WO2010149406A1 - Katalysatorarme carbodiimidgruppen und/oder uretonimingruppen aufweisende isocyanatmischungen - Google Patents

Katalysatorarme carbodiimidgruppen und/oder uretonimingruppen aufweisende isocyanatmischungen Download PDF

Info

Publication number
WO2010149406A1
WO2010149406A1 PCT/EP2010/055244 EP2010055244W WO2010149406A1 WO 2010149406 A1 WO2010149406 A1 WO 2010149406A1 EP 2010055244 W EP2010055244 W EP 2010055244W WO 2010149406 A1 WO2010149406 A1 WO 2010149406A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
diisocyanate
uretonimine
carbodiimide
groups
Prior art date
Application number
PCT/EP2010/055244
Other languages
English (en)
French (fr)
Inventor
Emmanouil Spyrou
Evelyn Albrecht
Annegret Lilienthal
Iris Brückner
Andrea VÖCKER
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Priority to CN2010800282718A priority Critical patent/CN102803326A/zh
Priority to AU2010265038A priority patent/AU2010265038A1/en
Priority to JP2012516594A priority patent/JP2012530743A/ja
Priority to EP10719296A priority patent/EP2445945A1/de
Priority to US13/322,165 priority patent/US20120065424A1/en
Publication of WO2010149406A1 publication Critical patent/WO2010149406A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/025Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing carbodiimide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds

Definitions

  • the invention relates to low-catalyst carbodiimide groups and / or uretonimine containing isocyanate mixtures, a process for the preparation and their use.
  • Suitable deactivators for the phospholene carbodiimide catalyst are, for. As mentioned in the patents EP 515 933, EP 609 698 and US 6,120,699 and include z. As acid, acid chlorides, chloroformates and silylated acids.
  • EP 1 616 858 also discloses a process for preparing organic isocyanates containing carbodiimide and / or uretonimine groups by partial carbodiimidization of isocyanate groups using phospholene-type catalysts.
  • the carbodiimidization reaction by the addition of a silylated acid and the additional addition of a non-silylated acid and / or an acid chloride and / or a sulfonic ester stopped.
  • EP 1 616 858 thus describes the preparation of liquid storage-stable isocyanate mixtures with low color numbers by deactivating the phospholene catalyst.
  • DE-OS-102 06 112 describes aqueous dispersions composed of polycarbodiimides.
  • residues of unreacted TMXDI are distilled off from a tetramethylenexylylene diisocyanato-TMXDIJ polycarbodiimide mixture after preparation, there is thus hardly any monomeric diisocyanate remaining in the end product and then reacted with an alcohol to give a carbodiimide-containing polycarbodiimide urethane.
  • a separation of the catalyst is not mentioned, and as can be seen on page 3, line 68, it is usually deactivated when using phospholene oxides as a catalyst for the preparation of carbodiimides by blocking with acid chlorides. The catalyst content was also determined neither in the residue nor in the distillate.
  • Polycarbodiimide mixtures have not hitherto been described because they are difficult to obtain either because of excessively high boiling points (for example dicyclohexylmethylene diisocyanate (Hi 2 MDI) and / or because of the reaction of aliphatic isocyanates with carbodiimides (uretonimine formation)) (for example US Pat Isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI),
  • IPDI dicyclohexylmethylene diisocyanate
  • HDI hexamethylene diisocyanate
  • Thmethylhexamethylene diisocyanate (TMDI)
  • TMDI Thmethylhexamethylene diisocyanate
  • the Uretonimin ensures that a significant proportion (usually 1-15 wt .-%) of monomeric diisocyanates remains in the residue.
  • the practice shows that a carbodiimide and / or uretonimine containing isocyanate having on the one hand by the remaining in the product phosphorus-containing catalyst is not storage stable and on the other hand tends to undesirable discoloration. State of the art are therefore a variety of complex efforts to deactivate the catalyst.
  • the substances added to the deactivation in carbodiimide and / or uretonimine groups-containing isocyanate mixtures are in part hazardous and expensive secondary components and are therefore undesirable.
  • the phosphorus-containing catalysts are harmful to health and even very expensive.
  • low-catalyst carbodiimide groups and / or uretonimine groups-containing isocyanate mixtures can be prepared by simultaneous distillative removal of a proportion of monomeric diisocyanates and catalysts. Although the content of monomeric diisocyanates is not lowered to the usual level ( ⁇ 0.5 wt .-%), but reduced the proportion of the catalyst to a maximum of 0 - 20% of the original concentration.
  • the invention relates to a catalyst-poor carbodiimide groups and / or uretonimine containing isocyanate mixture prepared by reacting
  • Carbodiimide groups and / or uretonimine containing isocyanate mixture is between 0.1 wt .-% and 50 wt .-%.
  • the invention also relates to a process for the preparation of a catalyst-poor carbodiimide and / or uretonimine containing isocyanate mixture by partial carbodiimidization of isocyanate groups with phosphorus catalysts and subsequent distillative separation of a portion of the monomeric diisocyanate used and simultaneously the catalyst.
  • the catalyst may also be partially but also completely separated.
  • the catalyst-poor carbodiimide groups and / or uretonimine groups-containing isocyanate mixtures according to the invention are particularly colorable and storage-stable.
  • the majority of the separated phosphorus-containing catalyst is present in the separated monomeric diisocyanate and can be reused directly for re carbodiimidization.
  • the diisocyanates A) used according to the invention may consist of any desired aliphatic, cycloaliphatic and / or (cyclo) aliphatic or aromatic diisocyanates.
  • Suitable aliphatic diisocyanates advantageously have 3 to 16 carbon atoms, preferably 4 to 12 carbon atoms, in the linear or branched alkylene radical and suitable cycloaliphatic or (cyclo) aliphatic Diisocyanates advantageously 4 to 18 carbon atoms, preferably 6 to 15 carbon atoms, in the cycloalkylene radical.
  • (cyclo) aliphatic diisocyanates the skilled worker understands at the same time cyclic and aliphatic bound NCO groups, as z.
  • isophorone diisocyanate is the case.
  • Hi 2 MDI examples are cyclohexane diisocyanate, methylcyclohexane diisocyanate, ethylcyclohexane diisocyanate, propylcyclohexane diisocyanate, methyldiethylcyclohexane diisocyanate, propane diisocyanate, butane diisocyanate, pentane diisocyanate, hexane diisocyanate, heptane diisocyanate, octane diisocyanate, nonane diisocyanate, decane diisocyanate, undecane diisocyanate and / or dodecane diisocyanates.
  • methyldiphenyl diisocyanate MDI
  • 2,4- and / or 2,6-toluene diisocyanate TDI
  • 4-methylcyclohexane-1,3-diisocyanate 2-butyl-2-ethylpentamethylene diisocyanate
  • 3 (4) isocyanatomethyl-1-methylcyclohexyl isocyanate 2-isocyanatopropylcyclohexyl isocyanate
  • 2,4'-methylene-bis (cyclohexyl) diisocyanate 1,4-diisocyanato-4-methyl-pentane.
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • Hi 2 MDI diisocyanatodicylcohexylmethane
  • MPDI 2-methylpentane diisocyanate
  • TMDI 2,2,4-trimethylhexamethylene diisocyanate ⁇ ⁇ - trimethylhexamethylene diisocyanate
  • NBDI norbornane diisocyanate
  • the inventive carbodiimide groups and / or uretonimine-containing isocyanate mixture is prepared in the presence of the highly effective catalysts B).
  • catalysts and production methods can be found, for. In Houben-Weyl, Methods of Organic Chemistry, Volume E4, carbonic acid derivatives, Georg-Thieme-Verlag, Stuttgart, 1983, p. 897 to 900 and 910, and in Chemical Reviews, Volume 67, Number 2, 1967, pp. 107-113, or in Angew. Chem., 1962, No. 21, 801-806.
  • Carbodiimidization catalysts are also described in US 2,941,966, US 2,853,518, US 2,853,473 or DE 35 12 918.
  • Preferred catalysts are phospholens and phospholanes and also their oxides and sulfides, particularly preferably of the phospholene oxide type.
  • catalysts are 1-methyl-2-phospholene-1-oxide, 1-methyl-3-phospholene-1-oxide, 3-methyl-1-phenyl-3-phospholene-1-oxide and 3-methyl-1 - phenyl-2-phospholene-1-oxide and the corresponding phospholane types. Preference is given to using 3-methyl-1-phenyl-2-phospholene-1-oxide. Also suitable are phosphine oxides.
  • the amount of catalyst based on the diisocyanate A) is 0.1 to 3 wt .-%, preferably 0.5 -1, 5 wt .-%.
  • the isocyanate mixture according to the invention having carbodiimide groups and / or uretonimine groups is preferably prepared according to a process wherein at least one isocyanate mentioned under A) with addition of at least one of the catalysts listed under B) by heating to temperatures of 30 - 200 0 C with elimination of Carbon dioxide to be implemented.
  • the temperature is preferably 80-200 ° C., the time duration preferably between 30 minutes and 24 hours.
  • temperature and time smaller or larger amounts of monomeric diisocyanate remain in the reaction mixture, preferably from 1 to 80% by weight, based on the amount of A) used.
  • the distillative simultaneous separation II) of a proportion of monomeric diisocyanate and phosphorus catalyst is carried out in suitable distillation units, for. B. in short path evaporators, thin film evaporators or falling film evaporators.
  • the temperature is dependent on the boiling point of the diisocyanate used at 100 to 240 0 C preferably 130 to 200 0 C. It may be advantageous, the mixture to be distilled before the actual distillation to a temperature between 100 and 200 0 C, preferably between 120 and 160 0 C preheat.
  • the pressure is maintained between 0.001 mbar and 50 mbar, preferably between 0.01 and 10 mbar.
  • the monomeric content of diisocyanate in the residue is 0.5 to 20% by weight, preferably 3, after the distillation to 10% by weight.
  • the catalyst used is after distillation to about 80 - 100% in the distillate before, and about 0 - 20% in the residue, based on the amount of catalyst used. Preferably, it is 95-99% in the distillate before and 1-5% in the residue. Smaller amounts of catalysts (0 - 10% based on the total amount used) can also in the cold trap or on the
  • the content of carbodiimides in the residue is between 0.1 wt .-% and 50 wt .-%.
  • the invention also provides a process for the preparation of a catalyst-poor carbodiimide groups and / or uretonimine containing isocyanate mixture, by reacting
  • Carbodiimide-containing compounds are used in the paint and adhesives industry and in the plastics industry in general as stabilizers, or / and as crosslinkers. Examples
  • the NCO content is determined titrimetrically by reaction of the NCO groups with dibutylamine and subsequent back-titration of the excess of dibutylamine with hydrochloric acid.
  • the hot value is determined after 30 minutes of heating the sample to 180 0 C and sudden cooling.
  • the carbodiimide content is determined after two hours of boiling with butanol under copper (I) chlod catalysis and then reaction with dibutylamine and subsequent back-titration of the excess of dibutylamine with hydrochloric acid.
  • NCO content cold 27.66% by weight - NCO content hot: 30.46% by weight - carbodiimide content: 3.55% by weight - color Hazen: 96, viscosity 23 ° C.: 691 mPas
  • NCO content cold 10.95 wt.% NCO content hot: 14.11 wt.%
  • Carbodiimide content 10.4 wt.%
  • NCO content cold 28.24% - NCO content hot: 30.87% - carbodiimide content: 3.54% - color Hazen: 91 - color Gardner: 0.2 - viscosity 23 0 C: 629 mPas
  • the products 1 a) (before distillation), 1 b) (after distillation) and 1 b) + 1 wt .-% catalyst (3-methyl-1-phenyl-2-phospholene-1-oxide) Stored for 7 days at 50 0 C and the found NCO content (hot) compared with the starting NCO content (hot).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischungen, ein Verfahren zur Herstellung und ihre Verwendung.

Description

Katalvsatorarme Carbodiimidqruppen und/oder Uretoniminqruppen aufweisende Isocvanatmischungen
Die Erfindung betrifft katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischungen, ein Verfahren zur Herstellung und ihre Verwendung.
Die Carbodiimidisierung von Isocyanaten ist ein bekannter Prozess und in vielen Patentanmeldungen beschrieben. So sind Verfahren zur Herstellung von Carbodiimid- und/oder Uretonimingruppen aufweisenden Isocyanatmischungen mit den für diese Reaktion sehr effektiven Katalysatoren der Phospholenoxidreihe z. B. aus der US 2,853,473 und der EP 515 933 bekannt.
Die Verwendung der Phospholenoxide als Katalysatoren für die Carbodiimidisierungsreaktion bedingt, dass im Produkt verbleibender Katalysator wirkungsvoll abgestoppt (deaktiviert) werden muss, wenn lagerstabile, farbarme Carbodiimid- und/oder Uretonimingruppen aufweisende Isocyanatmischungen mit festgelegtem NCO-Gehalt hergestellt werden sollen. Ansonsten neigen carbodiimidisierte Isocyanatmischungen zur Nachreaktion und spalten weiterhin CO2 ab. Es kommt zu Veränderungen des Produktes bei Lagerung und zu Druckaufbau in geschlossenen Behältnissen.
Mehrere Schriften befassen sich mit den Möglichkeiten zum Abstoppen der Carbodiimidisierungsreaktion:
Geeignete Desaktivatoren für den Phospholen-Carbodiimidkatalysator sind z. B. in den Patentschriften EP 515 933, EP 609 698 und US 6,120,699 erwähnt und beinhalten z. B. Säure, Säurechloride, Chloroformiate und silylierte Säuren.
Auch aus der EP 1 616 858 ist ein Verfahren zur Herstellung Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate durch teilweise Carbodiimidisierung von Isocyanatgruppen mit Katalysatoren vom Phospholen-Typ bekannt. Hierbei wird die Carbodiimidisierungsreaktion durch den Zusatz einer silylierten Säure und der zusätzlichen Beigabe einer nicht silylierten Säure und/oder eines Säurechlorides und/oder eines Sulfonsäureesters abgestoppt. EP 1 616 858 beschreibt so die Herstellung flüssiger lagerstabiler Isocyanatmischungen mit niedrigen Farbzahlen durch Desaktivierung des Phospholenkatalysators.
In US 4,068,055 und US 4,068,065 werden polymergebundene Phospholen- Katalysatoren beschrieben, die sich nach der Carbodiimid-Reaktion durch Filtration wieder abtrennen lassen. Zum einen sind solche polymeren Katalysatoren nur schwer herzustellen auch ist die Aktivität geringer und zum anderen lassen sie sich aus hochviskosen bzw. festen Carbodiimidmischungen nur unter hohem technischen Aufwand oder gar nicht abtrennen.
In DE-OS-102 06 112 werden wässrige Dispersionen, aufgebaut aus Polycarbodiimiden beschrieben. Hier werden aus einem Tetramethylenxylylendiisocyana^TMXDIJ-Polycarbodiimidgemisch nach Herstellung Reste von nicht umgesetztem TMXDI abdestilliert, es verbleibt demnach kaum monomeres Diisocyanat im Endprodukt und dann mit einem Alkohol zu einem Carbodiimidgruppen enthaltenen Polycarbodiimidurethan umgesetzt. Eine Abtrennung des Katalysators wird nicht erwähnt, und wie auf der Seite 3, Zeile 68 zu entnehmen ist, wird üblicherweise bei Einsatz von Phospholenoxiden als Katalysator zur Herstellung von Carbodiimiden dieser durch Blockierung mit Säurechloriden deaktiviert. Der Katalysatorgehalt wurde auch weder im Rückstand noch im Destillat bestimmt.
Die vollständige Abtrennung von anderen monomeren Diisocyanaten aus
Polycarbodiimidgemischen ist bislang nicht beschrieben worden, da sie entweder aufgrund von zu hohem Siedepunkten schwierig (z. B. Dicyclohexylmethylen- diisocyanat (Hi2MDI), undoder aber aufgrund der Reaktion aliphatischer Isocyanate mit Carbodiimiden (Uretoniminbildung) technisch nicht durchführbar ist (z. B. Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI),
Thmethylhexamethylendiisocyanat (TMDI)). Die Uretoniminbildung sorgt dafür, dass ein nicht unerheblicher Anteil (in der Regel 1 - 15 Gew.-%) von monomeren Diisocyanaten im Rückstand verbleibt. Die Praxis zeigt, dass eine Carbodiimid- und /oder Uretonimingruppen aufweisende Isocyanatmischung durch den im Produkt verbleibenden phosphorhaltigen Katalysator einerseits nicht lagerstabil ist und anderseits zur unerwünschten Verfärbung neigt. Stand der Technik sind daher verschiedenste aufwendige Bemühungen zur Desaktivierung des Katalysators. Die zur Desaktivierung zugesetzten Stoffe in Carbodiimid- und /oder Uretonimingruppen aufweisender Isocyanatmischungen sind aber zum Teil gesundheitsgefährdende und teure Nebenkomponenten und daher unerwünscht. Auch die phosphorhaltigen Katalysatoren sind gesundheitsschädlich und sogar sehr teuer.
Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Herstellung lagerstabiler Carbodiimid- und/oder Uretonimingruppen aufweisender Isocyanatmischungen zur Verfügung zu stellen, welches die angesprochenen Mängel nicht aufweist und zu lagerstabilen carbodiimidhaltigen Produkten mit niedriger Farbzahl führt.
Überraschend wurde gefunden, dass katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischungen hergestellt werden können, durch gleichzeitige destillative Abtrennung eines Anteils an monomeren Diisocyanaten und Katalysatoren. Dabei wird zwar der Gehalt an monomeren Diisocyanaten nicht auf das übliche Maß (< 0,5 Gew.-%) gesenkt, der Anteil an dem Katalysator aber auf maximal 0 - 20 % der ursprünglichen Konzentration gesenkt.
Gegenstand der Erfindung ist eine katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung, hergestellt durch Umsetzung von
I)
A) mindestens einem Diisocyanat, in Gegenwart von
B) phosphorhaltigen Katalysatoren zur Carbodiimidbildung, wobei die Umsetzung nicht bis zum vollständigen Umsatzes des Diisocyanates erfolgt und 1 - 80 Gew.-% des eingesetzten Diisocyanates in der Reaktionsmischung verbleiben; mit nachfolgender gleichzeitiger destillativer Abtrennung eines Teiles des überschüssigen monomeren Diisocyanates A) und des phosphorhaltigen Katalysators B);
mit einem Gehalt der Isocyanatmischung an monomerem Diisocyanat A) von 0,5 - 20 Gew.-%, bezogen auf das eingesetzte Diisocyanat A) und einem Gehalt an Katalysator B) von 0 bis 20 Gew.-%, bezogen auf den eingesetzten Katalysator B).
Der Gehalt an Carbodiimiden in der erfindungsgemäßen katalysatorarmen
Carbodiimidgruppen und/oder Uretonimingruppen aufweisenden Isocyanatmischung (Rückstand) liegt zwischen 0,1 Gew.-% und 50 Gew.-%.
Die Erfindung betrifft auch ein Verfahren zur Herstellung einer katalysatorarmen Carbodiimidgruppen und/oder Uretonimingruppen aufweisenden Isocyanatmischung durch teilweise Carbodiimidisierung von Isocyanatgruppen mit phosphorhaltigen Katalysatoren und nachfolgend destillativer Abtrennen eines Teils des eingesetzten monomeren Diisocyanates und gleichzeitig des Katalysators. Der Katalysator kann dabei ebenfalls teilweise aber auch vollständig abgetrennt sein.
Die erfindungsgemäßen katalysatorarmen Carbodiimidgruppen und/oder Uretonimingruppen aufweisender Isocyanatmischungen sind besonders farbarm und lagerstabil. Der überwiegende Teil des abgetrennten phosphorhaltigen Katalysators liegt in dem abgetrennten monomeren Diisocyanat vor und kann direkt zur erneuten Carbodiimidisierung wiederverwendet werden.
Die erfindungsgemäß eingesetzten Diisocyanate A) können aus beliebigen aliphatischen, cycloaliphatischen und/oder (cyclo)aliphatischen, oder aromatischen Diisocyanaten bestehen.
Geeignete aliphatische Diisocyanate besitzen vorteilhafterweise 3 bis 16 Kohlenstoffatome, vorzugsweise 4 bis 12 Kohlenstoffatome, im linearen oder verzweigten Alkylenrest und geeignete cycloaliphatische oder (cyclo)aliphatische Diisocyanate vorteilhafterweise 4 bis 18 Kohlenstoffatome, vorzugsweise 6 bis 15 Kohlenstoffatome, im Cycloalkylenrest. Unter (cyclo)aliphatischen Diisocyanaten versteht der Fachmann hinlänglich gleichzeitig cyclisch und aliphatisch gebundene NCO-Gruppen, wie es z. B. beim Isophorondiisocyanat der Fall ist. Demgegenüber versteht man unter cycloaliphatischen Diisocyanaten solche, die nur direkt am cycloaliphatischen Ring gebundene NCO-Gruppen aufweisen, z. B. Hi2MDI. Beispiele sind Cyclohexandiisocyanat, Methylcyclohexandiisocyanat, Ethylcyclohexandiiso- cyanat, Propylcyclohexandiisocyanat, Methyldiethylcyclohexandiisocyanat, Propan- diisocyanat, Butandiisocyanat, Pentandiisocyanat, Hexandiisocyanat, Heptan- diisocyanat, Octandiisocyanat, Nonandiisocyanat, Dekandiisocyanat, Undekandiiso- cyanat, und/oder Dodecandiisocyanate.
Ebenfalls geeignet sind Methyldiphenyldiisocyanat (MDI), 2,4-und/oder 2,6- Toluyldiisocyanat (TDI), 4-Methyl-cyclohexan-1 ,3-diisocyanat, 2-Butyl-2- ethylpentamethylen-diisocyanat, 3(4)-lsocyanatomethyl-1 -methylcyclohexyl-isocyanat, 2-lsocyanatopropylcyclohexylisocyanat, 2,4'-Methylen-bis(cyclohexyl)diisocyanat, 1 ,4-Diisocyanato-4-methyl-pentan.
Als aliphatische, (cyclo-)aliphatische und/oder cycloaliphatische Diisocyanate A) sind besonders geeignet: Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI), Diisocyanatodicylcohexylmethan (Hi2MDI) 2-Methylpentandiisocyanat (MPDI), 2,2,4- Trimethylhexamethylendiisocyanat^^^-Trimethylhexamethylendiisocyanat (TMDI), und Norbornandiisocyanat (NBDI). Ganz besonders bevorzugt werden IPDI, HDI und Hi2MDI.
Selbstverständlich können auch Gemische der Diisocyanate eingesetzt werden.
Das erfindungsgemäße Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatgemisch wird in Gegenwart der hochwirksamen Katalysatoren B) hergestellt.
Eine ausführliche Beschreibung geeigneter Katalysatoren und Herstellmethoden findet sich z. B. in Houben-Weyl, Methoden der organischen Chemie, Band E4, Kohlensäurederivate, Georg-Thieme-Verlag, Stuttgart, 1983, S. 897 bis 900 und 910, sowie in Chemical Reviews, Volume 67, Number 2, 1967, S. 107 - 113, oder in der Angew. Chem., 1962, Nr. 21 , 801 -806. Carbodiimidisierungskatalysatoren werden auch in US 2,941 ,966, US 2,853,518, US 2,853,473 oder DE 35 12 918 beschrieben. Als Katalysatoren sind bevorzugt Phospholene und Phospholane sowie deren Oxide und Sulfide, besonders bevorzugt vom Phospholenoxid-Typ. Beispiele für häufig eingesetzte Katalysatoren sind 1-Methyl-2-phospholen-1 -oxid, 1 -Methyl3-phospholen- 1 -oxid, 3-Methyl-1 -phenyl-3-phospholen-1 -oxid und 3-Methyl-1 -phenyl-2-phospholen- 1 -oxid sowie die entsprechenden Phospholantypen. Bevorzugt wird 3-Methyl-1 - phenyl-2-phospholen-1 -oxid eingesetzt. Ebenfalls geeignet sind Phosphinoxide. Die Menge an Katalysator bezogen auf das Diisocyanat A) beträgt 0,1 bis 3 Gew.-%, bevorzugt 0,5 -1 ,5 Gew.-%.
Die erfindungsgemäße Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung wird vorzugsweise gemäß Schritt I) hergestellt nach einem Verfahren wobei mindestens eins unter A) genannten Isocyanate unter Zusatz mindestens einem der unter B) aufgeführten Katalysatoren durch Erhitzen auf Temperaturen von 30 - 200 0C unter Abspaltung von Kohlendioxid umgesetzt werden. Die Temperatur beträgt bevorzugt 80 - 200 0C, die Zeitdauer bevorzugt zwischen 30 min und 24 h. Dabei verbleiben je nach Katalysatorgehalt, Temperatur und Zeit kleinere bis größerer Mengen an monomeren Diisocyanat im Reaktionsgemisch, bevorzugt von 1 bis 80 Gew.-% bezogen auf die eingesetzte Menge A).
Die destillative gleichzeitige Abtrennung II) eines Anteils an monomeren Diisocyanat und an phosphorhaltigen Katalysator erfolgt in geeigneten Destillationsaggregaten, z. B. in Kurzwegverdampfern, Dünnschichtverdampfern oder Fallfilmverdampfern. Die Temperatur liegt abhängig vom Siedepunkt des eingesetzten Diisocyanats bei 100 bis 240 0C bevorzugt 130 bis 200 0C. Dabei kann es vorteilhaft sein, das zu destillierende Gemisch schon vor der eigentlichen Destillation auf eine Temperatur zwischen 100 und 200 0C, vorzugsweise zwischen 120 und 160 0C vorzuheizen. Der Druck wird zwischen 0,001 mbar und 50 mbar gehalten, bevorzugt zwischen 0,01 und 10 mbar. Der monomere Diisocyanatgehalt im Rückstand, das heißt in der erfindungsgemäßen katalysatorarmen Carbodiimidgruppen und/oder Uretonimingruppen aufweisenden Isocyanatmischung, liegt nach der Destillation bei 0,5 - 20 Gew.-%, bevorzugt bei 3 bis 10 Gew.-%. Der eingesetzte Katalysator liegt nach der Destillation zu etwa 80 - 100 % im Destillat vor, und zu etwa 0 - 20 % im Rückstand, bezogen auf die Menge an eingesetztem Katalysator. Bevorzugt liegt er zu 95 - 99 % im Destillat vor und zu 1 - 5 % im Rückstand. Kleinere Mengen an Katalysatoren (0 - 10 % bezogen auf die gesamte eingesetzte Menge) können auch in der Kühlfalle oder auf der
Destillationsapparatur verbleiben. Der Gehalt an Carbodiimiden im Rückstand liegt zwischen 0,1 Gew.-% und 50 Gew.-%.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung einer katalysatorarmen Carbodiimidgruppen und/oder Uretonimingruppen aufweisenden Isocyanatmischung, durch Umsetzung von
I)
A) mindestens einem Diisocyanat in Gegenwart von B) phosporhaltigen Katalysatoren zur Carbodiimidbildung, wobei die Umsetzung nicht bis zum vollständigen Umsatzes des Diisocyanates erfolgt und 1 - 80 Gew.-% des eingesetzten Diisocyanates in der Reaktionsmischung verbleiben;
II) mit nachfolgender gleichzeitiger destillativer Abtrennung eines Teiles des überschüssigen monomeren Diisocyanats A) und des phosphorhaltigen Katalysators B);
mit einem Gehalt der Isocyanatmischung an monomerem Diisocyanat A) von 0,5 - 20 Gew.-%, bezogen auf das eingesetzte Diisocyanat A) und einem Gehalt an Katalysator B) von 0 bis 20 Gew.-%, bezogen auf den eingesetzten Katalysator B).
Carbodiimidhaltige Verbindungen finden Verwendung in der Lack- und Klebstoffindustrie sowie allgemein in der Kunststoffindustrie als Stabilisierungsmittel, oder/und als Vernetzer. Beispiele
Allgemeine Bestimmungsmethoden:
Der NCO-Gehalt wird titrimetrisch durch Reaktion der NCO-Gruppen mit Dibutylamin und nachfolgender Rücktitration des Überschusses an Dibutylamin mit Salzsäure bestimmt. Der Heißwert wird nach 30 minütiger Erwärmung der Probe auf 180 0C und schlagartigem Abkühlen bestimmt. Der Carbodiimidgehalt wird nach zweistündigem Kochen mit Butanol unter Kupfer(l)chlohd Katalyse und danach Reaktion mit Dibutylamin und nachfolgender Rücktitration des Überschusses an Dibutylamin mit Salzsäure bestimmt.
1a) Herstellung der Carbodiimide aus IPDI
1581 ,4g IPDI (Evonik-Degussa) werden mit 18,6g 3-Methyl-1 -phenyl-2-phospholen-1 - oxid (Alfa Aesar) unter permanentem N2 Strom in 3,5 h bei 1100C unter CO2 Abspaltung anteilig zum Carbodiimid umgesetzt. Ein Teil des Carbodiimides reagiert weiter in einer reversiblen Reaktion mit freiem Isocyanat zu Uretonimin. Vom Reaktionsprodukt wurden folgende Daten ermittelt:
NCO-Gehalt kalt: 27,66 Gew.-% - NCO-Gehalt heiß: 30,46 Gew.-% - Carbodiimid- Gehalt: 3,55 Gew.-% - Farbe Hazen: 96, Viskosität 23 0C: 691 mPas
1b) Abtrennung der phosphorhaltigen Katalysatoren durch Destillation und Herstellung der katalysatorarmen Carbodiimidgruppen und/oder Uretonimingruppen aufweisenden Isocyanatmischung
539 g des unter 1 a) hergestellten Carbodiimids aus IPDI wird bei 155 0C und 0,2 mbar mit ca. 200 g/h einer Kurzwegdestillation unterworfen (KDL4, UIC). 145,6 g werden als Rückstand aufgefangen. Dieser Rückstand enthält 8,2 Gew.-% monomeres IPDI und 110 ppm Phosphor. Dies entspricht ca. 1 ,4 % des eingesetzten Katalysators. Das Destillat (375,4 g) enthält 2800 ppm Phosphor, dies entspricht 95,5 % des eingesetzten Katalysators. NCO-Gehalt kalt: 10,95 Gew.-% - NCO-Gehalt heiß: 14,11 Gew.-% - Carbodiimid-Gehalt: 10,4 Gew.-% - Farbe Hazen (30%ig in Toluol): 115 - Schmp. 64 0C 2a) Erneute Herstellung von Carbodiimid aus IPDI-Destillat aus 1b)
350 g IPDI-Destillat aus 1 b) werden mit 221g IPDI (Evonik-Degussa) verdünnt. Die Reaktion erfolgt unter permanentem N2 Strom innerhalb 3h bei 110 0C und CO2 Abspaltung anteilig zu Carbodiimid. Vom Reaktionsprodukt werden folgende Daten ermittelt:
NCO-Gehalt kalt: 28,24 % - NCO-Gehalt heiß: 30,87 % - Carbodiimid-Gehalt: 3,54 % - Farbe Hazen: 91 - Farbe Gardner: 0,2 - Viskosität 23 0C: 629 mPas
2b) Erneute Abtrennung des phosphorhaltigen Katalysators durch Destillation und Herstellung der katalysatorarmen Carbodiimidgruppen und/oder Uretonimingruppen aufweisenden Isocyanatmischung
400,6 g des unter 2a) hergestellten Carbodiimides aus IPDI wird bei 155 0C und 0,2 mbar mit ca. 200 g/h einer Kurzwegdestillation unterworfen (KDL4, UIC). 85,2 g werden als Rückstand aufgefangen. Dieser Rückstand enthält 8,4 % monomeres IPDI und 180 ppm Phosphor. Dies entspricht ca. 2,1 % des eingesetzten Katalysators. Das Destillat (297,5 g) enthält 2500 ppm Phosphor, dies entspricht 95,6 % des eingesetzten Katalysators. NCO-Gehalt kalt: 9,85 Gew.-% - NCO-Gehalt heiß: 12,60 Gew.-% - Carbodiimid-Gehalt: 10,8 Gew.-% - Farbe Hazen (30%ig in Toluol): 107 - Schmp. 78 0C
Aus diesen Beispielen kann ersehen werden, dass der Großteil des phosphorhaltigen Katalysators im Destillat verbleibt. Dieser kann ohne Einschränkungen erneut eingesetzt werden, während der Rückstand weitgehend katalysatorarm ist.
Lagerstabilität
Zur Bestimmung der Lagerstabilität wurden die Produkte 1 a) (vor Destillation), 1 b) (nach Destillation) und 1 b) + 1 Gew.-% Katalysator (3-Methyl-1-phenyl-2-phospholen- 1 -oxid), 7 Tage bei 50 0C gelagert und der gefundene NCO-Gehalt (heiß) mit dem Ausgangs-NCO-Gehalt (heiß) verglichen.
Figure imgf000011_0001
*nicht erfindungsgemäße Vergleichsversuche
Aus diesen Beispielen kann ersehen werden, dass nur das katalysatorarme Produkt 1 b) lagerstabil ist (Abnahme der Heiß-NCO-Zahl nach 7 Tagen bei 50 0C ist geringer als 5 %). Die beiden Vergleichsprodukte 1 a) und 1 b) + 1 % Katalysator zeigen nach Lagerung bei 50 0C eine Nachreaktion, Bildung von weiterem Carbodiimid unter Kohlendioxidabspaltung, wodurch nach einer Woche die Abnahme der NCO-Zahl größer als 5 % ist.

Claims

Patentansprüche:
1. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung, hergestellt durch Umsetzung von I)
A) mindestens einem Diisocyanat in Gegenwart von
B) phosphorhaltigen Katalysatoren zur Carbodiimidbildung, wobei die Umsetzung nicht bis zum vollständigen Umsatzes des Diisocyanates erfolgt und 1 - 80 Gew.-% des eingesetzten Diisocyanates in der Reaktionsmischung verbleiben;
II) mit nachfolgender gleichzeitiger destillativer Abtrennung eines Teiles des überschüssigen monomeren Diisocyanats A) und des phosphorhaltigen Katalysators B);
mit einem Gehalt der Isocyanatmischung an monomerem Diisocyanat A) von 0,5 - 20 Gew.-%, bezogen auf das eingesetzte Diisocyanat A) und einem Gehalt an Katalysator B) von 0 bis 20 Gew.-%, bezogen auf den eingesetzten Katalysator B).
2. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach Anspruch 1 , dadurch gekennzeichnet, dass Diisocyanate ausgewählt aus Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI), Diisocyanatodicylcohexylmethan (Hi2MDI)
2-Methylpentandiisocyanat (MPDI), 2,2,4-Thmethylhexamethylen- diisocyanat/2,4,4-Thmethylhexamethylendiisocyanat (TMDI), und Norbornandiisocyanat (NBDI), allein oder in Mischungen, eingesetzt werden.
3. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass IPDI, HDI und Hi2MDI eingesetzt werden.
4. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Katalysatoren Phospholene und Phospholane sowie deren Oxide und
Sulfide, besonders vom Phospholenoxid-Typ eingesetzt werden.
5. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Katalysatoren 1-Methyl-2-phospholen-1 -oxid, 1 -Methyl-3-phospholen-1 - oxid, 3-Methyl-1-phenyl-3-phospholen-1-oxid und 3-Methyl-1 -phenyl-2- phospholen-1 -oxid sowie die entsprechenden Phospholantypen eingesetzt werden.
6. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Menge an Katalysator bezogen auf das Diisocyanat A) 0,1 bis 3 Gew.-%, bevorzugt 0,5 bis 1 ,5 Gew.-%, beträgt.
7. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach mindestens einem der vorherigen Ansprüche, hergestellt nach einem Verfahren, wobei die unter A) genannten Isocyanate unter Zusatz der unter B) aufgeführten Katalysatoren durch Erhitzen auf Temperaturen von 30 - 200 0C unter Abspaltung von Kohlendioxid umgesetzt werden.
8. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die destillative gleichzeitige Abtrennung II. eines Anteils an monomeren Diisocyanaten und an phosphorhaltigen Katalysatoren in Kurzwegverdampfern, Dünnschichtverdampfern oder Fallfilmverdampfern erfolgt.
9. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach Anspruch 8, wobei die Temperatur bei 100 bis 240 0C, bevorzugt bei 130 bis 200 0C, liegt.
10. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das zu destillierende Gemisch schon vor der eigentlichen Destillation auf eine Temperatur zwischen 100 und 200 0C, vorzugsweise zwischen 120 und
160 0C, vorgeheizt wird.
11. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach Anspruch 8 bis 10, dadurch gekennzeichnet, dass die Destillation bei einem Druck zwischen 0,001 mbar und 50 mbar, bevorzugt zwischen 0,01 und 10 mbar, durchgeführt wird.
12. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischungen nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Teil des abgetrennten phosphorhaltigen Katalysators, der in dem abgetrennten monomeren Diisocyanat vorliegt, direkt zur erneuten Carbodiimidisierung wiederverwendet wird.
13. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischung nach mindestens einem der vorherigen Ansprüche mit einem Gehalt der Isocyanatmischung an monomerem Diisocyanat A) von 3 bis 10 Gew.-%, bezogen auf das eingesetzte Diisocyanat A) und einem Gehalt an Katalysator B) von 1 bis 5 Gew.-%, bezogen auf den eingesetzten Katalysator B).
14. Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischungen nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Gehalt an Carbodiimiden in der katalysatorarmen Carbodiimidgruppen und/oder Uretonimingruppen aufweisenden Isocyanatmischung (Rückstand) zwischen 0,1 Gew.-% und 50 Gew.-% beträgt.
15. Verfahren zur Herstellung einer katalysatorarmen Carbodiimidgruppen und/oder Uretonimingruppen aufweisenden Isocyanatmischung durch teilweise Carbodiimidisierung von Isocyanatgruppen mit phosphorhaltigen Katalysatoren und nachfolgend destillativer Abtrennen eines Teils des eingesetzten monomeren Diisocyanates und gleichzeitig des Katalysators.
16. Verfahren zur Herstellung einer katalysatorarmen Carbodiimidgruppen und/oder Uretonimingruppen aufweisenden Isocyanatmischung, durch Umsetzung von
I) A) mindestens einem Diisocyanat in Gegenwart von
B) phosporhaltigen Katalysatoren zur Carbodiimidbildung, wobei die Umsetzung nicht bis zum vollständigen Umsatzes des Diisocyanates erfolgt und 1 - 80 Gew.- % des eingesetzten Diisocyanates in der Reaktionsmischung verbleiben; II) mit nachfolgender gleichzeitiger destillativer Abtrennung eines Teiles des überschüssigen monomeren Diisocyanats A) und des phosphorhaltigen Katalysators B);
mit einem Gehalt der Isocyanatmischung an monomerem Diisocyanat A) von 0,5
- 20 Gew.-%, bezogen auf das eingesetzte Diisocyanat A) und einem Gehalt an Katalysator B) von 0 bis 20 Gew.-%, bezogen auf den eingesetzten Katalysator B).
17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass der Gehalt an Carbodiimiden im Rückstand zwischen 0,1 Gew.-% und 50 Gew.-% beträgt.
PCT/EP2010/055244 2009-06-26 2010-04-21 Katalysatorarme carbodiimidgruppen und/oder uretonimingruppen aufweisende isocyanatmischungen WO2010149406A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800282718A CN102803326A (zh) 2009-06-26 2010-04-21 包含碳二亚胺基团和/或脲酮亚胺基团的催化剂含量低的异氰酸酯混合物
AU2010265038A AU2010265038A1 (en) 2009-06-26 2010-04-21 Low-catalyst carbodiimide groups and/or isocyanate mixtures comprising uretonimine groups
JP2012516594A JP2012530743A (ja) 2009-06-26 2010-04-21 触媒貧有のカルボジイミド基および/またはウレトンイミン基含有イソシアネート混合物
EP10719296A EP2445945A1 (de) 2009-06-26 2010-04-21 Katalysatorarme carbodiimidgruppen und/oder uretonimingruppen aufweisende isocyanatmischungen
US13/322,165 US20120065424A1 (en) 2009-06-26 2010-04-21 Low-catalyst carbodiimide groups and/or isocyanate mixtures comprising uretonimine groups

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009027246.1 2009-06-26
DE102009027246A DE102009027246A1 (de) 2009-06-26 2009-06-26 Katalysatorarme Carbodiimidgruppen und/oder Uretonimingruppen aufweisende Isocyanatmischungen

Publications (1)

Publication Number Publication Date
WO2010149406A1 true WO2010149406A1 (de) 2010-12-29

Family

ID=42320830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/055244 WO2010149406A1 (de) 2009-06-26 2010-04-21 Katalysatorarme carbodiimidgruppen und/oder uretonimingruppen aufweisende isocyanatmischungen

Country Status (7)

Country Link
US (1) US20120065424A1 (de)
EP (1) EP2445945A1 (de)
JP (1) JP2012530743A (de)
CN (1) CN102803326A (de)
AU (1) AU2010265038A1 (de)
DE (1) DE102009027246A1 (de)
WO (1) WO2010149406A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048700A1 (de) * 2012-09-27 2014-04-03 Evonik Degussa Gmbh Feuchtigkeitshärtende systeme auf basis von carbodiimiden und anhydriden

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755084A (zh) * 2017-03-07 2021-12-07 旭化成株式会社 聚天冬氨酸涂料组合物、涂膜、及涂装物品
EP3401344B1 (de) 2017-05-09 2020-04-08 Evonik Operations GmbH Verfahren zur herstellung von trimeren und/oder oligomeren von diisocyanaten
BR112020011277B1 (pt) * 2017-12-20 2023-11-21 Lanxess Deutschland Gmbh Processo para a produção de carbodiimidas
WO2019211354A1 (de) * 2018-05-04 2019-11-07 Basf Se Verfahren zur verlängerung der standzeit eines reaktors mit destillationseinrichtung
CN110591153A (zh) * 2018-06-13 2019-12-20 德生智权有限公司 阻燃剂、其前驱物及阻燃材料
EP3868803A1 (de) * 2020-02-18 2021-08-25 Covestro Deutschland AG Verfahren zur carbodiimidisierung
WO2024063100A1 (ja) * 2022-09-20 2024-03-28 旭化成株式会社 多価カルボジイミドbの製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853518A (en) 1956-07-30 1958-09-23 Du Pont Chemical process
US2853473A (en) 1956-08-27 1958-09-23 Du Pont Production of carbodiimides
US2941966A (en) 1956-08-27 1960-06-21 Du Pont Carbodiimide polymers
DE2552350A1 (de) * 1975-11-21 1977-05-26 Bayer Ag Lagerstabile, carbodiimidgruppen enthaltende polyisocyanate
US4068065A (en) 1977-01-31 1978-01-10 The Upjohn Company Compounds and process
US4068055A (en) 1977-01-31 1978-01-10 The Upjohn Company Compounds and process
DE3512918A1 (de) 1985-04-11 1986-10-16 Bayer Ag, 5090 Leverkusen Carbodiimidgruppen enthaltende isocyanat-derivate, ein verfahren zu ihrer herstellung und ihre verwendung als zusatzmittel fuer waessrige loesungen oder dispersionen von kunststoffen
EP0515933A2 (de) 1991-05-28 1992-12-02 Bayer Ag Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate und ihre Verwendung zur Herstellung von Polyurethankunststoffen
EP0527371A2 (de) * 1991-08-09 1993-02-17 BASF Aktiengesellschaft Oligomere carbodiimide
EP0609698A1 (de) 1993-02-01 1994-08-10 Bayer Ag Verfahren zur Herstellung organischer Carbodiimide und ihre Verwendung als Kunststoff Stabilisatoren
US5597942A (en) * 1993-06-08 1997-01-28 Basf Aktiengesellschaft Carbodiimides and/or oligomeric polycarbodiimides based on 1 3-bis (1-methyl-1-isocyanatoethyl) benzene their use as hydrolysis stabilizers
US6120699A (en) 1998-09-21 2000-09-19 Basf Corporation Storage stable methylene bis(phenylisocyanate) compositions
DE10206112A1 (de) 2002-02-13 2003-08-21 Basf Ag Wässrige Dispersionen, aufgebaut aus Polycarbodiimiden
EP1616858A1 (de) 2004-07-13 2006-01-18 Bayer MaterialScience AG Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate mit niedriger Farbzahl

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE787395A (fr) * 1971-08-13 1973-02-12 Basf Wyandotte Corp Procede de preparation de polyisocyanates
US4419294A (en) * 1982-03-08 1983-12-06 American Cyanamid Company Carbodiimide oligomers of tertiary aliphatic isocyanates
DE3809261A1 (de) * 1988-03-19 1989-09-28 Bayer Ag Verfahren zur herstellung von uretdion- und isocyanuratgruppen aufweisenden polyisocyanatgemischen
DE4242504A1 (de) * 1992-12-16 1994-06-23 Rhein Chemie Rheinau Gmbh Verfahren zur Herstellung von aromatischen Carbodiimiden
DE4318979A1 (de) * 1993-06-08 1994-12-15 Basf Ag Carbodiimide und/oder oligomere Polycarbodiimide auf Basis von 1,3-Bis-(1-methyl-1-isocyanato-ethyl)-benzol, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Hydrolysestabilisator
DE102004011791A1 (de) * 2004-03-09 2005-09-29 Degussa Ag Verfahren zur Herstellung von Carbodiimidgruppen aufweisenden Substanzen
EP1904548A1 (de) * 2005-07-07 2008-04-02 Huntsman International Llc Herstellungsverfahren für eine lagerungsstabile und farblose flüssige polyisocyanatzusammensetzung mit carbodiimid- und/oder uretonimingruppen
DE102006000833A1 (de) * 2006-01-05 2007-07-12 Bayer Materialscience Ag Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate
DE102006002158A1 (de) * 2006-01-17 2007-07-19 Bayer Materialscience Ag Verfahren zur Herstellung flüssiger, lagerstabiler Carboddimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853518A (en) 1956-07-30 1958-09-23 Du Pont Chemical process
US2853473A (en) 1956-08-27 1958-09-23 Du Pont Production of carbodiimides
US2941966A (en) 1956-08-27 1960-06-21 Du Pont Carbodiimide polymers
DE2552350A1 (de) * 1975-11-21 1977-05-26 Bayer Ag Lagerstabile, carbodiimidgruppen enthaltende polyisocyanate
US4068065A (en) 1977-01-31 1978-01-10 The Upjohn Company Compounds and process
US4068055A (en) 1977-01-31 1978-01-10 The Upjohn Company Compounds and process
DE3512918A1 (de) 1985-04-11 1986-10-16 Bayer Ag, 5090 Leverkusen Carbodiimidgruppen enthaltende isocyanat-derivate, ein verfahren zu ihrer herstellung und ihre verwendung als zusatzmittel fuer waessrige loesungen oder dispersionen von kunststoffen
EP0515933A2 (de) 1991-05-28 1992-12-02 Bayer Ag Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate und ihre Verwendung zur Herstellung von Polyurethankunststoffen
EP0527371A2 (de) * 1991-08-09 1993-02-17 BASF Aktiengesellschaft Oligomere carbodiimide
EP0609698A1 (de) 1993-02-01 1994-08-10 Bayer Ag Verfahren zur Herstellung organischer Carbodiimide und ihre Verwendung als Kunststoff Stabilisatoren
US5597942A (en) * 1993-06-08 1997-01-28 Basf Aktiengesellschaft Carbodiimides and/or oligomeric polycarbodiimides based on 1 3-bis (1-methyl-1-isocyanatoethyl) benzene their use as hydrolysis stabilizers
US6120699A (en) 1998-09-21 2000-09-19 Basf Corporation Storage stable methylene bis(phenylisocyanate) compositions
DE10206112A1 (de) 2002-02-13 2003-08-21 Basf Ag Wässrige Dispersionen, aufgebaut aus Polycarbodiimiden
EP1616858A1 (de) 2004-07-13 2006-01-18 Bayer MaterialScience AG Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate mit niedriger Farbzahl

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM., 1962, pages 801 - 806
CHEMICAL REVIEWS, vol. 67, no. 2, 1967, pages 107 - 113
HOUBEN-WEYL: "Kohlensäurederivate", vol. E4, 1983, GEORG-THIEME-VERLAG, article "Methoden der organischen Chemie", pages: 897 - 900,910

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048700A1 (de) * 2012-09-27 2014-04-03 Evonik Degussa Gmbh Feuchtigkeitshärtende systeme auf basis von carbodiimiden und anhydriden

Also Published As

Publication number Publication date
EP2445945A1 (de) 2012-05-02
US20120065424A1 (en) 2012-03-15
DE102009027246A1 (de) 2010-12-30
CN102803326A (zh) 2012-11-28
JP2012530743A (ja) 2012-12-06
AU2010265038A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
EP2445945A1 (de) Katalysatorarme carbodiimidgruppen und/oder uretonimingruppen aufweisende isocyanatmischungen
EP1616858B1 (de) Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate mit niedriger Farbzahl
EP0051239B1 (de) Lösungen von Isocyanato-Isocyanuraten in Weichmachern für Polyvinylchlorid, ein Verfahren zu ihrer Herstellung, sowie ihre Verwendung als haftverbessernde Zusatzmittel in Beschichtungsmitteln auf Basis von weichgemachtem Polyvinylchlorid
EP0716080B1 (de) Verfahren zur Herstellung von Biuretgruppen enthaltenden Polyisocyanaten
EP2415795B1 (de) Verfahren zur Herstellung von Polyisocyanaten und deren Verwendung
EP0643042B1 (de) Lagerstabile, nach phosgenfreien Verfahren erhältliche Polyisocyanatzusammensetzungen, ein Verfahren zu ihrer Herstellung und ihre Verwendung
EP0173252A2 (de) Verfahren zur Herstellung von oligomeren Polyisocyanaten und ihre Verwendung bei der Herstellung von Polyurethankunststoffen
EP1820796B1 (de) Verfahren zur Herstellung flüssiger, lagerstabiler Cardbodiimid, und/oder Uretonimingruppen aufweisender organischer Isocyanate
EP0609698B1 (de) Verfahren zur Herstellung organischer Carbodiimide
EP2803660A1 (de) Neue Carbodiimide mit endständigen Harnstoff- und/oder Urethangruppen, Verfahren zu deren Herstellung und deren Verwendung
EP3510015B1 (de) Verfahren zur herstellung flüssiger, lagerstabiler carbodiimid- und/oder uretonimin-gruppen aufweisender organischer isocyanate mit niedriger farbzahl
DE1201992B (de) Verfahren zur Herstellung von Polymeren mit Cyanuratstruktur
EP0527371A2 (de) Oligomere carbodiimide
DE102006000833A1 (de) Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate
EP1671988A2 (de) Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate mit niedriger Farbzahl
DE102006000825A1 (de) Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimidgruppen aufweisender organischer Isocyanate
EP0645372B1 (de) Stabile nach phosgenfreien Verfahren erhältliche Polyisocyanatzusammensetzungen und ein Verfahren zu ihrer Herstellung
DE4124318A1 (de) Verfahren zur reinigung von polyisocyanaten, die so gereinigten polyisocyanate und ihre verwendung
EP1971623B1 (de) Verfahren zur herstellung flüssiger, lagerstabiler carbodiimid- und/oder uretonimingruppen aufweisender organischer isocyanate
EP3262091B1 (de) Verfahren zur herstellung einer polycarbodiimide umfassenden zusammensetzung mit verbesserter lagerstabilität
WO2014048701A1 (de) Monomerarme nco-prepolymere und ihre verwendung
EP0508216B1 (de) Verfahren zur Konditionierung und/oder Reinigung von organischen Isocyanaten
DE1118448B (de) Verfahren zur Erhoehung der Lagerfaehigkeit von Isocyanatgruppen und Urethangruppierungen enthaltenden Kunstharzen
DE10351534A1 (de) Verfahren zur Herstellung von Carbodiimiden
WO2023083877A1 (de) Verfahren zur herstellung von aromatischen polymeren carbodiimiden

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028271.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10719296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13322165

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010265038

Country of ref document: AU

Ref document number: 2010719296

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010265038

Country of ref document: AU

Date of ref document: 20100421

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012516594

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 657/CHENP/2012

Country of ref document: IN