatly involved in biotin binding.
- streptavidin 49th N was the 40th D (aspartic acid) in TM2, which was an exception.
- the present inventors have found that the biotin-binding ability is increased in TM2 D40N TM2, which is modified to asparagine in the same manner as streptavidin. Therefore, the modified product in which the 40th aspartic acid is substituted with asparagine has too strong biotin-binding ability, and therefore it is not preferable to use TM2 D40N TM2 in the present invention.
- the four tryptophan residues (W69, W80, W96, W108) are thought to play an important role in the structure of the biotin pocket. It is desirable not to be modified. Alternatively, when these are modified, it is desirable to modify them to amino acids having similar properties or structures so that the binding to biotin can be maintained, for example, to phenylalanine (F).
- amino acids considered to be involved in the binding to biotin that is, the amino acid residues (N14, S18, Y34, S36, S76, T78, D116) that are considered to directly interact with biotin in TM2 It is desirable not to modify except for the substitution specified in the above description. Alternatively, when these are modified, it is desirable to modify them to amino acids having similar properties or structures so that the binding to biotin can be maintained.
- glutamine (Q) or aspartic acid (D ) Preferably to glutamine, in the case of aspartic acid (D40), to other than asparagine (N), in the case of serine (S18, S36, S76), to threonine (T) or tyrosine (Y), preferably threonine In the case of tyrosine (Y34), to serine (S) or threonine (T), preferably to threonine, and in the case of threonine (T78), to serine (S) or tyrosine (Y), preferably to serine, In the case of aspartic acid (D116), glutamic acid (E) or asparagine (N) is preferably used. To Min acid, it is desirable to modify, respectively.
- Nucleic acid encoding modified TM2 protein The present invention provides a nucleic acid encoding the modified TM2 protein of the present invention.
- the base sequence of such a nucleic acid is obtained by modifying the base sequence of TM2 (SEQ ID NO: 1) into a base sequence encoding a modified amino acid of the modified TM2 protein.
- the base sequence to be modified is not limited as long as it is a base sequence encoding the modified amino acid.
- TM2 gene a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 1 (hereinafter referred to as “TM2 gene”) or a complementary strand thereof, hybridizes under stringent conditions, and enables binding and dissociation with biotin.
- Nucleic acid encoding a protein having a specific biotin-binding activity which includes a nucleic acid whose base sequence is modified in order to carry out the modification of the present invention.
- the nucleic acid of the present invention preferably encodes any one of the amino acid sequences of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, and 20. More preferably, the nucleic acid of the present invention consists of the nucleic acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17 and 19.
- the vector containing the nucleic acid of this invention provides the vector containing the nucleic acid which codes modified
- it is an expression vector for expressing the modified TM2 protein.
- nucleic acid encoding the modified TM2 protein of the present invention is as described above in “Nucleic acid encoding modified TM2 protein”, and is not particularly limited. It is desirable that a promoter that functions in a desired host is disposed upstream of the nucleic acid encoding the modified TM2 protein, and a terminator is disposed downstream thereof.
- the vector of the present invention is preferably an expression vector.
- the expression vector has a unit for allowing replication in a desired host, such as a replication origin, and selects a desired host cell.
- a desired host such as a replication origin
- the host is not particularly limited, but is preferably E. coli.
- an appropriate expression control system such as a lactose repressor system in E. coli may be incorporated into the present expression vector.
- Carrier on which modified TM2 is immobilized The present invention provides a carrier on which the modified TM2 protein of the present invention is immobilized.
- a known material can be used for the material constituting the carrier.
- Examples include, but are not limited to, platinum, silver, copper, iron, stainless steel, ferrite, silicon wafer, polyethylene, polyethyleneimine, polylactic acid, resin, polysaccharide, protein (such as albumin), carbon or combinations thereof. Further, those having a certain strength, a stable composition, and little nonspecific binding are preferable.
- the shape of the solid support includes, but is not limited to, beads, magnetic beads, thin films, microtubes, filters, plates, microplates, carbon nanotubes, sensor chips, and the like.
- Flat solid carriers such as thin films and plates may be provided with pits, grooves, filter bottoms, etc., as is known in the art.
- the beads can have a sphere diameter ranging from about 25 nm to about 1 mm. In preferred embodiments, the beads have a diameter in the range of about 50 nm to about 10 ⁇ m. The size of the beads can be selected depending on the particular application.
- the binding of the protein to the carrier is not particularly limited, and a known method for binding the protein to the carrier can be used. A specific binding method can be appropriately selected by those skilled in the art depending on the type of carrier.
- LATM2 Low Affinity Tamavidin 2
- LATM2 Low-affinity tamavidin 2
- the present inventors conducted a comparative study between streptavidin and the amino acid sequence of TM2 based on the knowledge of the crystal structure of streptavidin, and the amino acid residues that interact with biotin in TM2. The group was deduced and the knowledge that their amino acid configuration was similar to that of the amino acid that streptavidin interacts with biotin was obtained.
- the tryptophan at the 69th, 80th, 96th, and 108th positions of the amino acid sequence of TM2 is an amino acid that is hydrophobically bound to biotin, and the 14th asparagine and 18th serine of the amino acid sequence of TM2.
- 34th tyrosine, 36th serine, 76th serine, 78th threonine, and 116th aspartic acid were estimated to be amino acids that hydrogen bond with biotin.
- 46th proline, 66th alanine, 97th leucine and 113th valine are important for binding between subunits in TM2.
- amino acid mutations were introduced into TM2 for the purpose of reducing the affinity between TM2 and biotin.
- tryptophan (69th, 80th, 96th, 108th tryptophan) thought to play an important role in the hydrophobic bond with biotin
- amino acid 14th asparagine, 18th
- mutagenesis was also performed on amino acid residues considered to be important for binding between subunits (46th proline, 66th alanine, 97th leucine, 113th valine).
- TM2 W108K TM2 in which 108th tryptophan is replaced with lysine
- TM2 W69K TM2 in which the 69th tryptophan is replaced with lysine
- TM2 W80K TM2 in which the 80th tryptophan is replaced with lysine
- TM2 S36A the base sequence is described in SEQ ID NO: 5 and the amino acid sequence is described in SEQ ID NO: 6
- TM2 S36A-T78A-D TM2 S36A-T78A-D
- TM2 P46T-T78A having 46th proline to threonine substitution and 78th threonine to alanine substitution
- the base sequence is shown in SEQ ID NO: 13
- the amino acid sequence is SEQ ID NO: 14
- TM2 having 46th proline to threonine substitution and 116th aspartic acid to alanine substitution (hereinafter referred to as “TM2 P46T-D116A”, the nucleotide sequence is set forth in SEQ ID NO: 15, the amino acid sequence is set to SEQ ID NO: 16).
- TM2 having 46th proline to threonine substitution, 78th threonine to alanine substitution and 116th aspartic acid to alanine mutation (hereinafter referred to as “TM2 P46T-T78A-D116A”, nucleotide sequence) Is described in SEQ ID NO: 17, and the amino acid sequence is described in SEQ ID NO: 18.)
- TM2 having 46th proline to threonine substitution, 66th alanine to arginine substitution and 97th leucine to threonine mutation (hereinafter referred to as “TM2 P46T-A66R-L97T”).
- TM2 W108E TM2 having a mutation from 108th tryptophan to glutamic acid
- TM2 W108R TM2 having a mutation from the 108th tryptophan to arginine
- TM2 W96K TM2 having a 96th tryptophan to lysine mutation
- TM2 S36A-D116A having 36th serine to alanine substitution and 116th aspartic acid to alanine substitution
- the nucleotide sequence is shown in SEQ ID NO: 19
- the amino acid sequence is SEQ ID NO: 20.
- TM2 S18A TM2 having a mutation from the 18th serine to alanine
- TM2 T78A-D116A having a substitution of the 78th threonine to alanine and a substitution of the 116th aspartic acid to alanine
- TM2 Y34A TM2 having a mutation from the 34th tyrosine to alanine
- TM2 P46T TM2 having a 46th proline to threonine mutation
- TM2 P46T-L97T TM2 having 46th proline to threonine substitution and 97th leucine to threonine substitution
- TM2 having 46th proline to threonine substitution, 66th alanine to arginine substitution, 97th leucine to threonine mutation and 113th valine to arginine substitution (hereinafter referred to as “TM2”). P46T-A66R-L97T-V113R ").
- TM2 A66R-V113R TM2 having 66th alanine to arginine substitution and 113th valine to arginine substitution
- TM2 having 66th alanine to arginine substitution, 97th leucine to threonine substitution and 113th valine to arginine substitution hereinafter referred to as “TM2 A66R-L97T-V113R”.
- TM2 L97T TM2 having a 97th leucine to threonine mutation
- TM2 L97T-V113R having a 97th leucine to threonine mutation and a 113th valine to arginine substitution
- Primer Tm2 5 ′ Pci, consisting of a sequence of the 5 ′ part region of the TM2 gene and a sequence in which a restriction enzyme PciI cleavage site (ACATGT) is arranged upstream thereof, and a restriction enzyme downstream thereof
- ACATGT restriction enzyme PciI cleavage site
- Primer Tm2 3′Bam composed of a sequence in which a BamHI cleavage site (GGATCC) was arranged was designed.
- a series of sense primers and antisense primers containing mismatch codons for each modified tamavidin 2 are shown in Table 1, respectively. In Table 1, the restriction enzyme recognition site is indicated by an underline, and the mutation introduction site is indicated by a dotted line.
- RNA amplification by PCR In order to construct the LATM2 gene, two-step PCR was performed.
- a plasmid in which the TM2 gene is incorporated into the vector pTrc99A is used as a template, and a primer Tm2NtermPci and an antisense primer (TM2-S36A-Rv, TM2-N14A-Rv, TM2 -T78A-Rv, TM2-D116A-Rv, TM2-W108K-Rv, TM2-W108E-Rv, TM2-W108R-Rv, TM2-W96K-Rv, TM2-S18A-Rv, TM2-Y34A-Rv, TM2-W69K -Rv, TM2-W80K-Rv, TM2-P46T-Rv, TM2-V113R-Rv, TM2-L97T-Rv) were used to amplify the 5 ′ portion of the mutant gene.
- sense primers containing mismatch codons (TM2-S36A-Fw, TM2-N14A-Fw, TM2-T78A-Fw, TM2-D116A-Fw, TM2-W108K-Fw, TM2-W108E-Fw, TM2-W108R-Fw, TM2-W96K-Fw, TM2-S18A-Fw, TM2-Y34A-Fw, TM2-W69K-Fw, TM2-W80K-Fw, TM2-P46T-Fw, TM2-V113R-Fw, TM2-L97T-Fw) And Tm2CtermBam were used to amplify the 3 ′ portion of the mutated gene.
- PCR reaction conditions are as follows. In a 50 ⁇ L reaction solution, 500 ng of template DNA, 5 ⁇ L of 10 ⁇ Pyrobest buffer (Takara), 4 ⁇ L of 2.5 mM dNTP, 25 pmoles of each primer, 0.5 ⁇ L of Pyrobest DNA polymerase (manufactured by Takara) are added. Then, using Program Temp Control System PC-700 (ASTEK), 96 ° C for 3 minutes once, 96 ° C for 1 minute, 55 ° C for 1 minute, 72 ° C for 2 minutes 10 times, 72 ° C for 6 minutes once Heating was performed in cycles. As a result, a PCR product having a size as designed was obtained in both the 5 'portion and the 3' portion of the gene.
- ASTEK Program Temp Control System PC-700
- PCR products were subjected to agarose electrophoresis in TAE buffer solution using low melting point agarose (SeaPlaqueGTG, CAMBREX). Each DNA fragment was cut out together with the gel, an equal amount of 200 mM NaCl was added to the gel, and treated at 70 ° C. for 10 minutes to melt the gel. This sample was subjected to phenol extraction, phenol / chloroform extraction, and chloroform extraction once, and the DNA fragments of the 5 'portion and 3' portion of the gene were recovered by ethanol precipitation. Second-stage PCR was performed using both the 5 'and 3' DNA fragments of each mutant gene as templates and using primers Tm2NtermPci and Tm2CtermBam. The reaction conditions were the same as in the first stage. As a result, a PCR product of about 430 bp was obtained in any clone.
- LATM2 gene fragment obtained by PCR was cloned into the vector pCR4 Blunt TOPO (manufactured by Invitrogen). The ligation reaction followed the instructions attached to the vector kit.
- An electroporation method to introduce DNA into E. coli TB1, and plasmid DNA was extracted according to a conventional method (Sambrook et al. 1989, Molecular Cloning, A laboratory manual, 2 nd edition).
- the base sequence of the PCR product was determined from both ends with the ABI PRISM fluorescence sequencer (Model 310 Genetic Analyzer, Perkin Elmer) using the M13 primer (Takara), and the target base It was confirmed that the mutation was introduced.
- the above plasmid was double-digested with restriction enzymes PciI and BamHI, and gel purification was performed by the method described above to recover the DNA fragment.
- This fragment was ligated to Escherichia coli expression vector pTrc99A that had been digested with NcoI and BamHI in advance using a ligation kit (manufactured by Takara).
- the ligation product was transformed into E. coli TB1, plasmid DNA was extracted according to a conventional method, and restriction enzyme analysis was performed to confirm the presence or absence of the inserted gene.
- LATM2 having two amino acid mutations and LATM2 having three amino acid mutations
- an expression vector incorporating a gene encoding LATM2 having a point mutation is used as a template, and a mismatch codon for each variant is included. It was constructed by the method described above using primers.
- E. coli expression of LATM2 E. coli BL21 transformed with each LATM2 / pTrc99A is inoculated into 6 mL of LB medium containing antibiotic ampicillin (final concentration 100 ⁇ g / mL) until the absorbance at OD 600 reaches 0.5. Cultured with shaking at 25 ° C. Thereafter, 1 mM IPTG was added and further cultured with shaking at 25 ° C. overnight. E. coli was collected from 1 mL of the culture solution by centrifugation, suspended in 1500 ⁇ L of 100 mM phosphate buffer (pH 7), and the cells were disrupted by ultrasonic waves. The disrupted solution was centrifuged (15000 rpm), and the supernatant was used as a soluble fraction.
- the amount of soluble LATM2 protein expressed per liter of the culture broth was about 20 mg, which was the same as that of WT-TM2.
- TM2 W108R, TM2 W96K, TM2 S18A, and TM2 Y34A were hardly expressed, and thus were not examined further.
- LATM2 Purification of LATM2 can be performed according to Hofmann et al. (1980) was performed using a column packed with 2-iminobiotin-agarose (manufactured by Sigma). For E. coli transformed with each LATM2, expression was induced by adding IPTG to 25 mL of E. coli culture solution to a final concentration of 1 mM. The cells are collected by centrifugation, suspended in 1.5 mL of 50 mM CAPS (pH 12) containing 50 mM NaCl, 500 ⁇ L of 2-iminobiotin-agarose is added to the centrifuged supernatant after ultrasonic disruption, and the column is added to the column. Filled. The column was thoroughly washed with 50 mM CAPS (pH 12) containing 500 mM NaCl, and then eluted with 50 mM NH 4 OAC (pH 4).
- biotin-agarose manufactured by Sigma was performed by the following method. Expression was induced in 25 mL of each E. coli culture solution of LATM2, cells were suspended in 1.5 mL of 100 mM potassium phosphate buffer (pH 7.0), and 400 ⁇ L of biotin-agarose was added to the supernatant after ultrasonic disruption. After that, it was mixed by inversion for 1 hour. Thereafter, the column was filled with agarose, and the column was thoroughly washed with PBS (pH 7.4) containing 500 mM NaCl, followed by elution with 1 mL of PBS containing 10 mM biotin.
- PBS pH 7.4
- TM2 S36A-T78A-D116A was suspended in 1.5 mL of 50 mM CAPS (pH 12) containing 50 mM NaCl, and 400 ⁇ L of biotin-agarose was added to the supernatant after ultrasonic disruption. After mixing by inverting for 1 hour, the column was thoroughly washed with 50 mM CAPS (pH 12) containing 500 mM NaCl, and eluted with 1 mL of PBS (pH 7.4) containing 10 mM biotin.
- 50 mM CAPS pH 12
- PBS pH 7.4
- TM2 S36A-D116A was suspended in 1.5 mL of 100 mM potassium phosphate buffer (pH 4.0), and 400 ⁇ L of biotin-agarose was added to the supernatant after ultrasonic disruption.
- 100 mM potassium phosphate buffer (pH 4) containing 500 mM NaCl was used and eluted with 1 ml of PBS (pH 7) containing 10 mM biotin. Biotin bound to LATM2 eluted with an excess amount of biotin was removed by dialysis overnight against 20 mM potassium phosphate buffer.
- Table 2 shows the recovery and purification results for 2-iminobiotin-agarose and biotin-agarose.
- the recovery rate was expressed as% by multiplying 100 by the amount of LATM2 protein after purification divided by the amount of LATM2 protein before purification.
- the degree of purification was expressed as% by multiplying the ratio of the amount of LATM2 protein in the total amount of protein in the purified fraction by 100.
- the recovery and the degree of purification in the biotin-agarose purification are shown as the results when bound at pH 7 and eluted with excess biotin.
- TM2 P46T, TM2 S36A, TM2 D116A, TM2 P46T-T78A, TM2 P46T-D116A, TM2 P46T-T78A-D116A, TM2 W80K, and TM2 P46T- L97T could be purified to the same extent as wild type TM2 (WT-TM2: recovery rate 95%, purity 95%) in terms of recovery rate and purity.
- TM2 W108K, TM2 N14A, TM2 T78A, TM2 W108E, and TM2 W69K were purified by 2-iminobiotin-agarose, although the recovery rate was inferior to that of WT.
- TM2 S36A-T78A-D116A, TM2 S36A-D116A, TM2 A66R, TM2 P46T-A66R, TM2 T78A-D116A, TM2 P46T-A66R-L97T, TM2 A66R-L97T, TM2 A66R-L97T-V97R-T97T-V97R-113 TM2 V113R and TM2 P46T-V113R did not bind to 2-iminobiotin-agarose (manufactured by Sigma) and could not be purified using it. However, all of these LATM2s could bind to biotin-agarose (Sigma) and be purified.
- TM2 P46T-A66R-L97T-V113R and TM2 A66R-V113R did not bind to 2-iminobiotin-agarose or biotin-agarose.
- TM2 P46T and TM2 L97T were bound to biotin-agarose, but as with WT-TM2, elution with excess biotin was not possible. This was thought to be due to the extremely strong binding to biotin.
- FIG. 1A shows the results of purifying WT-TM2 and TM2 S36A with biotin-agarose and analyzing with SDS-PAGE.
- WT-TM2 is efficiently adsorbed to biotin-agarose as can be seen from the absence of that band in the flow-through (FT) in FIG. 1A.
- FT flow-through
- TM2 S36A is also adsorbed to biotin-agarose in the same way, but it is eluted by adding excess biotin and TM2 S36A is added to Elu. Are detected. This reversibility of biotin binding was thought to be caused by the decrease in affinity with biotin by incorporating a mutation into TM2.
- TM2 S36A-D116A Escherichia coli culture solution 25mL was induced with 1mM IPTG and suspended in 1.5mL of 100mM potassium phosphate buffer (pH 7.0) or 1.5mL of 50mM CAPS (pH 12.0). It became cloudy and sonicated. Thereafter, centrifugation was performed, and when 400 ⁇ L of biotin-agarose was added to the supernatant after centrifugation, it did not bind to biotin-agarose at all. However, protein extraction with 100 mM potassium phosphate buffer at pH 4.0, pH 5.0, or pH 6.0 efficiently bound to biotin-agarose.
- TM2 S36A-D116A was dissociated from the carrier and recovered with an efficiency of 95%. That is, in FIG. 3A, the band of TM2 S36A-D116A was recognized as a single band in the elution fraction in the experimental system bound with pH 5 and pH 6 potassium phosphate buffer and eluted with pH 7 potassium phosphate buffer. It was. On the other hand, in the pH 7 potassium phosphate buffer, TM2 S36A-D116A did not bind to biotin-agarose and was found in the flow-through fraction.
- TM2 S36A-T78A-D116A was also tested for pH dependence. Suspension using a pH 4.0 or pH 12.0 buffer solution, sonication, and addition of biotin-agarose to the supernatant after centrifugation showed binding to biotin-agarose. On the other hand, as with TM2 S36A-D116A, it did not bind to biotin-agarose at pH 7.0. Utilizing this property, high-purity TM2 S36A-T78A-D116A could be obtained by binding to biotin-agarose at pH 4.0 and eluting at pH 7.0 (FIG. 3B).
- Subunit association state of LATM2 In order to analyze the subunit association state of LATM2, the molecular weight of each LATM2 was measured by FPLC. Sephacryl S-100HR (manufactured by GE Healthcare) was used as the column. Gel Filtration Calibration Kit LMW (manufactured by GE Healthcare) was used as a molecular weight measurement marker. As the buffer, 50 mM potassium phosphate containing 500 mM NaCl was used.
- the peak position where the tetramer elutes was defined to be 44 to 47 ml. Further, from the result of loading the molecular weight measurement marker, the peak position where the monomer elutes was defined to be around 63 to 66 ml, and the peak position where the dimer was eluted was defined to be around 51 to 54 ml.
- Table 3 shows the results of analyzing various types of LATM2.
- TM2 A66R is partially monomeric (about 30% of the total is monomer), and TM2 P46T-A66R, in which a 46th proline to threonine mutation is added, is almost all Was monomerized (about 75% of the total).
- TM2 P46T-A66R-L97T and TM2 A66R-L97T were 72.8% and 90% monomerized, respectively.
- TM2 S36A, TM2 T78A, TM2 D116A maintained the tetramer, while TM2 S36A-T78A-D116A existed as a dimer.
- TM2 W108K exists as a 100% tetramer, whereas TM2 W108E contains a mixture of tetramer and dimer, and the abundance ratios were 33% and 67%, respectively.
- LATM2 purified with protease resistant biotin-agarose of LATM2 (TM2 S36A, TM2 D116A, TM2 T78A, TM2 W80K, TM2 T78A-D116A, TM2 P46T-T78A, TM2 P46T-D116A, TM2 S36A-D116A, TM2 S36A-T78A-D116A and TM2 P46T-T78A-D116A) were reacted in 50 mM Tris-HCl (pH 8.0) containing 5 ⁇ M Proteinase K and 5 mM CaCl 2 at 30 ° C. for 15 minutes.
- Tris-HCl pH 8.0
- TM2 S36A-D116A was reduced in molecular weight by about half in the presence of Proteinase K, the monomer band was clearly seen and it was shown to be resistant to the enzyme. It was. (FIGS. 5A, C).
- Heat resistance of LATM2 The heat resistance of LA-TM2 was investigated by SDS-PAGE. Each protein was heat-treated in SDS sample buffer in the presence and absence of biotin at a predetermined temperature for 20 minutes, and then subjected to SDS-PAGE to perform CBB staining.
- the heating temperatures employed were 80 ° C., 82 ° C., 84 ° C., 86 ° C., 88 ° C., 90 ° C., 92 ° C., and 94 ° C. in the experimental system without biotin, and 86 ° C. and 88 ° C. in the experimental system with biotin added. , 90 ° C, 92 ° C, 94 ° C, 96 ° C, 98 ° C, and 100 ° C.
- the left side is an experimental system without biotin
- the right side is an experimental system with biotin.
- the Tr value in the absence of biotin (the temperature at which the quantity ratio of monomer to tetramer is 1: 1) is 88 ° C.
- the Tr value of wild type TM2 ( 78 ° C.) was more than 10 ° C.
- the subunit associating force is increased, so that the tetrameric structure of WT-TM2 and TM2 T78A is stabilized and the heat resistance is considered to be improved.
- the Tr value of TM2 T78A in the presence of biotin was 100 ° C. or higher. From the above, it was found that the thermal stability was clearly improved in TM2 T78A.
- Example 2 Purification of biotinylated protein by LATM2 Whether or not biotinylated protein can be efficiently purified using LATM2 prepared as described above was confirmed by preparing a carrier on which LATM2 was immobilized.
- TM2-S36A-Sepharose was prepared by immobilizing TM2 S36A to Sheparose.
- TM2 S36A bound to the carrier was calculated by measuring the amount of TM2 S36A remaining in the supernatant and subtracting the value from the amount of protein before addition to the carrier. As a result, 1.01 mg of TM2 S36A corresponding to 86% of the added protein was bound to the carrier.
- TM2 P46T-T78A When other LATM2 (TM2 P46T-T78A, TM2 P46T-D116A, TM2 D116A) exhibiting similar biotin reversible binding properties were examined, the amount of TM2 P46T-T78A added was 0.853 mg and 25% 0.21 mg of TM2 P46T-D116A was added by 0.761 mg and 93% 0.709 mg was added, TM2 D116A was added by 1.16 mg and 87% of 1.01 mg was bound.
- biotinylated BSA bovine serum albumin
- EZ-Link registered trademark
- NHS-biotin linker length: 13.5 ⁇ , manufactured by PIERCE
- a purification experiment of biotinylated BSA using the modified low affinity tamavidin of the present invention was performed.
- the bacterial cell extract used was a suspension of Escherichia coli TB1 cells in 0.1 M sodium phosphate buffer (pH 7.0), which was crushed by ultrasound and the supernatant was collected by centrifugation.
- the left side is an experimental system in which biotinylated BSA and bacterial cell extract are added to TM2-S36A-Sepharose
- the right side is an experimental system in which only biotinylated BSA is added to TM2-S36A-Sepharose.
- biotinylated BSA present in the sample before purification was hardly detected in the flow-through (FT) fraction and the washing solution (W), but in the eluate (Elu).
- FT flow-through
- W washing solution
- Elu eluate
- biotinylated BSA can be specifically bound and purified from various proteins in the bacterial cell extract using TM2-S36A-Sepharose.
- the recovery rate of biotinylated BSA was 80%, and the degree of purification was 95%.
- the band considered to be TM2-S36A was hardly detected in the eluted fraction.
- FIG. 8A and 8B show an example in which biotinylated BSA is bound to TM2-D116A-Sepaharose or TM2-P46T-T78A-Sepaharose, and biotinylated BSA is recovered at a recovery rate of 60% and a purity of 95%.
- FIG. 8C shows biotinylated BSA or biotinylated BSA mixed with E. coli cell extract using biotinylated TM2-P46T-D116A-Sepaharose with 80% recovery and 95% purification. An example of purifying BSA was described.
- LATM2 (TM2 W80K, TM2 T78A-D116A, TM2 P46T-T78A-D116A), which is thought to have a lower biotin affinity than TM2 S36A, was immobilized on Sepharose from the crude E. coli extract. Purification of biotinylated protein (BSA) was examined. As a result, although the purification efficiency was slightly reduced as compared with TM2-S36A-Sepharose, the biotinylated protein could be purified.
- BSA biotinylated protein
- TM2-W80K-Sepharose has a recovery rate of 25%, a purification rate of 80%, TM2-T78A-D116A-Sepharose has a recovery rate of 60%, a purification rate of 85%, and TM2 P46T-T78A-D116A-Sepharose.
- S36A-D116A-Sepharose was prepared in the same manner as in 2-1) above. Biotinylated BSA was bound to the prepared S36A-D116A-sepharose in 100 mM potassium phosphate buffer at pH 5, pH 6, or pH 7. After thoroughly washing with a pH 4 or pH 7 potassium phosphate buffer containing 500 mM NaCl, a pH 7 potassium phosphate buffer was added to elute biotinylated BSA. An equal amount of 2 ⁇ SDS Sample Buffer was added to each fraction solution, treated at 95 ° C. for 10 minutes, then donated to SDS-PAGE, and the protein was silver stained using a Silver Staining II kit (manufactured by Wako Pure Chemical Industries, Ltd.). .
- a Silver Staining II kit manufactured by Wako Pure Chemical Industries, Ltd.
- FIG. 9 shows the results of SDS-PAGE in each sample before purification (total), flow-through fraction (FT), washing solution (W), and eluate (Elu) when bound at pH 5, pH 6, or pH 7. Shown in As shown in FIG. 9, at pH 5 and pH 6, biotinylated BSA bands were observed in the eluate. Therefore, S36A-D116A-sepharose showed a characteristic pH dependence of binding biotinylated protein at pH 5 or pH 6 and dissociating it at pH 7. On the other hand, at pH 7, biotinylated BSA did not bind to S36A-D116A-sepharose.
- biotinylated protein could be purified under extremely mild pH conditions (for example, binding at pH 5 and elution at pH 7).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Peptides Or Proteins (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
Description
本発明は好ましくは以下の態様を含む。
[態様1]
配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質において、
以下のグループ:
1)配列番号2の36番目のセリン残基の水素結合を形成しないアミノ酸残基への置換;
2)配列番号2の80番目のトリプトファン残基の親水性アミノ酸残基への置換;
3)配列番号2の116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換;
4)配列番号2の46番目のプロリン残基のスレオニン、セリン若しくはチロシン残基への置換、及び、78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換;
5)配列番号2の46番目のプロリン残基のスレオニン、セリン若しくはチロシン残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換:並びに
6)配列番号2の46番目のプロリン残基のスレオニン、セリン若しくはチロシン残基への置換、78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換
から選択される置換を有することを特徴とする、改変型ビオチン結合タンパク質。
[態様2]
1-a)配列番号2の36番目のセリン残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 S36A);
2-a)配列番号2の80番目のトリプトファン残基がリジンに置換されている、改変型ビオチン結合タンパク質(TM2 W80K);
3-a)配列番号2の116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 D116A);
4-a)配列番号2の46番目のプロリン残基がスレオニンに置換されており、そして、78番目のスレオニン残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 P46T-T78A);
5-a)配列番号2の46番目のプロリン残基がスレオニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 P46T-D116A);並びに
6-a)配列番号2の46番目のプロリン残基がスレオニンに置換されており、78番目のスレオニン残基がアラニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 P46T-T78A―D116A)
からなるグループから選択される、態様1に記載の改変型ビオチン結合タンパク質。
[態様3]
以下の性質:
i)ビオチンを用いた精製が可能である;
ii)配列番号2の記載のアミノ酸配列からなるタンパク質の四量体構造を維持している;
iii)プロテアーゼに対し耐性を有する;及び
iv)大腸菌の可溶性画分において高い発現を示す
の1ないし全部を満たす、態様1又は2に記載の改変型ビオチン結合タンパク質。
[態様4]
配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質において、
6)配列番号2の78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換を有することを特徴とする改変型ビオチン結合タンパク質。
[態様5]
6-a)配列番号2の78番目のスレオニン残基がアラニン残基へ置換されている、態様4に記載の改変型ビオチン結合タンパク質(TM2 T78A)。
[態様6]
以下の性質:
i)ビオチンを用いた精製が可能である;
ii)配列番号2の記載のアミノ酸配列からなるタンパク質の四量体構造を維持している;
iii)プロテアーゼに対し耐性を有する;及び
v)配列番号2の記載のアミノ酸配列からなるタンパク質よりも、高い耐熱性を有する
の1ないし全部を満たす、態様4又は5に記載の改変型ビオチン結合タンパク質。
[態様7]
配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質において、
以下のグループ:
7)配列番号2の36番目のセリン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換;並びに
8)配列番号2の36番目のセリン残基の水素結合を形成しないアミノ酸残基への置換、78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換
から選択される置換を有することを特徴とする、改変型ビオチン結合タンパク質。
[態様8]
7-a)配列番号2の36番目のセリン残基がアラニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 S36A―D116A);並びに
8-a)配列番号2の36番目のセリン残基がアラニンに置換されており、78番目のスレオニン残基がアラニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 S36A-T78A―D116A)
からなるグループから選択される、態様7に記載の改変型ビオチン結合タンパク質。
[態様9]
以下の性質:
i)ビオチンを用いた精製が可能である;
iii)プロテアーゼに対し耐性を有する;及び
vi)弱酸性条件下でビオチンと結合し、そして、中性条件下でビオチンと結合しない
の1ないし全部を満たす、態様7又は8に記載の改変型ビオチン結合タンパク質。
[態様10]
配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質において、
9)配列番号2の78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換
を有することを特徴とする、改変型ビオチン結合タンパク質。
[態様11]
9-a)配列番号2の78番目のスレオニン残基がアラニンに置換されていおり、そして、116番目のアスパラギン酸残基がアラニンに置換されている、態様10に記載の改変型ビオチン結合タンパク質(TM2 T78A―D116A)。
[態様12]
以下の性質:
i)ビオチンを用いた精製が可能である;
ii)配列番号2の記載のアミノ酸配列からなるタンパク質の四量体構造を維持している;
iii)プロテアーゼに対し耐性を有する;
iv)大腸菌の可溶性画分において高い発現を示す;及び
vii)イミノビオチンで精製できない
の1ないし全部を満たす、態様10又は11のいずれか1項に記載の改変型ビオチン結合タンパク質。
[態様13]
配列番号2に記載のアミノ酸配列からなるタンパク質よりも、低いビオチン結合性を示す、態様1ないし12のいずれか1項に記載の改変型ビオチン結合タンパク質。
[態様14]
以下のa)-l)
a)配列番号2の14番目のアスパラギン残基は改変されていない、あるいはグルタミン又はアスパラギン酸に置換されている;
b)配列番号2の18番目のセリン残基は改変されていない、あるいはスレオニン又はチロシンに置換されている;
c)配列番号2の34番目のチロシン残基は改変されていない、あるいはセリン又はスレオニンに置換されている;
d)配列番号2の36番目のセリン残基は改変されていない、あるいはスレオニン又はチロシンに置換されている;
e)配列番号2の40番目のアスパラギン酸残基は改変されていない、あるいはアスパラギン以外の残基に置換されている;
f)配列番号2の69番目のトリプトファン残基は改変されていない;
g)配列番号2の76番目のセリン残基は改変されていない、あるいはスレオニン又はチロシンに置換されている;
h)配列番号2の78番目のスレオニン残基は改変されていない、あるいはセリン又はチロシンに置換されている;
i)配列番号2の80番目のトリプトファン残基は改変されていない;
j)配列番号2の96番目のトリプトファン残基は改変されていない;
k)配列番号2の108番目のトリプトファン残基は改変されていない;
l)配列番号2の116番目のアスパラギン酸残基は改変されていない、あるいはグルタミン酸又はアスパラギンに置換されている
m)配列番号2の46番目のプロリン残基は改変されていない;
n)配列番号2の66番目のアラニン残基は改変されていない;
o)配列番号2の97番目のロイシン残基は改変されていないか、イソロイシンに改変されている;及び
p)配列番号2の113番目のバリン残基は改変されていない
の1ないし全ての条件を満たす、ただし、このうち、1)ないし9)で特定したアミノ酸残基は、1)ないし9)の各々で特定したように置換されている、
態様1ないし13のいずれか1項に記載の改変型ビオチン結合タンパク質。
タマビジンは、食用キノコである担子菌タモギタケ(Pleurotus conucopiae)から発見された新規ビオチン結合タンパク質である(WO02/072817)。当該文献には、
-タマビジン1とタマビジン2の相互のアミノ酸相同性は65.5%で、ビオチンと強く結合する;
-タマビジン2は、大腸菌で可溶性画分に高発現する;そして
-タマビジン2を大腸菌で発現させた場合、4.5時間の培養で、50mlの培養当たり約1mgの純度の高い精製組換えタンパク質が得られた。これはビオチン結合性タンパク質として知られているアビジンやストレプトアビジンと比較しても、非常に高い値である;
ことが記載されている。
本発明の改変型TM2は1態様として、
配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質(TM2あるいはTM2(変異体))において、
以下のグループ:
1)配列番号2の36番目のセリン残基の水素結合を形成しないアミノ酸残基への置換;
2)配列番号2の80番目のトリプトファン残基の親水性アミノ酸残基への置換;
3)配列番号2の116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換;
4)配列番号2の46番目のプロリン残基のスレオニン、セリン若しくはチロシン残基への置換、及び、78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換
5)配列番号2の46番目のプロリン残基のスレオニン、セリン若しくはチロシン残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換;
:並びに
6)配列番号2の46番目のプロリン残基のスレオニン、セリン若しくはチロシン残基への置換、78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換
から選択される置換を有することを特徴とする。
1-a)配列番号2の36番目のセリン残基がアラニンに置換されている改変型ビオチン結合タンパク質(TM2 S36A)、
2-a)配列番号2の80番目のトリプトファン残基がリジンに置換されている改変型ビオチン結合タンパク質(TM2 W80K)、
3-a)配列番号2の116番目のアスパラギン酸残基がアラニンに置換されている改変型ビオチン結合タンパク質(TM2 D116A)、
4-a)配列番号2の46番目のプロリン残基がスレオニンに置換されており、そして、78番目のスレオニン残基がアラニンに置換されている改変型ビオチン結合タンパク質(TM2 P46T-T78A)、
5-a)配列番号2の46番目のプロリン残基がスレオニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている改変型ビオチン結合タンパク質(TM2 P46T-D116A)、並びに、
6-a)配列番号2の46番目のプロリン残基がスレオニンに置換されており、78番目のスレオニン残基がアラニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている改変型ビオチン結合タンパク質(TM2 P46T-T78A―D116A)、である。
i)ビオチンを用いた精製が可能である、
ii)配列番号2の記載のアミノ酸配列からなるタンパク質の四量体構造を維持している、
iii)プロテアーゼに対し耐性を有する、
iv)大腸菌の可溶性画分において高い発現を示す、
の1ないし全部を示す。
また本発明の改変型TM2は1態様として、
配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質(TM2あるいはTM2(変異体))において、
6)配列番号2の78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換
を有することを特徴とする。
6-a)配列番号2の78番目のスレオニン残基がアラニン残基へ置換されている改変型ビオチン結合タンパク質(TM2 T78A)である。
i)ビオチンを用いた精製が可能である、
ii)配列番号2の記載のアミノ酸配列からなるタンパク質の四量体構造を維持している、
iii)プロテアーゼに対し耐性を有する、
v)配列番号2の記載のアミノ酸配列からなるタンパク質よりも、高い耐熱性を有する、
の1ないし全部を示す。
また本発明の改変型TM2は1態様として、
配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質(TM2あるいはTM2(変異体))において、
以下のグループ:
7)配列番号2の36番目のセリン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換;並びに
8)配列番号2の36番目のセリン残基の水素結合を形成しないアミノ酸残基への置換、78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換
から選択される置換を有することを特徴とする。
7-a)配列番号2の36番目のセリン残基がアラニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 S36A―D116A);並びに
8-a)配列番号2の36番目のセリン残基がアラニンに置換されており、78番目のスレオニン残基がアラニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 S36A-T78A―D116A)
からなるグループから選択される。
i)ビオチンを用いた精製が可能である;
iii)プロテアーゼに対し耐性を有する、
vi)弱酸性条件下でビオチンと結合し、そして、中性条件下でビオチンと結合しない、
の1ないし全部を示す。
また本発明の改変型TM2は1態様として、
配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質(TM2あるいはTM2(変異体))において、
9)配列番号2の78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換
を有することを特徴とする。
9-a)配列番号2の78番目のスレオニン残基がアラニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 T78A―D116A)である。
i)ビオチンを用いた精製が可能である、
ii)配列番号2の記載のアミノ酸配列からなるタンパク質の四量体構造を維持している、
iii)プロテアーゼに対し耐性を有する、
iv)大腸菌の可溶性画分において高い発現を示す、
vii)イミノビオチンで精製できない
の1ないし全部を示す。
TM2のアミノ酸を改変して、本発明の改変型TM2を得るための方法は、公知のアミノ酸配列に変異を施す方法を使用でき、特に限定されない。好ましくは本発明の改変タンパク質をコードする核酸の塩基配列に修飾を施し改変する。
本発明の改変型TM2におけるアミノ酸残基の改変は、改変型TM2が適切なビオチン親和性を有することにより精製が可能となるような改変である。ところで、ビオチン結合タンパク質の一つであるストレプトアビジンのビオチンポケットについては既に解明が進んでいる。このストレプトアビジンとTM2のアミノ酸配列のホモロジーは50%程度に過ぎないが、発明者らは、TM2のビオチンポケットについての知見を得るべく、TM2とストレプトアビジンのアミノ酸配列を並列させて比較した。
本発明は、本発明の改変型TM2タンパク質をコードする核酸を提供する。このような核酸の塩基配列は、TM2の塩基配列(配列番号1)を、改変型TM2タンパク質の改変アミノ酸をコードする塩基配列に改変したものである。改変される塩基配列は、改変後のアミノ酸をコードする塩基配列であれば限定されない。例えば、配列番号1の塩基配列からなる核酸(以下、「TM2遺伝子」)、またはそれらの相補鎖にストリンジェントな条件下でハイブリダイズし、かつ、ビオチンとの結合及び解離を可能とする、適切なビオチン結合活性を有するタンパク質をコードする核酸であって、本発明の改変を施すために塩基配列を改変させたものを含む。
また、本発明は、改変型TM2タンパク質をコードする核酸を含むベクターを提供する。好ましくは、改変型TM2タンパク質を発現するための発現ベクターである。
本発明は、本発明の改変型TM2タンパク質を固定化した担体を提供する。
1-1.低親和性タマビジン2(以下LATM2)の設計
本発明者らは、ストレプトアビジンの結晶構造の知見を踏まえ、ストレプトアビジンとTM2のアミノ酸配列との比較検討を行い、TM2においてビオチンと相互作用するアミノ酸残基を推定し、それらのアミノ酸の配置はストレプトアビジンがビオチンと相互作用するアミノ酸のそれと似ているという知見を得た。これにより、TM2のアミノ酸配列の69番目、80番目、96番目、108番目のトリプトファンが、ビオチンと疎水結合するアミノ酸であると推定し、さらにTM2のアミノ酸配列の14番目のアスパラギン、18番目のセリン、34番目のチロシン、36番目のセリン、76番目のセリン、78番目のスレオニン、および、116番目のアスパラギン酸が、ビオチンと水素結合するアミノ酸であると推定した。また、検討の結果、46番目のプロリン、66番目のアラニン、97番目のロイシン、113番目のバリンがTM2においてサブユニット間の結合に重要であると考えられた。
(2)69番目のトリプトファンをリジンに置換したTM2(以下、「TM2 W69K」);
(3)80番目のトリプトファンをリジンに置換したTM2(以下、「TM2 W80K」、塩基配列は配列番号3に記載、アミノ酸配列は配列番号4に記載);
(4)36番目のセリンをアラニンに変異したTM2(以下、「TM2 S36A」、塩基配列は配列番号5に記載、アミノ酸配列は配列番号6に記載);
(5)36番目のセリンからアラニンへの置換と78番目のスレオニンからアラニンへの置換と116番目のアスパラギン酸からアラニンへの置換を持つTM2(以下、「TM2 S36A-T78A-D116A」、塩基配列は配列番号7に記載、アミノ酸配列は配列番号8に記載);
(6)14番目のアスパラギンをアラニンに変異したTM2(以下、「TM2 N14A」);
(7)78番目のスレオニンをアラニンに変異したTM2(以下、「TM2 T78A」、塩基配列は配列番号9に記載、アミノ酸配列は配列番号10に記載);
(8)116番目のアスパラギン酸をアラニンに変異したTM2(以下、「TM2 D116A」、塩基配列は配列番号11に記載、アミノ酸配列は配列番号12に記載);
(9)66番目のアラニンをアルギニンに変異したTM2(以下、「TM2 A66R」);
(10)46番目のプロリンからスレオニンへの置換と66番目のアラニンからアルギニンへの置換をもつTM2(以下、「TM2 P46T-A66R」);
(11)113番目のバリンをアルギニンに変異したTM2(以下、「TM2 V113R」);
(12)46番目のプロリンからスレオニンへの置換と113番目のバリンからアルギニンへの置換を持つTM2(以下、「TM2 P46T-V113R」)。
LATM2遺伝子を構築するために、2段階のPCRを行った。1段階目のPCRは、TM2遺伝子がベクターpTrc99Aに組み込まれたプラスミドを鋳型にして、プライマーTm2NtermPciと各改変体のミスマッチコドンを含むアンチセンスプライマー(TM2-S36A-Rv、TM2-N14A-Rv、TM2-T78A-Rv、TM2-D116A-Rv、TM2-W108K-Rv、TM2-W108E-Rv、TM2-W108R-Rv、TM2-W96K-Rv、TM2-S18A-Rv、TM2-Y34A-Rv、TM2-W69K-Rv、TM2-W80K-Rv、TM2-P46T-Rv、TM2-V113R-Rv、TM2-L97T-Rv)のそれぞれを用いて変異遺伝子の5’部分の増幅を行った。更にミスマッチコドンを含むセンスプライマー(TM2-S36A-Fw、TM2-N14A-Fw、TM2-T78A-Fw、TM2-D116A-Fw、TM2-W108K-Fw、TM2-W108E-Fw、TM2-W108R-Fw、TM2-W96K-Fw、TM2-S18A-Fw、TM2-Y34A-Fw、TM2-W69K-Fw、TM2-W80K-Fw、TM2-P46T-Fw、TM2-V113R-Fw、TM2-L97T-Fw)のそれぞれとTm2CtermBamを用いて変異遺伝子の3’部分の増幅を行った。
PCRによって得られたLATM2遺伝子断片をベクターpCR4 Blunt TOPO(Invitrogen社製)にクローニングした。ライゲーション反応はベクターキット添付の説明書きに従った。大腸菌TB1にエレクトロポレーション法を用いてDNAを導入し、常法(Sambrook et al. 1989, Molecular Cloning, A laboratory manual, 2nd edition)に従ってプラスミドDNAを抽出した。インサートが確認されたクローンに関して、M13プライマー(Takara社)を用いて、ABI PRISM蛍光シークエンサー(Model 310 Genetic Analyzer, Perkin Elmer社)で、PCR産物の塩基配列をその両端から決定し、対象塩基に目的とする変異が導入されていることを確認した。
各LATM2/pTrc99Aにより形質転換した大腸菌BL21を、抗生物質アンピシリン(最終濃度100μg/mL)を含むLB培地6mLに接種し、OD600における吸光度が0.5に達するまで25℃で振とう培養した。その後、1mM IPTGを添加し、さらに25℃で一晩振とう培養した。培養液1mLから遠心にて大腸菌を集菌し、100mM リン酸緩衝液(pH7)1500μL中に懸濁後、菌体を超音波により破砕した。破砕液を遠心(15000rpm)し、その上清を可溶性画分とした。
LATM2の精製は、Hofmann et al.(1980)の方法に従い、2-イミノビオチン-アガロース(Sigma社製)を充填したカラムを用いて行った。各LATM2で形質転換した大腸菌について、大腸菌培養液25mLに、最終濃度1mMとなるようにIPTGを添加して発現誘導した。菌体を遠心分離により集菌し、50mM NaClを含む50mM CAPS(pH12)1.5mLで懸濁し、超音波破砕後の遠心上清に、2-イミノビオチン-アガロース 500μLを添加した後、カラムに充填した。500mM NaClを含む50mM CAPS(pH12)でカラムをよく洗浄した後、50mM NH4OAC(pH4)で溶出した。
TM2 S36A-D116AおよびTM2 S36A-T78A-D116Aは、ビオチン-アガロース(Sigma社製)への結合において他のLATM2に見られないpH依存性を示した。
LATM2のサブユニット会合状態を分析するために、各種LATM2の分子量をFPLCにより測定した。カラムはSephacryl S-100HR(GEヘルスケア社製)を用いた。分子量測定マーカーとしてGel Filtration Calibration Kit LMW(GEヘルスケア社製)を用いた。緩衝液は、500mMNaClを含む50mMリン酸カリウムを用いた。
ビオチン-アガロースにより精製した10μMのLATM2(TM2 S36A、TM2 D116A、TM2 T78A、TM2 W80K、TM2 T78A-D116A、TM2 P46T-T78A、TM2 P46T-D116A、TM2 S36A-D116A、TM2 S36A-T78A-D116A、TM2 P46T-T78A-D116A)を、5μM ProteinaseKと5mM CaCl2を含む50mM Tris-HCl(pH8.0)中で30℃、15分間反応させた。この際、一部のサンプルには最終濃度1mMになるようにビオチンを添加した。その後、SDSサンプルバッファーを添加し、95℃で10分間熱処理することで反応を停止させた。得られたサンプルをSDS-PAGEに供与しCBB染色を行った。対照として、10μMの野生型TM2と、16μMのBSAを同条件で反応させた。結果を図4、図5に示す。
LA-TM2の耐熱性を、SDS-PAGEによって調査した。各タンパク質をSDSサンプルバッファー中で、ビオチンの存在下及び非存在下で所定の温度で20分間熱処理した後、SDS-PAGEに供し、CBB染色を行った。採用した加熱温度はビオチン無しの実験系では80℃、82℃、84℃、86℃、88℃、90℃、92℃、及び94℃であり、ビオチンを添加した実験系では86℃、88℃、90℃、92℃、94℃、96℃、98℃、及び100℃であった。
上記の様にして調製したLATM2を用いてビオチン化タンパク質を効率よく精製できるか否かを、LATM2を固定化した担体を作製することにより確認した。
LATM2によってビオチン化タンパク質を効率よく精製することが可能であるか否かを調べるために、TM2 S36AをSheparoseに固定化したTM2-S36A-Sepharoseを作製した。
作製したTM2-S36A-Sepharoseを用いてビオチン化タンパク質の精製を試みた。精製するビオチン化タンパク質としてEZ-Link(登録商標)NHS-ビオチン(リンカー長13.5オングストローム、PIERCE社製)でビオチン化したウシ血清アルブミン(BSA)(以下ビオチン化BSA)を用いた。
TM2 S36A-D116Aは、先の1-6)で述べたように、ビオチン-アガロース(Sigma社製)への結合において、特異的なpH依存性を示した。そこでTM2 S36A-D116Aを共有結合でsepharoseに結合させたS36A-D116A-sepharoseを作製し、ビオチン化タンパク質を精製する際のpH依存性を検討した。
Claims (18)
- 配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質において、
以下のグループ:
1)配列番号2の36番目のセリン残基の水素結合を形成しないアミノ酸残基への置換;
2)配列番号2の80番目のトリプトファン残基の親水性アミノ酸残基への置換;
3)配列番号2の116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換;
4)配列番号2の46番目のプロリン残基のスレオニン、セリン若しくはチロシン残基への置換、及び、78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換;
5)配列番号2の46番目のプロリン残基のスレオニン、セリン若しくはチロシン残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換:並びに
6)配列番号2の46番目のプロリン残基のスレオニン、セリン若しくはチロシン残基への置換、78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換
から選択される置換を有することを特徴とする、改変型ビオチン結合タンパク質。 - 1-a)配列番号2の36番目のセリン残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 S36A);
2-a)配列番号2の80番目のトリプトファン残基がリジンに置換されている、改変型ビオチン結合タンパク質(TM2 W80K);
3-a)配列番号2の116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 D116A);
4-a)配列番号2の46番目のプロリン残基がスレオニンに置換されており、そして、78番目のスレオニン残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 P46T-T78A);
5-a)配列番号2の46番目のプロリン残基がスレオニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 P46T-D116A);並びに
6-a)配列番号2の46番目のプロリン残基がスレオニンに置換されており、78番目のスレオニン残基がアラニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 P46T-T78A―D116A)
からなるグループから選択される、請求項1に記載の改変型ビオチン結合タンパク質。 - 以下の性質:
i)ビオチンを用いた精製が可能である;
ii)配列番号2の記載のアミノ酸配列からなるタンパク質の四量体構造を維持している;
iii)プロテアーゼに対し耐性を有する;及び
iv)大腸菌の可溶性画分において高い発現を示す
の1ないし全部を満たす、請求項1又は2に記載の改変型ビオチン結合タンパク質。 - 配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質において、
6)配列番号2の78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換
を有することを特徴とする改変型ビオチン結合タンパク質。 - 6-a)配列番号2の78番目のスレオニン残基がアラニン残基へ置換されている、請求項4に記載の改変型ビオチン結合タンパク質(TM2 T78A)。
- 以下の性質:
i)ビオチンを用いた精製が可能である;
ii)配列番号2の記載のアミノ酸配列からなるタンパク質の四量体構造を維持している;
iii)プロテアーゼに対し耐性を有する;及び
v)配列番号2の記載のアミノ酸配列からなるタンパク質よりも、高い耐熱性を有する
の1ないし全部を満たす、請求項4又は5に記載の改変型ビオチン結合タンパク質。 - 配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質において、
以下のグループ:
7)配列番号2の36番目のセリン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換;並びに
8)配列番号2の36番目のセリン残基の水素結合を形成しないアミノ酸残基への置換、78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換
から選択される置換を有することを特徴とする、改変型ビオチン結合タンパク質。 - 7-a)配列番号2の36番目のセリン残基がアラニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 S36A―D116A);並びに
8-a)配列番号2の36番目のセリン残基がアラニンに置換されており、78番目のスレオニン残基がアラニンに置換されており、そして、116番目のアスパラギン酸残基がアラニンに置換されている、改変型ビオチン結合タンパク質(TM2 S36A-T78A―D116A)
からなるグループから選択される、請求項7に記載の改変型ビオチン結合タンパク質。 - 以下の性質:
i)ビオチンを用いた精製が可能である;
iii)プロテアーゼに対し耐性を有する;及び
vi)弱酸性条件下でビオチンと結合し、そして、中性条件下でビオチンと結合しない
の1ないし全部を満たす、請求項7又は8に記載の改変型ビオチン結合タンパク質。 - 配列番号2に記載のアミノ酸配列、あるいはこの配列中に1から複数個のアミノ酸変異を有するアミノ酸配列、又はこの配列と80%以上の同一性を有するアミノ酸配列を含み、ビオチン結合活性を示すタンパク質において、
9)配列番号2の78番目のスレオニン残基の水素結合を形成しないアミノ酸残基への置換、及び、116番目のアスパラギン酸残基の水素結合を形成しないアミノ酸残基への置換
を有することを特徴とする、改変型ビオチン結合タンパク質。 - 9-a)配列番号2の78番目のスレオニン残基がアラニンに置換されていおり、そして、116番目のアスパラギン酸残基がアラニンに置換されている、請求項10に記載の改変型ビオチン結合タンパク質(TM2 T78A―D116A)。
- 以下の性質:
i)ビオチンを用いた精製が可能である;
ii)配列番号2の記載のアミノ酸配列からなるタンパク質の四量体構造を維持している;
iii)プロテアーゼに対し耐性を有する;
iv)大腸菌の可溶性画分において高い発現を示す;及び
vii)イミノビオチンで精製できない
の1ないし全部を満たす、請求項10又は11のいずれか1項に記載の改変型ビオチン結合タンパク質。 - 配列番号2に記載のアミノ酸配列からなるタンパク質よりも、低いビオチン結合性を示す、請求項1ないし12のいずれか1項に記載の改変型ビオチン結合タンパク質。
- 以下のa)-l)
a)配列番号2の14番目のアスパラギン残基は改変されていない、あるいはグルタミン又はアスパラギン酸に置換されている;
b)配列番号2の18番目のセリン残基は改変されていない、あるいはスレオニン又はチロシンに置換されている;
c)配列番号2の34番目のチロシン残基は改変されていない、あるいはセリン又はスレオニンに置換されている;
d)配列番号2の36番目のセリン残基は改変されていない、あるいはスレオニン又はチロシンに置換されている;
e)配列番号2の40番目のアスパラギン酸残基は改変されていない、あるいはアスパラギン以外の残基に置換されている;
f)配列番号2の69番目のトリプトファン残基は改変されていない;
g)配列番号2の76番目のセリン残基は改変されていない、あるいはスレオニン又はチロシンに置換されている;
h)配列番号2の78番目のスレオニン残基は改変されていない、あるいはセリン又はチロシンに置換されている;
i)配列番号2の80番目のトリプトファン残基は改変されていない;
j)配列番号2の96番目のトリプトファン残基は改変されていない;
k)配列番号2の108番目のトリプトファン残基は改変されていない;
l)配列番号2の116番目のアスパラギン酸残基は改変されていない、あるいはグルタミン酸又はアスパラギンに置換されている
m)配列番号2の46番目のプロリン残基は改変されていない;
n)配列番号2の66番目のアラニン残基は改変されていない;
o)配列番号2の97番目のロイシン残基は改変されていないか、イソロイシンに改変されている;及び
p)配列番号2の113番目のバリン残基は改変されていない
の1ないし全ての条件を満たす、ただし、このうち、1)ないし9)で特定したアミノ酸残基は、1)ないし9)の各々で特定したように置換されている、
請求項1ないし13のいずれか1項に記載の改変型ビオチン結合タンパク質。 - 配列番号2に記載のアミノ酸配列と90%以上の同一性を有するアミノ酸配列を含む、請求項1ないし14のいずれか1項に記載の改変型ビオチン結合タンパク質。
- 請求項1ないし15のいずれか1項に記載のタンパク質を固定化した担体。
- 請求項1ないし15のいずれか1項に記載のタンパク質をコードする核酸。
- 請求項17に記載の核酸を含むベクター。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/378,282 US9018360B2 (en) | 2009-06-24 | 2009-06-24 | Modified biotin-binding protein |
SG2011095460A SG177334A1 (en) | 2009-06-24 | 2009-06-24 | Modified biotin-conjugated protein |
KR1020117031494A KR101657736B1 (ko) | 2009-06-24 | 2009-06-24 | 개변형 비오틴 결합 단백질 |
PCT/JP2009/061530 WO2010150375A1 (ja) | 2009-06-24 | 2009-06-24 | 改変型ビオチン結合タンパク質 |
AU2009348580A AU2009348580B2 (en) | 2009-06-24 | 2009-06-24 | Modified biotin-binding protein |
CN2009801601027A CN102803485A (zh) | 2009-06-24 | 2009-06-24 | 修饰型生物素结合蛋白 |
CA2765833A CA2765833C (en) | 2009-06-24 | 2009-06-24 | Modified biotin-binding protein |
EP09846508.1A EP2447364B1 (en) | 2009-06-24 | 2009-06-24 | Modified biotin-conjugated protein |
US14/661,672 US9611303B2 (en) | 2009-06-24 | 2015-03-18 | Modified biotin-binding protein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/061530 WO2010150375A1 (ja) | 2009-06-24 | 2009-06-24 | 改変型ビオチン結合タンパク質 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/378,282 A-371-Of-International US9018360B2 (en) | 2009-06-24 | 2009-06-24 | Modified biotin-binding protein |
US14/661,672 Continuation US9611303B2 (en) | 2009-06-24 | 2015-03-18 | Modified biotin-binding protein |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010150375A1 true WO2010150375A1 (ja) | 2010-12-29 |
Family
ID=43386169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/061530 WO2010150375A1 (ja) | 2009-06-24 | 2009-06-24 | 改変型ビオチン結合タンパク質 |
Country Status (8)
Country | Link |
---|---|
US (2) | US9018360B2 (ja) |
EP (1) | EP2447364B1 (ja) |
KR (1) | KR101657736B1 (ja) |
CN (1) | CN102803485A (ja) |
AU (1) | AU2009348580B2 (ja) |
CA (1) | CA2765833C (ja) |
SG (1) | SG177334A1 (ja) |
WO (1) | WO2010150375A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011055827A (ja) * | 2009-06-24 | 2011-03-24 | Japan Tobacco Inc | 改変型ビオチン結合タンパク質 |
EP2416158A1 (en) * | 2009-03-31 | 2012-02-08 | Japan Tobacco, Inc. | Method for detecting substance in biological sample |
WO2012091110A1 (ja) * | 2010-12-28 | 2012-07-05 | 日本たばこ産業株式会社 | 改変型タマビジン |
WO2013018836A1 (ja) * | 2011-08-01 | 2013-02-07 | 日本たばこ産業株式会社 | 生物学的試料中の物質を検出する工程において、非特異的結合を抑制する方法、当該方法に使用するための剤 |
WO2016104338A1 (ja) * | 2014-12-22 | 2016-06-30 | 和光純薬工業株式会社 | ビオチン化核酸の分離方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2009348580B2 (en) * | 2009-06-24 | 2015-07-23 | Japan Tobacco Inc. | Modified biotin-binding protein |
US9597367B2 (en) | 2013-04-19 | 2017-03-21 | Bioventures, Llc | Methods for improving muscle and heart function |
EP3234147B1 (en) * | 2014-12-19 | 2020-09-09 | Adagene Inc. | Methods and systems for autoinduction of protein expression |
JP7529566B2 (ja) | 2017-11-02 | 2024-08-06 | バイオベンチャーズ・リミテッド・ライアビリティ・カンパニー | 筋タンパク質合成を改善するためのアミノ酸補給の使用 |
CN113564191A (zh) * | 2021-07-26 | 2021-10-29 | 无锡傲锐东源生物科技有限公司 | 一种生物素结合蛋白以及亲和柱制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002072817A1 (fr) | 2001-03-12 | 2002-09-19 | Japan Tobacco Inc. | Nouvelle proteine, gene codant ladite proteine et procede d'utilisation correspondant |
WO2008081938A1 (ja) * | 2006-12-28 | 2008-07-10 | Japan Tobacco Inc. | 耐熱性ビオチン結合性タンパク質の利用法、および当該タンパク質が結合した固体担体 |
WO2009028625A1 (ja) * | 2007-08-28 | 2009-03-05 | Japan Tobacco Inc. | タマビジンを利用したタンパク質を担体に結合する方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19637718A1 (de) | 1996-04-01 | 1997-10-02 | Boehringer Mannheim Gmbh | Rekombinante inaktive Core-Streptavidin Mutanten |
WO2001005977A1 (en) * | 1999-07-15 | 2001-01-25 | Yeda Research And Development Co. Ltd. | Generation of stable dimers with reversible biotin-binding activity |
FI20021518A0 (fi) | 2002-08-23 | 2002-08-23 | Jyvaeskylaen Yliopisto | Avidiinin lämpökestävyyden lisääminen |
JP5011882B2 (ja) | 2006-08-11 | 2012-08-29 | マックス株式会社 | 連結ステープル及びステープルカートリッジ |
EP2894223A1 (en) * | 2008-08-13 | 2015-07-15 | Japan Tobacco Inc | Modified biotin-binding protein |
AU2009348580B2 (en) * | 2009-06-24 | 2015-07-23 | Japan Tobacco Inc. | Modified biotin-binding protein |
-
2009
- 2009-06-24 AU AU2009348580A patent/AU2009348580B2/en not_active Ceased
- 2009-06-24 EP EP09846508.1A patent/EP2447364B1/en not_active Not-in-force
- 2009-06-24 CA CA2765833A patent/CA2765833C/en not_active Expired - Fee Related
- 2009-06-24 WO PCT/JP2009/061530 patent/WO2010150375A1/ja active Application Filing
- 2009-06-24 CN CN2009801601027A patent/CN102803485A/zh active Pending
- 2009-06-24 US US13/378,282 patent/US9018360B2/en not_active Expired - Fee Related
- 2009-06-24 KR KR1020117031494A patent/KR101657736B1/ko active IP Right Grant
- 2009-06-24 SG SG2011095460A patent/SG177334A1/en unknown
-
2015
- 2015-03-18 US US14/661,672 patent/US9611303B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002072817A1 (fr) | 2001-03-12 | 2002-09-19 | Japan Tobacco Inc. | Nouvelle proteine, gene codant ladite proteine et procede d'utilisation correspondant |
WO2008081938A1 (ja) * | 2006-12-28 | 2008-07-10 | Japan Tobacco Inc. | 耐熱性ビオチン結合性タンパク質の利用法、および当該タンパク質が結合した固体担体 |
WO2009028625A1 (ja) * | 2007-08-28 | 2009-03-05 | Japan Tobacco Inc. | タマビジンを利用したタンパク質を担体に結合する方法 |
Non-Patent Citations (34)
Title |
---|
"Atlas of Polypeptide Sequence and Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358 |
ALTSCHUL, NUCL. ACIDS RES., vol. 25, 1997, pages 3389 - 3402 |
CHILKOTI ET AL., PROC. NATL. ACAD. SCI., vol. 92, 1995, pages 1754 - 1758 |
CHILKOTI, A. ET AL.: "Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120", PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 1754 - 1758, XP000961182 * |
DEVEREUX ET AL., NUCL. ACIDS RES., vol. 12, 1984, pages 387 |
GABRIEL ET AL., PROC. NATL. ACAD. SCI., vol. 95, 1998, pages 13525 - 13530 |
GRIBSKOV; BURGESS, NUCL. ACIDS RES., vol. 14, 1986, pages 6745 |
HENIKOFF, S.; HENIKOFF, J. G., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 10915 - 10919 |
HIGUCHI ET AL., NUCLEIC ACID RES., vol. 16, 1988, pages 7351 - 7367 |
HO ET AL., GENE, vol. 77, 1989, pages 51 - 59 |
KADA ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 1427, 1999, pages 33 - 43 |
LAITINEN ET AL., FEBS LETT., vol. 461, 1999, pages 52 - 58 |
LAITINEN ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 8219 - 8224 |
LAITINEN ET AL., J. BIOL. CHEM., vol. 278, 2003, pages 4010 - 4014 |
LAITINEN, O.H. ET AL.: "Genetically engineered avidins and streptavidins", CELL. MOL. LIFE SCI., vol. 63, 2006, pages 2992 - 3017, XP019471723 * |
MARTTILA ET AL., BIOCHEM. J., vol. 369, 2003, pages 249 - 254 |
NEEDLEMAN, S. B.; WUNSCH, C. D., J. MOL. BIOL., vol. 48, 1970, pages 443 - 453 |
NUCLEIC ACID RESEARCH, vol. 10, no. 20, 1982, pages 6487 - 6500 |
QURESHI ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 46422 - 46428 |
QURESHI, M.H. ET AL.: "Development and characterization of a series of soluble tetrameric and monomeric streptavidin muteins with differential biotin binding affinities", J. BIOL. CHEM., vol. 276, no. 49, 2001, pages 46422 - 46428, XP008148334 * |
QURESHI; WONG, PROTEIN EXPR. PURIF., vol. 25, 2002, pages 409 - 415 |
SAMBROOK ET AL.: "Molecular Cloning, A laboratory manual, 2nd edition", 1989 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual,3rd edition", 2001, COLD SPRING HARBOR LABORATORY PRESS |
SANO ET AL., PROC. NATL. ACAD. SCI., vol. 92, 1995, pages 3180 - 3184 |
SANO ET AL., PROC. NATL. ACAD. SCI., vol. 94, 1997, pages 6153 - 6158 |
See also references of EP2447364A4 * |
TAKAKURA, Y. ET AL.: "Tamavidins- novel avidin-like biotin-binding proteins from the Tamogitake mushroom", FEBS J., vol. 276, no. 5, March 2009 (2009-03-01), pages 1383 - 1397, XP002616627 * |
WEBER ET AL., SCIENCE, vol. 243, 1989, pages 85 - 88 |
WOOTTON; FEDERHEN: "Methods Enzymol.", vol. 266, 1996, article "Analysis of compositionally biased regions in sequence databases", pages: 544 - 71 |
WU ET AL., J. BIOL. CHEM., vol. 280, 2005, pages 23225 - 23231 |
WU, S.-C. ET AL.: "Engineering soluble monomeric streptavidin with reversible biotin binding capability", J. BIOL. CHEM., vol. 280, no. 24, 2005, pages 23225 - 23231, XP008142801 * |
WU; WONG, J. BIOL. CHEM., vol. 280, 2005, pages 23225 - 23231 |
WU; WONG, PROTEIN EXPR. PURIF., vol. 46, 2006, pages 268 - 27 |
WU; WONG, PROTEIN EXPR. PURIF., vol. 46, 2006, pages 268 - 273 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2416158A1 (en) * | 2009-03-31 | 2012-02-08 | Japan Tobacco, Inc. | Method for detecting substance in biological sample |
EP2416158A4 (en) * | 2009-03-31 | 2012-05-30 | Japan Tobacco Inc | METHOD FOR DETECTING A SUBSTANCE IN A BIOLOGICAL SAMPLE |
US9034590B2 (en) | 2009-03-31 | 2015-05-19 | Japan Tobacco Inc. | Method for detecting substance in biological sample |
JP2011055827A (ja) * | 2009-06-24 | 2011-03-24 | Japan Tobacco Inc | 改変型ビオチン結合タンパク質 |
JP2016041075A (ja) * | 2009-06-24 | 2016-03-31 | 日本たばこ産業株式会社 | 改変型ビオチン結合タンパク質 |
WO2012091110A1 (ja) * | 2010-12-28 | 2012-07-05 | 日本たばこ産業株式会社 | 改変型タマビジン |
WO2013018836A1 (ja) * | 2011-08-01 | 2013-02-07 | 日本たばこ産業株式会社 | 生物学的試料中の物質を検出する工程において、非特異的結合を抑制する方法、当該方法に使用するための剤 |
JPWO2013018836A1 (ja) * | 2011-08-01 | 2015-03-05 | 日本たばこ産業株式会社 | 生物学的試料中の物質を検出する工程において、非特異的結合を抑制する方法、当該方法に使用するための剤 |
WO2016104338A1 (ja) * | 2014-12-22 | 2016-06-30 | 和光純薬工業株式会社 | ビオチン化核酸の分離方法 |
US10094822B2 (en) | 2014-12-22 | 2018-10-09 | Fujifilm Wako Pure Chemical Corporation | Method for separating biotinylated nucleic acid |
Also Published As
Publication number | Publication date |
---|---|
US9018360B2 (en) | 2015-04-28 |
US9611303B2 (en) | 2017-04-04 |
AU2009348580B2 (en) | 2015-07-23 |
CN102803485A (zh) | 2012-11-28 |
US20150291671A1 (en) | 2015-10-15 |
KR20140047180A (ko) | 2014-04-22 |
CA2765833C (en) | 2017-03-28 |
CA2765833A1 (en) | 2010-12-29 |
US20120245331A1 (en) | 2012-09-27 |
KR101657736B1 (ko) | 2016-09-19 |
EP2447364A1 (en) | 2012-05-02 |
SG177334A1 (en) | 2012-02-28 |
AU2009348580A1 (en) | 2012-01-19 |
EP2447364B1 (en) | 2017-02-01 |
EP2447364A4 (en) | 2012-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010150375A1 (ja) | 改変型ビオチン結合タンパク質 | |
Takakura et al. | Tamavidins–novel avidin‐like biotin‐binding proteins from the Tamogitake mushroom | |
EP2314681B1 (en) | Modified biotin-binding protein | |
JP6163194B2 (ja) | 改変型ビオチン結合タンパク質 | |
EP2660320B1 (en) | Modified tamavidin | |
KR101598581B1 (ko) | 광활성 메티오닌 모사체 도입 단백질 g 변이체 | |
Fong | Intein-mediated methods for economical protein purification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980160102.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09846508 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13378282 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2765833 Country of ref document: CA Ref document number: 2009348580 Country of ref document: AU |
|
REEP | Request for entry into the european phase |
Ref document number: 2009846508 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009846508 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117031494 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2009348580 Country of ref document: AU Date of ref document: 20090624 Kind code of ref document: A |