WO2010149405A1 - Radarsensor mit störsignalkompensation - Google Patents

Radarsensor mit störsignalkompensation Download PDF

Info

Publication number
WO2010149405A1
WO2010149405A1 PCT/EP2010/055083 EP2010055083W WO2010149405A1 WO 2010149405 A1 WO2010149405 A1 WO 2010149405A1 EP 2010055083 W EP2010055083 W EP 2010055083W WO 2010149405 A1 WO2010149405 A1 WO 2010149405A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixer
radar sensor
sensor according
signal
adjustable
Prior art date
Application number
PCT/EP2010/055083
Other languages
English (en)
French (fr)
Inventor
Armin Himmelstoss
Michael Klar
Hans-Peter Forstner
Thomas Binzer
Thomas Walter
Klaus-Dieter Miosga
Oliver Brueggemann
Alexander Fischer
Joachim Hauk
Dirk Steinbuch
Herbert Jaeger
Erich Kolmhofer
Juergen Seiz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US13/259,463 priority Critical patent/US8860606B2/en
Priority to JP2012513520A priority patent/JP5561839B2/ja
Priority to CN201080024569.1A priority patent/CN102460206B/zh
Priority to EP10713690.5A priority patent/EP2438459B1/de
Publication of WO2010149405A1 publication Critical patent/WO2010149405A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/034Duplexers
    • G01S7/036Duplexers involving a transfer mixer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/038Feedthrough nulling circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the invention relates to a radar sensor with a mixer for mixing a received signal with a reference signal, and with a device for the compensation of interference signals that would override the mixer.
  • Radar sensors are z. B. used as distance sensors in motor vehicles.
  • the first implementations used discrete semiconductor devices to generate the high frequency at 77 GHz or to convert it into evaluable signals.
  • MMICs Microwave Monolithic Integrated Circuit
  • SiGe silicon germanium
  • active mixers can be used as an RF semiconductor material, which is now qualified for automotive use and offers the potential of high integration of HF circuit technology.
  • active mixers instead of implementing passive mixers in the form of discrete diodes or diodes integrated in an MMIC, as has hitherto been the case.
  • passive mixers have a loss of conversion
  • active mixers gain conversion by amplifying them.
  • active mixers are more susceptible to overdriving at high input signals, which severely degrades mixer efficiency.
  • bistatic radar architectures are increasingly being avoided, thus avoiding direct back-reflection within the common transmit and receive paths.
  • the problems are not completely eliminated.
  • it is disadvantageous, especially in the case of strongly focusing antennas with a large aperture, to double the antenna area through the bistatic design.
  • it is known to reduce the problem by lower transmission power.
  • a lower transmission power is associated with a lower range, which is also undesirable.
  • the object of the invention is to provide a radar sensor, in particular for motor vehicles, in which can lead to the saturation of the mixer leading noise easily and effectively suppress.
  • the means for compensating the noise has an adjustable reflection point at the reference input of the mixer.
  • the invention takes advantage of the fact that in a mixer of a radar sensor and in its surroundings, different types of reflections take place and the signals at the mixer based on these different types of reflections interfere with one another. With the help of the adjustable reflection point can now be the phase and the amplitude of at least one of these signals set so that destructive interference occurs and thus the resulting interference signal is suppressed.
  • Advantageous embodiments and further developments of the invention are specified in the subclaims.
  • 1 is a schematic diagram of a mixer assembly of a radar sensor.
  • Fig. 2 is a schematic illustration of various types of reflections occurring in the mixer assembly of Fig. 1;
  • Fig. 3 shows a mixer assembly with an adjustable reflection point according to the invention.
  • FIG. 4 shows a more detailed illustration of the reflection point according to FIG. 3.
  • Fig. 1 is a schematic diagram of a mixer assembly of a monostatic radar sensor for motor vehicles shown, for example, a 77 GHz radar.
  • the essential functional components of the mixer assembly are a coupler 10 and the actual mixer cell 12.
  • the functions of these two components can, for example in a transfer mixer, also be combined in a single component, which however is of no importance for the principles to be explained here.
  • the coupler 10 is connected in a high-frequency line 14, the of a not shown local oscillator leads to a likewise not shown antenna of the radar sensor.
  • a transmission signal LO (77 GHz radio-frequency signal) generated by the local oscillator is transmitted to the antenna via the radio-frequency line 14 and emitted by this antenna.
  • the signal reflected at an object to be located is again received by the same antenna and transmitted as received signal E via the radio-frequency line 14 back to the coupler 10.
  • this received signal E is coupled out of the high-frequency line 14 and forwarded to an RF input 16 of the mixer cell 12.
  • a portion of the transmission signal LO is coupled out of the coupler 10 and forwarded as a reference signal R to a reference input 18 of the mixer cell 12.
  • the received signal E and the reference signal R are mixed with each other, so as to obtain an intermediate frequency signal whose frequency corresponds to the frequency difference between the received signal E and the reference signal R.
  • This intermediate frequency signal is tapped at an IF output 20 of the mixer and supplied for further evaluation.
  • Fig. 2 is a schematic diagram of the same mixer assembly as in Fig. 1 but showing, instead of the LO, E and R signals described above, various spurious signals resulting from different types of reflections in and / or around the mixer assembly itself.
  • the mixer assembly is formed by an MMIC. In this case, one can distinguish between internal reflections within the MMIC and reflections that are caused by the incorporation of the MMIC into its environment.
  • a built-in interference signal SE which is caused by reflective joints in or on the antenna side branch of the high-frequency line 14 and / or by the RF junction between this branch of the high-frequency line and the MMIC.
  • the RF junction may be formed as a bond transition or as a flip-chip.
  • the reception-related interference signal SE passes via the coupler 10 to the RF input 16 of the mixer cell.
  • An internal interference signal SR is formed by reflection at the reference input 18 of the mixer cell 12 and also passes via the coupler 10 to the RF input 16 of the mixer cell.
  • interference signals SIC and SIM which are less significant in practice, arise from imperfect isolation of the coupler 10 and imperfect isolation between the reference input and the RF input of the mixer cell 12th
  • the internal interference signals SR, SIC and SIM are in principle controllable by suitable design of the MMIC that forms the mixer assembly. However, this does not apply to the external interference signal SE, which in each case depends on the specific installation conditions of the mixer module in the overall system of the radar sensor.
  • the interference signals at the RF input 16 of the mixer cell 12 mainly interfere constructively and reach an amplitude which saturates the mixer cell and thus considerably impairs the efficiency of the mixer ,
  • Fig. 3 shows now - again as a schematic diagram - a mixer assembly in which the malfunction caused by the interference signals subsequently, after installation of the MMICs in the radar sensor, correct.
  • an adjustable reflection point 22 is provided at the reference input 18 of the mixer cell 12, with which the phase and the amplitude of the interference signal SR can be changed. This phase and amplitude are now adjusted so that at the RF input 16 results in destructive interference with the resultant of the other interference signals.
  • the less significant spurious signals SIC and SIM are omitted in FIG. 3 for the sake of simplicity.
  • a practical realization of the adjustable reflection point 22 is shown in FIG. Thereafter, this reflection point comprises a plurality of parallel bypass lines 24, all of which connect the coupler 10 to the reference input 18 of the mixer cell 12, but different represent different detours.
  • the reflection point 22 comprises a stub 26 with a plurality of branches 28 which connect the reference input 18 via different lengths of line routes to ground.
  • Each bypass line 24 and each branch 28 of the stub 26 includes an interruption point 30, for example in the form of so-called laser fuses, which can burn away after installation of the mixer assembly in the radar sensor by means of a laser, so that the relevant line branch is interrupted.
  • the effective length of the bypass line 24 or the stub 26 can thus be set.
  • the effective length of the bypass line 24 determines the phase of the spurious signal SR, while the effective length of the spur line 26 affects the amplitude of this spurious signal.
  • the interference signal suppression can be optimized by successively opening the break points 30 in the detour lines 24 and the stub 26.
  • the break points 30 of the bypass lines 24 are successively opened so that the effective length of the bypass line gradually becomes larger (or smaller), and thus the phase of the noise signal SR is gradually rotated. This process is continued until the override reaches a minimum, that is, until the phase of the interference signal SR with respect to the phase of the remaining interference signals, in particular of the interference signal SE, is shifted by 180 °.
  • the interruption points 30 in the stub 26 are cut in sequence, and thus the amplitude of the interference signal SR is gradually increased (or reduced) until the amplitudes are balanced and thus reaches a final optimum, ideally a complete destructive interference becomes.
  • This principle is not limited to monostatic systems with transfer mixers, but can also be used for example in bistatic systems in which a coupling of the received signal takes place with the transmission signal. This applies, for example, in bistatic radar sensors with coupling from the transmission to the receiving antenna, especially when the receiver is very sensitive by the use of an LNA (Low Noise Amplifier) in the receiving path and / or the mixer is designed little large signal strength
  • LNA Low Noise Amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Radarsensor mit einem Mischer (12) zum Mischen eines Empfangssignals mit einem Referenzsignal, und mit einer Einrichtung zur Kompensation von Störsignalen (SE), die den Mischer übersteuern würden, dadurch gekennzeichnet, daß die Einrichtung zur Kompensation der Störsignale eine einstellbare Reflexionsstelle (22) am Referenzeingang (18) des Mischers (12) aufweist.

Description

Beschreibung
Titel
Radarsensor mit Störsiqnalkompensation
Stand der Technik
Die Erfindung betrifft einen Radarsensor mit einem Mischer zum mischen eines Empfangssignals mit einem Referenzsignal, und mit einer Einrichtung zur Kompensation von Störsignalen, die den Mischer übersteuern würden.
Radarsensoren werden z. B. als Abstandssensoren in Kraftfahrzeugen eingesetzt. Die ersten Implementierungen bedienten sich diskreter Halbleiter-Bauelemente, um die Hochfrequenz bei 77 GHz zu erzeugen bzw. in auswertbare Signale umzuwandeln. Seit einigen Jahren haben sogenannte MMICs (Microwave Monolithic Integrated Circuit) Einzug gehalten. Diese zeichnen sich dadurch aus, daß HF-Schaltungen auf einem Chip platzsparend integriert sind.
Als neuartige Technologie-Plattform bietet sich SiGe (Silizium-Germanium) als HF- Halbleitermaterial an, das mittlerweile für den Automobileinsatz qualifiziert ist und das Potential der Hochintegration von HF-Schaltungstechnik bietet. Insbesondere ist es hier erstmals sinnvoll, aktive Mischer einzusetzen statt, wie bisher üblich, passive Mischer in Form von diskreten oder in einen MMIC integrierten Dioden zu implementieren. Während passive Mischer einen Konversionsverlust besitzen, weisen aktive Mischer durch deren Verstärkung einen Konversionsgewinn auf. Dadurch sind aktive Mischer bei hohen Eingangssignalen anfälliger für Übersteuerung, was eine starke Beeinträchtigung der Mischereffizienz bewirkt. Dem wird entgegengewirkt, indem die Mischerzellen durch besondere Schaltungstechnik großsignalfester gemacht werden, was jedoch den Stromverbrauch erhöht. Dennoch tritt der Fall auf, daß bei starken und nahen Reflexionen die Sendeleistung nur gering gedämpft in den Empfangspfad zurückreflektiert wird und aufgrund der hohen Absolutleistung den Empfänger in Sättigung bringt.
Da dieser Effekt typischerweise bei kurzen Distanzen an stationären Reflexionsstellen auftritt, weisen Sende- und Empfangssignal praktisch keine Frequenzverschiebung auf, womit sich als Mischprodukt eine Gleichspannung ergibt, im Folgenden "DC- Offset" genannt. Zwar kann diese Gleichspannung durch Wechselspannungskopplung am Mischerausgang eliminiert werden, doch führt sie dennoch in der Mischerzelle selbst zur Übersteuerung und Beeinträchtigung der Effizienz.
Insbesondere bei kompakten Radarsystemen, die sich für den Sende- und den Empfangsfall einer gemeinsamen Antenne bedienen und einen gemeinsamen Sende- und Empfangspfad besitzen (Monostatische Radars), sind diese Reflexionen besonders ausgeprägt und sorgen bei nicht optimaler Auslegung für eine stark eingeschränkte Leistungsfähigkeit.
Bei heutigen Automobilradars wird deshalb zunehmend auf bistatische Radar- Architekturen ausgewichen, womit direkte Rückreflexion innerhalb des gemeinsamen Sende- und Empfangspfades vermieden wird. Allerdings sind auch hier bei nahen und starken Reflexionen, beispielsweise durch Verbau der Radars hinter reflektierenden Stoßfängern, die Probleme nicht völlig beseitigt. Außerdem ist es insbesondere bei stark bündelnden Antennen mit großer Apertur unvorteilhaft, die Antennenfläche durch die bistatische Auslegung zu verdoppeln. Weiterhin ist es bekannt, das Problem durch geringere Sendeleistung zu reduzieren. Jedoch ist eine geringere Sendeleistung mit geringerer Reichweite verbunden, was ebenso unerwünscht ist.
In Kommunikationssystemen ist es bekannt, daß aktive Offsetregelungen durch Rückkopplung die Übersteuerung verhindern. Das ist bisher jedoch nur bei wesentlich niedrigeren Frequenzen realisiert und derzeit bei 77 GHz nicht wirtschaftlich umsetzbar.
Ebenso ist es bekannt, einen Sende-/Empfangsumschalter vor der Antenne zu anzuordnen. Allerdings ist auch diese Technik bisher weitaus tieferen Frequenzen vorbehalten und bewirkt zudem einen Anstieg an Komplexität, der bei einem wirtschaftlich herzustellenden Radarsensor für Kraftfahrzeuge nicht tragbar ist.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es, einen Radarsensor zu schaffen, insbesondere für Kraftfahrzeuge, bei dem sich zur Sättigung des Mischers führende Störsignale einfach und wirksam unterdrücken lassen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Einrichtung zur Kompensation der Störsignale eine einstellbare Reflexionsstelle am Referenzeingang des Mischers aufweist.
Die Erfindung nutzt die Tatsache aus, daß in einem Mischer eines Radarsensors und in dessen Umgebung verschiedene Arten von Reflexionen stattfinden und die auf diesen verschiedenen Arten von Reflexionen beruhenden Signale am Mischer miteinander interferieren. Mit Hilfe der einstellbaren Reflexionsstelle läßt sich nun die Phase und die Amplitude mindestens eines dieser Signale so einstellen, daß destruktive Interferenz eintritt und somit das resultierende Störsignal unterdrückt wird. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Kurze Beschreibung der Zeichnungen
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Fig. 1 eine Prinzipskizze einer Mischerbaugruppe eines Radarsensors;
Fig. 2 eine schematische Darstellung verschiedener Arten von Reflexionen, die in der Mischerbaugruppe nach Fig. 1 auftreten;
Fig. 3 eine Mischerbaugruppe mit einer einstellbaren Reflexionsstelle gemäß der Erfindung; und
Fig. 4 eine detailliertere Darstellung der Reflexionsstelle nach Fig. 3.
Ausführungsform der Erfindung
In Fig. 1 ist als Prinzipskizze eine Mischerbaugruppe eines monostatischen Radarsensors für Kraftfahrzeuge dargestellt, beispielsweise eines 77 GHz Radars. Wesentliche Funktionskomponenten der Mischerbaugruppe sind ein Koppler 10 und die eigentliche Mischerzelle 12. Die Funktionen dieser beiden Komponenten können, beispielsweise bei einem Transfermischer, auch in einem einzigen Bauelement vereinigt sein, was jedoch für die hier zu erläuternden Prinzipien nicht weiter von Bedeutung ist. Der Koppler 10 ist in eine Hochfrequenzleitung 14 geschaltet, die von einem nicht gezeigten lokalen Oszillator zu einer gleichfalls nicht gezeigten Antenne des Radarsensors führt.
Ein von dem lokalen Oszillator erzeugtes Sendesignal LO (77 GHz Hochfrequenzsignal) wird über die Hochfrequenzleitung 14 an die Antenne übermittelt und von dieser Antenne abgestrahlt. Das an einem zu ortenden Objekt reflektierte Signal wird von derselben Antenne wieder empfangen und als Empfangssignal E über die Hochfrequenzleitung 14 zurück zum Koppler 10 übertragen. Durch den Koppler 10 wird dieses Empfangssignal E aus der Hochfrequenzleitung 14 ausgekoppelt und an einen HF-Eingang 16 der Mischerzelle 12 weitergeleitet. Weiterhin wird vom Koppler 10 ein Teil des Sendesignals LO ausgekoppelt und als Referenzsignal R an einen Referenzeingang 18 der Mischerzelle 12 weitergeleitet. In der Mischerzelle 12 werden das Empfangssignal E und das Referenzsignal R miteinander gemischt, so daß man ein Zwischenfrequenzsignal erhält, dessen Frequenz dem Frequenzunterschied zwischen dem Empfangssignal E und dem Referenzsignal R entspricht. Dieses Zwischenfrequenzsignal wird an einem ZF-Ausgang 20 des Mischers abgegriffen und der weiteren Auswertung zugeführt.
Fig 2 ist eine Prinzipskizze der gleichen Mischerbaugruppe wie in Fig, 1 , zeigt jedoch anstelle der oben beschriebenen Signale LO, E und R verschiedene Störsignale, die durch unterschiedliche Arten von Reflexionen in der Mischerbaugruppe selbst und/oder in deren Umgebung entstehen. Als Beispiel kann angenommen werden, daß die Mischerbaugruppe durch ein MMIC gebildet wird. In diesem Fall kann man unterscheiden zwischen internen Reflexionen innerhalb des MMIC und Reflexionen, die durch den Einbau des MMIC in seine Umgebung verursacht werden.
Auf diese letztere Weise entsteht insbesondere ein einbaubedingtes Störsignal SE, das durch reflektierende Stoßstellen im oder am antennenseitigen Ast der Hochfrequenzleitung 14 und/oder durch den HF-Übergang zwischen diesem Ast der Hochfrequenzleitung und dem MMIC verursacht wird. Der HF-Übergang kann als Bond-Übergang oder als Flip-Chip ausgebildet sein. Das empfangsbedingte Störsignal SE gelangt über den Koppler 10 an den HF-Eingang 16 der Mischerzelle. Ein internes Störsignal SR entsteht durch Reflexion am Referenzeingang 18 der Mischerzelle 12 und gelangt über den Koppler 10 ebenfalls an den HF-Eingang 16 der Mischerzelle.
Weitere Störsignale SIC und SIM, die jedoch in der Praxis weniger bedeutsam sind, entstehen durch unvollkommene Isolation des Kopplers 10 bzw. unvollkommene Isolation zwischen dem Referenzeingang und dem HF-Eingang der Mischerzelle 12.
All diese Störsignale werden am HF-Eingang der Mischerzelle 12 vektoriell miteinander überlagert und kommen so zur Interferenz.
Die internen Störsignale SR, SIC und SIM sind im Prinzip durch geeignete Auslegung des MMICs, das die Mischerbaugruppe bildet, kontrollierbar. Das gilt jedoch nicht für das externe Störsignal SE, das jeweils von den speziellen Einbaubedingungen der Mischerbaugruppe im Gesamtsystem des Radarsensors abhängig ist.
Von Fall zu Fall kann sich daher nach dem Einbau des MMICs in den Radarsensor zeigen, daß die Störsignale am HF-Eingang 16 der Mischerzelle 12 vorwiegend konstruktiv interferieren und eine Amplitude erreichen, die die Mischerzelle zur Sättigung bringt und so die Effizienz des Mischers erheblich beeinträchtigt.
Fig. 3 zeigt nun - wiederum als Prinzipskizze - eine Mischerbaugruppe, bei der sich die durch die Störsignale verursachte Funktionsbeeinträchtigung nachträglich, nach dem Einbau des MMICs in den Radarsensor, korrigieren läßt.
Zu diesem Zweck ist am Referenzeingang 18 der Mischerzelle 12 eine einstellbare Reflexionsstelle 22 vorgesehen, mit der sich die Phase und die Amplitude des Störsignals SR verändern lassen. Diese Phase und Amplitude werden nun so eingestellt, daß sich am HF-Eingang 16 destruktive Interferenz mit der Resultierenden der übrigen Störsignale ergibt. Die weniger bedeutenden Störsignale SIC und SIM sind in Fig. 3 der Einfachheit halber fortgelassen. Eine praktische Realisierung der einstellbaren Reflexionsstelle 22 ist in Fig. 4 dargestellt. Danach umfaßt diese Reflexionsstelle mehrere parallele Umwegleitungen 24, die alle den Koppler 10 mit dem Referenzeingang 18 der Mischerzelle 12 verbinden, jedoch unterschiedlich weitere Umwege repräsentieren. Weiterhin umfaßt die Reflexionsstelle 22 eine Stichleitung 26 mit mehreren Zweigen 28, die den Referenzeingang 18 über unterschiedlich lange Leitungsstrecken mit Masse verbinden.
Jede Umgehungsleitung 24 und jeder Zweig 28 der Stichleitung 26 enthält eine Unterbrechungsstelle 30, beispielsweise in der Form sogenannter Laser-Fuses, die sich nach dem Einbau der Mischerbaugruppe in den Radarsensor mit Hilfe eines Lasers wegbrennen lassen, so daß der betreffende Leitungszweig unterbrochen wird.
Durch Öffnen einer oder mehrerer der Unterbrechungsstellen 30 läßt sich somit die effektive Länge der Umgehungsleitung 24 bzw. der Stichleitung 26 einstellen. Die effektive Länge der Umgehungsleitung 24 bestimmt die Phase des Störsignals SR, während die effektive Länge der Stichleitung 26 die Amplitude dieses Störsignals beeinflußt.
Wenn nach dem Einbau der Mischerbaugruppe in den Radarsensor das Sendesignal LO eingespeist wird und dabei die Leistung der Mischerbaugruppe, speziell die Neigung zum Übersteuern ausgewertet wird (z. B. anhand des DC-Offsets am ZF- Ausgang 20), läßt sich die Störsigalunterdrückung optimieren, indem nacheinander die Unterbrechungsstellen 30 in den Umwegleitungen 24 und der Stichleitung 26 geöffnet werden. Beispielsweise werden zunächst die Unterbrechungsstellen 30 der Umgehungsleitungen 24 nacheinander geöffnet, so daß die effektive Länge der Umgehungsleitung nach und nach größer (oder kleiner) wird und somit die Phase des Störsignals SR allmählich gedreht wird. Dieser Vorgang wird so lange fortgesetzt, bis die Übersteuerung ein Minimum erreicht, d.h., bis die Phase des Störsignals SR gegenüber der Phase der übrigen Störsignale, insbesondere des Störsignals SE, um 180° verschoben ist. Anschließend werden der Reihe nach die Unterbrechungsstellen 30 in der Stichleitung 26 durchgetrennt, und damit wird die Amplitude des Störsignals SR nach und nach vergrößert (oder verkleinert), bis auch die Amplituden abgeglichen sind und somit ein endgültiges Optimum, im Idealfall eine vollständige destruktive Interferenz erreicht wird.
Dieses Prinzip ist nicht auf monostatische Systeme mit Transfermischern beschränkt, sondern kann beispielsweise auch bei bistatischen Systemen eingesetzt werden, bei denen eine Überkopplung des Empfangssignals mit dem Sendesignal stattfindet. Das gilt beispielsweise bei bistatischen Radarsensoren mit Überkopplung von der Sendeauf die Empfangsantenne, insbesondere dann, wenn der Empfänger durch den Einsatz eines LNA (Low Noise Amplifier) im Empfangspfad sehr empfindlich ist und/oder der Mischer nur wenig großsignalfest ausgelegt ist

Claims

Ansprüche
1. Radarsensor mit einem Mischer (12) zum Mischen eines Empfangssignals (E) mit einem Referenzsignal (R), und mit einer Einrichtung zur Kompensation von Störsignalen (SE), die den Mischer übersteuern würden, dadurch gekennzeichnet, daß die Einrichtung zur Kompensation der Störsignale eine einstellbare Reflexionsstelle (22) am Referenzeingang (18) des Mischers (12) aufweist.
2. Radarsensor nach Anspruch 1 , bei dem die einstellbare Reflexionsstelle (22) eine einstellbare Umwegleitung (24) aufweist.
3. Radarsensor nach Anspruch 2, bei dem die einstellbare Umwegleitung (24) mehrere parallele, unterschiedlich lange Pfade aufweist, die jeweils eine im Betrieb des Radarsensors zu öffnende Unterbrechungsstelle (30) aufweisen.
4. Radarsensor nach einem der Ansprüche 1 bis 3, bei dem die einstellbare Reflexionsstelle (22) eine einstellbare Stichleitung (26) aufweist, die den Referenzeingang (18) des Mischers (12) mit Masse verbindet.
5. Radarsensor nach Anspruch 4, bei dem die Stichleitung (26) mehrere Pfade (28) unterschiedlicher Länge aufweist, die jeweils eine während des Betriebs des Radarsensors zu öffnende Unterbrechungsstelle (30) aufweisen.
6. Radarsensor nach Anspruch 4 oder 6, bei dem die Unterbrechungsstelle (30) eine Laser-Fuse ist.
7. Radarsensor nach einem der vorstehenden Ansprüche, bei dem der Mischer (12) Teil eines MMIC ist.
8. Radarsensor nach einem der vorstehenden Ansprüche, bei dem der Mischer (12) ein Transfermischer ist.
9. Radarsensor nach einem der vorstehenden Ansprüche, bei dem der Mischer (12) ein aktiver Mischer ist.
10. Radarsensor nach einem der vorstehenden Ansprüche in monostatischer Bauweise.
PCT/EP2010/055083 2009-06-05 2010-04-19 Radarsensor mit störsignalkompensation WO2010149405A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/259,463 US8860606B2 (en) 2009-06-05 2010-04-19 Radar sensor having interference signal compensation
JP2012513520A JP5561839B2 (ja) 2009-06-05 2010-04-19 干渉信号補正を行うレーダセンサ
CN201080024569.1A CN102460206B (zh) 2009-06-05 2010-04-19 具有干扰信号补偿的雷达传感器
EP10713690.5A EP2438459B1 (de) 2009-06-05 2010-04-19 Radarsensor mit störsignalkompensation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009026767A DE102009026767A1 (de) 2009-06-05 2009-06-05 Radarsensor mit Störsignalkompensation
DE102009026767.0 2009-06-05

Publications (1)

Publication Number Publication Date
WO2010149405A1 true WO2010149405A1 (de) 2010-12-29

Family

ID=42320905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/055083 WO2010149405A1 (de) 2009-06-05 2010-04-19 Radarsensor mit störsignalkompensation

Country Status (6)

Country Link
US (1) US8860606B2 (de)
EP (1) EP2438459B1 (de)
JP (1) JP5561839B2 (de)
CN (1) CN102460206B (de)
DE (1) DE102009026767A1 (de)
WO (1) WO2010149405A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012913B4 (de) * 2009-03-12 2017-03-09 Infineon Technologies Ag Verfahren und Schaltung zum Betreiben eines Mischers
DE102011115309A1 (de) * 2011-09-29 2013-04-04 Infineon Technologies Ag Radarschaltung, Radarsystem und Verfahren zum Testen einer Verbindung zwischen einer Radarschaltung und einer Radarantenne in einem Fahrzeug
DE102018207716A1 (de) * 2018-05-17 2019-11-21 Robert Bosch Gmbh Radarsensorsystem und Verfahren zum Herstellen eines Radarsensorsystems
DE102018128334B3 (de) * 2018-11-13 2020-04-09 Infineon Technologies Ag Vorrichtung und verfahren zum einstellen eines untedrückungssignals zum unterdrücken eines hf-störsignals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339197A (en) * 1966-07-06 1967-08-29 Harold N Tate Pulsed radar system
EP0622840A2 (de) * 1993-04-07 1994-11-02 Nec Corporation Apparat und Methode für die Montage und das Prüfen von Monolitisch integrierten Mikrowellenschaltungsmodulen (MMIC)
DE102005030345A1 (de) * 2004-06-29 2006-03-30 Kyocera Corporation Mischer, diesen Aufweisende Hochfrequenz-Sende-/Empfangseinrichtung, die Hochfrequenz-Sende-/Empfangseinrichtung Aufweisende Radarvorrichtung und mit der Radarvorrichtung Ausgestattetes Fahrzeug

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492960A (en) * 1982-01-18 1985-01-08 The United States Of America As Represented By The Secretary Of The Navy Switching mixer
CA1295715C (en) * 1987-12-23 1992-02-11 Glen Martinson Multiband radar detector
JPH0812242B2 (ja) * 1993-03-17 1996-02-07 日本電気株式会社 レーダ装置
US6008750A (en) * 1997-02-11 1999-12-28 Decatur Electronics, Inc. Microwave transceiver utilizing a microstrip antenna
JP3472440B2 (ja) * 1997-05-29 2003-12-02 三菱電機株式会社 Fetミクサおよびこのミクサを有する通信装置
US6686867B1 (en) * 1999-07-30 2004-02-03 Volkswagen Ag Radar sensor and radar antenna for monitoring the environment of a motor vehicle
TW457767B (en) * 1999-09-27 2001-10-01 Matsushita Electric Works Ltd Photo response semiconductor switch having short circuit load protection
DE19958206C2 (de) * 1999-12-02 2002-03-28 Infineon Technologies Ag Sendevorrichtung
JP4446785B2 (ja) * 2003-08-27 2010-04-07 京セラ株式会社 高周波送受信器およびそれを具備するレーダ装置ならびにそれを搭載したレーダ装置搭載車両およびレーダ装置搭載小型船舶
US7602333B2 (en) * 2004-02-26 2009-10-13 Kyocera Corporation Transmitting/receiving antenna, isolator, high-frequency oscillator, and high-frequency transmitter-receiver using the same
JP4377739B2 (ja) * 2004-04-26 2009-12-02 京セラ株式会社 高周波送受信器およびそれを具備するレーダ装置ならびにレーダ装置搭載車両およびレーダ装置搭載小型船舶
JP4624195B2 (ja) * 2004-06-29 2011-02-02 京セラ株式会社 高周波送受信器およびレーダ装置
US7573420B2 (en) * 2007-05-14 2009-08-11 Infineon Technologies Ag RF front-end for a radar system
DE102007038513A1 (de) * 2007-08-16 2009-02-19 Robert Bosch Gmbh Monostatischer Mehrstrahlradarsensor für Kraftfahrzeuge
DE102007060769A1 (de) * 2007-12-17 2009-06-18 Robert Bosch Gmbh Monostatischer Mehrstrahl-Radarsensor, sowie Verfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339197A (en) * 1966-07-06 1967-08-29 Harold N Tate Pulsed radar system
EP0622840A2 (de) * 1993-04-07 1994-11-02 Nec Corporation Apparat und Methode für die Montage und das Prüfen von Monolitisch integrierten Mikrowellenschaltungsmodulen (MMIC)
DE102005030345A1 (de) * 2004-06-29 2006-03-30 Kyocera Corporation Mischer, diesen Aufweisende Hochfrequenz-Sende-/Empfangseinrichtung, die Hochfrequenz-Sende-/Empfangseinrichtung Aufweisende Radarvorrichtung und mit der Radarvorrichtung Ausgestattetes Fahrzeug

Also Published As

Publication number Publication date
US8860606B2 (en) 2014-10-14
CN102460206B (zh) 2015-05-20
EP2438459A1 (de) 2012-04-11
US20120326919A1 (en) 2012-12-27
JP2012529019A (ja) 2012-11-15
CN102460206A (zh) 2012-05-16
EP2438459B1 (de) 2016-09-14
DE102009026767A1 (de) 2010-12-09
JP5561839B2 (ja) 2014-07-30

Similar Documents

Publication Publication Date Title
DE102009045546B4 (de) Hochfrequenzschaltung mit verbesserter Antennenanpassung
EP0579777B1 (de) Sende-/empfangsmodul
EP2235559B1 (de) Monostatische mehrstrahlradarsensorvorrichtung für ein kraftfahrzeug
EP2101279A2 (de) Einstellbare Schaltung und RFID-Readereinheit
DE102019106030A1 (de) Radar-system mit mehreren radar-chips
DE102006024458B4 (de) Integrierte Mehrfachmischer-Schaltung
EP2569820A1 (de) Fahrerassistenzeinrichtung für ein fahrzeug, fahrzeug und verfahren zum betreiben eines radargeräts
DE102008012984A1 (de) Mischerschaltung und Radar-Transceiver
EP1610147A1 (de) Single-Chip Radar für Kraftfahrzeug-Anwendungen
US20090023405A1 (en) RF Front-End Circuitry with Reduced DC Offset
EP2438459B1 (de) Radarsensor mit störsignalkompensation
WO2013050032A1 (de) Schaltungsanordnung für ein frontend eines fmcw radar-transceivers, fmcw radar-transceiver und verfahren zum betreiben
EP1794613A1 (de) Radarsystem mit heterodynem mischer zur verbesserten detektion von nahbereichssignalen
DE102005037877A1 (de) Diodenmischer
EP2449400B1 (de) Mischerbaugruppe und radarsensor für kraftfahrzeuge
EP2013638A1 (de) Balancierter serienmischer für hochfrequenzsignale
DE102007021730B4 (de) HF-Sende- und Empfangseinheit für ein Radarsystem
DE102016117920B4 (de) Frequenzwandler-Schaltung für ein Radar-basiertes Messgerät
DE19731085A1 (de) Einrichtung zum Senden und Empfangen von Radarwellen, insbesondere für einen Abstandssensor
WO2012041652A1 (de) Radarsystem
DE102007029389B4 (de) HF-Sende-und Empfangsschaltung mit einem Richtkoppler und einem Mischer
DE19749325B4 (de) Sende/Empfangs-Schaltung
WO2007090369A1 (de) Sende-/empfangsvorrichtung zum simultanen senden und empfangen und verwendung der sende-/empfangsvorrichtung
EP2273282B1 (de) Bistatischer Radarsensor für Kraftfahrzeuge
DE19749326A1 (de) Sende/Empfangs-Umschalter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024569.1

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2010713690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010713690

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10713690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012513520

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13259463

Country of ref document: US