WO2010149940A1 - Grains fondus d'oxydes comprenant al, ti, si et produits ceramiques comportant de tels grains - Google Patents
Grains fondus d'oxydes comprenant al, ti, si et produits ceramiques comportant de tels grains Download PDFInfo
- Publication number
- WO2010149940A1 WO2010149940A1 PCT/FR2010/051312 FR2010051312W WO2010149940A1 WO 2010149940 A1 WO2010149940 A1 WO 2010149940A1 FR 2010051312 W FR2010051312 W FR 2010051312W WO 2010149940 A1 WO2010149940 A1 WO 2010149940A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- grains
- oxides
- sio
- tio
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 54
- 239000000203 mixture Substances 0.000 claims abstract description 52
- 238000005245 sintering Methods 0.000 claims abstract description 25
- 239000000126 substance Substances 0.000 claims abstract description 24
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 25
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 18
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 230000003197 catalytic effect Effects 0.000 claims description 8
- 229910010293 ceramic material Inorganic materials 0.000 claims description 8
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 7
- 229910000505 Al2TiO5 Inorganic materials 0.000 claims description 6
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 claims description 6
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 1
- 229910000421 cerium(III) oxide Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 18
- 238000001914 filtration Methods 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 5
- 235000012245 magnesium oxide Nutrition 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000004071 soot Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910052878 cordierite Inorganic materials 0.000 description 4
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000003361 porogen Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 102100031083 Uteroglobin Human genes 0.000 description 1
- 108090000203 Uteroglobin Proteins 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007571 dilatometry Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- -1 drawer plates Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011499 joint compound Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/478—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/6262—Milling of calcined, sintered clinker or ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/653—Processes involving a melting step
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0006—Honeycomb structures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/0081—Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3248—Zirconates or hafnates, e.g. zircon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3267—MnO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5427—Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
- F01N3/0222—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2825—Ceramics
- F01N3/2828—Ceramic multi-channel monoliths, e.g. honeycombs
Definitions
- the invention relates to grains for ceramic applications consisting mainly of oxides comprising elements Al, Ti and Si.
- the invention also relates to a process for producing such grains, as well as to ceramic products made from said grains or including them, particularly but not only to filter structures or catalytic supports, especially used in an exhaust line of a diesel-type internal combustion engine.
- said oxides comprising elements Al, Ti and Si will be described with reference to the corresponding simple oxides SiO 2, Al 2 O 3 or TiO 2.
- a particulate filter is subjected to a succession of filtration (soot accumulation) and regeneration (soot elimination) phases.
- the soot particles emitted by the engine are retained and are deposited inside the filter.
- the regeneration phases the soot particles are burned inside the filter, in order to restore its filtration properties.
- the mechanical strength properties at both low and high temperature of the constituent material of the filter are essential for such an application.
- the material must have a sufficiently stable structure to withstand, especially throughout the life of the equipped vehicle, temperatures that can locally rise to values substantially greater than 1000 0 C, especially if certain regeneration phases are poorly controlled.
- the filters are mainly made of porous ceramic material, most often made of silicon carbide or cordierite.
- silicon carbide catalytic filters are for example described in the patent applications EP 816,065, EP 1 142 619, EP 1 455 923 or else WO 2004/090294 and WO 2004/065088.
- Such filters make it possible to obtain chemically inert filtering structures with excellent thermal conductivity and having porosity characteristics, in particular the average size and the pore size distribution, which are ideal for a filtering application of soot from a thermal motor .
- a first disadvantage is related to the slightly high coefficient of thermal expansion of SiC, greater than 4.10 ⁇ 6 K "1 , which does not allow the manufacture of monolithic filters of large size and usually requires the segment to be divided into several elements. in a honeycomb bonded by a cement, as described in application EP 1 455 923.
- a second drawback, of economic nature, is related to the extremely high firing temperature, typically greater than 2100 ° C., allowing a sintering ensuring a sufficient thermomechanical resistance of the honeycomb structures, especially during the successive stages of regeneration of the filter Such temperatures require the installation of special equipment which significantly increases the cost of the filter finally obtained.
- cordierite filters are known and used for a long time, because of their low cost, it is now known that problems can occur in such structures, especially during poorly controlled regeneration cycles, during which the filter can be subjected locally to temperatures above the melting temperature of cordierite. The consequences of these hot spots can range from loss of partial efficiency of the filter to its total destruction in the most severe cases.
- cordierite does not have sufficient chemical inertness, with respect to the temperatures reached during successive cycles of regeneration and is therefore likely to react and be corroded by the species from residues of lubricant, fuel or other oils , accumulated in the structure during the filtration phases, this phenomenon can also be at the origin of the rapid deterioration of the properties of the structure.
- the application EP 1 559 696 proposes the use of powders for the manufacture of honeycomb filters obtained by reactive sintering of aluminum, titanium and magnesium oxides between 1000 and 1700 ° C. material obtained after sintering is in the form of a mixture of two phases: a majority phase of titanium alumina pseudo-brookite Al 2 TiO 5 type titanium containing aluminum, titanium and magnesium and a feldspar minority phase of the type y Na y Ki_ AlSi 3 0 8.
- the corrosion resistance must be controlled, so as to avoid changes in the porosity of the filter.
- a high propensity for corrosion of the material used as the constituent of the filter causes a reaction likely to close the porosity and considerably reduce the filtration capacity and, in the most severe cases, may cause leakage by drilling a filter wall.
- the present invention relates to new grains comprising an oxide of the aluminum titanate type, said grains making it possible to obtain materials and products having properties, as previously described, substantially improved.
- the grains according to the invention can thus be advantageously used in many fields of application of ceramic materials and in particular for the manufacture of a filtering and / or catalytic structure, typically in honeycomb.
- the present invention relates to melted grains having the following chemical composition, in weight percentages based on the oxides:
- Al 2 O 3 represents more than 15% of the chemical composition, the percentages being given by weight on the basis of the oxides.
- Al 2 O 3 may represent more than 25% and more preferably more than 35% of the chemical composition.
- Al 2 O 3 represents less than 54%, or even less than 53% of the chemical composition, the percentages being given by weight on the basis of the oxides.
- SiO 2 represents more than 10% of the chemical composition
- Al 2 O 3 represents less than 52% or even less than 51% of the chemical composition, the percentages being given by weight on the basis of the oxides.
- TiO 2 represents more than 22% and very preferably more than 25% of the chemical composition.
- TiO 2 represents less than 43% and very preferably less than 40% or even less than 38% or even less than 35% of the chemical composition, the percentages being given by weight on the basis of the oxides.
- SiO 2 represents more than 4%, even more than 6%, even more than 7%, or even more than 8%, or even more than 10%, or even more than 12% of the chemical composition.
- SiO 2 represents less than 25% and very preferably less than 20% of the chemical composition, the percentages being given by weight on the basis of the oxides.
- MgO is less than 0.9%, or even less than 0.5% or even less than 0.1% of the chemical composition of the grains, by weight based on the oxides.
- the grains may further comprise other elements such as Ca, Na, K, Sr, B, Ba, the total summed amount of said elements present being preferably less than 15% by weight, preferably less than 13%, or even less than 12% by weight, based on the corresponding simple oxides CaO, Na 2 O, K 2 O, SrO, B2O 3, BaO and relative to the weight of all the oxides present in said grains.
- the total summed amount of said oxides may represent more than 1%, even more than 2%, even more than 4%, or even more than 5%, or even more than 6% of the chemical composition.
- the weight proportion of the sum of the oxides CaO, Na2 ⁇ 0, K 2 O, SrO, B2O3, BaO in grain (or the material obtained from the grains) is smaller than that of SiO 2, in particular when the mass proportion of SiO 2 is less than 15%.
- the oxide (s) of ZrO 2 and / or Ce 2 ⁇ 3 and / or HfO 2 represent (s) in their entirety more than 0 , 7% or more than 0.8% and very preferably more than 1% of the chemical composition, the percentages being given by weight and on the basis of the oxides.
- the oxide (s) of ZrO 2 and / or Ce 2 O 3 and / or HfO 2 represent (s) in all less than 10% and very preferably less than 8% of the chemical composition.
- the grains preferentially comprise, in very large majority, or even only, zirconium oxide, in the proportions just described.
- the grains according to the invention may further comprise other minority elements.
- the grains may indeed comprise other elements such as Co, Fe, Cr, Mn, La, Y, Ga, the quantity total summation of said elements present being preferably less than 2% by weight, for example less than 1.5%, or even less than 1.2% by weight on the basis of the corresponding oxides CoO, Fe 2 ⁇ 3, Cr 2 ⁇ 3, MnO 2 , 2 ⁇ 3, Y 2 ⁇ 3, Ga 2 ⁇ 3, based on the weight of all the oxides present in said grains.
- the weight percentage of each minor element, in particular Fe, based on the weight of the oxide corresponds, is preferably less than 0.7%, or even less than 0.6%, or even less than 0.5%.
- the melted grains according to the invention are mainly constituted by an oxide phase of the aluminum titanate type and of at least one silicate phase.
- the silicate phase (s) are in proportions ranging from 5 to 50% of the total weight of the grains, preferably from 8 to 45% and very preferably from 15 to 40% of the total weight of the grains.
- the said silicate phase (s) may consist mainly of silica and alumina.
- the proportion of silica in said silicate phase (s) is greater than 30%, or even greater than 35%.
- the invention also relates to a ceramic product or a ceramic material, obtained by sintering grains previously described, said product or material mainly comprising or consisting of an oxide phase of the aluminum titanate type and a silicate phase.
- a ceramic product (or material) according to the invention has the following chemical composition, in weight percent based on the oxides:
- said ceramic product may comprise, in weight percent based on the oxides and in total, more than 1% and less than 15% of at least one oxide selected from the group consisting of Na 2 O, K 2 O, CaO, BaO,
- all the embodiments described above in relation to the compositions of the melted grains are directly transferable to the ceramic product (or material) according to the invention.
- all the values and all the preferred domains previously described in relation to the composition of the corresponding grains are directly transferable to the composition of the product (or material) according to the invention.
- base of the corresponding oxides the different elements to enter into their composition, especially Al, Ti, Si, Zr / Ce / Hf, Mg, as well as the elements Ca, Na, K, Sr, B, Ba or the elements Co, Fe, Cr, Mn, La , Y, Ga.
- the ceramic product according to the invention has the following chemical composition, in weight percentage on the basis of the oxides: - more than 35% and less than 53% of Al 2 O 3 ,
- the grains of the invention can advantageously be prepared by electrofusion, which allows the production of large quantities of grains with attractive yields and a very good price / performance ratio.
- the invention also relates to the process for producing previously described grains, comprising the following steps: a) mixing raw materials to form the feedstock; b) melting of the feedstock until the molten liquid is obtained; c) cooling said molten liquid so that the molten liquid is fully solidified, for example in less than 3 minutes; d) grinding said solid mass so as to obtain a mixture of melted grains, that is to say obtained by melting.
- the raw materials are chosen in step a) so that the grains obtained in step d) are in accordance with the invention.
- any other conventional or known method of manufacturing molten grains may also be implemented, provided that the composition of the feedstock makes it possible to obtain grains having a composition in accordance with the invention. that of the grains of the invention.
- an electric arc furnace is preferably used, but all known furnaces are conceivable, such as an induction furnace or a plasma furnace, provided that they allow the initial charge to be completely melted.
- the firing is preferably carried out under neutral conditions, for example under argon, or oxidizing, preferably at atmospheric pressure.
- the cooling can be rapid, that is to say that the molten liquid is fully solidified in less than 3 minutes.
- the cooling can be rapid, that is to say that the molten liquid is fully solidified in less than 3 minutes.
- it results from casting in CS molds as described in the patent
- step d the solid mass is milled, according to conventional techniques, to obtain the grain size suitable for the intended application.
- the product according to the present invention is a structure of the honeycomb type, made of a porous ceramic material, said structure being made of a porous ceramic material obtained from the grains according to the invention, said structure further having a porosity greater than 10% and a pore size centered between 5 and 60 microns.
- the structures obtained according to the invention are intended for use as a particulate filter, they have a suitable porosity in general of between 20 and 65%, the average pore size being ideally between 10 and 20 microns.
- Such filtering structures most often have a central part comprising a honeycomb filter element or a plurality of honeycomb filter elements interconnected by a joint cement, the one or more elements comprising a set of conduits.
- a method of manufacturing such a structure from an initial mixture of grains according to the invention is for example the following:
- molten grains according to the invention are mixed as previously described.
- the melted grains have been ground in such a way that they have a median diameter of less than 20 microns.
- the manufacturing method typically comprises a step of mixing an initial mixture comprising the grains, an organic binder of the methylcellulose type and a porogen then adding water until the desired plasticity to allow the extrusion step following.
- a mixture is mixed comprising: at least 5%, for example at least 50%, or at least
- the remainder of the mixture possibly consisting of powder or grains of other materials or even simple oxides of the elements Al, Ti, Si or precursors of said oxides, for example in the form of carbonates, hydroxides or other organometallic compounds of the preceding elements,
- At least one porogenic agent chosen as a function of the desired pore size optionally from 1 to 30% by weight of at least one porogenic agent chosen as a function of the desired pore size, at least one organic plasticizer and / or an organic binder,
- precursor is meant a material which decomposes into the simple oxide corresponding to an often early stage of the heat treatment, that is to say at a heating temperature typically below 1000 ° C., or even below 800 ° C. even at 500 ° C.
- the kneading results in a homogeneous product in the form of a paste.
- the extrusion step of this product through a suitable die makes it possible to obtain monoliths in the form of a honeycomb.
- the process comprises, for example, a drying step of the monoliths obtained.
- the green ceramic monoliths obtained are typically dried by microwave or at a temperature for a time sufficient to bring the water content not chemically bound to less than 1% by weight.
- the method may further comprise a plugging step of every other channel at each end of the monolith.
- the firing step of the monoliths is carried out at a temperature greater than 1300 ° C.
- the monolithic structure is brought to a temperature of temperature between 1400 0 C and 1600 0 C, under an atmosphere containing oxygen or a neutral gas.
- the method may optionally comprise a step of assembling the monoliths into an assembled filtration structure according to well-known techniques, for example described in application EP 816 065.
- the present invention relates, according to an example of application to a filter or a catalytic support obtained from a structure as described above and by deposition, preferably by impregnation, of at least one supported active catalytic phase or preferably unsupported, typically comprising at least one precious metal such as Pt and / or Rh and / or Pd and optionally an oxide such as CeO2, ZrO2, CeO2 ⁇ ZrO2.
- a filter or a catalytic support obtained from a structure as described above and by deposition, preferably by impregnation, of at least one supported active catalytic phase or preferably unsupported, typically comprising at least one precious metal such as Pt and / or Rh and / or Pd and optionally an oxide such as CeO2, ZrO2, CeO2 ⁇ ZrO2.
- Such structures find particular application as a catalytic support in an exhaust line of a diesel engine or gasoline or as a particulate filter in a diesel engine exhaust line.
- the samples were prepared from the following raw materials: Alumina AR75 containing more than 98% Al 2 O 3 , sold by Alcan and having a median diameter of 5 o of approximately 85 microns,
- Strontium carbonate containing more than 98.5% of SrCO 3 marketed by the Company of Harbonic Chemicals, lime comprising approximately 97% of CaO, with more than 80% of particles having a diameter of less than 80 ⁇ m,
- Potassium carbonate containing more than 99.5% of K 2 CO 3 marketed by Albemarle with more than 80% of particles having a diameter of between 0.25 and 1 mm,
- Zirconia with a purity level greater than 98.5% and a median diameter of 5 3.5 ⁇ m, sold under the reference CC10 by Saint-Gobain ZirPro.
- the initial mixtures of reactants were previously melted in an electric arc furnace, under air.
- the molten mixture was then cast into a CS mold so as to obtain rapid cooling.
- the product obtained is crushed and sieved to retain the powder passing to 36 microns. This powder is used to make pressed samples of diameter 10 mm which are then sintered at the temperature indicated in Table 1 for 4 hours.
- Example 1 relates to a typical material according to the invention, obtained at a sintering temperature of 1400 ° C.
- Example 2 is identical to Example 1, but the sintering temperature was raised to 1450 ° C. vs.
- Example 3 In Example 3 according to the invention, 17% by weight of a pore-forming agent typically used in the production of porous particle filter-type bodies was additionally incorporated during the sintering step of the melted grains.
- Example 4 according to the invention is similar to Example 2 above but zirconium was introduced into the material, as in Example 6.
- - Example 5 according to the invention contains only one very low amount of alkaline earth SrO or CaO type.
- Example 7 relates to another composition according to the invention.
- Examples 8 to 10 relate to other materials obtained from melted grains according to the invention.
- Example 11 relates to a material constituted by sintering grains comprising a reduced amount of SiO 2, within the meaning of the present invention.
- Comparative Example 1 the material is not synthesized by sintering the melted grains, that is to say from grains obtained by the preliminary melting of the mixture of the raw materials previously described, but directly from the reactive sintering of the powder mixture of the following raw materials:
- Alumina Almatis CL4400FG containing 99.8% Al 2 O 3 and having a median diameter of 5 o of approximately 5.2 ⁇ m
- TRONOX TR titanium oxide comprising 99.5% TiO 2 and having a diameter of the order of 0.3 ⁇ m
- - Lime comprising approximately 97% CaO, with more than 80% of particles having a diameter of less than 80 ⁇ m, - Potassium carbonate containing more than 99.5% of K 2 CO 3 , marketed by Albemarle with more than 80% particles having a diameter of between 0.25 and 1 mm.
- Comparative Example 2 the melted grains were synthesized by introducing too little silica SiO 2 into the initial reactants, with reference to the object of the present invention.
- Comparative Example 7 the composition of the material is identical to that of Example 7 but the material was obtained as for Comparative Example 1 by reactive sintering of the mixture of the powders of the raw materials previously described.
- Comparative Example 11 the composition of the material is identical to that of Example 11 but the material was obtained as for Comparative Example 1 by reactive sintering of the mixture of the powders of the raw materials previously described.
- AT indicates a phase of the aluminum titanate type (Al 2 TiO 5 ).
- PS indicates a silicate phase, determined by microprobe analysis.
- CTE coefficient of thermal expansion
- the MoR was measured at ambient temperature, on an LLOYD press equipped with a 10 kN sensor, by compression with a speed of 1 mm / min on pellets of diameter 10 mm and height 12 mm prepared at from powders of the same granulometric slice, whose median diameter dso is less than 50 ⁇ m.
- the pellets are obtained by pressing and then sintering at the temperature indicated in Table 1 for 4 hours in air.
- the density was measured by the classical Archimedes method techniques.
- the theoretical density corresponds to the expected maximum density of the material in the absence of any porosity and measured by helium picnometry on the ground product.
- Example 1 or Example 7 exhibits a significantly improved MoR and density compared to the material obtained by conventional methods as illustrated by Comparative or Comparative Examples 1, for a similar composition and an identical sintering temperature, it is observed that the material or product obtained from the melted grains according to the invention (Example 2) has a coefficient of thermal expansion close to or even lower than that of the material obtained by conventional methods as illustrated by Example 1 Comparative, for a similar composition, it is observed, by comparison of the values respectively obtained for the material according to Example 1 according to the invention and Comparative Example 1, or for the material according to Example 7b according to the invention and Comparative Example 7, that the materials according to the invention have a significantly improved MoR strength, whereas the The sintering temperature is 50 ° lower.
- Comparative example 2 further shows that such performances can be obtained, according to the invention, only if the proportion of silicon in the material, expressed on the basis of the weight percentage of the corresponding SiO 2 oxide, is sufficient, especially greater than 3%. In the opposite case, no effect of improvement of the MoR resistance is observed.
- Example 5 shows that materials according to the invention but comprising only small amounts of alkali or alkaline earth also have interesting properties, including extremely high MoR resistances.
- the material of Example 5 is also characterized by a coefficient of thermal expansion a little high, which could make it difficult to use in the field of particles. Such properties can be very useful in applications requiring above all a very high mechanical strength of the material, for example in the field of foundry filters.
- Example 11 shows that the MoR resistance tends to decrease substantially when the material is obtained from grains comprising a reduced amount of SiO 2.
- composition of each phase of the materials obtained according to Examples 2 and 4 was determined by microprobe analysis, the results of the analysis being given in Table 2 below. On the basis of these results, the weight percentage of each phase could be estimated.
- Example 12 In Examples 12 to 16 (see Table 3 below), other samples according to the invention were prepared by sintering previously melted and then finely ground grains, according to a method of preparation identical to that previously described. In Example 12 a minimal fraction of zirconium is present. In Examples 13 to 16, at least a portion of the zirconium, or even all of the zirconium, is replaced by cerium. Cerium is initially introduced into the molten mixture in the form of a commercial CeO 2 cerium oxide.
- the invention also relates to the use of the grains of the invention in other applications, especially all those where a sufficiently low CTE and / or a suitable density are necessary. According to the invention, it is possible in particular to adapt the size of the melted grains according to the intended application, in particular by choosing a suitable grinding mode.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Filtering Materials (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080028616XA CN102459128A (zh) | 2009-06-26 | 2010-06-25 | 包含Al、Ti、Si的氧化物的熔凝粒子及包含此类粒子的陶瓷产品 |
EP10745332A EP2445848A1 (fr) | 2009-06-26 | 2010-06-25 | Grains fondus d'oxydes comprenant al, ti, si et produits ceramiques comportant de tels grains |
US13/379,910 US8557010B2 (en) | 2009-06-26 | 2010-06-25 | Fused grains of oxides comprising Al, Ti, Si and ceramic products comprising such grains |
JP2012516827A JP2012530679A (ja) | 2009-06-26 | 2010-06-25 | Al、TiおよびSiを含む酸化物の溶融粒子およびその粒子を含むセラミック製品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0954378 | 2009-06-26 | ||
FR0954378A FR2947260A1 (fr) | 2009-06-26 | 2009-06-26 | Grains fondus d'oxydes comprenant al, ti, si et produits ceramiques comportant de tels grains |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010149940A1 true WO2010149940A1 (fr) | 2010-12-29 |
Family
ID=41402417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2010/051312 WO2010149940A1 (fr) | 2009-06-26 | 2010-06-25 | Grains fondus d'oxydes comprenant al, ti, si et produits ceramiques comportant de tels grains |
Country Status (6)
Country | Link |
---|---|
US (1) | US8557010B2 (fr) |
EP (1) | EP2445848A1 (fr) |
JP (1) | JP2012530679A (fr) |
CN (1) | CN102459128A (fr) |
FR (1) | FR2947260A1 (fr) |
WO (1) | WO2010149940A1 (fr) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2950340B1 (fr) * | 2009-09-22 | 2015-07-17 | Saint Gobain Ct Recherches | Structure poreuse du type titanate d'alumine |
US9073773B2 (en) | 2011-03-11 | 2015-07-07 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object, glass overflow forming block, and process for glass object manufacture |
CN108689591A (zh) | 2011-03-30 | 2018-10-23 | 圣戈本陶瓷及塑料股份有限公司 | 耐火物体、玻璃溢流形成块、以及形成和使用该耐火物体的方法 |
JP5762623B2 (ja) | 2011-04-13 | 2015-08-12 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | βアルミナを含む耐火物ならびにその製造および使用方法 |
JP2015504841A (ja) | 2012-01-11 | 2015-02-16 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | 耐火物及び耐火物を使用したガラス板の形成方法 |
KR20150064745A (ko) * | 2012-10-05 | 2015-06-11 | 이머리 | 세라믹 구조물 |
EP3262011A4 (fr) | 2015-02-24 | 2018-08-01 | Saint-Gobain Ceramics&Plastics, Inc. | Article réfractaire et procédé de fabrication |
WO2016184778A1 (fr) * | 2015-05-15 | 2016-11-24 | Imerys | Compositions de céramique |
CN111302777A (zh) * | 2020-02-26 | 2020-06-19 | 深圳市商德先进陶瓷股份有限公司 | 氧化铝陶瓷及其制备方法和陶瓷轴承 |
CN113105254B (zh) * | 2021-03-29 | 2022-10-21 | 彰武县联信铸造硅砂有限公司 | 一种新型陶瓷砂及其制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3993119A (en) | 1974-11-08 | 1976-11-23 | Norton Company | Progressively or continuously cycled mold for forming and discharging a fine crystalline material |
EP0210813A2 (fr) * | 1985-07-22 | 1987-02-04 | Ngk Insulators, Ltd. | Céramiques à base de titanate d'aluminium-mullite |
DE3707396A1 (de) * | 1987-03-09 | 1988-09-22 | Kalawrytinos Georg | Verfahren zur herstellung eines keramischen werkstoffes und verfahren zur beschichtung von werkstuecken mit diesem werkstoff |
EP0816065A1 (fr) | 1996-01-12 | 1998-01-07 | Ibiden Co, Ltd. | Structure ceramique |
EP1142619A1 (fr) | 1999-09-29 | 2001-10-10 | Ibiden Co., Ltd. | Filtre en nid d'abeilles et ensemble de filtres ceramiques |
WO2004011124A1 (fr) | 2002-07-31 | 2004-02-05 | Corning Incorporated | Filtre en titanate de mullite-aluminium pour echappements diesel |
WO2004065088A1 (fr) | 2003-01-20 | 2004-08-05 | Ngk Insulators, Ltd. | Procede de production d'un corps presentant une structure en nid d'abeille |
EP1455923A1 (fr) | 2001-12-20 | 2004-09-15 | Saint-Gobain Centre de Recherches et d'Etudes Européen | Corps filtrant comportant une pluralite de blocs filtrants, notamment destine a un filtre a particules |
WO2004090294A1 (fr) | 2003-04-01 | 2004-10-21 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Structure de filtration pour les gaz d'echappement d'un moteur a combustion interne |
EP1559696A1 (fr) | 2002-11-01 | 2005-08-03 | Ohcera Co., Ltd. | Procede de production d'un produit fritte en titanate double de magnesium et d'aluminium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3644664A1 (de) * | 1986-12-30 | 1988-07-14 | Didier Werke Ag | Aluminiumtitanatkeramik und ihre verwendung |
EP1890983B1 (fr) * | 2005-05-31 | 2012-12-12 | Corning Incorporated | Compositions et ebauches crues pour formation de ceramiques de titanate d'aluminium contenant des combinaisons de formeurs de pores et procede de production et de cuisson de celles-ci |
FR2933400B1 (fr) | 2008-07-04 | 2010-08-20 | Saint Gobain Ct Recherches | Grains fondus d'oxydes comprenant al, ti, mg et zr et produits ceramiques comportant de tels grains |
-
2009
- 2009-06-26 FR FR0954378A patent/FR2947260A1/fr active Pending
-
2010
- 2010-06-25 WO PCT/FR2010/051312 patent/WO2010149940A1/fr active Application Filing
- 2010-06-25 US US13/379,910 patent/US8557010B2/en not_active Expired - Fee Related
- 2010-06-25 JP JP2012516827A patent/JP2012530679A/ja not_active Withdrawn
- 2010-06-25 EP EP10745332A patent/EP2445848A1/fr not_active Withdrawn
- 2010-06-25 CN CN201080028616XA patent/CN102459128A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3993119A (en) | 1974-11-08 | 1976-11-23 | Norton Company | Progressively or continuously cycled mold for forming and discharging a fine crystalline material |
EP0210813A2 (fr) * | 1985-07-22 | 1987-02-04 | Ngk Insulators, Ltd. | Céramiques à base de titanate d'aluminium-mullite |
DE3707396A1 (de) * | 1987-03-09 | 1988-09-22 | Kalawrytinos Georg | Verfahren zur herstellung eines keramischen werkstoffes und verfahren zur beschichtung von werkstuecken mit diesem werkstoff |
EP0816065A1 (fr) | 1996-01-12 | 1998-01-07 | Ibiden Co, Ltd. | Structure ceramique |
EP1142619A1 (fr) | 1999-09-29 | 2001-10-10 | Ibiden Co., Ltd. | Filtre en nid d'abeilles et ensemble de filtres ceramiques |
EP1455923A1 (fr) | 2001-12-20 | 2004-09-15 | Saint-Gobain Centre de Recherches et d'Etudes Européen | Corps filtrant comportant une pluralite de blocs filtrants, notamment destine a un filtre a particules |
WO2004011124A1 (fr) | 2002-07-31 | 2004-02-05 | Corning Incorporated | Filtre en titanate de mullite-aluminium pour echappements diesel |
EP1559696A1 (fr) | 2002-11-01 | 2005-08-03 | Ohcera Co., Ltd. | Procede de production d'un produit fritte en titanate double de magnesium et d'aluminium |
WO2004065088A1 (fr) | 2003-01-20 | 2004-08-05 | Ngk Insulators, Ltd. | Procede de production d'un corps presentant une structure en nid d'abeille |
WO2004090294A1 (fr) | 2003-04-01 | 2004-10-21 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Structure de filtration pour les gaz d'echappement d'un moteur a combustion interne |
Also Published As
Publication number | Publication date |
---|---|
EP2445848A1 (fr) | 2012-05-02 |
US20120096822A1 (en) | 2012-04-26 |
JP2012530679A (ja) | 2012-12-06 |
FR2947260A1 (fr) | 2010-12-31 |
CN102459128A (zh) | 2012-05-16 |
US8557010B2 (en) | 2013-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2459498B1 (fr) | Grains fondus d'oxydes comprenant al, ti et produits ceramiques comportant de tels grains | |
EP2303796B1 (fr) | Grains fondus d'oxydes comprenant al, ti, mg et zr et produits ceramiques comportant de tels grains | |
EP2445848A1 (fr) | Grains fondus d'oxydes comprenant al, ti, si et produits ceramiques comportant de tels grains | |
WO2010001066A2 (fr) | Structure poreuse du type titanate d'alumine | |
WO2011036397A1 (fr) | Structure poreuse du type titanate d'alumine | |
EP2296789A1 (fr) | Structure en nid d'abeille a base de titanate d'aluminium | |
EP2906514B1 (fr) | Produit refractaire d'oxyde de chrome | |
FR2957529A1 (fr) | Structure filtrante comprenant un materiau de bouchage ameliore | |
EP2310338A2 (fr) | GRAINS FONDUS D'OXYDES COMPRENANT AL, TI et MG ET PRODUITS CERAMIQUES COMPORTANT DE TELS GRAINS | |
WO2010001062A2 (fr) | Melange de grains pour la synthese d'une structure poreuse du type titanate d'alumine | |
EP2480517A1 (fr) | Structure poreuse du type titanate d'alumine | |
EP2421686A1 (fr) | Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different | |
WO2009156638A1 (fr) | Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium | |
WO2011157939A1 (fr) | Filtre catalytique pour la filtration d'un gaz comprenant un ciment de joint incorporant un materiau geopolymere | |
FR2974082A1 (fr) | Produit d'oxydes de chrome, de zirconium et d'hafnium. | |
FR2950341A1 (fr) | Structure poreuse du type titanate d'alumine | |
FR2931698A1 (fr) | Structure en nid d'abeille a base de titanate d'aluminium. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080028616.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10745332 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010745332 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012516827 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13379910 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |