WO2010147175A1 - 検出装置およびその回収方法ならびに監視システム - Google Patents

検出装置およびその回収方法ならびに監視システム Download PDF

Info

Publication number
WO2010147175A1
WO2010147175A1 PCT/JP2010/060276 JP2010060276W WO2010147175A1 WO 2010147175 A1 WO2010147175 A1 WO 2010147175A1 JP 2010060276 W JP2010060276 W JP 2010060276W WO 2010147175 A1 WO2010147175 A1 WO 2010147175A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
lumen
container
unit
chamber
Prior art date
Application number
PCT/JP2010/060276
Other languages
English (en)
French (fr)
Inventor
佐藤 繁
人史 水口
和紀 伊藤
安生 沖田
Original Assignee
国立大学法人岩手大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岩手大学 filed Critical 国立大学法人岩手大学
Priority to DK10789549.2T priority Critical patent/DK2438812T3/en
Priority to US13/378,892 priority patent/US10349627B2/en
Priority to EP10789549.2A priority patent/EP2438812B1/en
Priority to JP2011519833A priority patent/JP5569911B2/ja
Publication of WO2010147175A1 publication Critical patent/WO2010147175A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K11/00Marking of animals
    • A01K11/006Automatic identification systems for animals, e.g. electronic devices, transponders for animals
    • A01K11/007Boluses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14539Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring pH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4238Evaluating particular parts, e.g. particular organs stomach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6861Capsules, e.g. for swallowing or implanting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals

Definitions

  • the present invention relates to a detection device for detecting the state of the rumen of a ruminant, a recovery method thereof, and a monitoring system.
  • the present invention particularly relates to a detection device for detecting the state of the lumen while staying inside the lumen, a method for recovering the detection device from the ruminant, and the rumen status of the ruminant by the detection device.
  • the present invention relates to a monitoring system for monitoring.
  • Patent Document 1 discloses a monitoring device for monitoring at least one physiological parameter at a binding site inside a human body.
  • the monitoring device includes a detector for detecting the parameter and a transmitter for transmitting data formed by the detector.
  • Patent Document 2 discloses a veterinary body type individual identification device used in a state where it remains in the rumen or reticulum of a ruminant.
  • This identification device includes a container formed of a material that is not affected by gastric juice, an integrated circuit housed in the container, and an antenna provided inside or outside the container.
  • the integrated circuit transmits data (identification code) stored in advance through a transmission antenna in response to electromagnetic waves transmitted from outside the animal's body.
  • Patent Document 3 discloses a sensor that detects a physiological parameter (for example, temperature) of an individual ruminant and transmits the detection result.
  • the sensor has an appropriate size and density that allows it to remain in the rumen's first or second stomach. Data transmitted from the sensor is received by an external receiver.
  • Patent Document 4 discloses an inspection apparatus configured to be swallowed by an animal.
  • the inspection apparatus includes a controller, a transmitter, and an array of sensor elements.
  • the transmitter is configured to transmit sensor data extracted from the output of the array.
  • Milk production of dairy cows has increased dramatically due to improvements in the quality of feed fed to dairy cows, improvements in breeding management techniques, and improvements in breeding.
  • improvements in breeding management techniques In order to maintain high milk production, large quantities of concentrated feed are fed to dairy cows.
  • feeding management ignoring cattle physiology has become widespread.
  • rumen acidosis and various metabolic diseases, infectious diseases, or hoof diseases associated with rumen acidosis occur frequently. Rumen acidosis and various related diseases interfere with production by dairy cows.
  • Rumen acidosis is a state in which rumen pH is lowered.
  • the rumen pH is lowered by feeding a large amount of concentrated feed or by an inappropriate feeding sequence.
  • the importance of measuring rumen pH is widely recognized, and the control of rumen acidosis by measuring rumen pH is an important issue for maintaining the health and production of dairy cows.
  • the lumen fluid in order to grasp the state inside the lumen, the lumen fluid must be collected from the cow.
  • the rumen fluid is collected orally using an oral catheter or by puncturing the rumen using an injection needle.
  • saliva in the case of oral collection, there is always a problem that saliva is mixed into the rumen fluid or there is a risk of bacterial infection due to puncture of the injection needle into the stomach. For this reason, lumen pH cannot be measured correctly.
  • the temperature in the lumen increases as fermentation progresses in the lumen, it is more preferable to measure the temperature in the lumen in addition to the pH of the lumen liquid in order to detect the state of the lumen. .
  • the temperature must be measured outside the living body. For this reason, the temperature in the lumen cannot be measured accurately.
  • An object of the present invention is to provide a detection device capable of detecting the rumen status of a ruminant, a method for recovering the detection device, and a monitoring system including the detection device.
  • the present invention is a detection device for detecting an internal state of a ruminant lumen, having resistance to the liquid component of the contents of the lumen, and having physical strength that can withstand the internal pressure and movement of the lumen.
  • a container configured to be connectable to a retrieval device that is orally administered to a ruminant and is orally inserted into the lumen.
  • the container is formed with an opening for introducing the liquid component into the first chamber inside the container.
  • the detection device includes a protection unit for dividing the interior of the container into a first chamber and a second chamber in which inflow of liquid components is prevented, a measurement unit, a storage unit, a control unit, a communication unit, A battery.
  • the measuring unit is accommodated in the first chamber of the container in order to measure parameters related to the liquid component.
  • the storage unit is stored in the second chamber of the container in order to store information related to the operating conditions of the detection device.
  • the control unit is housed in the second chamber of the container in order to generate data relating to the parameter from the measurement result of the measurement unit based on the information stored in the storage unit.
  • the communication unit is accommodated in the second chamber of the container in order to wirelessly transmit data related to the parameter generated by the processing of the control unit.
  • the battery is accommodated in the second chamber in order to supply power to at least the control unit and the communication unit.
  • the collection device is configured to include a magnet that is inserted into the lumen and used to take the detection device out of the ruminant body.
  • the container includes a tapered portion formed in a taper that gradually narrows toward the tip, and a connecting portion formed by at least one of a ferromagnetic material and a paramagnetic material. The portion defining the second chamber of the container is configured so that it can be opened and sealed.
  • the communication unit is configured to be able to wirelessly receive new information for updating at least a part of the operating conditions of the detection device.
  • the control unit updates the information stored in the storage unit with new information.
  • the information stored in the storage unit includes a unique number of the detection device and a transmission schedule of data regarding parameters.
  • the parameter includes the pH value of the liquid component.
  • the measurement unit includes a pH sensor.
  • the pH sensor is composed of a glass electrode, a gel containing an internal liquid, a comparison electrode at least partially disposed inside the gel, and a porous resin to control the liquid junction amount of the internal liquid flowing out of the gel.
  • the liquid junction is formed, and a temperature sensor for compensating the temperature of the measured value of the pH of the liquid component by the glass electrode and the comparison electrode.
  • the parameter includes the pH value of the liquid component.
  • the measurement unit includes a pH sensor.
  • the pH sensor is composed of a glass electrode, a saturated potassium chloride solution as an internal liquid, a reference electrode at least partially immersed in the saturated potassium chloride solution, and a porous resin for controlling the liquid junction amount of the internal liquid.
  • the liquid junction is formed, and a temperature sensor for compensating the temperature of the measured value of the pH of the liquid component by the glass electrode and the comparison electrode.
  • the detection device further includes an amplification circuit for amplifying the output of the pH sensor.
  • the amplifier circuit includes a reference potential setting unit for setting the potential of the comparison electrode to the reference potential, and an amplifier for amplifying a potential difference between the potential of the glass electrode and the reference potential.
  • the present invention is a monitoring system, configured to be capable of wireless communication with the above-described detection device, and a communication device that receives data transmitted from the detection device wirelessly, and communication And a monitoring device for collecting data received by the device and monitoring the state of the lumen using the data.
  • the communication unit of the detection apparatus includes a first antenna for transmitting a radio wave having a transmission power of 10 mW or less.
  • the communication device includes a second antenna for receiving data wirelessly. The gain of the second antenna is higher than the gain of the first antenna.
  • the communication device can receive data transmitted from each of the plurality of detection devices.
  • the monitoring device collects data received by a communication device arranged in at least one place.
  • the communication unit of the detection device is configured to be able to receive new information for updating at least a part of the operating conditions wirelessly.
  • the control unit updates the information stored in the storage unit with new information.
  • the communication device includes a receiver for receiving data transmitted from the detection device by radio, and a setting unit configured to transmit new information corresponding to each of the plurality of detection devices by radio.
  • a method for recovering a detection device that is placed inside the rumen of a ruminant and detects the internal state of the lumen.
  • the detection device comprises a container that is formed of a material that is resistant to the liquid component of the contents of the lumen and that is physically strong to withstand the internal pressure and movement of the lumen and is configured to be orally administrable to ruminants.
  • the container is formed with a through hole for introducing a liquid component into the first chamber inside the container.
  • the detection device further includes a measurement unit housed in the first chamber of the container in order to measure a parameter related to the liquid component.
  • the recovery method is performed by inserting a recovery device having a portion connectable to a detection device placed in the body of the ruminant into the lumen, connecting the detection device to the recovery device, and recovering the recovery device. Removing the device from the ruminant's mouth.
  • the present invention it is possible to realize a detection device capable of detecting the rumen status of a ruminant, a method for recovering the detection device, and a monitoring system including the detection device.
  • FIG. 1 is a diagram schematically illustrating an overall configuration of a monitoring system 100 according to a first embodiment of the present invention. It is a circuit block diagram of the detection apparatus 2 which concerns on the 1st Embodiment of this invention. It is a circuit block diagram of the receiver 4 which concerns on the 1st Embodiment of this invention. It is the figure which looked at the cow 1 to which the detection apparatus 2 which concerns on the 1st Embodiment of this invention was administered from the side. It is the figure which showed typically the double stomach of the cow 1 shown in FIG. It is a schematic diagram which shows the inside of the lumen
  • FIG. 9 is a first diagram schematically illustrating a configuration of a module M illustrated in FIG. 8.
  • FIG. 9 is a second diagram schematically showing the configuration of the module M shown in FIG. 8.
  • It is an external view of the antenna contained in a detection apparatus.
  • It is sectional drawing which illustrates roughly the structure of the sensor unit 21 which concerns on the 1st Embodiment of this invention.
  • It is a figure for demonstrating typically the collection instrument for collect
  • FIG. 19 is a first diagram schematically illustrating a configuration of a module M illustrated in FIG. 18.
  • FIG. 19 is a second diagram schematically showing the configuration of the module M shown in FIG. 18.
  • 3 is a functional block diagram of an amplifier circuit 22 according to the first embodiment.
  • FIG. It is a functional block diagram of amplifier circuit 22A concerning a 2nd embodiment.
  • FIG. 1 is a diagram schematically illustrating the overall configuration of a monitoring system 100 according to the first embodiment of the present invention.
  • monitoring system 100 collects information on the internal state of lumen 3 of cow 1 and based on the information, the internal state of lumen 3 To monitor.
  • the cow 1 shown in FIG. 1 may be either a dairy cow or a beef cow, but in the following description, the cow 1 is a dairy cow.
  • the monitoring system 100 includes a detection device 2 for detecting the state of the lumen 3 of the cow 1.
  • the detection device 2 is placed in the lumen 3 of the cow 1 to detect the internal state of the lumen 3.
  • the detection device 2 measures the pH of the lumen liquid in order to detect the state of the lumen 3.
  • the pH of the rumen solution reflects the state of the lumen. For example, a decrease in rumen pH increases the possibility of rumen acidosis.
  • the normal rumen pH is 7.0 to 6.0, and the state where the rumen pH is lowered to 5.5 or less is called rumen acidosis. Rumen acidosis can be detected by measuring the pH of the rumen fluid.
  • the detection device 2 transmits data indicating the result of measuring the pH of the rumen solution by radio together with the unique number assigned to the detection device 2.
  • the unique number is stored in the detection device 2 in advance.
  • the detection device 2 further updates information related to the operating conditions and the like of the detection device 2 in accordance with a wireless signal sent from outside the cow 1.
  • Detecting device 2 is administered from the mouth of cow 1. Since various known methods can be applied to the method for orally administering the detection device 2, detailed description thereof will not be repeated here.
  • the monitoring system 100 further includes a receiver 4 for receiving data transmitted from the detection device 2 by radio, a LAN (Local Area Network) 5, a hub 6, a monitoring server 7, and a web server 8. .
  • a receiver 4 and the monitoring server 7 constitute a monitoring unit for monitoring the state inside the cattle lumen.
  • the receiver 4 is configured to be able to receive data transmitted from each of the plurality of detection devices 2.
  • the number of detection devices 2 that can be connected to one receiver 4 is not particularly limited. Accordingly, as shown in FIG. 1, for example, the receiver 4 is installed corresponding to each of the herds 201 and 202.
  • the cow 1 belonging to each of the cow groups 201 and 202 is, for example, a dairy cow in lactation.
  • the receiver 4 is connected to each of the monitoring server 7 and the web server 8 via the LAN 5 and the hub 6. Based on the data transmitted from the detection device 2, the monitoring server 7 executes various processes for monitoring the state of the lumen 3 of the cow 1 to which the detection device 2 has been administered.
  • the receiver 4 can be connected to an external memory (not shown) such as a USB (Universal Serial Bus) memory, and can transmit received data to the external memory.
  • an external memory not shown
  • USB Universal Serial Bus
  • the monitoring server 7 periodically acquires measurement data from the receiver 4.
  • the period at which the monitoring server 7 acquires the measurement data can be arbitrarily set.
  • the monitoring server 7 has a database and registers the acquired data in the database.
  • the monitoring server 7 displays the data registered in the database in a predetermined format such as a table format or a graph format.
  • the displayed contents are, for example, a number for identifying the individual, a temporal change in the value of the lumen pH corresponding to the number, and the like.
  • the monitoring server 7 further has a function of monitoring measurement data and a function of transmitting an e-mail to the manager of the cow 1 such as a breeder or a veterinarian. For example, when the measured value of the rumen pH of a cow is lowered to 5.5 or less, the monitoring server 7 includes the identification number of the cow and information (such as the current lumen pH value) for prompting the manager's attention. Is sent to a destination registered in advance.
  • the monitoring server 7 further stores various information relating to the management of the cow 1 input by the user, such as feed feed time.
  • the web server 8 acquires measurement data from the database of the monitoring server 7 and displays the data in a predetermined format such as a graph format by a browser. Further, the web server 8 has a user interface function and accepts information for various operations on the monitoring server 7 and the receiver 4. The web server 8 sends the input information to the monitoring server 7, and the monitoring server 7 executes various processes for itself or the receiver 4 according to the information. For example, a personal computer is applied to the monitoring server 7 and the web server 8.
  • the monitoring system 100 further includes a router 10 for connecting the LAN 5 and a WAN (Wide Area Network) 9 to each other.
  • a remote information terminal 11 (a personal computer 11a and a portable terminal 11b are illustrated in FIG. 1) is connected to the WAN 9.
  • the information terminal 11 displays measurement data registered in the database of the monitoring server 7 in a predetermined format (for example, a graph format) and receives an e-mail transmitted from the monitoring server 7.
  • the monitoring system 100 further includes a setting unit 12.
  • the setting unit 12 has a function of generating data related to the setting of the detection device 2 and a function of transmitting the data wirelessly.
  • the setting unit 12 includes a personal computer 12a as a data generation device and a transmitter 12b for wirelessly transmitting data generated by the personal computer 12a.
  • the setting unit 12 may be a portable device in which the data generation device and the transmitter are integrated.
  • the personal computer 12a generates a unique number of the detection device 2, an operating condition (for example, a time interval at which the detection device 2 transmits data), a calibration command for the detection device 2, and the like.
  • the transmitter 12b wirelessly transmits data, commands, etc. generated by the personal computer 12a.
  • the detection device 2 that has received the information transmitted wirelessly from the transmitter 12b updates the information stored in advance to the information transmitted from the transmitter 12b.
  • the setting unit 12 can set the operating conditions of the detection device 2 as necessary, regardless of before and after the administration of the detection device 2 to the cow 1.
  • the receiver 4 and the setting unit 12 constitute a communication device capable of wirelessly communicating with the detection device 2.
  • the detection device 2 since the detection device 2 staying in the lumen 3 detects the internal state of the lumen 3, it is possible to grasp the internal state of the lumen without collecting the lumen liquid. become.
  • the detection device 2 wirelessly transmits the detection result, that is, the measured value of the lumen pH, and the monitoring unit (the receiver 4 and the monitoring server 7) Get sent information. Therefore, according to the embodiment of the present invention, the state inside the lumen can be measured and monitored in real time over a long period of time.
  • the detection device 2 since the detection device 2 is configured to be recoverable from the lumen 3, one detection device can be used repeatedly. Therefore, according to the first embodiment of the present invention, the cost of the monitoring system can be reduced.
  • FIG. 2 is a circuit block diagram of the detection apparatus 2 according to the first embodiment of the present invention.
  • the detection apparatus 2 includes a sensor unit 21, an amplifier circuit 22, an A / D converter 23, a CPU (Central Processing Unit) 24, a wireless module 25, and an antenna 26.
  • a sensor unit 21 an amplifier circuit 22, an A / D converter 23, a CPU (Central Processing Unit) 24, a wireless module 25, and an antenna 26.
  • a / D converter 23 a CPU (Central Processing Unit) 24, a wireless module 25, and an antenna 26.
  • CPU Central Processing Unit
  • the detection device 2 further includes a ROM (Read Only Memory) 27, a RAM (Random Access Memory) 28, an EEPROM (Electrically Erasable Programmable ROM) 29, an RTC (Real Time Clock) 30, and a UART (Universal Asynchronous Receiver Transmitter). )
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Programmable ROM
  • RTC Real Time Clock
  • UART Universal Asynchronous Receiver Transmitter
  • the sensor unit 21 includes a pH sensor 35 for measuring the pH of the rumen liquid and a temperature sensor 36 for measuring the temperature of the rumen liquid in order to correct the detection result of the pH sensor 35.
  • the detection result (measurement result) by each sensor is output as an analog signal.
  • the amplifier circuit 22 amplifies the analog signal output from the sensor unit 21.
  • the A / D converter 23 converts the analog signal output from the amplifier circuit 22 into a digital signal.
  • the CPU 24 controls the operation of the detection device 2 in an integrated manner, and outputs a predetermined instruction to each unit.
  • the CPU 24 uses the measurement result of the sensor unit 21 and the unique number of the detection device 2 stored in the EEPROM 29 to generate transmission data including a pH value.
  • the ROM 27 is a storage area in which a software program used for realizing a predetermined function of the CPU 24 is stored.
  • the RAM 28 is used as a work area for the CPU 24.
  • the wireless module 25 is connected to the antenna 26.
  • the wireless module 25 and the antenna 26 transmit data transmitted from the CPU 24 wirelessly.
  • the radio module 25 and the antenna 26 receive information (radio signal) transmitted from the outside by radio.
  • the EEPROM 29 is a device capable of storing information in a nonvolatile manner and electrically rewriting the stored information. As information stored in the EEPROM 29, information related to the setting of the detection device 2 is stored. The EEPROM 29 stores, for example, a unique number of the detection device 2, a data transmission schedule (for example, a transmission interval or a scheduled transmission time), and the like. When new information is transmitted from the setting unit 12, the information stored in the EEPROM 29 is updated to new information by the CPU 24.
  • RTC30 is a circuit for timing.
  • the CPU 24 acquires the current date and time (year / month / day and time) from the RTC 30.
  • the UART interface circuit 31 converts the serial signal based on the asynchronous system into a parallel signal, or converts the parallel signal into a serial signal based on the asynchronous system.
  • the serial signal based on the asynchronous process is a radio signal transmitted or received by the radio module 25 and the antenna 26.
  • the parallel signal is a signal that is input to or output from the CPU 24.
  • Each block shown in FIG. 2 may be provided separately.
  • the CPU 24, the ROM 27, the RAM 28, the RTC 30, the UART interface circuit 31, and the like may be integrated in one microcomputer.
  • the battery 32 and the power supply IC 33 supply power to each block of the detection device 2.
  • the battery 32 is more preferable as its volume is smaller, and it is more preferable as its battery capacity is larger. Since the capacity of the battery 32 is small, the detection device 2 can be downsized. As the battery capacity of the battery 32 increases, the life of the battery becomes longer, so that the period during which the state of the cattle lumen can be detected can be lengthened, and the frequency with which the detection device 2 is collected from the lumen can be reduced. Therefore, in the first embodiment, for example, a thionyl lithium chloride battery is used as the battery 32. Furthermore, from the viewpoint of the life of the battery 32, it is preferable that the power consumption of each block of the detection device 2 is small.
  • the detection device 2 has a self-diagnosis function and detects an abnormality of the sensor unit 21, a voltage drop of the battery 32, and the like. When an abnormality is detected by the self-diagnosis function, the detection device 2 transmits information regarding the content of the abnormality wirelessly.
  • the frequency band of the radio wave transmitted from the detection device 2 and the transmission output of the detection device 2 are determined by various requirements such as a communication distance, a battery life, and an influence on a living body.
  • the radio wave transmitted from the detection device 2 has, for example, a frequency band of 429 MHz and a transmission output of 10 mW or less.
  • the communication method of the detection device 2 is a half-duplex communication method (Half duplex), which is a method of switching the communication direction. That is, the detection device 2 cannot simultaneously transmit and receive radio waves.
  • the communication speed is 2400 bps, for example, and the data format used for communication is binary data.
  • FIG. 3 is a circuit block diagram of the receiver 4 according to the first embodiment of the present invention.
  • the receiver 4 includes a USB interface circuit 41, a display unit 42, an operation unit 43, a CPU 44, a wireless module 45, and an antenna 46.
  • the receiver 4 further includes a ROM 47, a RAM 48, an EEPROM 49, an RTC 50, a UART interface circuit 51, a LAN interface circuit 52, and a power supply module 53.
  • the USB interface circuit 41 is a circuit for connecting a USB memory (external memory) (not shown) and the receiver 4.
  • the display unit 42 is a circuit for displaying various information related to the receiver 4, for example, the operating status of the receiver 4, and is configured by a liquid crystal display circuit, for example.
  • the operation unit 43 is a circuit for accepting an operation by a user, and includes, for example, a switch for operating on / off of a power source.
  • the CPU 44 controls the operation of the receiver 4 in an integrated manner. Since the functions of ROM 47 and RAM 48 are the same as those of ROM 27 or RAM 28 described above, the following description will not be repeated. Similar to the RTC 30, the RTC 50 is used by the CPU 44 to acquire the current date and time.
  • the UART interface circuit 51 converts a serial signal based on an asynchronous system into a parallel signal, or converts a parallel signal into a serial signal based on an asynchronous system.
  • the asynchronous serial signal is a wireless signal received by the wireless module 25 and the antenna 26, and the parallel signal is a signal input / output to / from the CPU 44.
  • the wireless module 45 is connected to the antenna 46.
  • the wireless module 45 and the antenna 46 receive information (wireless signal) transmitted from the detection device 2.
  • the EEPROM 49 stores data received from the detection device 2. Since the EEPROM 49 is a non-volatile memory, data loss can be prevented even when a power failure occurs.
  • the LAN interface circuit 52 is a circuit for exchanging data between the receiver 4 and the LAN 5.
  • the power supply module 53 converts AC power from the AC power source into DC power and supplies the DC power to each circuit block shown in FIG.
  • the communication method of the receiver 4 is a half-duplex communication method. However, the receiver 4 only receives the radio wave transmitted from the detection device 2.
  • the communication speed is 2400 bps, for example, and the data format used for communication is binary data.
  • the unique number of the detection device 2 to be communicated is registered in advance.
  • the receiver 4 receives data including a unique number and a measurement value from the detection device 2.
  • the receiver 4 acquires the data and transmits it to the monitoring server 7 at a predetermined timing.
  • the receiver 4 does not acquire the data.
  • FIG. 4 is a side view of the cow 1 to which the detection device 2 according to the first embodiment of the present invention has been administered.
  • FIG. 5 is a diagram schematically showing the double stomach of the cow 1 shown in FIG.
  • the cow has four stomachs.
  • the largest stomach among the four stomachs is lumen 3.
  • the detection device 2 orally administered to the cow 1 reaches the lumen 3 through the esophagus 3a.
  • the detection device 2 has a moderate weight so that it can remain in the lumen 3. Further, the detection device 2 is configured to be recoverable from the lumen 3.
  • FIG. 6 is a schematic diagram showing the inside of a cow lumen. With reference to FIG. 6, a large amount of feed is stored in the lumen 3, and the feed is decomposed by microorganisms that live inside the lumen 3.
  • the interior of the lumen 3 is roughly divided into three layers: an upper layer 3b, a central layer 3c, and a lower layer 3d.
  • the upper layer 3b is a gas layer filled with gas such as methane and carbon dioxide generated by fermentation.
  • the center layer 3c consists of a large lump of feed called a lumen mat.
  • the lower layer 3d is a liquid layer in which small pieces of feed pieces and the like are deposited.
  • the detection device 2 administered orally reaches the inside of the lumen 3 and stays in the lower layer 3d (liquid layer).
  • the lumen liquid means a liquid component contained in the lower layer 3d among the contents of the lumen.
  • FIG. 7 is a perspective view showing an appearance of the detection device 2 according to the first embodiment of the present invention.
  • detection device 2 has a container 2a for storing each block shown in FIG.
  • the container 2a includes a cylindrical container body 2b made of metal, a resin cap 2c attached to one end of the container body 2b, and a connecting portion attached to the other end of the container body 2b. 2d.
  • the container body 2b is formed with an opening 2e for introducing the lumen liquid into the container 2a.
  • a sensor unit 21 housed inside the container body 2b comes into contact with the lumen fluid introduced into the container body 2b through the opening 2e.
  • the container 2a is made of a material that is not affected by the lumen liquid and has physical strength that can withstand the internal pressure and movement of the lumen.
  • the container body 2b and the connecting portion 2d are formed of stainless steel
  • the cap 2c is formed of a resin (for example, polypropylene) having acid resistance and strength capable of withstanding the internal pressure and movement of the lumen.
  • the antenna 26 shown in FIG. 2 is accommodated in the space inside the cap 2c.
  • radio waves transmitted or received by the antenna 26 can pass through the cap 2c.
  • the cap 2c has a tapered shape. That is, the cap 2c is formed so as to become thinner toward the tip.
  • the diameter D1 of the tip of the cap 2c is smaller than the diameter of the rear end portion of the cap 2c connected to the container body 2b, that is, the diameter D2 of the container body 2b. Therefore, the shape of the container 2a is a so-called bullet shape.
  • the length L of the container 2a, the diameter D1 of the tip of the cap 2c, and the diameter D2 of the container body 2b are determined to be preferable values for oral administration of the detection device 2 to the cow.
  • the diameter D1 is, for example, 20 mm
  • the diameter D2 is, for example, 30 mm.
  • the diameter D2 is larger than 30 mm, it is difficult to cause the cow to swallow the detection device 2, and therefore the diameter D2 is preferably 30 mm or less.
  • the length L of the detection device 2 is, for example, 130 to 150 mm.
  • the weight of the detection device 2 is appropriately determined so that the detection device 2 can remain in the lumen of the cow (specifically, in the liquid layer). Specifically, in the first embodiment, the weight of the detection device 2 is, for example, 120 to 150 g.
  • the connecting portion 2d is formed of a material that can adhere to the magnet, that is, a ferromagnetic material or a paramagnetic material.
  • the connecting portion 2d is formed of a ferromagnetic material, specifically, magnetic stainless steel (for example, ferritic stainless steel). It is also possible to form the connecting portion 2d by combining a ferromagnetic material and a paramagnetic material.
  • FIG. 8 is an exploded view of the detection device 2 shown in FIG.
  • cap 2c and connecting portion 2d are configured to be detachable from container body 2b.
  • a screw groove is formed on a part of the side surface of the cap 2c, and the protrusion is screwed into a screw groove (not shown) formed on the inner peripheral surface of the container body 2b.
  • An O-ring 61 is attached to the side surface of the cap 2c so as to surely prevent the lumen liquid from entering the container body 2b.
  • the module M is obtained by integrating the circuit blocks shown in FIG. 2, and can be removed from the inside of the container body 2b.
  • the module M has a separation unit 62 for separating the inside of the container body 2b into a first chamber in which the sensor unit 21 is accommodated and a second chamber in which a portion other than the sensor unit 21 of the module M is accommodated.
  • the connecting portion 2d is fixed to the container body 2b by screws 2f and 2g.
  • the first chamber is a space defined by the container main body 2b, the connecting portion 2d, and the separation portion 62 (O-ring 63), and the second chamber is the container main body 2b, the cap 2c and the separation portion 62 (O-ring 63). ).
  • the separation unit 62 includes an O-ring 63. When the O-ring 63 comes into contact with the inner peripheral surface of the container main body 2b, the lumen liquid can be prevented from entering the second chamber. That is, the separation unit 62 is a protection unit for preventing the lumen liquid from entering the second chamber.
  • the cap 2c, the connecting portion 2d, and the separating portion 62 are all detachable from the container body 2b.
  • the container is configured to be openable and sealable at a portion defining the second chamber.
  • regulates a 2nd chamber in a container should just be comprised so that opening and sealing are possible, only the cap 2c may be removable to the container main body 2b.
  • the module M is configured such that, for example, a portion excluding the sensor unit 21 and the separation unit 62 can be removed from the container body 2b.
  • FIG. 9 is a first diagram schematically showing the configuration of the module M shown in FIG.
  • FIG. 10 is a second diagram schematically showing the configuration of the module M shown in FIG.
  • a region surrounded by a broken-line frame indicates a space inside the container 2a.
  • the space inside the container 2 a is divided into the first chamber A and the second chamber B by the separation portion 62 including the O-ring 63.
  • the module M includes a sensor unit 21 and circuit boards C1 to C4.
  • the sensor unit 21 is accommodated in the first chamber A, and the circuit boards C1 to C4 are accommodated in the second chamber B.
  • the sensor unit 21 includes a glass film 71, a glass electrode 72 disposed in a container formed by the glass film 71, and a comparative electrode (not illustrated) at least partially disposed in an internal liquid (not illustrated). ), A porous resin 74 as a liquid junction, and a thermistor 75 as a temperature sensor.
  • Each electrode of the sensor unit 21 and the temperature sensor pass through the inside of the separation unit 62 and are electrically connected to the circuit board C1. Further, the ground electrode 81 is connected to the circuit board C1.
  • the circuit board C2 is electrically connected to the circuit board C1, and includes, for example, the amplifier circuit 22 and the A / D converter 23 shown in FIG.
  • the circuit board C3 is electrically connected to the circuit board C2 by the connector 83.
  • the circuit board C3 includes, for example, the CPU 24, ROM 27, RAM 28, EEPROM 29, RTC 30, UART interface circuit 31, battery 32, and power supply IC 33 shown in FIG.
  • the CPU 24, the ROM 27, the RAM 28, and the like may be integrated in one microcomputer.
  • the two batteries 32 are accommodated in the battery holder 82, and they are connected in series.
  • the voltage of each battery is, for example, 3.6V.
  • the circuit board C4 includes a wireless module 25 and an antenna 26, and is electrically connected to the circuit board C3.
  • FIG. 11 is an external view of an antenna included in the detection device.
  • antenna 26 includes a dielectric chip 26a and a conductor 26b formed in a spiral shape on the main surface of dielectric chip 26a.
  • the communication speed is slow, so that the transmission time for each data becomes long and the battery may be consumed.
  • the transmission / reception antenna may be enlarged or the predetermined gain may be difficult due to the longer wavelength.
  • the frequency band of the radio wave used for wireless communication is the 429 MHz band.
  • radio stations that output radio waves having the above frequencies and powers are classified as specific low-power radio stations prescribed by the Radio Law.
  • this specific low-power radio station any radio device that has received a technical standard conformity certificate can be operated without qualification. Therefore, restrictions on the operation of the monitoring system can be reduced.
  • the distance at which stable radio waves can be transmitted and received is relatively long.
  • the communication distance was about 100 to 150 m.
  • the distance at which radio waves can be received from the detection device 2 placed in the lumen is 5 m at the maximum.
  • the present inventors examined the cause of such a phenomenon. Since the detection device 2 is immersed in the lumen liquid in the lumen, it is considered that the periphery of the detection device 2 is a liquid ground. Furthermore, it was thought that the bovine body, specifically the muscles and iron in the blood, functions as a shield. For these reasons, the present inventors considered that the radio wave emitted from the detection device 2 attenuates.
  • the wireless communication was experimented in a place about 2 m away from the living body, the reception intensity of the receiver was large (for example, about several tens dB) before and after the detection device 2 was put into the lumen. By putting the detection device 2 into the lumen, it was difficult to distinguish between noise and signal. Even in experiments using various antennas, it was difficult to obtain results equivalent to the results of wireless communication outside the cow's body.
  • the present inventors examined two plans. One is a method using an apparatus in which a transmitter and a receiver are integrated, and the other is a method of separately providing a transmitter and a receiver.
  • Japan there is no standard defined by law for the gain of the receiving antenna, while the transmitter must be compliant with the technical standards defined by the Radio Law.
  • the number of communication devices used in the monitoring system can be reduced.
  • the communication function of the monitoring unit can be specialized only for the reception function. Therefore, the arrangement and number of receivers can be appropriately determined in consideration of the number of cattle to be managed, the distance from the cattle, and the like.
  • the setting unit 12 Since the setting unit 12 is portable, the setting unit 12 can be operated in the vicinity of the bovine body. As a result, the possibility that radio waves do not reach the detection device 2 can be reduced. Furthermore, once the operating condition of the detection device 2 is set, it is considered that the possibility of changing the operating condition thereafter is small. Therefore, when the operating condition of the detection device 2 in the lumen is changed, the user of the setting unit 12 needs to approach the living body, but it is considered that there are few opportunities to change the setting. Therefore, the operation of the monitoring system can be prepared.
  • the radio wave law stipulates that the antenna gain applied to a specific low-power radio station must be 2.14 dBi or less. Therefore, in Japan, an antenna may be selected so as to satisfy the above conditions. On the other hand, there are no particular restrictions on the conditions of the receiving antenna. By specializing the communication function of the monitoring unit to the reception function, it is possible to expand the degree of freedom in selecting the reception antenna used for the monitoring unit. Furthermore, the degree of freedom of the installation location of the antenna can be increased.
  • the antenna 46 of the receiver 4 Since the detection device 2 exists in the lumen, the radio wave reaching the antenna 46 of the receiver 4 is weak. In order to increase the reception sensitivity of the receiver 4, the gain of the antenna 46 of the receiver 4 is larger than the gain of the antenna 26 of the detection device 2. Furthermore, considering the possibility of radio waves reaching the antenna 46 from any direction on the horizontal plane, it is more preferable that the antenna 46 is an omnidirectional antenna on the horizontal plane. For example, a whip antenna, a ground plane antenna, a sleeve antenna, or the like can be applied to the antenna 46 as an omnidirectional antenna on a horizontal plane. By selecting the antenna 46 of the receiver 4 according to the above method, the receiver 4 can receive the radio wave transmitted from the detection device 2 with high certainty.
  • the communication device that communicates with the detection device 2 wirelessly includes the separate receiver 4 and the setting unit 12 (transmitter).
  • the transmission output can be further increased, for example, when the monitoring system according to the present embodiment is used in an environment where restrictions on the use of radio waves are not stricter than those described above, the receiver 4 and a communication device in which the setting unit 12 is integrated may be used.
  • FIG. 12 is a cross-sectional view schematically illustrating the configuration of the sensor unit 21 according to the first embodiment of the present invention.
  • the sensor unit 21 includes a glass film 71, an internal buffer solution 76 filled in a container formed by the glass film 71, a glass electrode 72 disposed in the internal buffer solution 76, The gel 77 filled in the space between the separation part 62 (outer case) and the inner case 84, the reference electrode 73 disposed so that at least a part thereof is in contact with the gel 77, and the porous part as the liquid junction part A resin 74 and a thermistor 75 as a temperature sensor are provided.
  • the sensor unit 21 is inserted into the holder 85, and the holder 85 is fixed inside the inner case 84.
  • the glass film 71, the internal buffer solution 76, the glass electrode 72, the gel 77, the comparison electrode 73, and the porous resin 74 constitute the pH sensor 35 shown in FIG.
  • the internal buffer 76 is specifically a potassium chloride (KCl) solution (for example, 3.3 mol / L-KCl solution, KCl saturated solution, etc.).
  • the internal buffer solution 76 is confined in a container formed of the glass film 71 by the packing 86.
  • the thermistor 75 is hermetically fixed by a silicon filler 87.
  • the glass film 71 and the porous resin 74 are in contact with the lumen liquid 88. As indicated by the broken arrow, the internal liquid contained in the gel 77 is little by little through the space between the separation part 62 (outer case) and the inner case 84 and the porous resin 74 as the liquid junction part. leak.
  • An electromotive force is generated between the inner wall and the outer wall of the glass film 71 by bringing the outer wall of the glass film 71 into contact with the liquid to be measured, that is, the lumen liquid 88.
  • the potential difference between the comparison electrode 73 and the glass electrode 72 is equal to the electromotive force proportional to the pH of the liquid to be measured plus the difference between the single electrode potential of the glass electrode 72 and the single electrode potential of the comparison electrode 73. Since the glass electrode 72 and the comparative electrode 73 are both in contact with the KCl solution, the difference between the monopolar potential of the glass electrode 72 and the monopolar potential of the comparative electrode 73 is zero.
  • Well-known pH sensors are a glass electrode type pH sensor and an Is-FET (Ion Sensitive Field Effect Transistor) sensor employed in the first embodiment of the present invention.
  • the inventors first examined an Is-FET sensor as a sensor mounted on the detection device 2. However, since this sensor is based on batch measurement (intermittent measurement), it is difficult to maintain its performance when it is in contact with a liquid sample for a long time. For example, from the results of preliminary experiments by the present inventors, the lifetime of the Is-FET sensor was estimated to be 500 hours or less.
  • the glass electrode type pH sensor can measure the pH of the liquid while the glass thin film is always in contact with the liquid.
  • a glass electrode type pH sensor is employed in the present embodiment.
  • the sensor unit 21 is housed in a container main body 2b which is a metal cylinder, and the lumen liquid introduced into the container main body 2b through the opening 2e contacts the glass film 71.
  • the size of the opening 2e is determined to be a size capable of preventing undigested feed or pernet (a strong magnet for adsorbing iron scraps) or the like from passing through the opening 2e.
  • the liquid junction is formed of a porous resin, specifically, porous Teflon (registered trademark).
  • a porous ceramic is generally used for the liquid junction of the comparative electrode.
  • the pores of the ceramic are very fine, there is a concern that the liquid junction is clogged by the residue component contained in the rumen liquid.
  • the pores of the porous Teflon (registered trademark) are generally larger than the pores of the porous ceramic.
  • Teflon (registered trademark) has low affinity with other substances such as water, the amount of dirt deposited on the liquid junction can be reduced. Thereby, clogging of the liquid junction can be prevented, so that the pH of the rumen liquid can be measured for a long period of time.
  • a gelled internal liquid is used.
  • the internal liquid is liquid.
  • the present inventors conducted an experiment in which the pH was continuously measured in the lumen in advance, there was an example in which the pH measurement value became unstable in about 2 days after the start of the experiment, and finally measurement was impossible. As a result of collecting the sensor in which the problem occurred and investigating the cause, the internal liquid was completely lost.
  • the present inventors considered that the temperature inside the lumen was relatively high at around 40 ° C., so that the liquid junction amount (outflow amount) increased, and as a result, the internal liquid was consumed in a short period of time. Then, the internal liquid gelatinized with the gelatinizer was tried.
  • the gelling agent at this time was hydroxyethyl cellulose, and the possible duration of pH measurement could be extended to about 10 days. However, the measured values became unstable around 2 weeks. When the present inventors verified this phenomenon, it was found that the gelling agent was decomposed by the fibrinolytic bacteria in the rumen solution.
  • Fibrinolytic bacteria in the lumen break down cellulose to produce acetic acid and the like. It was considered that the gel was consumed in a short time due to the action of this bacterium. From such experimental results, in the present embodiment, the internal liquid (KCl solution) is gelled by a gelling agent that is not easily degraded by the action of cellulose-degrading bacteria. Thereby, since the outflow amount of the internal liquid can be reduced in the lumen, it is possible to measure the lumen pH over a long period of time.
  • xanthan gum is used in the present embodiment.
  • Xanthan gum is a food additive and is commonly used in the food field. Therefore, the influence on the living body can be reduced.
  • FIG. 13 is a diagram for schematically explaining a recovery tool for recovering the detection device 2 according to the first embodiment of the present invention.
  • recovery tool 90 includes a metal wire 91 and a magnet 92 attached to the tip of wire 91.
  • wire 91 a metal chain or a metal tube may be used.
  • the wire 91 is sufficiently longer than the length from the cow's mouth to the lumen. Since the connecting portion 2 d of the detection device 2 is formed of a paramagnetic material or a ferromagnetic material, the connecting portion 2 d adheres to the magnet 92. Thereby, the detection apparatus 2 can be taken out from the lumen. For example, cow soccer can be applied as the collecting device 90 having such a configuration.
  • Detecting device 2 only needs to be configured to be connectable to a recovery tool to be used.
  • the connecting portion 2d may be configured to be able to be locked to the manipulator.
  • FIG. 14 is a flowchart for explaining a method for orally recovering the detection device 2 according to the embodiment of the present invention from the lumen of a cow.
  • step S100 the feed fed to the cow is reduced. Specifically, from the evening of the day before the detection device 2 is recovered from the cow, no feed is fed to the cow, or the amount of feed is limited to about half of the amount normally fed.
  • steps S200 to S700 is executed on the day when the detection device 2 is collected from the cow.
  • the cow is fixed and a sufficient amount, for example, 20 to 40 liters of water is administered to the cow.
  • step S300 the opening device is attached to the cow.
  • step S400 for example, an introduction tube made of vinyl chloride is inserted into the pharynx from the mouth of the cow.
  • step S500 a strong magnet attached to the tip of the metal wire is inserted into the lumen through the introduction tube.
  • the strong magnet that has entered the lumen reaches the solid layer inside the lumen (corresponding to the central layer 3c shown in FIG. 6), and then due to its own weight, the liquid layer below the lumen (the lower layer 3d shown in FIG. 6). Sinks to the equivalent).
  • step S600 the detection device 2 is connected to a strong magnet.
  • the detection device 2 placed in the lumen 3 is normally present in the liquid layer (abdominal sac portion) below the lumen.
  • the connecting portion 2d of the detection device 2 adheres to the magnet. As a result, the detection device 2 is connected to the strong magnet.
  • step S700 the detection device 2 connected to the strong magnet is gently pulled up, and the detection device 2 is passed through the solid layer of the lumen, the cardia portion, and the oral cavity. Thereby, the detection device 2 is recovered.
  • rumen contents can be reduced by reducing the amount of feed fed to the cow prior to collecting the detection device 2, or by fasting the cow.
  • searching, pulling up, and recovery of the detection device 2 can be easily performed, so that the detection device can be recovered when the function of the detection device is stopped due to a circuit failure or battery consumption.
  • the internal state of the cattle lumen can be accurately detected in real time.
  • the internal condition of the cattle lumen can be easily monitored.
  • the detection apparatus can be reused, the cost of the system can be reduced.
  • rumen pH of cattle can be measured accurately, farmers can work on improving nutritional management while grasping the state of feeding management. Furthermore, since rumen pH can be measured and monitored over a long period of time, it is possible to prevent the occurrence of rumen acidosis and related diseases such as various metabolic diseases, infectious diseases, and hoof disease.
  • FIG. 15 is a diagram schematically illustrating the overall configuration of the monitoring system 101 according to the second embodiment of the present invention.
  • a monitoring system 101 according to the second embodiment of the present invention includes a transmitter / receiver 4 ⁇ / b> A in place of the receiver 4 and the setting unit 12, and the monitoring according to the first embodiment. Different from the system 100. Furthermore, the monitoring system 101 is different from the monitoring system 100 in that a detection device 20 is provided instead of the detection device 2.
  • the transceiver 4A is installed in a barn, for example.
  • the transceiver 4A has the functions of both the setting unit 12 and the receiver 4. That is, the transmitter / receiver 4 ⁇ / b> A transmits a command for calibration of the detection device 20 (sensor), setting of transmission frequency, and the like to the detection device 20 wirelessly. Furthermore, the transmitter / receiver 4 ⁇ / b> A receives data regarding the pH inside the lumen measured by the detection device 20 from the detection device 20 by radio. Further, the transmitter / receiver 4 ⁇ / b> A transmits reception confirmation data to the detection device 20 when the data transmitted from the detection device 20 is successfully received.
  • FIG. 23 is a functional block diagram of the transceiver 4A.
  • the configuration of transmitter / receiver 4 ⁇ / b> A is different from the configuration of receiver 4 in that setting unit 120 is added.
  • the setting unit 120 has the same function as the setting unit 12. Note that, similarly to the first embodiment, the gain of the antenna 46 is preferably higher than the gain of the antenna included in the detection device 20.
  • the detection device 20 ends the transmission of the measurement data by receiving the reception confirmation data. If the reception confirmation data cannot be received even though the detection device 20 has transmitted the measurement data, the detection device 20 repeatedly transmits the same data.
  • the maximum number of repetitions is preset by a command from the transceiver 4A, for example, 3 times.
  • the detection device 20 stops transmitting data.
  • the power consumption of the detection device 20 can be reduced by limiting the number of times the detection device 20 retransmits data. Thereby, the duration of the battery provided in the inside of the detection apparatus 20 can be lengthened. Therefore, the operation period of the detection device 20 can be extended.
  • Detecting device 20 wirelessly transmits measurement data (pH value) at regular time intervals (for example, every 10 minutes).
  • the detection device 20 performs various calibrations such as sensor calibration, setting of measurement data frequency (time interval), and setting of the number of retransmissions when the transmitter / receiver 4A fails to receive data, in accordance with the command sent from the transmitter / receiver 4A. Execute the process.
  • a repeater (repeater) for relaying wireless communication between the transceiver 4A and the detection device 20 may be added to the monitoring system 101. Thereby, possibility that the radio
  • the detection device 20 is configured to be recoverable from the lumen 3. According to the flowchart shown in FIG. 14, the detection device 20 is orally recovered from the lumen 3 of the cow 1.
  • FIG. 16 is a functional block diagram of the detection apparatus 20 shown in FIG.
  • the configuration of detection device 20 is basically the same as the configuration of detection device 2 according to the first embodiment.
  • the detection device 20 includes a sensor unit 21A, an amplifier circuit 22A, an antenna 26A, and a battery 32A instead of the sensor unit 21, the amplifier circuit 22, the antenna 26, and the battery 32.
  • the detection device 20 is different from the detection device 2.
  • the external appearance of the detection device 20 is the same as the external appearance of the detection device 2 (see FIG. 7), detailed description regarding the external appearance of the detection device 20 will not be repeated hereinafter. Hereinafter, differences between the detection device 20 and the detection device 2 will be described in detail.
  • FIG. 17 is a cross-sectional view for schematically explaining the configuration of the sensor unit 21A.
  • sensor unit 21A includes internal liquid 77A.
  • the internal liquid 77A is not gelled and remains liquid.
  • the internal solution 77A is a potassium chloride saturated solution.
  • the saturated solution flows out through the liquid junction (porous resin 74).
  • the measurement value of the detection device 20 can be stabilized. Since the measurement value of the detection device 20 becomes stable, the measurement period can be extended.
  • magnesia 87A is used instead of the silicon filler 87 in order to hermetically fix the thermistor 75.
  • magnesia 87A By sealing and fixing the thermistor 75 with magnesia 87A, the temperature sensitivity of the thermistor 75 can be improved as compared with the first embodiment.
  • the sensor unit 21A does not have the ground electrode 81.
  • a non-differential amplification method is used as an amplification method in the amplifier circuit 22A.
  • the earth electrode 81 can be omitted from the sensor unit 21A.
  • the configuration of other parts of the sensor unit 21A is the same as the configuration of the sensor unit 21 according to the first embodiment, and thus the description thereof will not be repeated.
  • FIG. 18 is an exploded view of the detection apparatus 20 according to the second embodiment of the present invention.
  • FIG. 19 is a first diagram schematically showing the configuration of the module M shown in FIG.
  • FIG. 20 is a second diagram schematically showing the configuration of the module M shown in FIG.
  • module M includes sensor unit 21A and circuit boards C1 to C3.
  • the wireless module 25 is mounted on the circuit board C3.
  • the antenna 26A is a ⁇ / 4 whip antenna including a spirally wound conductor.
  • the detection device 2 includes a circuit board C4 on which a wireless module 25 and an antenna 26 are mounted.
  • the radio module 25 is mounted on the circuit board C3, and the antenna 26A is configured by a whip antenna.
  • the circuit board C4 is omitted from the detection device 20.
  • one battery 32A is used. Similar to detection device 2 according to the first embodiment, battery 32A is, for example, a thionyl lithium chloride battery. The voltage of the battery 32A is, for example, 3.6V. The capacity of the battery 32 is 1700 mAh, for example.
  • the weight of the detection device 20 is appropriately determined so that the detection device 20 can remain in the lumen of the cow (specifically, in the liquid layer).
  • the weight of the detection device 20 is in the range of 160 to 200 g, for example.
  • the non-differential amplification method is used as the amplification method of the amplifier circuit 22A.
  • the power consumption of the amplifier circuit 22A can be reduced.
  • the ground electrode can be omitted from the sensor unit 21A.
  • FIG. 21 is a functional block diagram of the amplifier circuit 22 according to the first embodiment.
  • amplifier circuit 22 includes measurement amplifiers 221 and 222, a reference potential setting unit 223, and a differential amplifier 225.
  • the differential amplifier 225 and the A / D converter 23 constitute an A / D conversion circuit 23A and are integrated as a module.
  • the sensor unit 21 has a glass electrode 72, a comparison electrode 73, and a ground electrode 81.
  • the measurement amplifier 221 is an amplifier for measuring the potential of the glass electrode 72.
  • the measurement amplifier 222 is an amplifier for measuring the potential of the comparison electrode 73.
  • the differential amplifier 225 amplifies the potential difference between the output potential of the measurement amplifier 221 and the output potential of the measurement amplifier 222.
  • the output of the differential amplifier 225 is sent to the A / D converter 23.
  • the ground electrode 81 is connected to the reference potential setting unit 223.
  • the potential reference of each of the glass electrode 72 and the comparison electrode 73 is the potential of the ground electrode 81.
  • the differential amplifier 225 amplifies the potential difference between the output potential of the measurement amplifier 221 and the output potential of the measurement amplifier 222.
  • the differential amplifier 225 is operated by a differential amplification method. That is, the differential amplifier 225 amplifies the potential difference between the output of the measurement amplifier 221 and the output of the measurement amplifier 222. Since this method requires two measurement amplifiers, the power consumption of the entire amplifier circuit increases. For this reason, battery consumption may be accelerated.
  • FIG. 22 is a functional block diagram of an amplifier circuit 22A according to the second embodiment.
  • amplifier circuit 22A is different from amplifier circuit 22 in that measurement amplifier 222 is omitted.
  • the amplifier circuit 22A is different from the amplifier circuit 22 in that an amplifier 225A is provided instead of the differential amplifier 225.
  • the amplifier 225A and the A / D converter 23 constitute an A / D conversion circuit 23A and are integrated as a module.
  • the sensor unit 21A is different from the sensor unit 21 in that the ground electrode 83 is omitted.
  • the potential of the comparison electrode 73 is fixed to the reference potential (specifically 0 V) by connecting the comparison electrode 73 to the reference potential setting unit 223.
  • the potential difference between the potential of the glass electrode 72 and the reference potential is amplified by the amplifier 225A.
  • the amplifier 225A amplifies only the output of the measurement amplifier 221. Accordingly, since the measurement amplifier 222 is not necessary, the power consumption of the entire amplifier circuit can be reduced. Therefore, as shown in FIGS. 18 to 20, the detection device 20 can be operated by one battery 32A.
  • the detection device 20 was orally administered to three cows. The variation of the measurement value transmitted from the detection device 20 in the lumen was verified. Even if one month passed from the verification start date, it was confirmed that the measurement value of the detection device 20 was stable.
  • the period during which the measured value of the detection device was stabilized was about 1 to 2 weeks.
  • the reason why the period during which the measurement value of the detection device is stable is shortened is that the concentration of the internal buffer solution has changed because the gel absorbs the measurement sample.
  • the duration of the battery was 1.5 to 2 months.
  • the distance capable of stable wireless communication between the transceiver 4A and the detection device 20 was about 20 m, and the maximum communication distance was 25 m. It was determined that stable wireless communication was possible when the transmitter / receiver 4A transmitted the reception confirmation data.
  • a KCl saturated solution is used as the internal solution of the pH sensor.
  • a command is sent from the transceiver to the detection device.
  • a setting unit for transmitting a command to the detection device is used.
  • various commands can be sent to the detection device without using the setting unit. Therefore, the configuration of the monitoring system can be simplified.
  • the amplifier circuit 22A amplifies the output signal of the sensor unit 21A by a non-differential amplification method. Thereby, the power consumption of the detection apparatus 20 can be reduced.
  • this period is preferably a period of about 3 to 4 months including from delivery to the end of lactation.
  • the detection device according to the embodiment of the present invention can detect the state of the lumen over a period in which the management of the lumen is required.
  • lumen acidosis is shown as a representative example of the change in the state of the lumen.
  • rumen alkalosis can also be detected. Rumen alkalosis is a state in which the value of rumen pH is high because ammonia is excessively produced in the rumen by fermentation.
  • the pH value of the lumen liquid is measured in order to detect the state in the lumen.
  • the parameter to be measured is not limited to only pH, and for example, both pH and temperature may be used.
  • a cow is exemplified as a ruminant.
  • the present invention can also be applied to detection and monitoring of the state of rumen such as ruminants other than cattle, such as sheep and goats.
  • the size of the detection device may be made smaller than the above size.
  • the weight value of the detection device is preferably set to a value smaller than the above value (120 to 150 g or 160 to 200 g).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Environmental Sciences (AREA)
  • Physiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Birds (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Endocrinology (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

 検出装置(2)は、牛(1)に経口投与されることで牛(1)のルーメン(3)内に留まるとともに、ルーメン(3)の内部の状態を検出する。検出装置(2)は検出結果としてルーメンpHの測定値を無線で送信する。監視ユニット(受信機(4)および監視サーバ(7))は、検出装置(2)から送信された情報を取得するとともにルーメン(3)の内部の状態を監視する。検出装置(2)は、牛(1)のルーメン(3)から経口で回収可能に構成される。検出装置(2)の動作条件は、検出装置(2)に予め記憶されるとともに、設定ユニット(12)から検出装置(2)に送信される無線信号によって更新可能である。

Description

検出装置およびその回収方法ならびに監視システム
 本発明は、反芻動物の第1胃(ルーメン)の状態を検出するための検出装置および、その回収方法、ならびに監視システムに関する。本発明は特に、ルーメンの内部に留まった状態でそのルーメンの状態を検出する検出装置、および、その検出装置を反芻動物から回収するための方法、ならびに、その検出装置によって反芻動物のルーメンの状態を監視するための監視システムに関する。
 エレクトロニクスの近年の進展にともない、人あるいは動物の体内への設置を目的として小型化された電子機器が提案されている。
 たとえば特表2003-530135号公報(特許文献1)は、人体内部の結合サイトにおいて少なくとも1つの生理学的パラメータをモニタするためのモニタ装置を開示する。このモニタ装置は、上記パラメータを検出するためのディテクタと、そのディテクタにより形成されたデータを送信するためのトランスミッタとを備える。
 畜産あるいは酪農の分野において、発信機を備えた電子機器を動物の体内に設置するとともに、その電子機器からの情報を用いて個体を管理あるいは識別することが提案されている。たとえば特開平6-276877号公報(特許文献2)は、反芻動物の第1胃または第2胃(reticulum)の中に留まった状態で使用される動物用体内型個体識別器具を開示する。この識別器具は、胃液によって侵されない材質によって形成された容器と、その容器の内部に収納された集積回路と、容器の内部あるいは外部に設けられたアンテナとを備える。集積回路は、動物の体外から発信された電磁波に応答して、予め記憶されたデータ(識別コード)を送信アンテナを通じて送信する。
 たとえば米国特許第5984875号明細書(特許文献3)は、個々の反芻動物の生理学的パラメータ(たとえば温度)を検出するとともに、その検出結果を送信するセンサを開示する。センサは、反芻動物の第1胃あるいは第2胃に留まることが可能な適切な大きさおよび密度を有する。センサから送信されたデータは、外部の受信機によって受信される。
 たとえば特表2008-529631号公報(特許文献4)は、動物が飲み込むことが可能に構成された検査装置を開示する。この検査装置は、コントローラ、トランスミッタおよび、センサ素子のアレイを備える。トランスミッタは、アレイの出力から抽出されたセンサデータを送信するように構成される。
特表2003-530135号公報 特開平6-276877号公報 米国特許第5984875号明細書 特表2008-529631号公報
 乳牛および肉牛の飼養管理にとって、ルーメンの状態を把握することは重要である。ルーメンの状態を把握するため、一般にはルーメン液のpHが測定される。
 乳牛に給与される飼料品質の向上、飼養管理技術の改善、および育種の改良の進展などにより、乳牛の泌乳量は飛躍的に増大してきた。高泌乳を維持するために、大量の濃厚飼料が乳牛に給与される。しかし、更なる高泌乳を目指すために、牛の生理を無視した飼養管理が普及した。この結果、ルーメンアシドーシス、およびルーメンアシドーシスと関連のある各種の代謝病、感染症あるいは蹄病が多発していることが報告されている。ルーメンアシドーシスおよび関連する各種の疾病は乳牛による生産の阻害要因となる。
 牛のルーメン内の状態は給与飼料に応じて異なるとともに、疾病発生や良質な牛乳生産と密接に関連する。ルーメンアシドーシスとは、ルーメンpHが低下した状態である。大量の濃厚飼料の給与、あるいは不適切な給与順序によってルーメンpHが低下する。ルーメンpHの測定の重要性が広く認識されるとともに、ルーメンpHの測定によるルーメンアシドーシスの制御が乳牛の健康と生産とを維持するための重要な課題となっている。
 しかし現状では、ルーメンの内部の状態を正確に測定するための技術は確立されていない。具体的に説明すると、ルーメン内部の状態を把握するためには、牛からルーメン液を採取しなければならない。ルーメン液は、経口カテーテルを用いた経口的採取、あるいは注射針を用いた第一胃への穿刺によって採取される。しかし経口的採取の場合には、ルーメン液に唾液が混入するという問題あるいは胃への注射針の穿刺による細菌感染の虞が常に生じる。このためルーメンpHを正確に測定することができない。
 また、ルーメン内で発酵が進むことによってルーメン内の温度が上昇すると考えられるので、ルーメン内部の状態を検出するためには、ルーメン液のpHに加えてルーメン内の温度を測定することがより好ましい。しかしながら、従来の技術によれば、生体外部で温度を測定しなければならない。このためルーメン内の温度を正確に測定できない。
 加えて、ルーメン液を採取するためには牛の固定などの労力を要する。このためにルーメン液のpHあるいは温度を計測する頻度が低くなる。ルーメン内部の状態を検出することは飼養管理上有効な手法であるにもかかわらず、上述の理由により管理手法として普及してこなかった。その結果、多くの乳牛がルーメンアシドーシスに関連する疾病を患うことにより生産性が低下するという問題が発生する。酪農家の経営にとって、乳牛の生産性の低下は大きな課題の一つである。
 しかしながら、上記の文献のいずれにおいても、反芻動物(代表的には牛)のルーメンの内部の状態を検出するという点、特にルーメンのpHを正確に検出する点について具体的な記載はない。
 さらに上記の文献のいずれにおいても、生体内に設置された電子機器を任意のタイミングで回収することについて具体的な記載はない。たとえば乳牛が生きている間、乳牛のルーメンから電子機器を取り出すことができないのであれば、乳牛の頭数に応じた個数の電子機器が必要となる。このため監視システムのコストが増大する。
 本発明の目的は、反芻動物のルーメンの状態を検出可能な検出装置、およびその検出装置を回収する方法、ならびにその検出装置を含む監視システムを提供することである。
 本発明は、ある局面では、反芻動物のルーメンの内部状態を検出するための検出装置であって、ルーメンの内容物の液体成分に対する耐性を有するとともに前記ルーメンの内圧および運動に耐える物理的強度を有する材料によって形成され、反芻動物に経口で投与可能であるとともに経口でルーメンの内部に挿入される回収器具と連結可能なように構成された容器を備える。容器には、容器の内部の第1室に液体成分を導入するための開口部が形成される。検出装置は、容器の内部を、第1室と、液体成分の流入が防止された第2室とに区切るための防護部と、測定部と、記憶部と、制御部と、通信部と、電池とをさらに備える。測定部は、液体成分に関連するパラメータを測定するために、容器の第1室に収納される。記憶部は、検出装置の動作条件に関する情報を記憶するために、容器の第2室に収納される。制御部は、記憶部に記憶された情報に基づいて、測定部の測定結果からパラメータに関するデータを生成するために、容器の第2室に収納される。通信部は、制御部の処理によって生成されたパラメータに関するデータを無線によって送信するために、容器の第2室に収納される。電池は、少なくとも制御部および通信部に電力を供給するために第2室に収納される。
 好ましくは、回収器具は、ルーメンの内部に挿入され、検出装置を反芻動物の体外に取り出すために用いられる磁石を含むように構成される。容器は、先端に向かうにしたがって次第に細くなるテーパに形成されたテーパ部と、強磁性体および常磁性体の少なくとも一方によって形成された連結部とを含む。容器の第2室を規定する部分は、開封および密封が可能なように構成される。
 好ましくは、通信部は、検出装置の動作条件の少なくとも一部を更新するための新たな情報を無線により受信可能に構成される。制御部は、通信部によって新たな情報が受信された場合に、記憶部に記憶される情報を、新たな情報に更新する。
 好ましくは、記憶部に記憶された情報は、検出装置の固有番号と、パラメータに関するデータの送信スケジュールとを含む。
 好ましくは、パラメータは、液体成分のpH値を含む。測定部は、pHセンサを含む。pHセンサは、ガラス電極と、内部液を含むゲルと、少なくとも一部がゲルの内部に配置された比較電極と、ゲルから流出する内部液の液絡量を制御するために多孔質の樹脂により形成された液絡部と、ガラス電極および比較電極による液体成分のpHの測定値を温度補償するための温度センサとを有する。
 好ましくは、パラメータは、液体成分のpH値を含む。測定部は、pHセンサを含む。pHセンサは、ガラス電極と、内部液としての塩化カリウム飽和溶液と、少なくとも一部が塩化カリウム飽和溶液に浸された比較電極と、内部液の液絡量を制御するために多孔質の樹脂により形成された液絡部と、ガラス電極および比較電極による液体成分のpHの測定値を温度補償するための温度センサとを有する。
 好ましくは、検出装置は、pHセンサの出力を増幅するための増幅回路をさらに備える。増幅回路は、比較電極の電位を基準電位に設定するための基準電位設定部と、ガラス電極の電位と基準電位との間の電位差を増幅するためのアンプとを含む。
 本発明は、他の局面では、監視システムであって、上記の検出装置と、検出装置と無線による通信が可能に構成され、検出装置から無線によって送信されたデータを受信する通信装置と、通信装置により受信されたデータを収集するとともに、データを用いてルーメンの状態を監視するための監視装置とを備える。
 好ましくは、検出装置の通信部は、送信電力が10mW以下の電波を送信するための第1のアンテナを含む。通信装置は、無線によってデータを受信するための第2のアンテナを含む。第2のアンテナの利得は、第1のアンテナの利得よりも高い。
 好ましくは、通信装置は、複数の検出装置の各々から送信されたデータを受信可能である。監視装置は、少なくとも1箇所に配置された通信装置により受信されたデータを収集する。
 好ましくは、検出装置の通信部は、動作条件の少なくとも一部を更新するための新たな情報を無線により受信可能に構成される。制御部は、通信部によって新たな情報が受信された場合に、記憶部に記憶される情報を、新たな情報に更新する。通信装置は、検出装置から無線によって送信されたデータを受信するための受信機と、複数の検出装置の各々に対応する新たな情報を無線によって送信可能に構成された設定ユニットとを含む。
 本発明のさらに他の局面に従うと、反芻動物のルーメン内部に置かれ、かつルーメンの内部の状態を検出する検出装置の回収方法である。検出装置は、ルーメンの内容物の液体成分に対する耐性を有するとともにルーメンの内圧および運動に耐える物理的強度を有する材料によって形成され、反芻動物に経口で投与可能に構成された容器を備える。容器には、容器の内部の第1室に液体成分を導入するための貫通孔が形成される。検出装置は、液体成分に関連するパラメータを測定するために、容器の第1室に収納された測定部をさらに備える。回収方法は、反芻動物の体内に留置される検出装置と連結可能な部分を有する回収器具をルーメンに挿入するステップと、回収器具に検出装置を連結させるステップと、回収器具を回収することにより検出装置を反芻動物の口から取り出すステップとを備える。
 本発明によれば、反芻動物のルーメンの状態を検出可能な検出装置、およびその検出装置を回収する方法、ならびにその検出装置を含む監視システムを実現できる。
本発明の第1の実施の形態に係る監視システム100の全体構成を概略的に説明した図である。 本発明の第1の実施の形態に係る検出装置2の回路ブロック図である。 本発明の第1の実施の形態に係る受信機4の回路ブロック図である。 本発明の第1の実施の形態に係る検出装置2が投与された牛1をその側方から見た図である。 図4に示した牛1の複胃を模式的に示した図である。 牛のルーメンの内部を示す模式図である。 本発明の第1の実施の形態に係る検出装置2の外観を示した斜視図である。 図7に示した検出装置2の分解図である。 図8に示したモジュールMの構成を概略的に示した第1の図である。 図8に示したモジュールMの構成を概略的に示した第2の図である。 検出装置に含まれるアンテナの外観図である。 本発明の第1の実施の形態に係るセンサユニット21の構成を概略的に説明する断面図である。 本発明の第1の実施の形態に係る検出装置2を回収するための回収器具を模式的に説明するための図である。 本発明の実施の形態に係る検出装置2を牛のルーメンから経口で回収するための方法を説明するフローチャートである。 本発明の第2の実施の形態に係る監視システム101の全体構成を概略的に説明した図である。 図15に示した検出装置20の機能ブロック図である。 センサユニット21Aの構成を概略的に説明するための断面図である。 本発明の第2の実施の形態に係る検出装置20の分解図である。 図18に示したモジュールMの構成を概略的に示した第1の図である。 図18に示したモジュールMの構成を概略的に示した第2の図である。 第1の実施の形態に係るアンプ回路22の機能ブロック図である。 第2の実施の形態に係るアンプ回路22Aの機能ブロック図である。 送受信機4Aの機能ブロック図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 図1は、本発明の第1の実施の形態に係る監視システム100の全体構成を概略的に説明した図である。図1を参照して、本発明の第1の実施の形態に係る監視システム100は、牛1のルーメン3の内部の状態に関する情報を収集するとともに、その情報に基づいてルーメン3の内部の状態を監視する。図1に示した牛1は乳牛および肉牛のいずれでもよいが、以下の説明では牛1を乳牛とする。
 監視システム100は、牛1のルーメン3の状態を検出するための検出装置2を備える。検出装置2は牛1のルーメン3の中に置かれることによって、ルーメン3の内部の状態を検出する。具体的には、検出装置2は、ルーメン3の状態を検出するためにルーメン液のpHを測定する。
 ルーメン液のpHはルーメン内部の状態を反映する。たとえば、ルーメンpHが低下することによりルーメンアシドーシスが発生する可能性が高くなる。通常のルーメンpHは7.0~6.0であり、ルーメンpHが5.5以下に低下した状態がルーメンアシドーシスと呼ばれる。ルーメン液のpHを測定することによって、ルーメンアシドーシスを検出することができる。
 検出装置2は、ルーメン液のpHを測定した結果を示すデータを、その検出装置2に割り当てられた固有番号とともに無線によって送信する。固有番号は検出装置2に予め記憶される。検出装置2は、さらに牛1の体外から送られた無線信号に応じて、検出装置2の動作条件等に関する情報を更新する。
 検出装置2は牛1の口から投与される。検出装置2を経口投与するための方法は種々の公知の方法を適用することができるので、ここでは詳細な説明を繰返さない。
 監視システム100は、検出装置2から無線により送信されたデータを受信するための受信機4と、LAN(Local Area Network)5と、ハブ6と、監視サーバ7と、ウェブサーバ8とをさらに備える。少なくとも受信機4および監視サーバ7は、牛のルーメン内部の状態を監視するための監視ユニットを構成する。
 受信機4は、複数の検出装置2の各々から送信されたデータを受信可能に構成される。1台の受信機4と接続可能な検出装置2の台数は特に限定されるものではない。したがって図1に示されるように、たとえば受信機4は牛群201,202の各々に対応して設置される。牛群201,202の各々に属する牛1は、たとえば泌乳期の乳牛である。
 受信機4は、LAN5およびハブ6を介して監視サーバ7およびウェブサーバ8の各々に接続される。監視サーバ7は検出装置2から送信されたデータに基づいて、検出装置2が投与された牛1のルーメン3の状態を監視するための各種の処理を実行する。また、受信機4は、USB(Universal Serial Bus)メモリ等の外部メモリ(図示せず)に接続可能であり、受信したデータをその外部メモリに送信可能である。
 監視サーバ7は、受信機4から測定データを定期的に取得する。監視サーバ7が測定データを取得する周期は任意に設定可能である。監視サーバ7は、データベースを有するとともに取得されたデータをそのデータベースに登録する。
 監視サーバ7は、データベースに登録されたデータを、表形式あるいはグラフ形式等の所定の形式によって表示する。表示される内容は、たとえば個体を識別するための番号、その番号に対応するルーメンpHの値の時間的な変動などである。監視サーバ7は、さらに、測定データを監視する機能、および、飼養者、獣医等の牛1の管理者に電子メールを送信する機能を有する。たとえば、ある牛のルーメンpHの測定値が5.5以下に低下した場合、監視サーバ7は、その牛の識別番号と、管理者の注意を促すための情報(現在のルーメンpH値など)とが記載された電子メールを、予め登録された送信先に送信する。
 監視サーバ7は、さらに、ユーザによって入力された、牛1の管理に関する各種の情報、たとえば飼料の給与時刻などの情報を記憶する。
 ウェブサーバ8は、監視サーバ7が有するデータベースから測定データを取得するとともに、そのデータをブラウザによって、たとえばグラフ形式などの所定の形式で表示する。さらに、ウェブサーバ8は、ユーザインターフェース機能を有し、監視サーバ7および受信機4に対する各種の操作のための情報を受付ける。ウェブサーバ8は、入力された情報を監視サーバ7に送り、監視サーバ7は、その情報に応じて、自身あるいは受信機4に対する各種の処理を実行する。監視サーバ7およびウェブサーバ8には、たとえばパーソナルコンピュータが適用される。
 監視システム100は、さらに、LAN5とWAN(Wide Area Network)9とを相互に接続するためのルータ10を有する。遠隔地にある情報端末11(図1にはパーソナルコンピュータ11aおよび携帯端末11bを例示する)がWAN9に接続される。情報端末11は、監視サーバ7のデータベースに登録された測定データを所定の形式(たとえばグラフ形式)で表示するとともに、監視サーバ7から発信された電子メールを受信する。
 監視システム100は、さらに、設定ユニット12を備える。設定ユニット12は、検出装置2の設定に関するデータを生成する機能、およびそのデータを無線により送信する機能を有する。設定ユニット12は、データ生成装置としてのパーソナルコンピュータ12aと、パーソナルコンピュータ12aにより生成されたデータを無線により送信するための送信機12bとを含む。ただし設定ユニット12は、データ生成装置および送信機が一体化された携帯型の機器でもよい。
 パーソナルコンピュータ12aは、検出装置2の固有番号、動作条件(たとえば検出装置2がデータを送信する時間間隔)、検出装置2の校正の指令等を生成する。送信機12bは、パーソナルコンピュータ12aにより生成されたデータ、指令等を無線によって送信する。送信機12bから無線により送信された情報を受信した検出装置2は、予め記憶された情報を、送信機12bから送信された情報へと更新する。設定ユニット12は、検出装置2の牛1への投与の前後にかかわらず、必要に応じて検出装置2の動作条件などを設定することができる。
 なお、受信機4および設定ユニット12は、検出装置2と無線による通信が可能な通信装置を構成する。
 本発明の第1の実施の形態によれば、ルーメン3内に留まる検出装置2がルーメン3の内部の状態を検出するので、ルーメン液を採取しなくともルーメン内部の状態を把握することが可能になる。経口で採取されたルーメン液のpHを測定する場合には、ルーメン液に唾液が混入することによってルーメン液の性状が変化する可能性が高い。しかしながら本実施の形態によれば、このような問題が生じないので、ルーメン液のpH値を正確に計測することができる。さらに本発明の第1の実施の形態によれば、検出装置2は検出結果すなわちルーメンpHの測定値を無線で送信するとともに、監視ユニット(受信機4および監視サーバ7)は、検出装置2から送信された情報を取得する。よって本発明の実施の形態によれば、長期間にわたり、ルーメン内部の状態をリアルタイムで測定および監視することができる。
 さらに、第1の実施の形態によれば、検出装置2は、ルーメン3内から回収可能に構成されるので、1つの検出装置を繰返し使用することができる。したがって本発明の第1の実施の形態によれば、監視システムのコストを低減することができる。
 次に図1に示した監視システム100の構成要素を詳細に説明する。図2は、本発明の第1の実施の形態に係る検出装置2の回路ブロック図である。
 図2を参照して、検出装置2は、センサユニット21と、アンプ回路22と、A/Dコンバータ23と、CPU(Central Processing Unit)24と、無線モジュール25と、アンテナ26とを備える。
 検出装置2は、さらに、ROM(Read Only Memory)27と、RAM(Random Access Memory)28と、EEPROM(Electrically Erasable Programmable ROM)29と、RTC(Real Time Clock)30と、UART(Universal Asynchronous Receiver Transmitter)インターフェース回路31と、電池32と、電源IC(Integrated Circuit)33とをさらに備える。
 センサユニット21は、ルーメン液のpHを測定するためのpHセンサ35と、pHセンサ35の検出結果を補正するためにルーメン液の温度を測定する温度センサ36とを含む。各センサによる検出結果(測定結果)はアナログ信号として出力される。
 アンプ回路22は、センサユニット21から出力されたアナログ信号を増幅する。A/Dコンバータ23は、アンプ回路22から出力されたアナログ信号をデジタル信号に変換する。
 CPU24は、検出装置2の動作を統括的に制御するものであり、各部に対して所定の指示を出力する。たとえばCPU24はセンサユニット21の測定結果およびEEPROM29に記憶される検出装置2の固有番号を用い、pH値を含む送信データを生成する。ROM27は、CPU24の所定の機能を実現するために用いられるソフトウェアプログラムが格納された記憶領域である。RAM28は、CPU24のワーク領域として用いられる。
 無線モジュール25はアンテナ26に接続される。無線モジュール25およびアンテナ26は、CPU24から送られたデータを無線によって送信する。一方で無線モジュール25およびアンテナ26は、外部より無線によって送信された情報(無線信号)を受信する。
 EEPROM29は、情報を不揮発的に記憶するとともに、記憶された情報を電気的に書き換え可能な装置である。EEPROM29に記憶される情報は、検出装置2の設定に関する情報が記憶される。EEPROM29には、たとえば検出装置2の固有番号、データの送信スケジュール(たとえば送信間隔あるいは送信予定時刻等)等が記憶される。設定ユニット12から新たな情報が送信された場合、EEPROM29に記憶される情報は、CPU24によって、新たな情報へと更新される。
 RTC30は計時のための回路である。CPU24はRTC30から現在の日時(年月日および時刻)を取得する。UARTインターフェース回路31は、調歩同期方式によるシリアル信号をパラレル信号に変換し、あるいはパラレル信号を調歩同期方式によるシリアル信号に変換する。調歩同期方式によるシリアル信号とは、無線モジュール25およびアンテナ26によって送信あるいは受信される無線信号である。パラレル信号は、CPU24に入力あるいは出力される信号である。
 図2に示した各ブロックは、別個に設けられてもよいし、たとえばCPU24、ROM27、RAM28、RTC30、UARTインターフェース回路31等が1つのマイクロコンピュータに集積化されてもよい。
 電池32および電源IC33は、検出装置2の各ブロックに電力を供給する。電池32はその容積が小さくほど好ましいとともに、その電池容量が大きいほど好ましい。電池32の容積が小さいことによって検出装置2の小型化が可能となる。電池32の電池容量が大きいほど電池の寿命が長くなるので、牛のルーメンの状態を検出できる期間を長くすることができるとともに、検出装置2をルーメンから回収する頻度を少なくすることができる。したがって第1の実施の形態では、電池32として、たとえば塩化チオニルリチウム電池が用いられる。さらに、電池32の寿命の観点からは、検出装置2の各ブロックの消費電力が小さいほど好ましい。
 検出装置2は、自己診断機能を有し、センサユニット21の異常、電池32の電圧低下などを検出する。自己診断機能によって異常が検出された場合、検出装置2は、その異常の内容に関する情報を無線により送信する。
 次に、検出装置2の通信機能の1つの具体例を説明する。検出装置2から送信される電波の周波数帯、および検出装置2の送信出力については、通信距離、電池の寿命、生体への影響等の種々の要件によって定められる。この実施の形態では、具体的には、検出装置2から送信される電波は、たとえば、周波数帯は429MHz帯であり、その送信出力は10mW以下である。
 検出装置2の通信方式は半二重通信方式(Half duplex)であり、通信方向を切替える方式である。すなわち検出装置2は電波の送信および受信を同時にできない。通信速度は、たとえば2400bpsであり、通信に用いられるデータの形式はバイナリデータである。
 図3は、本発明の第1の実施の形態に係る受信機4の回路ブロック図である。図3を参照して、受信機4は、USBインターフェース回路41と、表示部42と、操作部43と、CPU44と、無線モジュール45と、アンテナ46とを備える。
 受信機4は、さらに、ROM47と、RAM48と、EEPROM49と、RTC50と、UARTインターフェース回路51と、LANインターフェース回路52と、電源モジュール53とをさらに備える。
 USBインターフェース回路41は、図示しないUSBメモリ(外部メモリ)と受信機4とを接続するための回路である。表示部42は、受信機4に関する各種の情報、たとえば受信機4の動作状況を表示するための回路であり、たとえば液晶表示回路により構成される。操作部43は、ユーザによる操作を受付けるための回路であり、たとえば電源のオン/オフを操作するためのスイッチ等を含む。
 CPU44は、受信機4の動作を統括的に制御するものである。ROM47およびRAM48の機能は、上記のROM27あるいはRAM28の機能と同様であるので以後の説明は繰返さない。RTC50は、RTC30と同様にCPU44が現在の日時を取得するために用いられる。UARTインターフェース回路51は、調歩同期方式によるシリアル信号をパラレル信号に変換し、あるいはパラレル信号を調歩同期方式によるシリアル信号に変換する。調歩同期方式によるシリアル信号とは、無線モジュール25およびアンテナ26によって受信される無線信号であり、パラレル信号とはCPU44に入出力される信号である。
 無線モジュール45は、アンテナ46に接続される。無線モジュール45およびアンテナ46は検出装置2から送信された情報(無線信号)を受信する。
 EEPROM49は、検出装置2から受信したデータを記憶する。EEPROM49は不揮発性メモリであるので、停電が生じた場合にもデータの消失を防止できる。
 LANインターフェース回路52は、受信機4とLAN5との間でデータを授受するための回路である。
 電源モジュール53は、AC電源からの交流電力を直流電力に変換するとともに、その直流電力を図3に示す各回路ブロックに供給する。
 受信機4の通信方式は半二重通信方式である。ただし、受信機4は検出装置2から送信された電波を受信するのみである。通信速度は、たとえば2400bpsであり、通信に用いられるデータの形式はバイナリデータである。
 受信機4の内部(EEPROM49)には、通信対象の検出装置2の固有番号が予め登録される。受信機4は検出装置2から、固有番号と測定値とを含むデータを受信する。受信データに含まれる固有番号が登録された番号と一致するときには受信機4はそのデータを取得し、かつ所定のタイミングで監視サーバ7に送信する。一方、受信データに含まれる固有番号が登録された番号と異なるときには、受信機4は、そのデータを取得しない。
 図4は、本発明の第1の実施の形態に係る検出装置2が投与された牛1をその側方から見た図である。図5は、図4に示した牛1の複胃を模式的に示した図である。
 図4および図5を参照して、牛は4つの胃を有する。4つの胃の中で最も大きい胃がルーメン3である。牛1に経口投与された検出装置2は、食道3aを通過して、ルーメン3に到達する。検出装置2はルーメン3の中に留まることが可能なように適度の重さを有する。さらに、検出装置2はルーメン3の中から回収可能に構成される。
 図6は、牛のルーメンの内部を示す模式図である。図6を参照して、ルーメン3では多量の飼料が貯蔵されており、ルーメン3の内部に生息する微生物によって飼料が分解される。
 ルーメン3の内部は上層3b、中央層3cおよび下層3dの3つの層に大別される。上層3bは、発酵によって発生したメタン、二酸化炭素などのガスが充満するガス層である。中央層3cは、ルーメンマットと呼ばれる大きな飼料片の固まりからなる。下層3dは、粒度の小さい飼料片などが堆積した液体層である。経口投与された検出装置2はルーメン3の内部に到達し、下層3d(液体層)に留まる。本明細書においてルーメン液とは、ルーメンの内容物のうち下層3dに含まれる液体成分のことを意味するものとする。
 図7は、本発明の第1の実施の形態に係る検出装置2の外観を示した斜視図である。図7を参照して、検出装置2は、図2に示した各ブロックを収納するための容器2aを有する。容器2aは、金属により形成された円筒形の容器本体2bと、容器本体2bの一方の端部に取り付けられた樹脂製のキャップ2cと、容器本体2bの他方の端部に取り付けられた連結部2dとを有する。容器本体2bにはルーメン液を容器2aの内部に導入するための開口部2eが形成される。容器本体2b内部に収納されるセンサユニット21(図示せず)は、開口部2eから容器本体2bの内部に導入されるルーメン液と接触する。
 容器2aは、ルーメン液によって侵されず、かつ、ルーメンの内圧および運動に耐える物理的強度を有する材質で形成される。具体的には容器本体2bおよび連結部2dは、ステンレス鋼により形成され、キャップ2cは耐酸性を有するとともに、ルーメンの内圧および運動に耐えうる強度を有する樹脂(たとえばポリプロピレン)により形成される。
 キャップ2cの内部の空間には、図2に示したアンテナ26が収納される。キャップ2cを樹脂で形成することによって、アンテナ26が送信または受信する電波がキャップ2cを透過することができる。
 キャップ2cはテーパ形状を有する。すなわちキャップ2cはその先端に向かうに従って細くなるように形成される。キャップ2cの先端の直径D1は、容器本体2bに接続されたキャップ2cの後端部の直径、すなわち容器本体2bの直径D2より小さい。したがって容器2aの形状はいわゆる砲弾形である。キャップ2cが先頭となるように検出装置2を牛に経口投与することにより、牛が検出装置2を飲み込みやすくなる。
 容器2aの長さL、キャップ2cの先端の直径D1および容器本体2bの直径D2は、牛への検出装置2の経口投与にとって好ましい値に定められる。具体的に説明すると直径D1は、たとえば20mmであり、直径D2は、たとえば30mmである。直径D2が30mmより大きくなると検出装置2を牛に飲み込ませることが難しくなるため、直径D2は30mm以下であることが好ましい。検出装置2の長さLは、たとえば130~150mmである。
 検出装置2の重量は、牛のルーメン内(具体的には液体層内)で検出装置2が留まることが可能なように適切に定められる。具体的に説明すると、第1の実施の形態では検出装置2の重量は、たとえば120~150gである。
 連結部2dは、磁石に付着可能な材料、すなわち強磁性体あるいは常磁性体によって形成される。一例を示すと、連結部2dは、強磁性体、具体的には磁性ステンレス鋼(たとえばフェライト系ステンレス)によって形成される。なお強磁性体と常磁性体とを組み合わせて連結部2dを形成することも可能である。
 図8は、図7に示した検出装置2の分解図である。図8を参照して、キャップ2cおよび連結部2dは容器本体2bに着脱可能に構成される。キャップ2cの側面の一部にはネジ溝が形成され、その突起部が容器本体2bの内周面に形成されたネジ溝(図示せず)に螺合する。容器本体2bへのルーメン液の浸入が確実に防止されるように、キャップ2cの側面にOリング61が取り付けられる。
 モジュールMは、図2に示した各回路ブロックを一体化したものであり、容器本体2bの内部から取り外し可能である。モジュールMは、容器本体2bの内部を、センサユニット21が収納される第1室と、モジュールMのセンサユニット21以外の部分が収納される第2室とに分離するための分離部62を有する。連結部2dは、ネジ2f,2gによって容器本体2bに固定される。
 上記の第1室は、容器本体2b、連結部2dおよび分離部62(Oリング63)により規定された空間であり、第2室は、容器本体2b、キャップ2cおよび分離部62(Oリング63)により規定された空間である。分離部62は、Oリング63を含む。Oリング63が容器本体2bの内周面に接触することによって、ルーメン液が第2室に浸入することを防止できる。すなわち、分離部62は、ルーメン液が第2室に浸入することを防止するための防護部である。
 第1の実施の形態では、キャップ2cおよび連結部2dおよび分離部62のいずれも容器本体2bに着脱可能である。言い換えると、容器は、第2室を規定する部分において開封および密封可能に構成される。このように容器を構成することによって、モジュールMのうちセンサユニット21以外の部分がルーメン液に接触することを防止できるとともに、電池32の交換、モジュールMの修理等のために、モジュールMを容器本体2bの中から取り出すことができる。
 なお、容器において第2室を規定する部分が、開封および密封可能に構成されていればよいので、キャップ2cのみ容器本体2bに着脱可能であってもよい。このように容器が構成される場合、モジュールMは、たとえばセンサユニット21および分離部62を除いた部分が容器本体2bの中から取り外し可能なように構成される。
 図9は、図8に示したモジュールMの構成を概略的に示した第1の図である。図10は、図8に示したモジュールMの構成を概略的に示した第2の図である。
 図9および図10を参照して、破線の枠に囲まれた領域は、容器2aの内部の空間を示す。Oリング63を含む分離部62により、容器2aの内部の空間は第1室Aおよび第2室Bに分割される。
 モジュールMは、センサユニット21と、回路ボードC1~C4とを備える。センサユニット21は第1室Aに収納されて、回路ボードC1~C4は第2室Bに収納される。
 センサユニット21は、ガラス膜71と、ガラス膜71によって形成された容器内に配置されたガラス電極72と、内部液(図示せず)中に少なくとも一部が配置された比較電極(図示せず)と、液絡部としての多孔質樹脂74と、温度センサとしてのサーミスタ75とを備える。
 センサユニット21の各電極および温度センサは分離部62の内部を通り、回路ボードC1に電気的に接続される。さらにアース電極81が回路ボードC1に接続される。
 回路ボードC2は、回路ボードC1と電気的に接続され、たとえば図2に示したアンプ回路22およびA/Dコンバータ23を含む。
 回路ボードC3は、コネクタ83によって、回路ボードC2と電気的に接続される。回路ボードC3は、たとえば図2に示したCPU24、ROM27、RAM28、EEPROM29、RTC30、UARTインターフェース回路31、電池32、電源IC33を含む。上記のように、CPU24、ROM27、およびRAM28等が1つのマイクロコンピュータに集積化されていてもよい。2個の電池32は電池ホルダ82に収納され、かつこれらは直列に接続される。各電池の電圧は、たとえば3.6Vである。
 回路ボードC4は、無線モジュール25およびアンテナ26を備え、回路ボードC3と電気的に接続される。
 図11は、検出装置に含まれるアンテナの外観図である。図11を参照して、アンテナ26は、誘電体チップ26aと、誘電体チップ26aの主表面上にらせん状に形成された導体26bとを備える。
 (無線通信について)
 本発明の第1の実施の形態に係る監視システムでは、日本の電波法に基づいて運用する場合には、たとえば429MHz帯のFM波を用いた無線通信方式が用いられ、検出装置2の送信電力は最大で10mWとすることが望ましい。
 上記周波数帯よりも低い周波数帯の電波を利用する場合には、通信速度が遅くなるために1データ毎の送信時間が長くなるとともに電池の消耗が懸念される。さらに波長が長くなることによる送受信アンテナの大型化あるいは所定利得を確保することの困難性も懸念される。一方、上記周波数帯よりも高い周波数帯の電波を利用する場合には、生体(牛)に対する電磁波の影響が大きくなることが懸念される。このような観点から、日本国内で本発明の第1の実施の形態に係る監視システムを用いる場合には、無線通信に使用される電波の周波数帯が429MHz帯であることが望ましい。
 さらに日本国内においては、上記の周波数およびパワーを有する電波を出力する無線局は、電波法により規定された特定小電力無線局に分類される。この特定小電力無線局の場合には、技術基準適合証明を受けた無線機器であれば無資格で運用可能である。よって監視システムの運用に関する制限を少なくすることができる。
 検出装置2がルーメン内に置かれていない場合、すなわち、牛の体外で無線モジュールを使用した場合には、安定して電波を送受信できる距離は比較的長い。たとえば本発明者らによる予備的な実験(市販モジュールを用いた通信実験)では、通信距離は100~150m程度であった。しかしながら、ルーメンに投入された検出装置2から電波を受信可能な距離は、最大でも5mであった。
 本発明者らは、このような現象が生じた原因を検討した。ルーメン内では検出装置2がルーメン液に浸漬されているため、検出装置2の周囲が液アースであると考えられた。さらに、牛の身体、具体的には筋肉および血液中の鉄分などがシールドとして機能すると考えられた。これらの理由により、検出装置2から発せられる電波が減衰するものと本発明者らは考えた。生体から2m程度離れた場所で無線通信を実験した場合、検出装置2をルーメンに投入する前後では、受信機の受信強度が大きく(たとえば数10dB程度)減衰した。検出装置2をルーメンに投入することによって、ノイズと信号との区別が困難であった。種々のアンテナを用いた実験においても、牛の体外での無線通信の結果と同等の結果を得ることは困難であった。
 この問題の解決手段として、本発明者らは、2つの案を検討した。1つは、送信機と受信機とを一体化した装置を用いる方法であり、もう1つは、送信機と受信機とを別個に設ける方法である。日本の場合、受信アンテナの利得については法令で定められた基準は存在しない一方で、送信機は電波法に定められた技術基準適合品でなければならない。
 前者の方法によれば、単一の装置が電波を送信および受信できるので、監視システムに使用される通信機器の個数を減らすことができる。しかしながら、複数の検出装置2を一元管理するために、アンテナの設置場所を詳細に検討する必要が生じる。具体的には、アンテナと生体との間の距離(すなわち通信距離)、および配置(たとえば複数の牛から等距離の位置に1つのアンテナを配置する)などを考慮する必要がある。受信感度を高くすることができたとしても、送信出力が小さいために、アンテナから遠く離れた場所にいる牛のルーメン内に設置された検出装置に、設定情報を確実に届けることが困難となる。
 後者の方法によれば、送信機と受信機とを別個に構成することにより、監視ユニットの通信機能を受信機能のみに特化できる。したがって管理対象の牛の数、牛からの距離等を考慮して受信機の配置および台数を適切に定めることができる。
 設定ユニット12は持ち運び可能であるので、設定ユニット12を牛生体の近傍で操作することができる。これによって検出装置2に電波が届かない可能性を小さくすることができる。さらに、検出装置2の動作条件を一旦設定すれば、その後に動作条件を変更する可能性は小さいと考えられる。したがって、ルーメン内の検出装置2の動作条件を変更する場合には、設定ユニット12の使用者は生体に近づく必要があるが、設定の変更が必要となる機会そのものが少ないと考えられる。したがって、監視システムの運用を用意とすることができる。
 なお、日本においては、電波法によって、特定小電力無線局に適用されるアンテナの利得は2.14dBi以下でなければならないことが定められている。したがって日本においては、上記の条件を満たすように、アンテナを選択すればよい。一方、受信アンテナの条件に関しては特に制限はない。監視ユニットの通信機能を受信機能に特化することによって、監視ユニットに用いられる受信アンテナの選択の自由度を拡大することができる。さらに、アンテナの設置場所の自由度を高めることができる。
 検出装置2はルーメンの中に存在するので、受信機4のアンテナ46に届く電波は微弱である。受信機4の受信感度を高くするため、受信機4のアンテナ46の利得は検出装置2のアンテナ26の利得より大きい。さらに、電波が水平面上の任意の方向からアンテナ46に到達する可能性を考慮すると、アンテナ46は水平面で無指向性を有するアンテナであることがより好ましい。水平面で無指向性を有するアンテナとして、たとえばホイップアンテナ、グランドプレーンアンテナ、スリーブアンテナ等をアンテナ46に適用することができるが、アンテナ26の電波を高利得で受信するタイプのアンテナであればよい。上記の方法に従って受信機4のアンテナ46を選択することにより、受信機4は、検出装置2から送信された電波を高い確実性で受信することができる。
 第1の実施の形態では、以上説明したように、検出装置2と無線で通信する通信装置は、別個の受信機4および設定ユニット12(送信機)とにより構成される。ただし、送信出力をより大きくすることが可能な場合、たとえば上述の電波法よりも電波の利用に関する規制が厳しくない環境下で本実施の形態に係る監視システムが使用される場合には、受信機4および設定ユニット12が一体化された通信装置が用いられてもよい。
 (センサユニットについて)
 図12は、本発明の第1の実施の形態に係るセンサユニット21の構成を概略的に説明する断面図である。図12を参照して、センサユニット21は、ガラス膜71と、ガラス膜71によって形成された容器内に充填された内部緩衝液76と、内部緩衝液76内に配置されたガラス電極72と、分離部62(アウターケース)とインナーケース84との間の空間に充填されたゲル77と、少なくとも一部がゲル77に接触するように配置された比較電極73と、液絡部としての多孔質樹脂74と、温度センサとしてのサーミスタ75とを備える。センサユニット21はホルダ85に挿入され、ホルダ85はインナーケース84の内部に固定される。ガラス膜71と、内部緩衝液76と、ガラス電極72と、ゲル77と、比較電極73と、多孔質樹脂74とは、図2に示したpHセンサ35を構成する。
 内部緩衝液76は、具体的には塩化カリウム(KCl)溶液(たとえば3.3mol/L-KCl溶液、KCl飽和溶液等)である。内部緩衝液76はパッキン86によってガラス膜71で形成された容器の中に閉じ込められる。サーミスタ75はシリコン充填剤87によって密封固定される。
 ガラス膜71及び多孔質樹脂74はルーメン液88と接触する。破線の矢印に示されるように、ゲル77に含まれる内部液は、分離部62(アウターケース)とインナーケース84との間の空間および、液絡部としての多孔質樹脂74を介して少量ずつ流出する。
 ガラス膜71の外壁を被測定液すなわちルーメン液88に接触させることによって、ガラス膜71の内壁と外壁との間に起電力が発生する。比較電極73とガラス電極72との電位差は、被測定液のpHに比例した起電力に、ガラス電極72の単極電位と比較電極73の単極電位との差を加算したものに等しい。ガラス電極72および比較電極73はともにKCl溶液に接触するので、ガラス電極72の単極電位と比較電極73の単極電位との差は0になる。したがってガラス電極72および比較電極73の間の電位差を検出することによって、ルーメン液のpHに比例した起電力が検出される。上記の起電力は温度に応じて変化するため、サーミスタ75の検出結果に基づいて起電力の温度変化が補正される。
 よく知られたpHセンサは、本発明の第1の実施の形態で採用されるガラス電極式pHセンサ、および、Is-FET(イオンセンシティブ電界効果トランジスタ)センサである。本発明者らは、検出装置2に搭載されるセンサとして、まずIs-FETセンサを検討した。しかしながら、このセンサはバッチ測定(間欠測定)を前提としたセンサであるので、液体サンプルに長時間接触した状態ではその性能を維持することが困難である。たとえば本発明者らによる予備的な実験の結果からは、Is-FETセンサの寿命は500時間以下と推定された。
 一方、ガラス電極式pHセンサは、ガラス薄膜を液体に常時接触させた状態でその液体のpHを測定できる。このような理由により、本実施の形態では、ガラス電極式pHセンサが採用される。センサユニット21は金属製の筒である容器本体2bの中に収納されており、開口部2eを通じて容器本体2bの内部に導入されたルーメン液がガラス膜71に接触する。開口部2eの大きさは、未消化の飼料あるいはパーネット(鉄クズ吸着用の強力磁石)等が開口部2eを通過することを阻止可能な大きさに定められる。これによりルーメンの内容物のうちルーメン液のみを容器本体2bの内部に導入できるので、ガラス膜71の破損を防止できる。
 さらに本発明の第1の実施の形態では、液絡部は、多孔質の樹脂、具体的には多孔質のテフロン(登録商標)によって形成される。工業用pHセンサ(ガラス電極式pHセンサ)の場合、一般的に、多孔質セラミックが比較電極の液絡部に用いられる。しかしながらセラミックの空孔は非常に微細であるので、ルーメン液に含まれる食渣成分により液絡部が目詰まりを起こすことが懸念される。一方、多孔質テフロン(登録商標)の空孔は、一般に多孔質セラミックの空孔よりも大きい。さらにテフロン(登録商標)は水などの他の物質との親和性が低いため、液絡部に沈着する汚れの量を低減できる。これにより液絡部の目詰まりを防止できるので、ルーメン液のpHを長期間測定することができる。
 さらに、本発明の第1の実施の形態では、ゲル化された内部液が使用される。通常、内部液は液体状である。本発明者らがルーメン内で連続的にpHを測定する実験を予め行なったところ、実験開始後、2日程度でpH測定値が不安定となり、最終的に測定不能となる例が生じた。当該問題が生じたセンサを回収して原因を調査した結果、内部液が完全に失われていた。
 本発明者らは、ルーメン内部の温度が40℃近傍と比較的高いために液絡量(流出量)が多くなり、その結果、内部液が短期間で消耗したと考えた。そこで、ゲル化剤によりゲル化された内部液を試した。このときのゲル化剤はヒドロキシエチルセルロース(hydroxyethyl cellulose)であり、pH測定の可能な持続期間を10日間程度に延長することができた。しかし2週間前後で測定値が不安定となった。本発明者らがこの現象を検証したところ、ゲル化剤がルーメン液中の繊維素分解菌によって分解されたことが分かった。
 ルーメン内の繊維素分解菌はセルロースを分解して酢酸などを生成する。この菌の作用により、ゲルが短期間に消費されたと考えられた。このような実験結果から、本実施の形態では、セルロース分解菌の作用によって分解されにくいゲル化剤によって、内部液(KCl溶液)をゲル化する。これにより、ルーメン内において内部液の流出量を小さくできるので、長期間にわたるルーメンpHの測定が可能となる。
 上記のゲル化剤として、本実施の形態では、キサンタンガムが用いられる。キサンタンガムは食品添加物であり、食品分野において一般的に用いられる。したがって、生体への影響を小さくすることができる。
 (検出装置の回収方法)
 図13は、本発明の第1の実施の形態に係る検出装置2を回収するための回収器具を模式的に説明するための図である。図13を参照して、回収器具90は、金属製のワイヤ91と、ワイヤ91の先端に取り付けられた磁石92とを含む。なお、ワイヤ91に代えて金属製のチェーンあるいは金属チューブが用いられてもよい。ワイヤ91は、牛の口からルーメンまでの長さよりも十分に長い。検出装置2の連結部2dは、常磁性体あるいは強磁性体により形成されるので、連結部2dが磁石92に付着する。これによって、ルーメン内から検出装置2を取り出すことができる。このような構成を有する回収器具90として、たとえばカウサッカーを適用することができる。
 検出装置2(連結部2d)は、用いられる回収器具に連結可能に構成されていればよい。たとえば回収器具90としてマニピュレータが用いられる可能性がある場合には、連結部2dをマニュピレータに係止可能なように構成してもよい。
 図14は、本発明の実施の形態に係る検出装置2を牛のルーメンから経口で回収するための方法を説明するフローチャートである。
 図14を参照して、ステップS100では、牛に給与される餌を減らす。詳細には、検出装置2を牛から回収する前日の夕方から、牛に餌を全く給与しない、あるいは通常給与される量の半分程度に餌の給与量を制限する。
 検出装置2を牛から回収する当日にはステップS200~S700の処理が実行される。ステップS200では、牛を固定するとともに、十分量、たとえば20~40リットルの水を牛に投与する。
 ステップS300では、開口器を牛に装着する。ステップS400では、たとえば塩化ビニール製の導入管を牛の口から咽頭部に挿入する。
 ステップS500では、導入管を介して、金属ワイヤの先端に装着した強力磁石をルーメンに挿入する。ルーメンに入った強力磁石は、ルーメン内部の固形物層(図6に示した中央層3cに相当)に達した後、自らの重量のためにルーメン下部の液体層(図6に示した下層3dに相当)に沈下する。
 ステップS600では、検出装置2を強力磁石に連結させる。図6に示すように、ルーメン3内に留置された検出装置2は、通常では、ルーメン下部の液体層(腹嚢部)に存在する。強力磁石が液体層に到着すると、検出装置2の連結部2dがその磁石に付着する。これにより検出装置2が強力磁石に連結する。
 ステップS700では、強力磁石に連結された検出装置2を静かに引き上げるとともに、検出装置2をルーメンの固形物層、噴門部および口腔を通過させる。これにより検出装置2が回収される。
 ステップS100に示されるように、検出装置2を回収するに先立って牛に給与される飼料の量を減らす、あるいは牛を絶食させることによって、ルーメン内容物(特に固形物)を減らすことができる。これにより検出装置2の探索、引き上げおよび回収を容易に実行できるので、回路の不具合あるいは電池の消耗により検出装置の機能が停止した場合に検出装置を回収できる。
 以上のように本発明の第1の実施の形態によれば、牛のルーメンの内部状態を、リアルタイムで正確に検出できる。さらに、牛のルーメンの内部状態を容易に監視できる。さらに、検出装置の再利用が可能となるので、システムのコストを低減できる。
 牛のルーメンpHが正確に測定可能となるため、農家自らが飼養管理状態を把握しつつ栄養管理の改善に取り組めることができる。さらに、ルーメンpHを長期間にわたって測定および監視できるので、ルーメンアシドーシスおよび、各種代謝病や感染症、蹄病などの関連疾病の発生を未然に防ぐことができる。
 [実施の形態2]
 図15は、本発明の第2の実施の形態に係る監視システム101の全体構成を概略的に説明した図である。図15を参照して、本発明の第2の実施の形態に係る監視システム101は、受信機4および設定ユニット12に代えて、送受信機4Aを備える点で第1の実施の形態に係る監視システム100と異なる。さらに、監視システム101は、検出装置2に代えて検出装置20を備える点で監視システム100と異なる。
 送受信機4Aは、たとえば畜舎内に設置される。送受信機4Aは、設定ユニット12および受信機4の両方の機能を備える。すなわち、送受信機4Aは、検出装置20(センサ)の校正指示、送信頻度の設定等の指令を無線によって検出装置20に送信する。さらに、送受信機4Aは、検出装置20によって測定されたルーメン内部のpHに関するデータを、無線によって検出装置20から受信する。さらに送受信機4Aは、検出装置20から送信されたデータの受信に成功した場合には、その検出装置20に対して受信確認データを送信する。
 図23は、送受信機4Aの機能ブロック図である。図23および図3を参照して、設定部120が追加される点で送受信機4Aの構成は、受信機4の構成と異なる。設定部120は、設定ユニット12と同じ機能を有する。なお、第1の実施の形態と同様に、アンテナ46の利得は、検出装置20が有するアンテナの利得よりも高いことが好ましい。
 検出装置20は、受信確認データを受信することにより、測定データの送信を終了する。検出装置20が測定データを送信したにもかかわらず受信確認データを受信できなかった場合、検出装置20は、同じデータを送信することを繰返す。最大の繰返し回数は送受信機4Aからの指令によって予め設定されており、たとえば3回である。送信回数が最大の回数に達したにもかかわらず検出装置20が受信確認データを受信できなかった場合には、検出装置20はデータの送信を中止する。このように、検出装置20がデータを再送信する回数を制限することによって、検出装置20の消費電力を低減することができる。これにより検出装置20の内部に設けられた電池の持続期間を長くすることができる。したがって検出装置20の動作期間を延ばすことができる。
 検出装置20は、一定の時間間隔(たとえば10分間隔)で、測定データ(pH値)を無線により送信する。検出装置20は、送受信機4Aから送られた指令に従って、センサの校正、測定データの頻度(時間間隔)の設定、送受信機4Aがデータ受信に失敗した場合の再送信回数の設定等の各種の処理を実行する。
 送受信機4Aと検出装置20との間の無線通信を中継するための中継器(レピータ)を監視システム101に追加してもよい。これにより、送受信機4Aと検出装置20との間の無線通信が失敗する可能性をより小さくすることができる。
 第1の実施の形態と同様に、検出装置20は、ルーメン3内から回収可能に構成される。図14に示したフローチャートに従って、検出装置20が牛1のルーメン3から経口で回収される。
 図16は、図15に示した検出装置20の機能ブロック図である。図16および図2を参照して、検出装置20の構成は、基本的には第1の実施の形態に係る検出装置2の構成と同様である。ただし、検出装置20は、センサユニット21、アンプ回路22、アンテナ26、および電池32に代えてセンサユニット21A、アンプ回路22A、アンテナ26A、および電池32Aを有する。この点において、検出装置20は検出装置2と異なる。
 検出装置20の外観は、検出装置2の外観(図7参照)と同様であるので、検出装置20の外観に関する詳細な説明は以後繰返さない。以下では、検出装置20と検出装置2との相違点について詳細に説明する。
 図17は、センサユニット21Aの構成を概略的に説明するための断面図である。図17を参照して、センサユニット21Aは、内部液77Aを含む。第2の実施の形態では、内部液77Aは、ゲル化されておらず液体のままである。具体的には、内部液77Aは、塩化カリウム飽和溶液である。飽和溶液を内部液に用いることで、内部液は液絡部(多孔質樹脂74)を通じて流出する一方となる。これによって内部液の濃度(KClの濃度)が変化することを抑えることができるので、検出装置20の測定値を安定させることができる。検出装置20の測定値が安定になることで、測定期間を長くすることができる。
 さらに、第2の実施の形態では、サーミスタ75を密封固定するために、シリコン充填剤87に代えて、マグネシア87Aが用いられる。マグネシア87Aによってサーミスタ75を密封固定することで、第1の実施の形態よりもサーミスタ75の温度感応性を向上させることができる。
 さらに、第2の実施形態では、センサユニット21Aはアース電極81を有していない。後に詳細に説明するように、第2の実施の形態では、アンプ回路22Aでの増幅方式として非差動増幅方式が用いられる。これによりセンサユニット21Aからアース電極81を省略することができる。
 なお、センサユニット21Aの他の部分の構成は、第1の実施の形態によるセンサユニット21の構成と同様であるので以後の説明は繰返さない。
 図18は、本発明の第2の実施の形態に係る検出装置20の分解図である。図19は、図18に示したモジュールMの構成を概略的に示した第1の図である。図20は、図18に示したモジュールMの構成を概略的に示した第2の図である。
 図18~図20を参照して、モジュールMは、センサユニット21Aと、回路ボードC1~C3とを備える。無線モジュール25は回路ボードC3に搭載される。アンテナ26Aはらせん状に巻かれた導体を含むλ/4ホイップアンテナである。
 第1の実施の形態に係る検出装置2は、無線モジュール25およびアンテナ26が搭載された回路ボードC4を有する。これに対して、第2の実施の形態では、無線モジュール25が回路ボードC3に搭載されるとともに、アンテナ26Aがホイップアンテナによって構成される。これにより、検出装置20から回路ボードC4が省略される。
 さらに、第2の実施の形態に係る検出装置2では、1つの電池32Aが用いられる。第1の実施の形態に係る検出装置2と同じく、電池32Aは、たとえば塩化チオニルリチウム電池である。電池32Aの電圧は、たとえば3.6Vである。電池32の容量は、たとえば1700mAhである。
 なお図18~20に示されるモジュールMの他の部分の構成は、第1の実施の形態に係るモジュールMの対応する部分の構成と同様であるので以後の説明は繰り返さない。
 検出装置20の重量は、牛のルーメン内(具体的には液体層内)で検出装置20が留まることが可能なように適切に定められる。第2の実施の形態では、検出装置20の重量は、たとえば160~200gの範囲内である。
 上記のように、第2の実施の形態では、アンプ回路22Aの増幅方式として、非差動増幅方式が用いられる。これによって、アンプ回路22Aの消費電力を低減することができる。さらに、センサユニット21Aからアース電極を省略することができる。
 図21は、第1の実施の形態に係るアンプ回路22の機能ブロック図である。図21を参照して、アンプ回路22は、測定アンプ221,222と、基準電位設定部223と、差動アンプ225とを備える。なお、図8~図10に示されたモジュールMでは、差動アンプ225およびA/Dコンバータ23は、A/D変換回路23Aを構成するとともに、モジュールとして一体化される。
 センサユニット21は、ガラス電極72と、比較電極73と、アース電極81とを有する。
 測定アンプ221は、ガラス電極72の電位を測定するためのアンプである。測定アンプ222は、比較電極73の電位を測定するためのアンプである。差動アンプ225は、測定アンプ221の出力電位と測定アンプ222の出力電位との間の電位差を増幅する。差動アンプ225の出力はA/Dコンバータ23へと送られる。
 第1の実施の形態では、アース電極81が基準電位設定部223に接続される。この場合には、ガラス電極72および比較電極73の各々の電位の基準は、アース電極81の電位となる。差動アンプ225は、測定アンプ221の出力電位と測定アンプ222の出力電位との間の電位差を増幅する。
 第1の実施の形態では、差動アンプ225を差動増幅方式で動作させる。すなわち、差動アンプ225は、測定アンプ221の出力と、測定アンプ222の出力との間の電位差を増幅する。この方式では2つの測定アンプが必要であるために、アンプ回路全体としての消費電力が大きくなる。このため電池の消耗が早くなる可能性がある。
 図22は、第2の実施の形態に係るアンプ回路22Aの機能ブロック図である。図21および図22を参照して、アンプ回路22Aは、測定アンプ222が省略される点でアンプ回路22と異なる。さらに、アンプ回路22Aは、差動アンプ225に代えてアンプ225Aを備える点でアンプ回路22と異なる。なお、図18~図20に示されたモジュールMでは、アンプ225AおよびA/Dコンバータ23は、A/D変換回路23Aを構成するとともに、モジュールとして一体化される。センサユニット21Aは、アース電極83が省略される点でセンサユニット21と異なる。
 第2の実施の形態では、比較電極73が基準電位設定部223に接続されることにより、比較電極73の電位が基準電位(具体的には0V)に固定される。この結果、第2の実施の形態では、ガラス電極72の電位と基準電位との電位差がアンプ225Aによって増幅される。
 アンプ225Aは測定アンプ221の出力のみを増幅する。したがって、測定アンプ222が不要となるので、アンプ回路全体の消費電力を低減することができる。よって、図18~20に示されるように、1つの電池32Aによって検出装置20を動作させることが可能となる。
 実施の形態2に係る検出装置20の性能を検証するために、3頭の牛に検出装置20を経口投与した。ルーメン内の検出装置20から送信された測定値の変動を検証した。検証開始日から1ヶ月を経過しても検出装置20の測定値が安定していることを確認することができた。
 一方、KCl飽和溶液に代えてKCl溶液を含むゲルを内部液に用いた場合には、検出装置の測定値が安定する期間は1~2週間程度であった。検出装置の測定値が安定する期間が短くなる理由は、ゲルが測定サンプルを吸収するために、内部緩衝液の濃度が変化したためと考えられる。
 さらに、電池の持続期間を複数の検出装置20によって検証した結果、電池の持続期間は1.5ヶ月~2ヶ月であった。
 送受信機4Aと検出装置20との間で安定的な無線通信が可能な距離は約20mであり、最大の通信距離は25mであった。送受信機4Aが受信確認データを送信したことによって、安定的な無線通信が可能と判断した。
 以上説明されるように、第2の実施の形態によれば、pHセンサの内部液にKCl飽和溶液が用いられる。これにより、検出装置がルーメン内に留まる期間が長くなるほどルーメンpHの測定精度が低下するという問題を解決することができる。
 さらに、第2の実施の形態によれば、送受信機から検出装置へ指令が送られる。第1の実施の形態に係る監視システムでは、検出装置に指令を送信するための設定ユニットが用いられる。第2の実施の形態に係る監視システムでは、上記の設定ユニットを用いなくとも、検出装置に各種の指令を送ることができる。したがって、監視システムの構成を簡素化できる。
 さらに、第2の実施の形態によれば、アンプ回路22Aが非差動増幅方式でセンサユニット21Aの出力信号を増幅する。これにより、検出装置20の消費電力を低減できる。
 なお、検出装置20の動作可能時間が長いほど好ましいのは言うまでもない。しかし乳牛の生産性の観点からは、特定の期間にルーメン内部の状態を管理することが特に重要である。この期間は、具体的には、分娩から泌乳期の終わりまでを含む約3~4ヶ月の期間であることが好ましい。本発明の実施の形態に係る検出装置は、ルーメンの管理が必要とされる期間にわたり、ルーメンの状態を検出することが可能である。
 本発明の実施の形態においては、ルーメン内部の状態の変化の代表例としてルーメンアシドーシスを示した。しかし本発明によれば、ルーメンアルカローシスも検出することが可能である。ルーメンアルカローシスは、ルーメン内において発酵によりアンモニアが過剰生成されるためにルーメンpHの値が高くなった状態である。
 さらに、本発明の実施の形態では、ルーメン内の状態を検出するためにルーメン液のpH値が測定される。ただし、測定対象のパラメータはpHのみに限定されず、たとえばpHと温度の両方でもよい。
 本発明の実施の形態では、反芻動物として牛を例示したが、本発明は牛以外の反芻動物、たとえば羊、山羊などのルーメンの状態の検出および監視にも適用することができる。牛より小さい反芻動物の場合には、検出装置のサイズを上記のサイズよりも小さくすればよい。さらに検出装置の重量値も上記の値(120~150gあるいは160~200g)より小さな値とすることが好ましい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 牛、2,20 検出装置、2a 容器、2b 容器本体、2c キャップ、2d 連結部、2e 開口部、2f,2g ネジ、3 ルーメン、3a 食道、3b 上層、3c 中央層、3d 下層、4 受信機、4A 送受信機、5 LAN、6 ハブ、7 監視サーバ、8 ウェブサーバ、9 WAN、10 ルータ、11 情報端末、11a,12a パーソナルコンピュータ、11b 携帯端末、12 設定ユニット、12b 送信機、21,21A センサユニット、22,22A アンプ回路、23 A/Dコンバータ、24,44 CPU、25,45 無線モジュール、26,26A,46 アンテナ、26a 誘電体チップ、26b 導体、27,47 ROM、28,48 RAM、29,49 EEPROM、30,50 RTC、31,51 UARTインターフェース回路、32,32A 電池、33 電源IC、35 pHセンサ、36 温度センサ、41 USBインターフェース回路、42 表示部、43 操作部、45 無線モジュール、46 アンテナ、52 LANインターフェース回路、53 電源モジュール、61,63 Oリング、62 分離部、71 ガラス膜、72 ガラス電極、73 比較電極、74 多孔質樹脂、75 サーミスタ、76 内部緩衝液、77 ゲル、77A 内部液、81 アース電極、82 電池ホルダ、83 コネクタ、84 インナーケース、85 ホルダ、86 パッキン、87 シリコン充填剤、88 ルーメン液、90 回収器具、91 ワイヤ、92 磁石、100 監視システム、120 設定部、201,202 牛群、221、222 測定アンプ、223 基準電位設定部、225 差動アンプ、225A アンプ、C1~C4 回路ボード、M モジュール。

Claims (12)

  1.  反芻動物のルーメンの内部状態を検出するための検出装置であって、
     前記ルーメンの内容物の液体成分に対する耐性を有するとともに前記ルーメンの内圧および運動に耐える物理的強度を有する材料によって形成され、前記反芻動物に経口で投与可能であるとともに経口で前記ルーメンの内部に挿入される回収器具と連結可能なように構成された容器(2a)を備え、
     前記容器(2a)には、前記容器(2a)の内部の第1室に前記液体成分を導入するための開口部(2e)が形成され、
     前記容器(2a)の内部を、前記第1室と、前記液体成分の流入が防止された第2室とに区切るための分離部(62)と、
     前記液体成分に関連するパラメータを測定するために、前記容器(2a)の前記第1室に収納された測定部(21,21A)と、
     前記検出装置の動作条件に関する情報を記憶するために、前記容器(2a)の前記第2室に収納された記憶部(29)と、
     前記記憶部(29)に記憶された前記情報に基づいて、前記測定部(21,21A)の測定結果から前記パラメータに関するデータを生成するために、前記容器(2a)の前記第2室に収納された制御部(24)と、
     前記制御部(24)の処理によって生成された前記パラメータに関する前記データを無線によって送信するために、前記容器(2a)の前記第2室に収納された通信部(25,26,26A)と、
     少なくとも前記制御部(24)および前記通信部(25,26,26A)に電力を供給するために前記第2室に収納された電池(32,32A)とをさらに備える、検出装置。
  2.  前記回収器具は、前記ルーメンの内部に挿入されるとともに前記検出装置を前記反芻動物の体外に取り出すために用いられる磁石を含むように構成され、
     前記容器(2a)は、
     先端に向かうにしたがって次第に細くなるテーパに形成されたテーパ部(2c)と、
     強磁性体および常磁性体の少なくとも一方によって形成された連結部(2d)とを含み、
     前記容器(2a)の前記第2室を規定する部分は、開封および密封が可能なように構成される、請求の範囲第1項に記載の検出装置。
  3.  前記通信部(25,26,26A)は、前記検出装置の前記動作条件の少なくとも一部を更新するための新たな情報を無線により受信可能に構成され、
     前記制御部(24)は、前記通信部(25,26,26A)によって前記新たな情報が受信された場合に、前記記憶部(29)に記憶される前記情報を、前記新たな情報に更新する、請求の範囲第1項に記載の検出装置。
  4.  前記記憶部(29)に記憶された前記情報は、
     前記検出装置の固有番号と、
     前記パラメータに関する前記データの送信スケジュールとを含む、請求の範囲第1項に記載の検出装置。
  5.  前記パラメータは、前記液体成分のpH値を含み、
     前記測定部(21,21A)は、pHセンサ(35)を含み、
     前記pHセンサ(35)は、
     ガラス電極(72)と、
     内部液を含むゲル(77)と、
     少なくとも一部が前記ゲルの内部に配置された比較電極(73)と、
     前記ゲル(77)から流出する前記内部液の液絡量を制御するために多孔質の樹脂により形成された液絡部(74)と、
     前記ガラス電極(72)および前記比較電極(73)による前記液体成分のpHの測定値を温度補償するための温度センサ(75)とを有する、請求の範囲第1項に記載の検出装置。
  6.  前記パラメータは、前記液体成分のpH値を含み、
     前記測定部(21,21A)は、pHセンサ(35)を含み、
     前記pHセンサ(35)は、
     ガラス電極(72)と、
     内部液としての塩化カリウム飽和溶液(77A)と、
     少なくとも一部が前記塩化カリウム飽和溶液に浸された比較電極(73)と、
     前記内部液の液絡量を制御するために多孔質の樹脂により形成された液絡部(74)と、
     前記ガラス電極(72)および前記比較電極(73)による前記液体成分のpHの測定値を温度補償するための温度センサ(75)とを有する、請求の範囲第1項に記載の検出装置。
  7.  前記検出装置は、
     前記pHセンサの出力を増幅するための増幅回路(22A)をさらに備え、
     前記増幅回路(22A)は、
     前記比較電極の電位を基準電位に設定するための基準電位設定部(223)と、
     前記ガラス電極の電位と前記基準電位との間の電位差を増幅するためのアンプ(225A)とを含む、請求の範囲第6項に記載の検出装置。
  8.  監視システムであって、
     反芻動物のルーメンの内部状態を検出するための検出装置(2,20)を備え、
     前記検出装置(2,20)は、
     前記ルーメンの内容物の液体成分に対する耐性を有するとともに前記ルーメンの内圧および運動に耐える物理的強度を有する材料によって形成され、前記反芻動物に経口で投与可能であるとともに経口で前記ルーメンの内部に挿入される回収器具と連結可能なように構成された容器(2a)を含み、
     前記容器(2a)には、前記容器(2a)の内部の第1室に前記液体成分を導入するための開口部(2e)が形成され、
     前記検出装置(2,20)は、
     前記容器(2a)の内部を、前記第1室と、前記液体成分の流入が防止された第2室とに区切るための分離部(62)と、
     前記液体成分に関連するパラメータを測定するために、前記容器(2a)の前記第1室に収納された測定部(21,21A)と、
     前記検出装置(2,20)の動作条件に関する情報を記憶するために、前記容器(2a)の前記第2室に収納された記憶部(29)と、
     前記記憶部(29)に記憶された前記情報に基づいて、前記測定部(21,21A)の測定結果から前記パラメータに関するデータを生成するために、前記容器(2a)の前記第2室に収納された制御部(24)と、
     前記制御部(24)の処理によって生成された前記パラメータに関する前記データを無線によって送信するために、前記容器(2a)の前記第2室に収納された通信部(25,26,26A)と、
     少なくとも前記制御部(24)および前記通信部(25,26,26A)に電力を供給するために前記第2室に収納された電池(32,32A)とをさらに含み、
     前記監視システムは、
     前記検出装置(2,20)と無線による通信が可能に構成され、前記検出装置(2,20)から無線によって送信された前記データを受信する通信装置(4,12)と、
     前記通信装置(4)により受信された前記データを収集するとともに、前記データを用いて前記ルーメンの状態を監視するための監視装置(7)とをさらに備える、監視システム。
  9.  前記検出装置(2,20)の前記通信部(25,26,26A)は、送信電力が10mW以下の電波を送信するための第1のアンテナ(26,26A)を含み、
     前記通信装置(4,4A,12)は、無線によって前記データを受信するための第2のアンテナ(46)を含み、
     前記第2のアンテナ(46)の利得は、前記第1のアンテナ(26,26A)の利得よりも高い、請求の範囲第8項に記載の監視システム。
  10.  前記通信装置(4,12)は、少なくとも1箇所に配置されるとともに複数の検出装置(2,20)の各々から送信された前記データを受信可能であり、
     前記監視装置(7)は、前記通信装置(4,12)により受信されたデータを収集する、請求の範囲第9項に記載の監視システム。
  11.  前記検出装置(2,20)の前記通信部(25,26,26A)は、前記動作条件の少なくとも一部を更新するための新たな情報を無線により受信可能に構成され、
     前記制御部(24)は、前記通信部(25,26,26A)によって前記新たな情報が受信された場合に、前記記憶部(29)に記憶される前記情報を、前記新たな情報に更新し、
     前記通信装置(4,12)は、
     前記検出装置(2,20)から無線によって送信された前記データを受信するための受信機(4)と、
     複数の検出装置(2,20)の各々に対応する前記新たな情報を無線によって送信可能に構成された設定ユニット(12)とを含む、請求の範囲第8項に記載の監視システム。
  12.  前記反芻動物のルーメン内部に置かれ、かつ前記ルーメンの内部の状態を検出する検出装置(2,20)の回収方法であって、
     前記検出装置(2,20)は、
     前記ルーメンの内容物の液体成分に対する耐性を有するとともに前記ルーメンの内圧および運動に耐える物理的強度を有する材料によって形成され、前記反芻動物に経口で投与可能であるとともに経口で前記ルーメンの内部に挿入される回収器具と連結可能なように構成された容器(2a)を備え、
     前記容器(2a)には、前記容器(2a)の内部の第1室に前記液体成分を導入するための貫通孔が形成され、
     前記検出装置(2,20)は、
     前記液体成分に関連するパラメータを測定するために、前記容器(2a)の前記第1室に収納された測定部(21,21A)をさらに備え、
     前記回収方法は、
     前記反芻動物の体内に留置される前記検出装置(2,20)と連結可能な部分を有する回収器具を前記ルーメンに挿入するステップと、
     前記回収器具に前記検出装置(2,20)を連結させるステップと、
     前記回収器具を回収することにより前記検出装置(2,20)を前記反芻動物の口から取り出すステップとを備える、回収方法。
PCT/JP2010/060276 2009-06-19 2010-06-17 検出装置およびその回収方法ならびに監視システム WO2010147175A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK10789549.2T DK2438812T3 (en) 2009-06-19 2010-06-17 A sensing device AND MONITORING SYSTEM THEREOF
US13/378,892 US10349627B2 (en) 2009-06-19 2010-06-17 Detection device, recovery method therefor and monitoring system
EP10789549.2A EP2438812B1 (en) 2009-06-19 2010-06-17 Detection device and monitoring system therefor
JP2011519833A JP5569911B2 (ja) 2009-06-19 2010-06-17 検出装置およびその回収方法ならびに監視システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-146443 2009-06-19
JP2009146443 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010147175A1 true WO2010147175A1 (ja) 2010-12-23

Family

ID=43356491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060276 WO2010147175A1 (ja) 2009-06-19 2010-06-17 検出装置およびその回収方法ならびに監視システム

Country Status (5)

Country Link
US (1) US10349627B2 (ja)
EP (1) EP2438812B1 (ja)
JP (1) JP5569911B2 (ja)
DK (1) DK2438812T3 (ja)
WO (1) WO2010147175A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621187A (zh) * 2012-04-11 2012-08-01 中国农业大学 瘤胃酸度计
GB2495833A (en) * 2011-10-18 2013-04-24 Ecow Ltd An ingestible monitoring device
CN103337147A (zh) * 2013-06-08 2013-10-02 山东大学 一种反刍动物监测系统
KR101431757B1 (ko) 2012-11-19 2014-08-22 경상대학교산학협력단 모돈 분만 및 난산 감지 시스템
JP2014525738A (ja) * 2011-07-01 2014-10-02 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション 哺乳動物の胃の中のガスを測定するためのシステム、方法、及び装置
JP2016144428A (ja) * 2015-02-09 2016-08-12 国立研究開発法人農業・食品産業技術総合研究機構 牛の第一胃鼓脹症検出方法及び第一胃鼓脹症検出システム
JP2017118890A (ja) * 2015-12-28 2017-07-06 国立大学法人東北大学 検出システム、受信機、及び、検出方法
JP2018007635A (ja) * 2016-07-15 2018-01-18 日本製紙株式会社 反芻動物への給餌方法
JP2018113902A (ja) * 2017-01-18 2018-07-26 国立研究開発法人産業技術総合研究所 pHセンサ及び監視システム
JP2019165705A (ja) * 2018-03-26 2019-10-03 国立大学法人岩手大学 飲水行動検出方法、センサ装置の位置推定方法、pH推定方法、反芻動物の監視方法、反芻動物の監視装置、およびプログラム
JP2020156358A (ja) * 2019-03-26 2020-10-01 国立大学法人岩手大学 牛のルーメン環境評価方法、及び牛のルーメン環境評価装置
KR102214710B1 (ko) * 2020-05-28 2021-02-10 이안스(주) 반추위의 침분비 촉진 및 감지 브러시
JPWO2021131486A1 (ja) * 2019-12-23 2021-07-01
WO2022054317A1 (ja) * 2020-09-10 2022-03-17 太平洋工業株式会社 無線端末、家畜監視システム及び家畜監視方法
WO2022124221A1 (ja) * 2020-12-10 2022-06-16 ダイキン工業株式会社 畜産用センサー用筐体及び畜産用センサー
WO2022124209A1 (ja) 2020-12-10 2022-06-16 ダイキン工業株式会社 畜産用センサー用シール部材及び畜産用センサー
WO2022124214A1 (ja) * 2020-12-10 2022-06-16 ダイキン工業株式会社 畜産用センサー用筐体及び畜産用センサー
WO2022124216A1 (ja) 2020-12-10 2022-06-16 ダイキン工業株式会社 畜産用センサー用筐体及び畜産用センサー

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ593497A (en) * 2011-06-16 2013-01-25 Kahne Ltd Animal digestion monitoring system with bolus having a transmitter and designed to be retained in the dorsal sac of the rumen
EP2724670B1 (en) 2012-10-26 2015-06-17 Pekka Kankfelt Detecting altered pH levels of rumens
FR3003726B1 (fr) * 2013-03-29 2016-03-04 Nutral Sas Systeme pour la gestion de l'etat sanitaire et respiratoire de bovins
WO2014200365A1 (en) * 2013-06-11 2014-12-18 Kahne Limited Rumen bolus
CN103916462A (zh) * 2014-03-17 2014-07-09 东华大学 一种反刍动物反刍信息采集系统
CN107928650A (zh) * 2017-12-12 2018-04-20 徐州浩润牧业有限公司 一种奶牛个体健康监测系统及其工作方法
CN109324938A (zh) * 2018-10-08 2019-02-12 郑州云海信息技术有限公司 一种批量检测ram信息的方法
WO2020075105A2 (en) * 2018-10-10 2020-04-16 Amir Pourjafar Controlling sub-acute ruminal acidosis in a dairy cow
CN111329453A (zh) * 2020-04-02 2020-06-26 西北农林科技大学 一种低功耗奶牛瘤胃pH值和温度值无线监测装置
CN112022099B (zh) * 2020-09-11 2024-06-18 光明牧业有限公司 一种反刍动物瘤胃监测瘘管装置
CN117883043B (zh) * 2023-12-15 2024-09-17 中国农业科学院北京畜牧兽医研究所 一种针对反刍动物瘤胃内记录仪的探取装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276877A (ja) 1993-03-26 1994-10-04 Saaji Miyawaki Kk 動物用体内型個体識別器具
JPH09294543A (ja) * 1996-05-08 1997-11-18 Mitsuharu Fukashiro 牛の体内保留型有効微生物増殖保護器
US5984875A (en) 1997-08-22 1999-11-16 Innotek Pet Products, Inc. Ingestible animal temperature sensor
JP2001231460A (ja) * 2000-02-18 2001-08-28 Natl Grassland Research Inst 反芻動物が産生するメタンを抑制する反芻動物の飼育方法
JP2003530135A (ja) 1999-04-07 2003-10-14 エンドネティクス インコーポレイテッド 埋め込み可能なモニタリングプローブ
JP2008529631A (ja) 2005-02-11 2008-08-07 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ グラスゴー 検査デバイス、検査装置及び検査システム、並びにそれらの駆動方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2799274A (en) * 1954-10-01 1957-07-16 Eisenhut Arnold Veterinary evacuating probe for use on cattle
US4002547A (en) * 1970-08-21 1977-01-11 Beckman Instruments, Inc. Electrochemical reference electrode
US4105509A (en) * 1975-02-28 1978-08-08 Leeds & Northrup Company Combination measuring and reference potential electrode and method of measuring ph in samples subject to large voltage gradients
EP1175176B1 (en) 1999-04-07 2010-09-22 Endonetics, Inc. Implantable monitoring probe
EP1124132B1 (de) * 2000-02-10 2008-12-31 Hamilton Bonaduz AG Polymerelektrolyt
JP2002216471A (ja) * 2001-01-17 2002-08-02 Mitsubishi Electric Corp 半導体記憶装置
US20030027293A1 (en) * 2001-03-28 2003-02-06 Council Of Scientific & Industrial Research Process for the isolation of polyhydroxybutyrate from Bacillus mycoides RLJ B-017
US6694161B2 (en) * 2001-04-20 2004-02-17 Monsanto Technology Llc Apparatus and method for monitoring rumen pH
US7062308B1 (en) * 2001-07-05 2006-06-13 Jackson William J Remote physiological monitoring with the reticulum of livestock
US6951536B2 (en) * 2001-07-30 2005-10-04 Olympus Corporation Capsule-type medical device and medical system
JP3869291B2 (ja) 2002-03-25 2007-01-17 オリンパス株式会社 カプセル型医療装置
AU2003294229A1 (en) * 2002-10-11 2004-05-04 Case Western Reserve University Sliver type autonomous biosensors
US20040133131A1 (en) * 2003-01-03 2004-07-08 Kuhn David L. In vivo ruminant health sensor
JP4676137B2 (ja) * 2003-07-28 2011-04-27 株式会社堀場製作所 ガラス電極
GB0510823D0 (en) * 2005-05-27 2005-07-06 Johnson Matthey Plc Methanol synthesis
US20080023650A1 (en) * 2006-07-27 2008-01-31 Fujifilm Corporation Radiation image conversion panel and process for producing the same
US20080236500A1 (en) 2007-02-20 2008-10-02 Hodges Terry E Apparatus, system, and method for animal monitor
AT505607B1 (de) * 2007-08-09 2010-11-15 Mario Fallast Sonde zur messung mindestens einer zustandsgrösse des organismus eines nutztieres
US20090048498A1 (en) * 2007-08-17 2009-02-19 Frank Riskey System and method of monitoring an animal
US20090182207A1 (en) * 2008-01-16 2009-07-16 Tenxsys Inc. Ingestible animal health sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276877A (ja) 1993-03-26 1994-10-04 Saaji Miyawaki Kk 動物用体内型個体識別器具
JPH09294543A (ja) * 1996-05-08 1997-11-18 Mitsuharu Fukashiro 牛の体内保留型有効微生物増殖保護器
US5984875A (en) 1997-08-22 1999-11-16 Innotek Pet Products, Inc. Ingestible animal temperature sensor
JP2003530135A (ja) 1999-04-07 2003-10-14 エンドネティクス インコーポレイテッド 埋め込み可能なモニタリングプローブ
JP2001231460A (ja) * 2000-02-18 2001-08-28 Natl Grassland Research Inst 反芻動物が産生するメタンを抑制する反芻動物の飼育方法
JP2008529631A (ja) 2005-02-11 2008-08-07 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ グラスゴー 検査デバイス、検査装置及び検査システム、並びにそれらの駆動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2438812A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525738A (ja) * 2011-07-01 2014-10-02 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション 哺乳動物の胃の中のガスを測定するためのシステム、方法、及び装置
GB2495833A (en) * 2011-10-18 2013-04-24 Ecow Ltd An ingestible monitoring device
CN102621187A (zh) * 2012-04-11 2012-08-01 中国农业大学 瘤胃酸度计
KR101431757B1 (ko) 2012-11-19 2014-08-22 경상대학교산학협력단 모돈 분만 및 난산 감지 시스템
CN103337147A (zh) * 2013-06-08 2013-10-02 山东大学 一种反刍动物监测系统
JP2016144428A (ja) * 2015-02-09 2016-08-12 国立研究開発法人農業・食品産業技術総合研究機構 牛の第一胃鼓脹症検出方法及び第一胃鼓脹症検出システム
JP2017118890A (ja) * 2015-12-28 2017-07-06 国立大学法人東北大学 検出システム、受信機、及び、検出方法
WO2017115470A1 (ja) 2015-12-28 2017-07-06 国立大学法人東北大学 検出システム、受信機、及び、検出方法
JP2018007635A (ja) * 2016-07-15 2018-01-18 日本製紙株式会社 反芻動物への給餌方法
JP2018113902A (ja) * 2017-01-18 2018-07-26 国立研究開発法人産業技術総合研究所 pHセンサ及び監視システム
JP2019165705A (ja) * 2018-03-26 2019-10-03 国立大学法人岩手大学 飲水行動検出方法、センサ装置の位置推定方法、pH推定方法、反芻動物の監視方法、反芻動物の監視装置、およびプログラム
JP7115676B2 (ja) 2018-03-26 2022-08-09 国立大学法人岩手大学 飲水行動検出方法、センサ装置の位置推定方法、pH推定方法、反芻動物の監視方法、反芻動物の監視装置、およびプログラム
JP2020156358A (ja) * 2019-03-26 2020-10-01 国立大学法人岩手大学 牛のルーメン環境評価方法、及び牛のルーメン環境評価装置
JP7232517B2 (ja) 2019-03-26 2023-03-03 国立大学法人岩手大学 牛のルーメン環境評価方法、及び牛のルーメン環境評価装置
WO2021131486A1 (ja) * 2019-12-23 2021-07-01 国立研究開発法人農業・食品産業技術総合研究機構 評価システム及び評価方法
JP7257713B2 (ja) 2019-12-23 2023-04-14 国立研究開発法人農業・食品産業技術総合研究機構 評価システム及び評価方法
JPWO2021131486A1 (ja) * 2019-12-23 2021-07-01
KR102214710B1 (ko) * 2020-05-28 2021-02-10 이안스(주) 반추위의 침분비 촉진 및 감지 브러시
US11974549B2 (en) 2020-09-10 2024-05-07 Pacific Industrial Co., Ltd. Wireless terminal, livestock monitoring system, and livestock monitoring method
CN115209727B (zh) * 2020-09-10 2023-09-01 太平洋工业株式会社 无线终端、家畜监视系统以及家畜监视方法
WO2022054317A1 (ja) * 2020-09-10 2022-03-17 太平洋工業株式会社 無線端末、家畜監視システム及び家畜監視方法
CN115209727A (zh) * 2020-09-10 2022-10-18 太平洋工业株式会社 无线终端、家畜监视系统以及家畜监视方法
WO2022124214A1 (ja) * 2020-12-10 2022-06-16 ダイキン工業株式会社 畜産用センサー用筐体及び畜産用センサー
WO2022124216A1 (ja) 2020-12-10 2022-06-16 ダイキン工業株式会社 畜産用センサー用筐体及び畜産用センサー
KR20230091170A (ko) 2020-12-10 2023-06-22 다이킨 고교 가부시키가이샤 축산용 센서용 시일 부재 및 축산용 센서
KR20230110645A (ko) 2020-12-10 2023-07-24 다이킨 고교 가부시키가이샤 축산용 센서용 하우징 및 축산용 센서
WO2022124209A1 (ja) 2020-12-10 2022-06-16 ダイキン工業株式会社 畜産用センサー用シール部材及び畜産用センサー
WO2022124221A1 (ja) * 2020-12-10 2022-06-16 ダイキン工業株式会社 畜産用センサー用筐体及び畜産用センサー

Also Published As

Publication number Publication date
JPWO2010147175A1 (ja) 2012-12-06
EP2438812A4 (en) 2013-01-02
US10349627B2 (en) 2019-07-16
JP5569911B2 (ja) 2014-08-13
EP2438812B1 (en) 2015-12-02
DK2438812T3 (en) 2016-01-11
EP2438812A1 (en) 2012-04-11
US20120088988A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5569911B2 (ja) 検出装置およびその回収方法ならびに監視システム
US7062308B1 (en) Remote physiological monitoring with the reticulum of livestock
US8588887B2 (en) Ingestible low power sensor device and system for communicating with same
US11963839B2 (en) Dental monitoring system
US6411842B1 (en) Implant device for internal-external electromyographic recording, particularly for the in vivo study of electromotor activity of the digestive system
US20040133131A1 (en) In vivo ruminant health sensor
US20120203084A1 (en) POSITIONING SYSTEM, APPARATUS, AND METHOD FOR WIRELESS MONITORING OF ESOPHAGEAL pH VALUE
US8640712B2 (en) Bolus
US20080236500A1 (en) Apparatus, system, and method for animal monitor
GB2455700A (en) Bolus with ph and temperature sensor
JP2016144428A (ja) 牛の第一胃鼓脹症検出方法及び第一胃鼓脹症検出システム
Prendiville et al. Radiotelemetry systems for measuring body temperature
CN201505133U (zh) 食道酸碱度无线监测定位系统及装置
KR101799752B1 (ko) 소 귀 부착형 체온 및 되새김 측정 장치
CN207202860U (zh) 家畜体温监测装置
CN215584875U (zh) 一种用于监测患者管喂营养液温度的监测装置
US11974549B2 (en) Wireless terminal, livestock monitoring system, and livestock monitoring method
Tao et al. Design of bovine rumen acid monitoring sensor and system
Mottram Is A Lifetime Rumen Monitoring Bolus Possible?
RU2535742C1 (ru) Способ удаленной диагностики и лечения крупного и мелкого рогатого скота
Krizova et al. Continuous monitoring of ruminal pH and redox-potential in dry cows using a novel wireless ruminal probe
JP7112360B2 (ja) 牛の生体情報通知方法
CZ2009224A3 (cs) Zarízení pro merení hodnot redox potenciálu bachorové tekutiny
WO2022164382A1 (en) Health monitoring system and device for livestock
CZ19728U1 (cs) Zařízení pro měření hodnot redox potenciálu bachorové tekutiny

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519833

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13378892

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010789549

Country of ref document: EP