WO2010149265A1 - Batterieseparator - Google Patents

Batterieseparator Download PDF

Info

Publication number
WO2010149265A1
WO2010149265A1 PCT/EP2010/003394 EP2010003394W WO2010149265A1 WO 2010149265 A1 WO2010149265 A1 WO 2010149265A1 EP 2010003394 W EP2010003394 W EP 2010003394W WO 2010149265 A1 WO2010149265 A1 WO 2010149265A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
battery separator
ion
battery
separator
Prior art date
Application number
PCT/EP2010/003394
Other languages
English (en)
French (fr)
Inventor
Gabriele RÖMER-SCHEUERMANN
Rupert Schnell
Hauke Esemann
Georg Sparschuh
Original Assignee
Schott Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Ag filed Critical Schott Ag
Publication of WO2010149265A1 publication Critical patent/WO2010149265A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/04Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery separator which comprises a porous, ion-permeable glass pane or a porous, ion-permeable glass ceramic.
  • Battery separators have the task of physically separating cathode and anode into batteries or negative and positive electrodes in accumulators.
  • the separator must be a membrane with barrier properties that separates the two electrodes spatially and electronically to avoid internal short circuits. At the same time, however, the separator must be permeable to ions so that the electrochemical reactions in the cell can proceed.
  • Battery separators must be thin, so that the internal resistance is as low as possible and a high packing density can be achieved. Only in this way are good performance data and high specific capacities possible.
  • Other important functions of the separator may be to absorb the electrolyte and - in otherwise closed cells - to ensure the gas exchange. While fabrics have been used in the past, predominantly very fine-pored materials such as membranes are used today.
  • a battery separator can also serve a simple construction of injection-molded plastic webs, when it comes only to keep the electrodes at a certain distance.
  • a special form of the separator is the tube pocket. This is made of two layers of fabric or nonwoven fabric, which were first impregnated with a resin, then sewn together and placed in a specific tube shape. These tubes are filled with active mass and are then used in lead-acid batteries as electrodes.
  • separators used in these systems must also be differentiated according to the electrolyte to which they are exposed during their lifetime. Another criterion for separator selection is the price. Separators, which must be stable over many charge / discharge cycles, are made of higher quality materials than those used in inexpensive disposable batteries. Essentially, one distinguishes the following separator types.
  • extruded or sintered separators made of polyethylene, sintered PVC or mats made of micro-glass fiber fleece (AGM) are suitable.
  • the prerequisites are the same here as with nickel-cadmium batteries, except that additional requirements are placed on the battery separator. He must be able to reduce the self-discharge. This is achieved by functionalizing the nonwoven surface by means of chemical treatment. Such may be surface treatment with acrylic acid or sulfonation.
  • Non-rechargeable Li batteries or Li primary batteries Again, microporous films, but also nonwovens are in use.
  • nonwovens are used as separators predominantly. These usually consist of a mixture of polyvinyl alcohol microfibers (PVA) and cellulose. Occasionally, non-woven and membrane laminates such as cellophane are also used. Special requirements for the separator material in alkaline manganese batteries are good wetting and high absorption capacity for the alkaline electrolyte solution. The pore diameter must be small in order to avoid so-called growth of the separator by zinc dendrites, which lead to internal short circuit. Also important is a low price of the material.
  • This type of battery mainly uses paper as a separator.
  • Battery separators or separators for accumulators which consist of polymers or comprise polymers, have significant disadvantages in terms of temperature stability of a battery.
  • temperature stability of a battery In particular for applications in the automotive sector, where high energy densities in the range of more than 100 Wh / l are needed with a simultaneously high total capacity of the battery in the range above 10 kWh, this can lead to serious safety problems.
  • Polymeric only up to a temperature of 120 - 180 0 C stable. The exact temperature to which the stability of the separator and thus the safety of the cell is guaranteed, of course, depends on the type of each selected polymer.
  • film separators Recent developments in the field of battery separators are so-called film separators. These are porous supports, which are usually made of a polymer, and an applied by sol-gel process inorganic coating to increase the temperature stability. However, the use of the polymer continues to present difficulties with elevated temperatures.
  • inorganic porous supports such as metal mesh or glass fiber nonwovens
  • inorganic porous supports such as metal mesh or glass fiber nonwovens
  • battery separators based on coated fibers are known from the following publications, for example: DE 198 38 800 C1, DE 101 42 622 A1, DE 102 08 277 A1, EP 1 419 544 B1, US 2008/0138704 A1.
  • JP 9-27343 A describes a relatively thick (0.5 mm) porous glass separator plate for Li ion batteries.
  • Solid electrolytes for Li-ion batteries of Li-ion-conducting glass ceramic are known from the document DE 697 22 272 T2.
  • a carrier made of woven or nonwoven polymer fibers can be provided with a ceramic coating.
  • the inventors have recognized that when using glass fibers compared to the distance between the separator and electrode - this distance should be kept as small as possible and optimally in the range of less than 1 micron - large diameter of the glass fibers of usually not less than 10 microns leads to a strong shading of the electrodes. Thus, only a fraction of the available electrode surface can be used actively for the charge carrier exchange with the electrolyte, which significantly reduces the charging or discharging speed.
  • the inventors have recognized that the use of conventional, thick glass membranes results in a marked deterioration in cell performance due to a strong impediment to ion transport.
  • a battery separator comprising a porous, ion-permeable glass pane or a porous, ion-permeable glass ceramic pane, wherein the glass pane or the glass ceramic pane - referred to below as a pane - a mean pore size of less than 1 micron and a thickness of smaller than 0.3 mm, in particular smaller than 0.1 mm. Since the pore size varies with the size of the Correlated between webs located on the Separatorober Design, this is both a shading effect and due to the small thickness of the disc obstructing the ion transport avoided.
  • battery separator in the sense of the invention is meant in particular both a separator of the use in a battery and a separator which finds use in an accumulator.
  • the pore size of the disc is significantly smaller than the distance between the separator and electrodes.
  • the mean pore sizes are smaller than 1 .mu.m, in particular smaller than 0.5 .mu.m, in order to minimize shadowing effects.
  • the porous, ion-permeable plate itself may have a content of mobile lithium ions which can contribute to the lithium ion conduction in the accumulator and thus increase the efficiency of the cell.
  • a disc contains at least 0.1% by weight, preferably at least 1% by weight, of lithium ions.
  • the disc is permeable in particular for lithium ions.
  • the disc may preferably be coated on at least one side, for example with a hydrophobic coating.
  • the disk can preferably be produced by demixing and leaching out a starting glass or an initial glass ceramic, by sintering glass or glass ceramic particles, by sol-gel methods or by gas phase deposition.
  • the disc has an increased wettability to an electrolyte fluid, for example to ionic liquids.
  • the wettability can be determined by the contact angle of the liquid with the membrane; this is less than 30 °.
  • An increased wettability in the context of this invention is present when the contact angle of a test specimen made of the corresponding material (glass or glass ceramic disk, without pores) with the respective battery electrolyte liquid ⁇ 30 °, preferably ⁇ 20 ° and particularly preferably ⁇ 10 °.
  • the contact angle can be determined by known methods.
  • the pore surfaces of the membrane may be coated with an organic substance, which melts in the overload case when reaching the so-called “shut-down temperature” and thus leads to the closure of the pores and thus the shutdown of the battery.
  • the separators thus obtained are characterized by an excellent thermal stability of over 150 0 C and in particular of up to 500 0 C.
  • the surface of the pane may have an activated surface which is particularly suitable for wetting by an electrolyte liquid, as used, for example, in a lithium-ion secondary battery.
  • the surface of the porous, ion-permeable pane can also be provided with certain functionalities, for example with a hydrophobing, if the water content in the battery is to be kept particularly low.
  • a hydrophobing can be effected, for example, by covering the surface with a perfluoroalkyl-substituted silane or by means of a corresponding sol-gel coating.
  • ionic liquids are of particular interest as an electrolyte in, for example, Li-ion batteries or batteries.
  • Ionic liquids moisten glasses and glass ceramics particularly well.
  • porous, ion-permeable glass panes and glass ceramic panes as separator membrane in Li ion batteries form a particular advantage, as it results in complete wetting of the inner separator surface, ie. also the pores, comes and thus no "dead surfaces", so unwoven surfaces arise that reduce the performance of a battery.
  • porous, ion-permeable glass panes and porous, ion-permeable glass ceramic panes with different pore sizes from the nanometer range up to one micrometer can be represented. It can be achieved a very narrow distribution of pore sizes; It is also possible to produce hierarchical structures.
  • a battery separator made of a porous, ion-permeable glass pane can be produced, for example, by drawing a 0.1 mm thick alkali borosilicate flat glass pane having the composition 70% by weight SiO 2 , 23% by weight B 2 O 3 and 7% by weight Na 2 Ü by means of known drawing methods, in particular the down-draw method. After cutting the disc to the desired format, the separation is carried out for example by 24-hour annealing at 630 0 C. Then by treating the segregated glass in 2 N hydrochloric acid at 90 0 C for 6 hours and subsequent washing in 0.5 N sodium hydroxide Porous separator according to the invention having an average pore size of 60 nm, determined by means of mercury porosimetry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

Die Erfindung betrifft einen Batterieseparator umfassend eine poröse, ionendurchlässige Glasscheibe oder eine poröse, ionendurchlässige Glaskeramikscheibe, wobei die Scheibe eine mittlere Porengröße von kleiner 1 μm und eine Dicke von kleiner 0,3 mm aufweist.

Description

B E S C H R E I B U N G
Batterieseparator
Die Erfindung betrifft einen Batterieseparator, der eine poröse, ionendurchlässige Glasscheibe oder eine poröse, ionendurchlässige Glaskeramik umfasst.
Batterieseparatoren haben die Aufgabe, Kathode und Anode in Batterien beziehungsweise negative und positive Elektrode in Akkumulatoren räumlich zu trennen. Der Separator muss eine Membran mit Barriereeigenschaften sein, die die beiden Elektroden räumlich und elektronisch voneinander trennt, um interne Kurzschlüsse zu vermeiden. Gleichzeitig muss der Separator jedoch durchlässig für Ionen sein, damit die elektrochemischen Reaktionen in der Zelle ablaufen können.
Batterieseparatoren müssen dünn sein, damit der Innenwiderstand möglichst gering ist und eine hohe Packungsdichte erzielt werden kann. Nur so sind gute Lei- stungsdaten und hohe spezifische Kapazitäten möglich. Weitere wichtige Funktionen des Separators können es sein, den Elektrolyten aufzusaugen und - bei im übrigen geschlossenen Zellen - den Gasaustausch zu gewährleisten. Während früher unter anderem Gewebe verwendet wurden, sind heutzutage überwiegend sehr feinporige Materialien wie Membranen im Einsatz.
Als Batterieseparator kann auch eine einfache Konstruktion aus spritzgegossenen Kunststoffstegen dienen, wenn es nur darum geht, die Elektroden in einem bestimmten Abstand zu halten. Eine Sonderform des Separators ist die Röhrchentasche. Diese wird aus zwei Lagen Gewebe bzw. Vliesstoff hergestellt, die zunächst mit einem Harz getränkt, dann miteinander vernäht und in eine bestimmte Röhrchenform gebracht wurden. Diese Röhrchen werden mit aktiver Masse befüllt und werden dann in Bleibatterien als Elektroden eingesetzt.
So wie es unterschiedliche Batteriesysteme gibt, müssen auch die darin einge- setzten Separatoren unterschieden werden nach dem Elektrolyten, dem sie im Verlaufe der Lebensdauer ausgesetzt sind. Ein weiteres Kriterium für die Separatorauswahl ist der Preis. Separatoren, die über viele Lade-/Entlade-Zyklen hinweg stabil sein müssen, sind aus höherwertigen Materialien gefertigt als solche, die in preiswerten Wegwerfbatterien eingesetzt werden. Im Wesentlichen unterscheidet man die folgenden Separatortypen.
1. Separatoren für wiederaufladbare oder Sekundärbatterien
a) Blei/Säure-Batterien
Hier sind Materialien erforderlich, die den stark sauren und oxidativen Bedingungen standhalten können. Es kommen hier extrudierte oder gesinterte Separatoren aus Polyethylen, gesintertem PVC oder Matten aus Mikroglasfaservlies (AGM) in Frage.
b) Nickel-Cadmium-Batterien
Hier, im stark alkalischen Milieu der Kalilauge, sind überwiegend Separatoren aus Polyamid sowie Polyethylen/Polypropylen-Kombinationen im Einsatz. Heutzutage sind hier fast ausschließlich Vliesstoffe im Einsatz. Hydrophobe Polymere können durch Fluorierung oder Netzmittel hydrophil gemacht werden, so dass sie begierig den Elektrolyten aufnehmen.
c) Nickel/Metall-Hydrid-Batterien
Die Voraussetzungen sind hier dieselben wie bei Nickel-Cadmium-Batterien, nur dass hier zusätzliche Anforderungen an den Batterieseparator gestellt werden. Er muss nämlich in der Lage sein, die Selbstentladung zu verringern. Dies gelingt durch Funktionalisierung der Vliesstoff-Oberfläche mittels chemischer Be- handlung. Eine solche kann die Oberflächenbehandlung mit Acrylsäure oder die Sulfonierung sein.
d) Wiederaufladbare Lithiumbatterien:
Hier setzt man überwiegend Polymermembranen ein. Dabei handelt es sich um mikroporöse Folien, die teils auch aus mehreren Lagen bestehen können. Neuerdings wird zusätzlich mit großer Intensität an Materialien gearbeitet, die auf einem Vliesstoff basieren, welcher keramisch beschichtet wurde. Davon verspricht man sich eine erhöhte Sicherheit, insbesondere für den Einsatz in Hybridfahrzeugen.
2. Separatoren für nicht wiederaufladbare oder Primärbatterien
a) Nicht wiederaufladbare Li-Batterien oder Li-Primärbatterien Auch hier sind mikroporöse Folien, aber auch Vliesstoffe im Einsatz. b) Nicht wiederaufladbare Alkali-Mangan-Batterien
In nicht wiederaufladbaren Alkali-Mangan-Batterien werden vorwiegend Vliesstoffe als Separatoren eingesetzt. Diese bestehen meist aus einer Mischung von Polyvinylalkohol-Mikrofasern (PVA) und Zellulose. Gelegentlich werden auch Laminate aus Vliesstoffen und Membranen, wie beispielsweise Cellophan verwendet. Spezielle Anforderungen an das Separatormaterial in Alkali-Mangan- Batterien sind gute Benetzung und hohe Aufnahmefähigkeit für die alkalische Elektrolytlösung. Der Porendurchmesser muss klein sein, um sogenannte Durchwachsungen des Separators durch Zink-Dendriten, die zum internen Kurz- schluss führen, zu vermeiden. Wichtig ist auch ein niedriger Preis des Materials.
c) Nicht wiederaufladbare Zink-Kohle-Batterien
Bei diesem Batterietyp wird vorwiegend Papier als Separator eingesetzt.
Batterieseparatoren bzw. Separatoren für Akkumulatoren, die aus Polymeren bestehen bzw. Polymere umfassen, weisen deutliche Nachteile hinsichtlich der Temperaturstabilität einer Batterie auf. Insbesondere für Anwendungen im Au- tomobilbereich, bei denen hohe Energiedichten im Bereich von über 100 Wh/l bei zugleich hoher Gesamtkapazität der Batterie im Bereich über 10 kWh benötigt werden, kann dies zu schwerwiegenden Sicherheitsproblemen führen. Typischerweise sind Polymerseparatoren nur bis zu einer Temperatur von 120 - 1800C stabil. Die genaue Temperatur, bis zu der die Stabilität des Separators und damit die Sicherheit der Zelle gewährleistet ist, hängt natürlich von der Art des jeweils gewählten Polymers ab.
Neuste Entwicklungen auf dem Gebiet der Batterieseparatoren sind sogenannte Folienseparatoren. Hierbei handelt es sich um poröse Träger, die in der Regel aus einem Polymer bestehen, und einer mittels Sol-Gel-Verfahren aufgebrachten anorganischen Beschichtung zur Erhöhung der Temperaturstabilität. Durch die Verwendung des Polymers bestehen hier aber weiterhin Schwierigkeiten hinsichtlich erhöhter Temperaturen.
Um die Temperaturstabilität zu erhöhen, werden alternativ auch anorganische poröse Träger, wie beispielsweise Metallgitter oder Glasfaservliese, beschichtet, um als Batterieseparator eingesetzt zu werden. Hierbei ergeben sich aber eine ganze Reihe von Schwierigkeiten, da beispielsweise beim Abplatzen der keramischen Beschichtung vom Metallgitter es zu einem Kurzschluß kommt. Aus folgenden Schriften sind beispielsweise Batterieseparatoren auf Basis von beschichteten Fasern bekannt: DE 198 38 800 C1 , DE 101 42 622 A1 , DE 102 08 277 A1 , EP 1 419 544 B1 , US 2008/0138704 A1.
In der Schrift JP 9-27343 A wird eine relativ dicke (0,5 mm) Separatorplatte aus porösem Glas für Li-Ionenbatterien beschrieben.
Feststoffelektrolyte für Li-Ionenbatterien aus Li-ionenleitender Glaskeramik sind aus der Schrift DE 697 22 272 T2 bekannt.
Aus der Schrift DE 103 47 566 A1 sind keramische Separatoren für elektrochemische Zellen mit verbesserter Leitfähigkeit bekannt. Gemäß dieser Schrift kann ein Träger aus gewebten oder ungewebten Polymerfasern mit einer keramischen Beschichtung versehen werden.
Es ist nun Aufgabe der Erfindung, Batterieseparatoren bereitzustellen, die zum einen eine hohe Temperaturbeständigkeit von über 15O0C aufweisen, zum anderen aber eine gegenüber den Stand der Technik geringere, insbesondere eine vernachlässigbare Abschattung der Elektrodenoberflächen verursachen.
Die Erfinder haben erkannt, dass bei der Verwendung von Glasfasern der im Vergleich zum Abstand zwischen Separator und Elektrode - dieser Abstand soll so klein wie möglich gehalten werden und optimalerweise im Bereich von kleiner 1 μm liegen - große Durchmesser der Glasfasern von üblicherweise nicht unter 10 μm zu einer starken Abschattung der Elektroden führt. So kann nur ein Bruchteil der zur Verfügung stehenden Elektrodenfläche aktiv für den Ladungsträgeraustausch mit dem Elektrolyten genutzt werden, was die Lade- bzw. Entladegeschwindigkeit deutlich herabsetzt.
Desweiteren haben die Erfinder erkannt, dass die Verwendung von üblichen, dicken Glasmembranen zu einer deutlichen Verschlechterung der Zellperformance aufgrund einer starken Behinderung des lonentransports führt.
Entsprechend wurde die Aufgabe der Erfindung gemäß Anspruch 1 gelöst durch einen Batterieseparator umfassend eine poröse, ionendurchlässige Glasscheibe oder eine poröse, ionendurchlässige Glaskeramikscheibe, wobei die Glasscheibe oder die Glaskeramikscheibe - im folgenden kurz Scheibe genannt - eine mittlere Porengröße von kleiner 1 μm und eine Dicke von kleiner 0,3 mm, insbe- sondere von kleiner 0,1 mm aufweist. Da die Porengröße mit der Größe der da- zwischen befindlichen Stege auf der Separatoroberfläche korreliert, wird hierdurch sowohl ein Abschattungseffekt als auch aufgrund der geringen Dicke der Scheibe eine Behinderung des lonentransports vermieden.
Mit Batterieseparator im Sinne die Erfindung ist dabei insbesondere sowohl ein Separator der Verwendung in einer Batterie als auch ein Separator, der Verwendung in einem Akkumulator findet, gemeint.
Vorzugsweise ist die Porengröße der Scheibe deutlich kleiner als der Abstand zwischen Separator und Elektroden. Insbesondere sind die mittleren Porengrößen kleiner als 1 μm, insbesondere kleiner als 0,5 μm, um Abschattungseffekte zu minimieren.
In einer weiteren besonderen Ausführungsform, insbesondere zur Verwendung in Lithiumionenakkumulatoren kann die poröse, ionendurchlässige Scheibe selbst einen Gehalt an beweglichen Lithiumionen aufweisen, die zur Lithiumionenleitung im Akkumulator beitragen können und so die Leistungsfähigkeit der Zelle steigern. Vorzugsweise enthält solch eine Scheibe mindestens 0,1 Gew.- %, bevorzugt mindestens 1 Gew.-% Lithiumionen.
In einer weiteren, vorteilhaften Ausgestaltung der Erfindung ist die Scheibe insbesondere für Lithiumionen durchlässig.
Die Scheibe kann vorzugsweise wenigstens auf einer Seite beschichtet sein, beispielsweise mit einer hydrophoben Beschichtung.
Es hat sich gezeigt, dass die Scheibe vorzugsweise durch Entmischen und Auslaugen eines Ausgangsglases oder einer Ausgangsglaskeramik, durch Sintern von Glas- oder Glaskeramikpartikeln, durch Sol-Gel-Verfahren oder mittels Gas- phasenabscheidung hergestellt werden kann.
In einer bevorzugten Ausführungsform weist die Scheibe eine erhöhte Benetzbarkeit gegenüber einer Elektrolytflüssigkeit auf, beispielsweise gegenüber ionischen Flüssigkeiten. Die Benetzbarkeit kann dabei durch den Kontaktwinkel der Flüssigkeit mit der Membran bestimmt werden; dieser liegt bei kleiner 30°.
Eine erhöhte Benetzbarkeit im Sinne dieser Erfindung liegt dann vor, wenn der Kontaktwinkel eines Prüfkörpers aus dem entsprechenden Material (Glasscheibe oder Glaskeramikscheibe, ohne Poren) mit der jeweiligen Batterieelektrolyt- flüssigkeit < 30°, bevorzugt < 20° und besonders bevorzugt < 10° ist. Der Kontaktwinkel lässt sich mittels bekannter Verfahren bestimmen.
In einer weiteren besonderen Ausführungsform können die Porenoberflächen der Membran mit einer organischen Substanz beschichtete sein, die im Überlastungsfall beim Erreichen der sogenannten „Shut-Down-Temperatur" schmilzt und so zum Verschluß der Poren und damit zur Abschaltung der Batterie führt.
Die so erhaltenen Separatoren zeichnen sich durch eine exzellente thermische Beständigkeit von über 150 0C und insbesondere von bis zu 5000C aus.
Gleichzeitig kann die Scheibenoberfläche je nach Oberflächenkonditionierung über eine aktivierte Oberfläche verfügen, die besonders gut zur Benetzung durch eine Elektrolytflüssigkeit, wie sie beispielsweise in einem Lithiumionen- Akkumulator verwendet wird, geeignet ist.
Die Oberfläche der porösen, ionendurchlässigen Scheibe kann auch mit bestimmten Funktionalitäten versehen werden, beispielsweise mit einer Hydrophobierung, wenn der Wassergehalt in der Batterie besonders gering gehalten wer- den soll. Eine solche Hydrophobierung kann beispielsweise durch die Belegung der Oberfläche mit einem perfluoralkylsubstituierten Silan oder durch eine entsprechende Sol-Gel-Beschichtung erfolgen.
Für zukünftige Batterieanwendungen sind darüber hinaus ionische Flüssigkeiten als Elektrolyt in beispielsweise Li-Ionen-Akkumulatoren oder -Batterien von besonderem Interesse. Ionische Flüssigkeiten benetzen Gläser und Glaskeramiken besonders gut. Hierbei bilden poröse, ionendurchlässige Glasscheiben und Glaskeramikenscheiben als Separatormembran in Li-Ionen-Batterien einen besonderen Vorteil, da es zu einer vollständigen Benetzung auch der inneren Se- paratoroberfläche, d.h. auch der Poren, kommt und somit keine "Totflächen", also unbenetzte Flächen entstehen, die die Leistung einer Batterie herabsetzen.
Je nach gewählten Verfahren sind die porösen, ionendurchlässigen Glasscheiben und porösen, ionendurchlässigen Glaskeramikscheiben mit unterschiedli- chen Porengrößen vom Nanometerbereich bis hin zu einem Mikrometer darstellbar. Es kann eine sehr enge Verteilung der Porengrößen erzielt werden; auch eine Herstellung hierarchischer Strukturen ist möglich. Ausführungsbeispiel:
Ein Batterieseparator aus einer porösen, ionendurchlässigen Glasscheibe kann beispielsweise hergestellt werden durch Ziehen einer 0,1 mm dicken Alkaliboro- silikatflachglasscheibe der Zusammensetzung 70 Gew.-% Siθ2, 23 Gew.-% B2O3 und 7 Gew.-% Na2Ü mittels bekannter Ziehverfahren, insbesondere dem Down-Draw-Verfahren. Nach Schneiden der Scheibe auf das gewünschte Format erfolgt die Entmischung beispielsweise durch 24-stündige Temperung bei 6300C. Anschließend wird durch Behandlung der entmischten Glasscheibe in 2 N Salzsäure bei 900C über 6 Stunden und nachfolgendes Auswaschen in 0,5 N Natronlauge der erfindungsgemäße poröse Separator mit einer mittleren Porengröße von 60 nm, bestimmt mittels Quecksilberporosimetrie, erhalten.

Claims

P A T E N T A N S P R Ü C H E
1. Batterieseparator umfassend eine poröse, ionendurchlässige Glasscheibe oder eine poröse, ionendurchlässige Glaskeramikscheibe, wobei die Glas- oder Glaskeramikscheibe eine mittlere Porengröße von kleiner 1 μm und eine Dicke von kleiner 0,3 mm aufweist.
2. Batterieseparator nach Anspruch 1 , dadurch gekennzeichnet, dass die Glas- oder Glaskeramikscheibe mindestens 0,1 Gew.-%, bevorzugt mindestens 1 Gew.-% Lithiumionen enthält.
3. Batterieseparator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Glas- oder Glaskeramikscheibe durchlässig für Lithiumionen ist.
4. Batterieseparator nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Glas- oder Glaskeramikscheibe wenigstens auf einer Seite beschichtet ist, insbesondere mit einer hydrophoben Beschichtung.
5. Batterieseparator nach wenigstens einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass die Glas- oder Glaskeramikscheibe durch Entmischen und Auslaugen eines Ausgangsglases oder einer Ausgangsglaskeramik, durch Sintern von Glasoder Glaskeramikpartikeln, durch Sol-Gel-Verfahren oder mittels Gasphasenab- scheidung hergestellt wurde.
6. Batterieseparator nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Oberfläche der Glas- oder Glaskeramikscheibe eine erhöhte Benetzbarkeit gegenüber einer Elektrolytflüssigkeit aufweist.
7. Batterieseparator nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Glas- oder Glaskeramikscheibe eine Dicke von kleiner 0,1 mm aufweist.
PCT/EP2010/003394 2009-06-25 2010-06-05 Batterieseparator WO2010149265A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009030646.3 2009-06-25
DE102009030646 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010149265A1 true WO2010149265A1 (de) 2010-12-29

Family

ID=42357754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/003394 WO2010149265A1 (de) 2009-06-25 2010-06-05 Batterieseparator

Country Status (1)

Country Link
WO (1) WO2010149265A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107820642A (zh) * 2015-05-21 2018-03-20 巴斯夫欧洲公司 锂‑硫电池组用玻璃‑陶瓷电解质
DE102017007858A1 (de) 2017-04-03 2018-10-04 Thorsten Gerdes Verfahren zum direkten Aufbringen von glasbasierten Separatoren auf Batterieelektroden
DE102017205653A1 (de) 2017-04-03 2018-10-04 Vitrulan Textile Glass Gmbh Glasbasierter Batterieseparator

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663294A (en) * 1970-07-01 1972-05-16 Dow Chemical Co Battery employing an alkali metal polysulfide having a low alkali metal hydroxide content
DE2462567A1 (de) * 1974-11-14 1977-10-20 Jenaer Glaswerk Schott & Gen Poroese membran
US4244898A (en) * 1979-03-30 1981-01-13 The United States Of America As Represented By The United Statesdepartment Of Energy Method of preparing porous, rigid ceramic separators for an electrochemical cell
US4317872A (en) * 1980-04-25 1982-03-02 Gould Inc. Lead acid battery with gel electrolyte
EP0240915A1 (de) * 1986-04-02 1987-10-14 HAGEN Batterie AG Verfahren zum Herstellen von Akkumulatoren mit Akkumulatorplattensätzen und nach diesem Verfahren hergestellter Akkumulator
EP0750357A2 (de) * 1995-06-19 1996-12-27 Corning Incorporated Batterieseparator
JPH0927343A (ja) 1995-07-10 1997-01-28 Hitachi Ltd 非水系二次電池及び該電池の作製法
US5800948A (en) * 1996-12-19 1998-09-01 International Lead Zinc Research Organization, Inc. Lead-acid battery and separator therefor
DE19838800C1 (de) 1998-05-06 2000-03-16 Fraunhofer Ges Forschung Batterieseparator auf Basis von keramisch beschichtetem Trägermaterial
DE10142622A1 (de) 2001-08-31 2003-03-20 Creavis Tech & Innovation Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung
DE10208277A1 (de) 2002-02-26 2003-09-04 Creavis Tech & Innovation Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung
DE69722272T2 (de) 1997-02-06 2004-04-01 Kabushiki Kaisha Ohara, Sagamihara Lithium-Ionen leitende Glaskeramiken und damit hergestellte elektrische Zellen und Gassensoren
US20050069779A1 (en) * 2003-09-25 2005-03-31 Seiji Yoshimura Lithium secondary battery
DE10347566A1 (de) 2003-10-14 2005-05-12 Degussa Keramischer Separator für elektrochemische Zellen mit verbesserter Leitfähigkeit
US20080138704A1 (en) 2004-05-10 2008-06-12 Nippon Shokubai Co., Ltd. Material for Electrolytic Solution, Ionic Material-Containing Composition and Use Thereof

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663294A (en) * 1970-07-01 1972-05-16 Dow Chemical Co Battery employing an alkali metal polysulfide having a low alkali metal hydroxide content
DE2462567A1 (de) * 1974-11-14 1977-10-20 Jenaer Glaswerk Schott & Gen Poroese membran
US4244898A (en) * 1979-03-30 1981-01-13 The United States Of America As Represented By The United Statesdepartment Of Energy Method of preparing porous, rigid ceramic separators for an electrochemical cell
US4317872A (en) * 1980-04-25 1982-03-02 Gould Inc. Lead acid battery with gel electrolyte
EP0240915A1 (de) * 1986-04-02 1987-10-14 HAGEN Batterie AG Verfahren zum Herstellen von Akkumulatoren mit Akkumulatorplattensätzen und nach diesem Verfahren hergestellter Akkumulator
EP0750357A2 (de) * 1995-06-19 1996-12-27 Corning Incorporated Batterieseparator
JPH0927343A (ja) 1995-07-10 1997-01-28 Hitachi Ltd 非水系二次電池及び該電池の作製法
US5800948A (en) * 1996-12-19 1998-09-01 International Lead Zinc Research Organization, Inc. Lead-acid battery and separator therefor
DE69722272T2 (de) 1997-02-06 2004-04-01 Kabushiki Kaisha Ohara, Sagamihara Lithium-Ionen leitende Glaskeramiken und damit hergestellte elektrische Zellen und Gassensoren
DE19838800C1 (de) 1998-05-06 2000-03-16 Fraunhofer Ges Forschung Batterieseparator auf Basis von keramisch beschichtetem Trägermaterial
DE10142622A1 (de) 2001-08-31 2003-03-20 Creavis Tech & Innovation Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung
EP1419544B1 (de) 2001-08-31 2005-01-05 Creavis Gesellschaft für Technologie und Innovation mbH Elektrischer separator, verfahren zu dessen herstellung und verwendung
DE10208277A1 (de) 2002-02-26 2003-09-04 Creavis Tech & Innovation Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung
US20050069779A1 (en) * 2003-09-25 2005-03-31 Seiji Yoshimura Lithium secondary battery
DE10347566A1 (de) 2003-10-14 2005-05-12 Degussa Keramischer Separator für elektrochemische Zellen mit verbesserter Leitfähigkeit
US20080138704A1 (en) 2004-05-10 2008-06-12 Nippon Shokubai Co., Ltd. Material for Electrolytic Solution, Ionic Material-Containing Composition and Use Thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107820642A (zh) * 2015-05-21 2018-03-20 巴斯夫欧洲公司 锂‑硫电池组用玻璃‑陶瓷电解质
US20180138542A1 (en) * 2015-05-21 2018-05-17 Sion Power Corporation Glass-ceramic electrolytes for lithium-sulfur batteries
US10847833B2 (en) * 2015-05-21 2020-11-24 Sion Power Corporation Glass-ceramic electrolytes for lithium-sulfur batteries
CN107820642B (zh) * 2015-05-21 2021-01-08 巴斯夫欧洲公司 锂-硫电池组用玻璃-陶瓷电解质
DE102017007858A1 (de) 2017-04-03 2018-10-04 Thorsten Gerdes Verfahren zum direkten Aufbringen von glasbasierten Separatoren auf Batterieelektroden
DE102017205653A1 (de) 2017-04-03 2018-10-04 Vitrulan Textile Glass Gmbh Glasbasierter Batterieseparator
WO2018185075A2 (de) 2017-04-03 2018-10-11 Vitrulan Textile Glass Gmbh Glasbasierter batterieseparator
US11152666B2 (en) 2017-04-03 2021-10-19 Vitrulan Textile Glass Gmbh Glass-based battery separator

Similar Documents

Publication Publication Date Title
EP1925047B1 (de) Separator mit verbesserter handhabbarkeit
EP1565950B1 (de) Separator mit asymmetrischem porengefüge für eine elektrochemische zelle
EP1535358B1 (de) Elektrischer separator, verfahren zu dessen herstellung und verwendung in lithium-hochleistungsbatterien
EP2564461B1 (de) Lithium-schwefel-batterie
EP1535357B1 (de) Separator zur verwendung in hochenergiebatterien sowie verfahren zu dessen herstellung
EP1565951B1 (de) Langzeitstabiler separator für eine elektrochemische zelle
WO2010124892A1 (de) Herstellung und verwendung keramischer kompositmaterialien basierend auf polymer-trägerfolie
DE10240032A1 (de) Ionenleitender Batterieseparator für Lithiumbatterien, Verfahren zu deren Herstellung und die Verwendung derselben
WO2005038946A2 (de) Keramischer separator für elektrochemische zellen mit verbesserter leitfähigkeit
EP1530809A2 (de) Elektrischer separator mit abschaltmechanismus, verfahren zu dessen herstellung und verwendung in lithium-batterien
EP0591616A1 (de) Hydrophiliertes Separatorenmaterial aus Faservliesstoff für elektrochemische Energiespeicher und Verfahren zu seiner Herstellung
WO2010149265A1 (de) Batterieseparator
DE102013200848A1 (de) Sicherheitsverbessertes galvanisches Element
WO2013135351A1 (de) Graphen in lithiumionen-batterien
DE102011100724A1 (de) Elektrode für Lithiumionen-Batterien
DE102014218779A1 (de) Separator mit Glas-Shut-Down-Effekt
EP3607597B1 (de) Glasbasierter batterieseparator
WO2011009620A1 (de) Lithium-ionen-batterie
DE10255123A1 (de) Separator mit niedrigem Wassergehalt für eine elektrochemische Zelle
WO2020120306A1 (de) Membran für den selektiven stofftransport
WO2021204735A1 (de) Kompressionsstabiler batterieseparator
EP3895234A1 (de) Separator für elektrochemische energiespeicher und wandler
DE102017007858A1 (de) Verfahren zum direkten Aufbringen von glasbasierten Separatoren auf Batterieelektroden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10728591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10728591

Country of ref document: EP

Kind code of ref document: A1