WO2010146756A1 - フリップフロップ、シフトレジスタ、表示駆動回路、表示装置、表示パネル - Google Patents

フリップフロップ、シフトレジスタ、表示駆動回路、表示装置、表示パネル Download PDF

Info

Publication number
WO2010146756A1
WO2010146756A1 PCT/JP2010/002196 JP2010002196W WO2010146756A1 WO 2010146756 A1 WO2010146756 A1 WO 2010146756A1 JP 2010002196 W JP2010002196 W JP 2010002196W WO 2010146756 A1 WO2010146756 A1 WO 2010146756A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal
stage
input
transistor
Prior art date
Application number
PCT/JP2010/002196
Other languages
English (en)
French (fr)
Inventor
村上祐一郎
古田成
佐々木寧
横山真
山口尚宏
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201080026980.2A priority Critical patent/CN102460971B/zh
Priority to JP2011519495A priority patent/JP5209117B2/ja
Priority to EP10789141.8A priority patent/EP2445108B1/en
Priority to US13/378,214 priority patent/US9014326B2/en
Priority to BRPI1014498A priority patent/BRPI1014498A2/pt
Priority to RU2012101244/08A priority patent/RU2507680C2/ru
Publication of WO2010146756A1 publication Critical patent/WO2010146756A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors

Definitions

  • the present invention relates to flip-flops and various display drivers.
  • FIG. 75A shows a configuration of a conventional flip-flop used for a gate driver of a liquid crystal display device.
  • the conventional flip-flop (FF) 900 includes five P-channel transistors (p100, p101, p102, p103, and p104) and five N-channel transistors (n100, n101, n102, n103, and n104).
  • SB set bar
  • R reset
  • Q output
  • QB inverted output
  • INITB initial bar
  • the signal input to the SB terminal is the SB (set bar) signal
  • the signal input to the R terminal is the R (reset) signal
  • the signal input to the INITB terminal is the INITB (initial bar) signal
  • Q A signal output from the terminal is referred to as a Q (output) signal
  • a signal output from the QB terminal is referred to as a QB (inverted output) signal.
  • VDD high potential side power supply
  • VSS low potential side power supply
  • the source of p100 is connected to VDD (high potential side power supply), the drain of p100, the drain of n100, the drain of p102, the drain of n102, the gate of p104, the gate of n104, and the Q terminal are connected.
  • the source of n101 and the drain of n101 are connected, and the source of n101 is connected to VSS (low potential side power supply).
  • the source of p101 is connected to VDD
  • the drain of p101 and the source of p102 are connected
  • the source of n102 and the drain of n103 are connected
  • the source of n103 is connected to VSS
  • the source of p104 is connected to VDD.
  • the drains of p104 and n104 are connected, and the source of n104 is connected to VSS. Further, the gate of p101, the gate of n100, and the R terminal are connected, the gate of p100, the gate of n101, the gate of n103, and the SB terminal are connected, the source of p103 is connected to VDD, and the gate of p103 is INITB. The gate of p102, the gate of n102, the drain of p103, and the QB terminal are connected to the terminal.
  • p100 forms a set circuit SC
  • n100 forms a reset circuit RC
  • n101 forms a priority determination circuit PDC
  • p103 forms an initialization circuit IC
  • each of p101 and n103 is a latch release circuit LRC.
  • P102, n102, p104, and n104 constitute a latch circuit LC.
  • FIG. 75B is a timing chart showing the operation of the FF 900
  • FIG. 75C is a truth table of the FF 900.
  • n103 is turned on, and both p101 and n103 (latch release circuit LRC) are turned on. Therefore, an inverter composed of p102 and n102 and a latch circuit composed of an inverter composed of p104 and n104 (Latch circuit LC is turned ON).
  • p100 set circuit SC
  • n100 reset circuit RC
  • n100 reset circuit RC
  • n101 priority determination circuit PDC
  • the Q terminal is connected to VSS.
  • p101 latch determination circuit
  • n104 When the Q signal is low, n104 is off and p104 is on, so that the QB terminal is connected to VDD and the QB signal is high.
  • the QB signal When the QB signal is High and the SB signal is High, both n102 and n103 (latch release circuit LRC) are ON and p102 is OFF, so that the Q terminal is connected to VSS via n102 and n103.
  • the SB signal is High and the R signal is Low
  • both p101 and n103 latch release circuit LRC
  • the latch circuit LC is turned on. Therefore, the state before the R signal is changed is maintained, and the state of t3 (the Q signal is Low and the QB signal is High) is maintained even at t4.
  • the output (Q signal) of the flip-flop can be forcibly determined by activating the INITB signal.
  • the p103 is turned on, the QB terminal and VDD are connected, and the QB signal becomes High.
  • the QB signal is High, n102 is turned on.
  • n101 (priority decision circuit) decides which one is given priority when the SB signal and the R signal become active at the same time.
  • the circuit area of the conventional flip-flop is large, and miniaturization of devices (shift registers and various display drivers) using the flip-flop has been prevented.
  • the present invention aims to reduce the size of flip-flops, shift registers, or various display drivers.
  • the flip-flop of the present invention includes a first CMOS circuit in which gate terminals and drain terminals of a P-channel first transistor and an N-channel second transistor are connected to each other, a P-channel third transistor, and an N-channel fourth transistor.
  • a second CMOS circuit in which the gate terminals and the drain terminals are connected to each other, a plurality of input terminals, and a first output terminal and a second output terminal, and a first CMOS circuit gate side, a second CMOS circuit drain side, and a first CMOS terminal.
  • a flip-flop in which the gate side of the second CMOS circuit, the drain side of the first CMOS circuit, and the second output terminal are connected to each other, and the gate terminal and the source terminal are respectively connected to separate input terminals.
  • An input transistor to be connected is provided.
  • the drain terminal of the input transistor is connected to the first output terminal directly or via a relay transistor.
  • the output side of the two conductive electrodes of the transistor (P channel or N channel) is referred to as a drain terminal. According to the above configuration, even when the priority determination circuit required in the past is not provided, when the signals input to the separate input terminals become active at the same time, one of them can be prioritized and output. . Thereby, miniaturization of the flip-flop is realized.
  • flip-flops, shift registers, and display drive circuits can be reduced in size.
  • FIG. 3 is a circuit diagram (a), a timing chart (b), and a truth table (c) for explaining the flip-flop according to the first embodiment
  • FIG. 5 is a circuit diagram (a), a timing chart (b), and a truth table (c) for explaining another flip-flop according to the first embodiment
  • FIG. 4 is a circuit diagram (a), a timing chart (b), and a truth table (c) for explaining a flip-flop according to a second embodiment
  • FIG. 10 is a circuit diagram (a), a timing chart (b), and a truth table (c) for explaining another flip-flop according to the second embodiment
  • FIG. 7 is a circuit diagram (a), a timing chart (b), and a truth table (c) for explaining a flip-flop according to a third embodiment
  • FIG. 10 is a circuit diagram (a), a timing chart (b), and a truth table (c) for explaining another flip-flop according to the third embodiment.
  • FIG. 10 is a circuit diagram (a), a timing chart (b), and a truth table (c) illustrating still another flip-flop according to the second embodiment.
  • FIG. 10 is a circuit diagram (a), a timing chart (b), and a truth table (c) illustrating still another flip-flop according to the second embodiment.
  • FIG. 10 is a circuit diagram (a), a timing chart (b), and a truth table (c) illustrating still another flip-flop according to the second embodiment.
  • FIG. 10 is a circuit diagram (a), a timing chart (b), and a truth table (c) for explaining still another flip-flop according to the third embodiment.
  • FIG. 10 is a circuit diagram (a), a timing chart (b), and a truth table (c) for explaining still another flip-flop according to the third embodiment.
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the second embodiment.
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the second embodiment.
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the third embodiment.
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the third embodiment.
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the third embodiment.
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the second embodiment.
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the second embodiment.
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the third embodiment.
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the third embodiment.
  • FIG. 6 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the first embodiment;
  • FIG. 6 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the first embodiment;
  • FIG. 6 is a circuit diagram (a) and a truth table
  • FIG. 6 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the first embodiment
  • FIG. 6 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the first embodiment
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the second embodiment.
  • FIG. 10 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the third embodiment.
  • FIG. 6 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the first embodiment
  • FIG. 6 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the first embodiment;
  • FIG. 6 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the first embodiment;
  • FIG. 6 is a circuit diagram (a) and a truth table (b)
  • FIG. 6 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the first embodiment;
  • FIG. 6 is a circuit diagram (a) and a truth table (b) for explaining still another flip-flop according to the first embodiment;
  • It is a schematic diagram which shows the structure of this display apparatus.
  • FIG. 29 is a circuit diagram showing each stage of the shift register of the display device shown in FIG. 28.
  • FIG. 29 is a timing chart showing how to drive the display device of FIG. 28.
  • It is a schematic diagram which shows the other structure of this display apparatus.
  • FIG. 33 is a circuit diagram showing each stage of the shift register of the display device shown in FIG. 32.
  • FIG. 33 is a timing chart showing how to drive the display device of FIG. It is a schematic diagram which shows other structure of this display apparatus. It is a schematic diagram which shows other structure of this display apparatus. It is a schematic diagram which shows other structure of this display apparatus. It is a schematic diagram which shows other structure of this display apparatus.
  • FIG. 38 is a circuit diagram showing each stage of the shift register of the display device shown in FIG. 37.
  • FIG. 38 is a circuit diagram showing a D latch circuit of a G-CS driver of the display device shown in FIG. 37. 38 is a timing chart showing a method for driving the display device in FIG. 37. 38 is a timing chart showing a method for driving the display device in FIG. 37. It is a schematic diagram which shows other structure of this display apparatus.
  • FIG. 38 is a circuit diagram showing each stage of the shift register of the display device shown in FIG. 37.
  • FIG. 38 is a circuit diagram showing a D latch circuit of a G-CS driver of the display device shown in FIG. 37. 38
  • FIG. 43 is a circuit diagram showing each stage of the shift register of the display device shown in FIG. 42.
  • 43 is a timing chart showing a method for driving the display device of FIG. 43 is a timing chart showing a method for driving the display device of FIG. It is a schematic diagram which shows other structure of this display apparatus.
  • 47 is a timing chart showing how to drive the display device of FIG. 47 is a timing chart showing how to drive the display device of FIG.
  • FIG. 44 is a circuit diagram showing a modification of FIG. 43. 45 is a timing chart showing a modification of FIGS. It is a schematic diagram which shows other structure of this display apparatus.
  • FIG. 52 is a circuit diagram showing each stage of the shift register of the display device shown in FIG. 51.
  • FIG. 52 is a circuit diagram showing each stage of the shift register of the display device shown in FIG. 51.
  • FIG. 52 is a timing chart showing how to drive the display device of FIG. 51.
  • FIG. FIG. 52 is a circuit diagram showing a NAND circuit in the shift register of the display device shown in FIG. 51. It is a schematic diagram which shows other structure of this display apparatus.
  • 56 is a timing chart showing a method for driving the display device of FIG. 55.
  • 56 is a timing chart showing a method for driving the display device of FIG. 55.
  • FIG. 59 is a timing chart showing how to drive the display device of FIG. 58.
  • FIG. FIG. 59 is a timing chart showing how to drive the display device of FIG. 58.
  • FIG. 62 is a circuit diagram showing each stage of the shift register of the display device shown in FIG. 61. 62 is a timing chart showing how to drive the display device of FIG. 61. It is a schematic diagram which shows other structure of this display apparatus.
  • FIG. 65 is a circuit diagram showing each stage of the shift register of the display device shown in FIG. 64. It is a schematic diagram which shows other structure of this display apparatus. It is a schematic diagram which shows other structure of this display apparatus. It is a schematic diagram which shows other structure of this display apparatus. It is a schematic diagram which shows other structure of this display apparatus.
  • FIG. 69 is a circuit diagram showing each stage of a shift register of the display device shown in FIG. 68.
  • a set signal (S signal or SB signal) is input to a set terminal (S terminal or SB terminal) of a set-reset type flip-flop (hereinafter abbreviated as FF as appropriate), and a reset terminal (R Terminal (RB terminal) receives a reset signal (R signal or RB signal), and initialization terminal (INIT terminal or INITB terminal) receives an initialization signal (INIT signal or INITB signal)
  • FF set-reset type flip-flop
  • VDD high potential side power supply
  • VSS low potential side power supply
  • S signal set signal
  • R signal reset signal
  • INIT signal initial signal
  • Q signal output signal
  • SB signal set bar signal
  • RB signal reset bar
  • INITB INITB signal
  • QB signal inverted output signal
  • FIG. 1A is a circuit diagram illustrating a configuration of the flip-flop according to the first embodiment.
  • the FF 101 includes a P-channel transistor p1 and an N-channel transistor n1 that constitute a CMOS circuit, a P-channel transistor p2 and an N-channel transistor n2 that constitute a CMOS circuit, an SB terminal, an RB terminal, A Q terminal, a QB terminal, and an INIT terminal; the gate of p1, the gate of n1, the drain of p2, the drain of n2, and the Q terminal are connected; and the drain of p1, the drain of n1, and the gate of p2
  • the gate of n2 and the QB terminal are connected, the source of p1 is connected to the SB terminal, the source of p2 is connected to the RB terminal, the source of n1 is connected to the INIT terminal, and the source of n2 is VSS (low potential side) Power source).
  • FIG. 1B is a timing chart showing the operation of the FF 101 (when the INIT signal is inactive)
  • FIG. 1C is a truth table of the FF 101 (when the INIT signal is inactive).
  • the potential of the QB terminal becomes close to Vss p2 is turned on while n2 is turned off (when the threshold value of n2 is equal to or higher than Vth, n2 is completely turned off).
  • the SB signal is High and the RB signal is High
  • the INIT signal is Low (Vss) except during initialization, so the latch circuit LC is turned on. Therefore, the state before the change of the SB signal is held, and the state of t1 (the Q signal is High and the QB signal is Low) is held even at t2.
  • the SB signal is High and the RB signal is High
  • the INIT signal is Low (Vss) except during initialization, so the latch circuit LC is turned on. Therefore, the state before the RB signal is changed is maintained, and the state of t3 (the Q signal is Low and the QB signal is High) is maintained even at t4.
  • p1, n1, p2, and n2 (two CMOSs) constitute a latch circuit
  • the source of p1 is connected to the SB terminal
  • the source of p2 is connected to the RB terminal
  • n1 By connecting the source to the INIT terminal, the set, latch, reset, and initialization operations are eliminated while eliminating the set circuit, the reset circuit, the latch release circuit, and the initialization circuit that are conventionally required (see FIG. 70). Is realized.
  • n1 in FIG. 1A may be connected to VSS, and configured as FF 105 in FIG. 21A.
  • the truth table of the FF 105 is as shown in FIG.
  • FIG. 2A is a circuit diagram showing a configuration of an FF 102 which is a modification of FIG.
  • the FF 102 includes a P-channel transistor p3 and an N-channel transistor n3 that constitute a CMOS circuit, a P-channel transistor p4 and an N-channel transistor n4 that constitute a CMOS circuit, an S terminal, Terminal, Q terminal / QB terminal, and INITB terminal, the gate of p3, the gate of n3, the drain of p4, the drain of n4, and the Q terminal are connected, the drain of p3, the drain of n3, and the gate of p4 N4 and the QB terminal are connected, the source of n4 is connected to the S terminal, the source of n3 is connected to the R terminal, the source of p4 is connected to the INITB terminal, and the source of p3 is VDD (high potential) Side power supply).
  • p3, n3, p4 and n4 constitute the latch circuit LC
  • FIG. 2B is a timing chart showing the operation of the FF 102 (when the INITB signal is inactive), and FIG. 2C is a truth table of the FF 102 (when the INITB signal is inactive).
  • the Q signal of the FF 102 is held during a period in which the S signal is Low (inactive) and the R signal is Low (inactive), and the S signal is Low (inactive).
  • the R signal is High (active), the S signal is High (active), and the R signal is Low (inactive).
  • the S signal is High (active) and the S signal is High (active). It becomes indefinite during the period when the R signal is High (active).
  • FIG. 19A is a circuit diagram showing another configuration of the flip-flop according to the first embodiment.
  • the FF 103 includes a P channel transistor P1 and an N channel transistor N1 constituting a CMOS circuit, a P channel transistor P2 and an N channel transistor N2 constituting a CMOS circuit, an SB terminal, an R terminal, An INITB terminal, a Q terminal and a QB terminal; the gate of P1, the gate of N1, the drain of P2, the drain of N2, and the Q terminal are connected; and the drain of P1, the drain of N1, and the gate of P2 N2 is connected to the gate, the SB terminal is connected to the source of P1, the R terminal is connected to the source of N1, the INITB terminal is connected to the source of P2, and the source of N2 is connected to VSS. is there.
  • P1, N1, P2, and N2 form a latch circuit LC.
  • FIG. 19B is a truth table of the FF 103 (when the INITB signal is inactive).
  • the Q signal of the FF 103 is low (inactive) during the period when the SB signal is high (inactive) and the R signal is high (active), and the SB signal is high (inactive).
  • the R signal is held during the Low (inactive) period, the SB signal is Low (active) and the R signal is High (active), the SB signal is Low (active), and the R signal is Low (inactive).
  • FIG. 20A is a circuit diagram showing a configuration of an FF 104 which is a modification of FIG. 19A.
  • the FF 104 includes a P-channel transistor P3 and an N-channel transistor N3 that constitute a CMOS circuit, a P-channel transistor P4 and an N-channel transistor N4 that constitute a CMOS circuit, an S terminal, an RB terminal, An INIT terminal, a Q terminal and a QB terminal; the gate of P3, the gate of N3, the drain of P4, the drain of N4, and the Q terminal are connected; and the drain of P3, the drain of N3, and the gate of P4
  • the gate of N4 is connected, the S terminal is connected to the source of N4, the RB terminal is connected to the P4 source, the INIT terminal is connected to the source of N3, and the source of P3 is connected to VDD.
  • P3, N3, P4 and N4 form a latch circuit LC.
  • FIG. 20B is a truth table of the FF 104 (when the INITB signal is inactive). As shown in FIG. 20B, the Q signal of the FF 104 is high (active) while the S signal is High (active) and the RB signal is High (inactive), the S signal is High (active), and the RB signal. Is indefinite during Low (active), S signal is Low (inactive) and RB signal is held during High (inactive), S signal is Low (inactive) and RB signal is Low (active) It becomes Low (inactive) during the period.
  • FIG. 3A is a circuit diagram showing a configuration of the flip-flop according to the second embodiment.
  • the FF 201 includes a P-channel transistor p6 and an N-channel transistor n5 that constitute a CMOS circuit, a P-channel transistor p8 and an N-channel transistor n7 that constitute a CMOS circuit, and P-channel transistors p5 and p7.
  • p6, n5, p8 and n7 constitute a latch circuit LC
  • p5 functions as a set transistor ST
  • p7 functions as a reset transistor RT
  • n6 and n8 function as a latch release transistor (release transistor) LRT.
  • FIG. 3B is a timing chart showing the operation of the FF 201 (when the INITB signal is inactive), and FIG. 3C is a truth table of the FF 201 (when the INITB signal is inactive).
  • the Q signal of the FF 201 is low (inactive) while the SB signal is low (active) and the RB signal is low (active), and the SB signal is low (active).
  • the RB signal is High (inactive)
  • the SB signal is High (inactive) and the RB signal is Low (active)
  • the SB signal is High (inactive).
  • the RB signal is in the holding state during the High (inactive) period.
  • Vdd of the RB terminal is output to the Q terminal, n7 is turned ON, and Vss (Low) is output to the QB terminal.
  • the SB signal becomes High
  • p5 is turned off and n6 is turned on
  • the state of t1 is maintained.
  • the RB signal becomes Low
  • p7 is turned on and Vdd (High) is outputted to the QB terminal
  • n5 is turned on and Vss is outputted to the Q terminal.
  • both the SB signal and the RB signal are low (active)
  • p7 is turned on, Vdd (High) is output to the QB terminal, and Vss + Vth (p5 threshold voltage via p5) to the Q terminal.
  • both the SB signal and the RB signal are inactive during the period when the INITB signal is active, the Q signal and the QB signal of the FF 201 become inactive.
  • both the SB signal and the RB signal are in the Low (active) state (State A), and both the SB signal and the RB signal are in the High (inactive) state (State X)
  • state A p7 is ON and p6 is OFF, Vdd (High) is output to the QB terminal, and Vss is output to the Q terminal.
  • state X p6 remains OFF. The output of the terminal and the QB terminal does not change from the state A.
  • both the SB signal and the RB signal are High (inactive).
  • state X in state B, p7 and n5 are turned ON, Vdd (High) is output to the QB terminal, and Vss (Low) is output to the Q terminal, but in state X, p6 is OFF Therefore, the outputs of the Q terminal and the QB terminal are the same as in the state B.
  • the SB signal is low (active) and the RB signal is high (inactive) (state C), so that both the SB signal and the RB signal are high (inactive).
  • state X in the state C, the outputs of the Q terminal and the QB terminal are indefinite, but in the state X, when p6 is turned on immediately before the state X is changed, the Q terminal is turned on. Instantaneously becomes Vss + Vth (threshold voltage of p6), so that p8 is turned on and Vdd (High) is output to the QB terminal.
  • the Q terminal becomes Vss (Low).
  • p6, n5, p8, and n7 (two CMOSs) constitute a latch circuit
  • the RB terminal serves as the gate of p7 that functions as the reset transistor RT and the source of p5 that functions as the set transistor ST.
  • the prioritized decision circuit and initialization circuit which have been required in the past (see FIG. 70) are eliminated, and the set, latch, reset, SB signal and RB
  • the RB signal (reset) is given priority, and the output QB is inactive.
  • the source of p6 in FIG. 3A may be connected to VDD and configured as FF209 in FIG.
  • the truth table of the FF 209 is as shown in FIG.
  • FIG. 4A is a circuit diagram showing a configuration of an FF 202 which is a modification of FIG.
  • the FF 202 includes a P-channel transistor p10 and an N-channel transistor n10 that constitute a CMOS circuit, a P-channel transistor p12 and an N-channel transistor n12 that constitute a CMOS circuit, P-channel transistors p9 and p11, N-channel transistors n9, n12, S terminal, R terminal, INIT terminal, Q terminal, QB terminal, p10 gate, n10 gate, p12 drain, n12 drain, n9 drain, and QB
  • the terminal is connected, the drain of p10, the drain of n10, the drain of n10, the gate of p12, the gate of n12, the drain of n11, and the Q terminal are connected, and the source of p10 and the drain of p9 are connected.
  • the source of p12 and the drain of p11 The S terminal is connected to the gate of n9 and the gate of p11, the R terminal is connected to the source of n9, the gate of p9 and the gate of n11, the INIT terminal is connected to the source of n12, and p9 and p11 Is connected to VDD, and the sources of n10 and n11 are connected to VSS.
  • p10, n10, p12 and n12 constitute a latch circuit LC
  • n11 functions as a reset transistor RT
  • p9 and p11 function as a latch release transistor LRT.
  • FIG. 4B is a timing chart showing the operation of the FF 202 (when the INIT signal is inactive)
  • FIG. 4C is a truth table of the FF 202 (when the INIT signal is inactive).
  • the Q signal of the FF 202 is in a holding state during a period in which the S signal is Low (inactive) and the R signal is Low (inactive), and the S signal is Low (inactive).
  • the R signal is High (active), the S signal is High (active), and the R signal is Low (inactive).
  • the S signal is High (active) and the S signal is High (active). It becomes Low (inactive) while the R signal is High (active).
  • FIG. 7A is a circuit diagram showing another configuration of the flip-flop according to the second embodiment.
  • the FF 203 includes a P-channel transistor p22 and an N-channel transistor n21 that constitute a CMOS circuit, a P-channel transistor p23 and an N-channel transistor n22 that constitute a CMOS circuit, a P-channel transistor p21, and an SB terminal.
  • the RB terminal, the INIT terminal, and the Q terminal and the QB terminal, the gate of p22, the gate of n21, the drain of p23, the drain of n22, the drain of p21, and the Q terminal are connected to each other.
  • the drain, the drain of n21, the gate of p23, the gate of n22, and the QB terminal are connected, the SB terminal is connected to the gate of p21, the RB terminal is connected to the source of p21 and the source of p23, and the INIT terminal is n21 N22 source to VSS Is a configuration that has been continued.
  • p22, n21, p23 and n22 form a latch circuit LC, and p21 functions as a set transistor ST.
  • FIG. 7B is a timing chart showing the operation of the FF 203 (when the INIT signal is inactive)
  • FIG. 7C is a truth table of the FF 203 (when the INIT signal is inactive).
  • the Q signal of the FF 203 is low (inactive) while the SB signal is low (active) and the RB signal is low (active), and the SB signal is low (active).
  • the RB signal is High (inactive)
  • the SB signal is High (inactive) and the RB signal is Low (active)
  • the SB signal is High (inactive).
  • the RB signal is in the holding state during the High (inactive) period.
  • Vdd (High) of the RB terminal is output to the Q terminal, n21 is turned ON, and Vss (Low) is output to the QB terminal.
  • the SB signal becomes High and p21 is turned off, the state of t1 is maintained.
  • Vss + Vth is once output to the Q terminal via p23, and thereby p22 is turned ON and Vdd (High) is output to the QB terminal.
  • the QB terminal becomes Vdd, n22 is turned ON and Vss is output to the Q terminal.
  • Vss + Vth is once output to the Q terminal via p21, whereby p22 is turned ON and Vdd (High) is output to the QB terminal.
  • p22 is turned ON and Vdd (High) is output to the QB terminal.
  • n22 is turned ON and Vss is output to the Q terminal.
  • p22, n21, p23, and n22 constitute a latch circuit
  • the RB terminal is connected to the source of p21 and the source of p23 that function as the set transistor ST, and
  • the reset circuit, latch release circuit, priority determination circuit and initialization circuit which are conventionally required (see FIG. 70)
  • the RB signal becomes active at the same time.
  • the SB signal and the RB signal are simultaneously active, the RB signal (reset) is given priority, and the outputs Q and QB are inactive.
  • FIG. 8A is a circuit diagram showing a configuration of an FF 204 which is a modification of FIG. 7A.
  • the FF 204 includes a P-channel transistor p24 and an N-channel transistor n24 that constitute a CMOS circuit, a P-channel transistor p25 and an N-channel transistor n25 that constitute a CMOS circuit, an N-channel transistor n23, and an S terminal.
  • the drain, the drain of n24, the gate of p25, the gate of n25, and the Q terminal are connected, the S terminal is connected to the gate of n23, the R terminal is connected to the source of n23 and the source of n25, and the INITB terminal is p24 Connected to source, source of p25 connected to VDD A configuration in which the source of n24 is connected to VSS.
  • p24, n24, p25 and n25 form a latch circuit LC, and n23 functions as a set transistor ST.
  • FIG. 8B is a timing chart showing the operation of the FF 204 (when the INITB signal is inactive), and FIG. 8C is a truth table of the FF 204 (when the INITB signal is inactive).
  • the Q signal of the FF 204 is held during the period when the S signal is Low (inactive) and the R signal is Low (inactive), and the S signal is Low (inactive).
  • the R signal is High (active), the S signal is High (active), and the R signal is Low (inactive).
  • the S signal is High (active) and the S signal is High (active). It becomes Low (inactive) while the R signal is High (active).
  • FIG. 11A is a circuit diagram showing still another configuration of the flip-flop according to the second embodiment.
  • the FF 205 includes a P-channel transistor p32 and an N-channel transistor n31 constituting a CMOS circuit, a P-channel transistor p34 and an N-channel transistor n32 constituting a CMOS circuit, P-channel transistors p31 and p33, An SB terminal, an RB terminal, an INITB terminal, a Q terminal and a QB terminal, and a gate of p32, a gate of n31, a drain of p34, a drain of n32, a drain of p33, and a QB terminal are connected;
  • the drain of p32, the drain of n31, the gate of p34, the gate of n32, the drain of p31, and the Q terminal are connected, the SB terminal is connected to the gate of p31, and the RB terminal is connected to the source of p31 and the gate of p33
  • INITB terminal connected to p32 source Is the source of the p33 and p34 is connected to VDD, a structure in which the source of n31 and n32 are connected to VSS.
  • p32, n31, p34 and n32 constitute a latch circuit LC
  • p31 functions as a set transistor ST
  • p33 functions as a reset transistor RT.
  • FIG. 11B is a truth table of the FF 205 (when the INIT signal is inactive).
  • the Q signal of the FF 205 is low (inactive) during the period when the SB signal is Low (active) and the RB signal is Low (active), and the SB signal is Low (active) and RB.
  • SB signal is high (inactive) and RB
  • the signal is held during a period when the signal is High (inactive).
  • FIG. 12A is a circuit diagram showing a configuration of an FF 206 which is a modification of FIG. 11A.
  • the FF 206 includes a P-channel transistor p35 and an N-channel transistor n34 that constitute a CMOS circuit, a P-channel transistor p36 and an N-channel transistor n36 that constitute a CMOS circuit, N-channel transistors n33 and 35, An S terminal, an R terminal, an INITB terminal, a Q terminal and a QB terminal, and the gate of p35, the gate of n34, the drain of p36, the drain of n36, the drain of n33, and the QB terminal are connected; The drain of p35, the drain of n34, the gate of p36, the gate of n36, the drain of n35, and the Q terminal are connected, the S terminal is connected to the gate of n33, and the R terminal is connected to the source of n33 and the gate of n35.
  • INITB terminal is connected to the source of p35, p3
  • the source connected to VDD, a structure in which the source of n35 is connected to VSS.
  • p35, n34, p36 and n36 constitute a latch circuit LC
  • n33 functions as a set transistor ST
  • n35 functions as a reset transistor RT.
  • FIG. 12B is a truth table of the FF 206 (when the INITB signal is inactive).
  • the Q signal of the FF 206 is held during the period when the S signal is Low (inactive) and the R signal is Low (inactive), and the S signal is Low (inactive).
  • the R signal is High (active), the S signal is High (active), and the R signal is Low (inactive).
  • the S signal is High (active) and the S signal is High (active). It becomes Low (inactive) while the R signal is High (active).
  • FIG. 15A is a circuit diagram showing still another configuration of the flip-flop according to the second embodiment.
  • the FF 207 includes a P-channel transistor p44 and an N-channel transistor n43 that constitute a CMOS circuit, a P-channel transistor p45 and an N-channel transistor n44 that constitute a CMOS circuit, a P-channel transistor p43, and an N-channel transistor.
  • Transistor n45, SB terminal, RB terminal, INIT terminal, Q terminal and QB terminal, and the gate of p44, the gate of n43, the drain of p45, the drain of n44, the drain of p43, and the Q terminal are connected
  • the drain of p44, the drain of n43, the gate of p45, the gate of n44, and the QB terminal are connected
  • the source of n44 and the drain of n45 are connected
  • the SB terminal is connected to the gate of p43 and the gate of n45.
  • the RB terminal is p43
  • INIT terminal connected to the source of n43
  • the source of p44 is connected to VDD
  • p44, n43, p45 and n44 constitute a latch circuit LC
  • p43 functions as a set transistor ST
  • n45 functions as a latch release circuit transistor LRT.
  • FIG. 15B is a truth table of the FF 207 (when the INIT signal is inactive). As shown in FIG. 15B, the Q signal of the FF 207 is low (inactive), the SB signal is low (active), and RB during the period when the SB signal is low (active) and the RB signal is low (active). High (active) when the signal is high (inactive), Low (inactive) when the SB signal is high (inactive) and the RB signal is low (active), SB signal is high (inactive) and RB The signal is held during the period when the signal is High (inactive).
  • FIG. 16A is a circuit diagram showing a configuration of an FF 208 which is a modification of FIG. 15A.
  • the FF 208 includes a P-channel transistor p46 and an N-channel transistor n47 that constitute a CMOS circuit, a P-channel transistor p48 and an N-channel transistor n48 that constitute a CMOS circuit, an N-channel transistor n46, and a P-channel transistor.
  • a transistor p47, an S terminal, an R terminal, an INITB terminal, a Q terminal and a QB terminal are provided, and the gate of p46, the gate of n47, the drain of p48, the drain of n48, the drain of n46, and the QB terminal are connected.
  • the drain of p46, the drain of n47, the gate of p48, the gate of n48 and the Q terminal are connected, the drain of p47 and the source of p48 are connected, and the S terminal is connected to the gate of n46 and the gate of p47.
  • the R terminal is connected to the source of n46 and n Is connected to the eighth source of, INITB terminal connected to the source of p46, the source of p47 is connected to VDD, a structure in which the source of n47 is connected to VSS.
  • p46, n47, p48 and n48 constitute a latch circuit LC
  • n46 functions as a set transistor ST
  • p47 functions as a latch release transistor LRT.
  • FIG. 16B is a truth table of the FF 208 (when the INITB signal is inactive). As shown in FIG. 16 (b), the Q signal of the FF 208 is held during the period when the S signal is Low (inactive) and the R signal is Low (inactive), and the S signal is Low (inactive) and R When the signal is High (active), Low (inactive), when the S signal is High (active) and the R signal is Low (inactive), High (active), the S signal is High (active), and the R signal is It becomes Low (inactive) during the High (active) period.
  • FIG. 25A is a circuit diagram showing the configuration of the FF 210.
  • the FF 210 includes a P-channel transistor p84 and an N-channel transistor n84 that constitute a CMOS circuit, a P-channel transistor p85 and an N-channel transistor n85 that constitute a CMOS circuit, and P-channel transistors p81, p82, and p83.
  • N-channel transistors n82 and n83, an SB terminal, an R terminal, an INIT terminal, a Q terminal and a QB terminal, a gate of p84, a gate of n84, a drain of p85, a drain of n85, and a QB terminal Are connected, the drain of p84, the drain of n84, the drain of p81, the drain of n82, the gate of p85, the gate of n85 and the Q terminal are connected, the source of n84 and the drain of n83 are connected, and p84 Source and p83 drain
  • the source of p81 and the drain of p82 are connected, the SB terminal is connected to the gate of p81 and the gate of n83, the R terminal is connected to the gate of n82, the gate of p82 and the gate of p83, and INIT
  • the terminal is connected to the source of n85, the sources of p82, p83 and p85 are connected to VDD,
  • p84, n84, p85 and n85 constitute a latch circuit LC
  • p81 functions as a set transistor ST
  • n82 functions as a reset transistor RT
  • p83 and n83 function as a latch release transistor LRT
  • p82 functions as a priority determination transistor PDT.
  • FIG. 25B is a truth table of the FF 210 (when the INIT signal is inactive). As shown in FIG. 25B, the Q signal of the FF 210 is low (inactive) while the SB signal is high (inactive) and the R signal is high (active), and the SB signal is high (inactive). In the holding state during the period when the R signal is Low (inactive), during the period when the SB signal is Low (active) and the R signal is High (active), the SB signal is Low (active) and the R signal is It becomes High (active) during the Low (inactive) period.
  • the source of p85 may be connected to the INITB terminal, and the source of n85 may be connected to VSS to configure as FF211 in FIG. 27 (a).
  • the truth table of FF211 is as shown in FIG.
  • FIG. 5A is a circuit diagram illustrating a configuration of the flip-flop according to the third embodiment.
  • the FF 301 includes a P-channel transistor p14 and an N-channel transistor n13 that constitute a CMOS circuit, a P-channel transistor p16 and an N-channel transistor n15 that constitute a CMOS circuit, P-channel transistors p13 and p15, N-channel transistors n14 and n16, an SB terminal, an RB terminal, an INITB terminal, a Q terminal and a QB terminal, and a gate of p14, a gate of n13, a drain of p16, a drain of p15, a drain of p15, and a Q And the drain of p14, the drain of n13, the gate of p16, the gate of n15, the drain of p13, and the QB terminal are connected, the source of n13 and the drain of n14 are connected
  • p14, n13, p16 and n15 constitute a latch circuit LC
  • p15 functions as a set transistor ST
  • p13 functions as a reset transistor RT
  • n14 and n16 function as a latch release transistor LRT.
  • FIG. 5B is a timing chart showing the operation of the FF 301 (when the INITB signal is inactive), and FIG. 5C is a truth table of the FF 301 (when the INITB signal is inactive).
  • the Q signal of the FF 301 is high (active) and the SB signal is low (active) while the SB signal is low (active) and the RB signal is low (active).
  • the SB signal is High (inactive)
  • the SB signal is High (inactive)
  • the SB signal is High (inactive) and when the RB signal is Low (active
  • the SB signal is High (inactive).
  • the RB signal is held during a period when the RB signal is High (inactive).
  • p15 is turned on and Vdd (High) is output to the Q terminal, whereby n13 is turned on and Vss (Low) is output to the QB terminal.
  • the SB signal becomes High and p15 is turned off and n14 and n16 are turned on, the state of t1 is maintained.
  • Vdd (High) of the SB terminal is output to the QB terminal, whereby n15 is turned ON and Vss (Low) is output to the Q terminal.
  • the SB signal is Low (active) and the RB signal is Low (active) (state A), and both the SB signal and RB signal are High (inactive).
  • state X When (state X) is entered, the output of the Q terminal and the QB terminal is indefinite in state A, but in state X, if p16 is ON immediately before changing to state X, the Q terminal is instantaneous. Therefore, it becomes Vss + Vth (threshold voltage of p16). Therefore, p14 is turned ON and Vdd (High) is output to the QB terminal. In addition, since n15 to which the QB terminal is connected is turned ON, the Q terminal becomes Vss (Low).
  • both the SB signal and the RB signal are High (inactive) from the state (State B) in which the SB signal is Low (active) and the RB signal is H (inactive).
  • state B in which the SB signal is Low (active) and the RB signal is H (inactive).
  • state X in the state B, the outputs of the Q terminal and the QB terminal are indefinite, but in the state X, when p16 is turned on immediately before the change to the state X, the Q terminal is It instantaneously becomes Vss + Vth (threshold voltage of p16), so p14 is turned ON and Vdd (High) is output to the QB terminal.
  • a latch circuit is configured by p14, n13, p16, and n15 (two CMOS), and the SB terminal is used as the gate of p15 functioning as the set transistor ST and the source of p13 functioning as the reset transistor RT. And the source of p16 is connected to the INITB terminal, so that the prioritized decision circuit and initialization circuit, which have been required in the past (see FIG. 70), can be eliminated, the set, latch, reset, SB signal and RB Each operation of priority determination and initialization when the signals become active simultaneously is realized. As described above, in the FF 301, when the SB signal and the RB signal are simultaneously activated, the SB signal (set) is prioritized, and the output Q is activated.
  • FF309 the source of p16 in FIG. 5 (a) may be connected to VDD and configured as FF309 in FIG. 23 (a).
  • the truth table of FF309 is as shown in FIG.
  • FIG. 6A is a circuit diagram showing a configuration of an FF 302 which is a modification of FIG. 5A.
  • the FF 302 includes a P-channel transistor p18 and an N-channel transistor n18 that constitute a CMOS circuit, a P-channel transistor p20 and an N-channel transistor n20 that constitute a CMOS circuit, and P-channel transistors p17 and p19.
  • the terminal is connected to the gate of p17, the gate of n19, and the source of n17
  • the R terminal is connected to the gate of p19 and the gate of n17
  • the INIT terminal is connected to the source of n18
  • the sources of p17 and p19 are VDD
  • the sources of n19 and n20 are connected to VSS.
  • p18, n18, p20 and n20 constitute a latch circuit LC
  • n19 functions as a set transistor ST
  • n17 functions as a reset transistor RT
  • p17 and p19 function as a latch release transistor LRT.
  • FIG. 6B is a timing chart showing the operation of the FF 302 (when the INIT signal is inactive)
  • FIG. 6C is a truth table of the FF 302 (when the INIT signal is inactive).
  • the Q signal of the FF 302 is held during the period when the S signal is Low (inactive) and the R signal is Low (inactive), and the S signal is Low (inactive).
  • the R signal is High (active), the S signal is High (active), and the R signal is Low (inactive).
  • the S signal is High (active) and the S signal is High (active). It becomes High (active) while the R signal is High (active).
  • FIG. 9A is a circuit diagram showing another configuration of the flip-flop according to the third embodiment.
  • the FF 303 includes a P-channel transistor p27 and an N-channel transistor n26 that constitute a CMOS circuit, a P-channel transistor p28 and an N-channel transistor n27 that constitute a CMOS circuit, a P-channel transistor p26, and an SB terminal.
  • a RB terminal, an INIT terminal, and a Q terminal and a QB terminal, and the gate of p27, the gate of n26, the drain of p28, the drain of n27, the drain of p26, and the QB terminal are connected to each other.
  • the drain, the drain of n26, the gate of p28, the gate of n27, and the Q terminal are connected, the RB terminal is connected to the gate of p26, the SB terminal is connected to the source of p26 and the source of p28, and the INIT terminal is n27 N26 source connected to VSS It is continued, a configuration in which VDD is connected to p27 source.
  • p27, n26, p28 and n27 form a latch circuit LC, and p26 functions as a reset transistor RT.
  • FIG. 9B is a timing chart showing the operation of the FF 303 (when the INIT signal is inactive)
  • FIG. 9C is a truth table of the FF 303 (when the INIT signal is inactive).
  • the Q signal of the FF 303 is high (active) and the SB signal is low (active) while the SB signal is low (active) and the RB signal is low (active).
  • the SB signal is High (inactive)
  • the SB signal is High (inactive)
  • the SB signal is High (inactive) and when the RB signal is Low (active
  • the SB signal is High (inactive).
  • the RB signal is held during the High (inactive) period.
  • Vss + Vth (threshold voltage of p28) is once output to the QB terminal via p28, whereby p27 is turned ON and Vdd (High) is output to the Q terminal. Further, since the Q terminal becomes Vdd, n27 is turned ON and Vss is output to the QB terminal.
  • t2 since p28 is OFF, the state of t1 is maintained even if the SB signal becomes High.
  • the RB signal becomes Low Vdd of the SB terminal is output to the QB terminal, whereby n26 is turned ON and Vss (Low) is output to the Q terminal.
  • Vss + Vth is once output to the QB terminal via p26, whereby p27 is turned ON and Vdd (High) is output to the Q terminal.
  • p27 is turned ON and Vss (Low) of the INIT terminal is output to the QB terminal.
  • p27, n26, p28 and n27 (two CMOS) constitute a latch circuit
  • the SB terminal is connected to the source of p28 and the source of p26 functioning as the reset transistor RT, and
  • the set, latch, reset, SB signal and Each operation of priority determination and initialization when the RB signal becomes active at the same time is realized.
  • the SB signal and the RB signal are simultaneously activated, the SB signal (set) is prioritized and the outputs Q and QB are activated.
  • FIG. 10A is a circuit diagram showing a configuration of an FF 304 which is a modification of FIG. 9A.
  • the FF 304 includes a P-channel transistor p29 and an N-channel transistor n29 that constitute a CMOS circuit, a P-channel transistor p30 and an N-channel transistor n30 that constitute a CMOS circuit, an N-channel transistor n28, and an S terminal.
  • the R terminal, the INITB terminal, the Q terminal and the QB terminal, and the gate of p29, the gate of n29, the drain of n28, the drain of p30, the drain of n30, and the Q terminal are connected to each other.
  • the drain, the drain of n29, the gate of p30, the gate of n30, and the QB terminal are connected, the R terminal is connected to the gate of n28, the S terminal is connected to the source of n28 and the source of n30, and the INITB terminal is of p30 Connected to source, source of p29 connected to VDD A configuration in which the source of n29 is connected to VSS.
  • p29, n29, p30 and n30 constitute a latch circuit LC, and n28 functions as a reset transistor RT.
  • FIG. 10B is a timing chart showing the operation of the FF 304 (when the INITB signal is inactive), and FIG. 10C is a truth table of the FF 304 (when the INITB signal is inactive).
  • the Q signal of the FF 304 is held during the period when the S signal is Low (inactive) and the R signal is Low (inactive), and the S signal is Low (inactive).
  • the R signal is High (active), the S signal is High (active), and the R signal is Low (inactive).
  • the S signal is High (active) and the S signal is High (active). It becomes High (active) while the R signal is High (active).
  • FIG. 13A is a circuit diagram showing still another configuration of the flip-flop according to the third embodiment.
  • the FF 305 includes a P-channel transistor p38 and an N-channel transistor n37 constituting a CMOS circuit, a P-channel transistor p40 and an N-channel transistor n38 constituting a CMOS circuit, P-channel transistors p37 and p39, SB terminal, RB terminal, INIT terminal, Q terminal and QB terminal, and the gate of p38, the gate of n37, the drain of p40, the drain of n38, the drain of p39, and the Q terminal are connected,
  • the drain of p38, the drain of n37, the gate of p40, the gate of n38, the drain of p37, and the QB terminal are connected, the RB terminal is connected to the gate of p37, and the SB terminal is connected to the source of p37 and the gate of p39.
  • the INITB terminal is connected to the source of p40 .
  • the source of n37 and n38 are connected to VSS, the source of p38 and p39 is the configuration that is connected to VDD.
  • p38, n37, p40 and n38 form a latch circuit LC, p37 functions as a reset transistor RT, and p39 functions as a set transistor ST.
  • FIG. 13B is a truth table of the FF 305 (when the INITB signal is inactive). As shown in FIG. 13B, the Q signal of the FF 305 is high (active), the SB signal is low (active), and the RB signal when the SB signal is low (active) and the RB signal is low (active). Is high (inactive) while SB signal is high (inactive), SB signal is low (inactive) and SB signal is high (inactive), and SB signal is high (inactive) and RB signal. Is in a holding state during a High (inactive) period.
  • FIG. 14A is a circuit diagram showing a configuration of an FF 306 which is a modification of FIG. 13A.
  • the FF 306 includes a P channel transistor p41 and an N channel transistor n40 constituting a CMOS circuit, a P channel transistor p42 and an N channel transistor n42 constituting a CMOS circuit, N channel transistors n39 and n41, It has an S terminal, an R terminal, an INITB terminal, a Q terminal and a QB terminal, and the gate of p41, the gate of n40, the drain of n39, the drain of p42, the drain of n42, and the Q terminal are connected, The drain of p41, the drain of n40, the gate of p42, the gate of n42, the drain of n41, and the QB terminal are connected, the R terminal is connected to the gate of n39, and the S terminal is connected to the source of n39 and the gate of n41.
  • INITB terminal is connected to the source of p42, p 1 source connected to VDD, a structure in which the source of n40 ⁇ n41 ⁇ n42 is connected to VSS.
  • p41, n40, p42 and n42 constitute a latch circuit LC
  • n39 functions as a reset transistor RT
  • n41 functions as a set transistor ST.
  • FIG. 14B is a truth table of the FF 306 (when the INITB signal is inactive).
  • the Q signal of the FF 306 is held during the period when the S signal is Low (inactive) and the R signal is Low (inactive), and the S signal is Low (inactive) and R
  • the signal is High (active), Low (inactive)
  • the S signal is High (active) and the R signal is Low (inactive)
  • High (active) High
  • the S signal is High (active)
  • the R signal is It becomes High (active) during the period of High (active).
  • FIG. 17A is a circuit diagram showing still another configuration of the flip-flop according to the third embodiment.
  • the FF 307 includes a P channel transistor p50 and an N channel transistor n49 that constitute a CMOS circuit, a P channel transistor p51 and an N channel transistor n50 that constitute a CMOS circuit, a P channel transistor p49, and an N channel.
  • Transistor n51, SB terminal, RB terminal, INITB terminal, Q terminal and QB terminal, and p50 gate, n49 gate, p51 drain, n50 drain, p49 drain, and QB terminal are connected
  • the drain of p50, the drain of n49, the gate of p51, the gate of n50 and the Q terminal are connected
  • the source of n50 and the drain of n51 are connected
  • the RB terminal is connected to the gate of p49 and the gate of n51.
  • the SB terminal is p49 Is connected to the scan and p51 source
  • INITB terminal connected to the source of p50
  • p50, n49, p51 and n50 constitute a latch circuit LC
  • n51 functions as a latch release transistor LRT.
  • FIG. 17B is a truth table of the FF 307 (when the INITB signal is inactive). As shown in FIG. 17B, the Q signal of the FF 307 is high (active), the SB signal is low (active), and the RB signal when the SB signal is low (active) and the RB signal is low (active). Is high (inactive) while SB signal is high (inactive), SB signal is low (inactive) and SB signal is high (inactive), and SB signal is high (inactive) and RB signal. Is held during High (inactive) period.
  • FIG. 18A is a circuit diagram showing a configuration of an FF 308 which is a modification of FIG.
  • the FF 308 includes a P-channel transistor p52 and an N-channel transistor n53 that constitute a CMOS circuit, a P-channel transistor p54 and an N-channel transistor n54 that constitute a CMOS circuit, an N-channel transistor n52, and a P-channel transistor.
  • a transistor p53, an S terminal, an R terminal, an INIT terminal, a Q terminal and a QB terminal are provided, and the gate of p52, the gate of n53, the drain of n52, the drain of p54, the drain of n54, and the Q terminal are connected.
  • the drain of p52, the drain of n53, the gate of p54, the gate of n54, and the QB terminal are connected, the drain of p53 and the source of p54 are connected, and the R terminal is connected to the gate of n52 and the gate of p53.
  • the S terminal is connected to the source of n54 and n5 Is connected to the source, INIT terminal connected to the source of n53, a structure in which the source of the p52 ⁇ p53 is connected to VDD.
  • p52, n53, p54 and n54 constitute a latch circuit LC
  • p53 functions as a latch release transistor.
  • FIG. 18B is a truth table of the FF 308 (when the INIT signal is inactive). As shown in FIG. 18B, the Q signal of the FF 308 is held during the period when the S signal is Low (inactive) and the R signal is Low (inactive), and the S signal is Low (inactive) and R Low (inactive) when the signal is high (active), High (active) when the S signal is high (active) and R signal is low (inactive), S signal is high (active) and the R signal is It becomes High (active) during the period of High (active).
  • FIG. 24A is a circuit diagram showing still another configuration of the flip-flop according to the third embodiment.
  • the FF 310 includes a P channel transistor p75 and an N channel transistor n75 that constitute a CMOS circuit, a P channel transistor p76 and an N channel transistor n76 that constitute a CMOS circuit, P channel transistors p71 and p74, N-channel transistors n71, n73, n74, an SB terminal, an R terminal, an INIT terminal, and a Q terminal and a QB terminal, a gate of p75, a gate of n75, a drain of p76, a drain of n76, and a QB terminal Are connected, the drain of p75, the drain of n75, the drain of p71, the drain of n71, the gate of p76, the gate of n76, and the Q terminal are connected, the source of n75 and the drain of n74 are connected, and n71 Source and n73
  • p75, n75, p76 and n76 constitute a latch circuit LC
  • p71 functions as a set transistor ST
  • n71 functions as a reset transistor RT
  • n74 and p74 function as a latch release transistor LRT
  • n73 functions as a priority determination transistor PDT.
  • FIG. 24B is a truth table of the FF 310 (when the INITB signal is inactive). As shown in FIG. 24 (b), the Q signal of the FF 310 is low (inactive) while the SB signal is high (inactive) and the R signal is high (active), and the SB signal is high (inactive). In addition, when the R signal is Low (inactive), the hold state is set. When the SB signal is Low (active) and the R signal is High (active), the SB signal is Low (active) and the R signal is Low. It becomes High (active) during the period of (inactive).
  • the source of p76 may be connected to the INITB terminal, and the source of n76 may be connected to VSS to configure as FF311 in FIG. 26 (a).
  • the truth table of the FF 311 is as shown in FIG.
  • the flip-flop of Embodiment 3 may be configured as shown in FIG. That is, in the FF 312 of FIG. 72A, the source of p82 (set transistor) is connected to the INITB terminal, the gate of p82 is connected to the SB terminal, the gate of n81, and the gate of n83, and the drain of p82 is the Q terminal. It is connected to the.
  • the drain of n82 (reset transistor) is connected to the source of n81, the gate of n82 is connected to the R terminal and the gate of p83, and the source of n82 is connected to VSS.
  • the drains of p83 and n83 are connected to the latch circuit LC.
  • FIG. 72B shows a truth table of the FF 312.
  • FIG. 28 is a circuit diagram showing a configuration of the liquid crystal display device 3a according to the present invention.
  • the liquid crystal display device 3a includes a display unit DAR, a gate driver GD, a source driver SD, and a display control circuit DCC.
  • the display control circuit DCC supplies the gate driver GD with a gate start pulse GSP, a gate on enable signal GOE, an INITB signal (initialization signal), and gate clock signals GCK1B and GCK2B.
  • the display control circuit DCC supplies a source start pulse SSP, digital data DAT, a polarity signal POL, and a source clock signal SCK to the source driver SD.
  • the gate driver GD includes a shift register SR having a plurality of stages.
  • the output signal (OUTB signal) from the i-stage SRi of the shift register is supplied to the scanning signal line Gi of the display unit DAR via the inverter.
  • the OUTB signal of the n stage SRn is supplied to the scanning signal line Gn via the inverter.
  • the scanning signal line Gn is connected to the gate of a transistor connected to the pixel electrode in PIXn, and a storage capacitor (auxiliary capacitor) is formed between the pixel electrode in PIXn and the storage capacitor line CSn. .
  • FIG. 29 is a circuit diagram showing the configuration of the i-stage SRi of the shift register.
  • each stage of the shift register includes a flip-flop FF according to this embodiment having an SB terminal, an RB terminal, and an INITB terminal, an analog switch ASW, a P-channel transistor Tr, and a CKB terminal.
  • the Q terminal of the flip-flop FF is connected to the gate of the transistor Tr and the N channel side gate of the analog switch ASW, the QB terminal is connected to the P channel side gate of the analog switch ASW, and the source of the transistor Tr is VDD
  • the drain of the transistor Tr is connected to the OUTB terminal, which is the output terminal of this stage, and one conductive electrode of the analog switch ASW, and the other conductive electrode of the analog switch ASW is connected to the CKB terminal for clock signal input. It is connected.
  • the analog switch ASW is OFF and the transistor Tr is ON, so the OUTB signal is High (inactive) and the Q signal is High (active).
  • the GCKB signal is taken in and output from the OUTB terminal. That is, the transistor Tr and the analog switch ASW constitute a signal generation circuit (a gate circuit that captures a power supply potential or a clock signal according to the output of the FF) that generates the OUTB signal using the output of the flip-flop FF.
  • the OUTB terminal of its own stage is connected to the SB terminal of the next stage, and the OUTB terminal of the next stage is connected to the RB terminal of its own stage.
  • the OUTB terminal of the n stage SRn is connected to the SB terminal of the (n + 1) stage SRn + 1
  • the OUTB terminal of the (n + 1) stage SRn + 1 is connected to the RB terminal of the n stage SRn.
  • the GSPB signal is input to the SB terminal of the first stage SR1 of the shift register SR.
  • odd-numbered CKB terminals and even-numbered CKB terminals are connected to different GCK lines (lines supplying GCK), and the INITB terminals of the respective stages supply a common INITB line (INITB signal).
  • the CKB terminal of the n stage SRn is connected to the GCK2B signal line
  • the CKB terminal of the (n + 1) stage SRn + 1 is connected to the GCK1B signal line
  • the INITB terminals of the n stage SRn and the (n + 1) stage SRn + 1 are common INITB signals. Connected to the line.
  • FIG. 30 is a timing chart showing a driving method of the liquid crystal display device 3a.
  • INITB is an initialization signal
  • GSPB is a gate start pulse bar signal
  • GCK1B is a GCK1B signal
  • GCK2B is a GCK2B signal
  • SBi, RBi, QBi, and OUTBi n ⁇ 1 ⁇ n ⁇ n + 1)
  • SBi SB terminal potential
  • RB signal RB terminal potential
  • QB signal QB terminal potential
  • OUTB signal OUTB terminal potential
  • FIG. 31 is a circuit diagram showing a configuration of a liquid crystal display device 3A using the shift register SR of FIG. 28 on the source driver side.
  • the source start pulse SSP is input to the first stage of the shift register SR
  • the source clock bar signal SCK1B or SCK2B is input to the CKB terminal of each stage.
  • the OUTB signal output from the i stage SRi is supplied to the data signal line SLi of the display unit DAR via the sampling circuit SAC and the output circuit OC.
  • the OUTB signal of the n stage SRn is supplied to the data signal line SLn via the sampling circuit SAC and the output circuit OC.
  • the data signal line SLn is connected to the source of a transistor connected to the pixel electrode in PIXn.
  • FIG. 32 is a circuit diagram showing a configuration of a liquid crystal display device 3b in which the configuration of the shift register SR in FIG. 28 is changed.
  • FIG. 33 is a circuit diagram showing a configuration of i-stage SRi of shift register SR shown in FIG.
  • each stage of the shift register includes a flip-flop FF according to the present embodiment having an SB terminal, an RB terminal, and an INITB terminal, two analog switches ASW1 and ASW2, NAND, an inverter, , CKB terminal, the QB terminal of the flip-flop FF is connected to one input of the NAND, and the output of the NAND is the input of the inverter, the P channel side gate of the analog switch ASW1, and the N channel side of the analog switch ASW2.
  • the output of the inverter is connected to the N-channel side gate of the analog switch ASW1 and the P-channel side gate of the analog switch ASW2, and one conduction electrode of the analog switch ASW1 is connected to the VDD terminal, One conduction of analog switch ASW2 The pole is connected to the CKB terminal, the other conductive electrode of the analog switch ASW1, the other conductive electrode of the analog switch ASW2, the OUTB terminal that is the output terminal of this stage, the other input of the NAND, and the RB terminal of the FF And are connected.
  • the i-stage SRi In the i-stage SRi, during the period when the QB signal (NAND input X) of the flip-flop FF is High (inactive), if the OUTB signal (NAND other input Y) is High (inactive), the NAND output ( M) becomes Low (the analog switch ASW1 is turned on and ASW2 is turned off), and the OUTB signal becomes Vdd (inactive). On the other hand, if the OUTB signal (the other input Y of NAND) is Low (active), the NAND output (M) becomes High (the analog switch ASW1 is OFF and ASW2 is ON), and the GCKB signal is taken in and output from the OUTB terminal.
  • the NAND input (M) is High because the one input X of NAND is Low and the other input Y of NAND is Low (the analog switch ASW1 is When ASW2 is turned OFF, the GCKB signal is captured and output from the OUTB terminal. That is, the NAND, the inverter, and the analog switches ASW1 and ASW2 constitute a signal generation circuit that generates the OUTB signal using the output of the flip-flop FF. In particular, the inverter and the analog switches ASW1 and ASW2 correspond to the output M of the NAND.
  • a gate circuit for capturing a power supply potential or a clock signal is configured.
  • the shift register SR in FIG. 32 has its own OUTB terminal connected to the next SB terminal.
  • the OUTB terminal of the n stage SRn is connected to the SB terminal of the (n + 1) stage SRn + 1.
  • the GSPB signal is input to the SB terminal of the first stage SR1 of the shift register SR.
  • odd-numbered CKB terminals and even-numbered CKB terminals are connected to different GCK lines (GCK supply lines), and the INITB terminals of each stage supply a common INITB line (INITB signal). Connected to the line).
  • the CKB terminal of the n stage SRn is connected to the GCK2B signal line
  • the CKB terminal of the (n + 1) stage SRn + 1 is connected to the GCK1B signal line
  • the INITB terminals of the n stage SRn and the (n + 1) stage SRn + 1 are common INITB signals. Connected to the line.
  • FIG. 34 is a timing chart showing a driving method of the liquid crystal display device 3b.
  • the next-stage SB signal becomes active
  • the self-stage FF is reset to High (not high). Active).
  • the OUTB signal of the own stage is Low (that is, the output of NAND is High)
  • the GCKB signal is continuously taken into the own stage, and when the GCKB signal becomes High (inactive), The OUTB signal becomes High and the output of the NAND becomes Low. Thereafter, the OUTB terminal is connected to VDD, and the OUTB signal becomes High (inactive).
  • FIG. 35 is a circuit diagram showing a configuration of a liquid crystal display device 3B using the shift register SR of FIG. 32 on the source driver side.
  • the source start pulse SSP is input to the first stage of the shift register SR
  • the source clock bar signal SCK1B or SCK2B is input to the CKB terminal of each stage.
  • the OUTB signal output from the i stage SRi is supplied to the data signal line SLi of the display unit DAR via the sampling circuit SAC and the output circuit OC.
  • the OUTB signal of the n stage SRn is supplied to the data signal line SLn via the sampling circuit SAC and the output circuit OC.
  • the data signal line SLn is connected to the source of a transistor connected to the pixel electrode in PIXn.
  • FIG. 36 is a circuit diagram showing a configuration of a liquid crystal display device 3c in which the shift register SR of FIG. 32 can be shifted in both directions.
  • an up / down switch UDSW is provided corresponding to each stage.
  • Each up / down UDSW is supplied with a UD signal and a UDB signal.
  • UDSWn ⁇ 1 has an (n ⁇ 1) stage SRn ⁇ 1 OUTB terminal, an n stage SRn SB terminal, and an (n + 1) stage SRn + 1.
  • the UDSWn is connected to the OUTB terminal of the n stage SRn, the SB terminal of the (n + 1) stage SRn + 1, and the OUTB terminal of the (n + 2) stage SRn + 2.
  • liquid crystal display devices 3a to 3c, 3A, and 3B use the flip-flop described in the above embodiment, the G-Cs driver can be reduced in size.
  • FIG. 37 is a circuit diagram showing a configuration of a liquid crystal display device 3d according to the present invention.
  • the liquid crystal display device 3d is a so-called CC (charge coupled) drive liquid crystal display device, and includes a display unit DAR, a gate / Cs driver G-CsD, a source driver SD, and a display control circuit DCC.
  • the display control circuit DCC includes a gate driver GD, a gate start pulse GSP, a gate on enable signal GOE, an INITB signal (initialization signal), an AONB signal (all ON signal), a CS inversion signal CMI1, CMI2, and a gate clock signal.
  • GCK1B and GCK2B are supplied.
  • the display control circuit DCC supplies a source start pulse SSP, digital data DAT, a polarity signal POL, and a source clock signal SCK to the source driver SD.
  • the gate / Cs driver G-CsD includes a shift register SR composed of a plurality of stages and a plurality of D latch circuits CSL, and corresponds to one stage of the shift register, one inverter, one OR circuit, One D latch circuit CSL is provided.
  • a D latch circuit CSLi is provided corresponding to the i-stage SRi of the shift register.
  • the output signal (OUTB signal) from the i stage SRi of the shift register is supplied to the scanning signal line Gi of the display unit DAR via an inverter and a buffer. Further, an output signal (out signal, CS signal) from the D latch circuit CSLi corresponding to the i-stage SRi is supplied to the storage capacitor line CSi of the display unit DAR.
  • the OUTB signal of the n stage SRn is supplied to the scanning signal line Gn via the inverter and the buffer, and the output signal (out signal, CS signal) from the D latch circuit CSLn corresponding to the n stage SRn is displayed on the display unit DAR.
  • the scanning signal line Gn is connected to the gate of a transistor connected to the pixel electrode in PIXn, and a storage capacitor (auxiliary capacitor) is formed between the pixel electrode in PIXn and the storage capacitor line CSn. .
  • one analog switch asw and an inverter are provided corresponding to one data signal line, the input of this inverter is connected to the AONB signal line, and the end of the data signal line is one of the continuity of the analog switch asw.
  • the other conduction terminal of the analog switch asw is connected to the Vcom (common electrode potential) power source, the N channel side gate of the analog switch asw is connected to the output of the inverter, and the P channel side gate of the analog switch asw is Connected to AONB signal line.
  • FIG. 38 is a circuit diagram showing a configuration of i-stage SRi of shift register SR shown in FIG. As shown in the figure, each stage of the shift register includes an SB terminal, an RB terminal, and an INITB terminal, the flip-flop FF described in the above embodiment, two analog switches ASW1 and ASW2, and NAND.
  • An inverter, a CKB terminal, and an ONB terminal are included, the QB terminal of the flip-flop FF is connected to one input of the NAND, and the output of the NAND is connected to the input of the inverter and the P channel side gate of the analog switch ASW1, Connected to the N channel side gate of the analog switch ASW2, the output of the inverter is connected to the N channel side gate of the analog switch ASW1 and the P channel side gate of the analog switch ASW2, and one conduction electrode of the analog switch ASW1 is ONB Connected to the terminal and the analog switch.
  • One conducting electrode of ASW2 is connected to the CKB terminal, the other conducting electrode of analog switch ASW1, the other conducting electrode of analog switch ASW2, the OUTB terminal which is the output terminal of this stage, and the other input of NAND , RB terminals of FF are connected.
  • the NAND output ( M) becomes Low (analog switch ASW1 is turned on and ASW2 is turned off), while the AONB signal (inactive and Vdd) is output to the OUTB terminal, while the OUTB signal (the other input Y of NAND) is Low (active). If so, the output (M) of the NAND becomes High (the analog switch ASW1 is OFF and ASW2 is ON), and the GCKB signal is captured and output from the OUTB terminal.
  • the NAND input (M) is High because the one input X of NAND is Low and the other input Y of NAND is Low (the analog switch ASW1 is When ASW2 is turned OFF, the GCKB signal is captured and output from the OUTB terminal. That is, the NAND, the inverter, and the analog switches ASW1 and ASW2 constitute a signal generation circuit that generates the OUTB signal using the output of the flip-flop FF. In particular, the inverter and the analog switches ASW1 and ASW2 correspond to the output M of the NAND.
  • a gate circuit for capturing an AONB signal or a clock signal is configured.
  • FIG. 39 is a circuit diagram showing a configuration of D latch circuit CSLi corresponding to i-stage SRi of shift register SR shown in FIG.
  • the D latch circuit CSLi includes three CMOS circuits 5 to 7, analog switches ASW3 and ASW4, an inverter, a CK terminal, a D terminal, and an out terminal.
  • the CMOS circuits 5 and 6 the gates of one P-channel transistor and one N-channel transistor are connected to each other, the drains are connected to each other, and the source of the P-channel transistor is connected to VDD. Is connected to VSS.
  • the gates of one P-channel transistor and one N-channel transistor are connected to each other, the drains are connected to each other, the source of the P-channel transistor is connected to the power source VCSH, and the source of the N-channel transistor is the power source This is a configuration connected to the VCSL.
  • the CK terminal, the input of the inverter, the N channel side gate of the analog switch ASW3, and the P channel side gate of the analog switch ASW4 are connected, and the output of the inverter, the P channel side gate of the analog switch ASW3, and the N channel of the analog switch ASW4
  • the gate side of the CMOS circuit 5, one conduction terminal of the analog switch ASW4, one conduction terminal of the analog switch ASW3, and the gate side of the CMOS circuit 6 are connected, and the other conduction of the analog switch ASW3.
  • the other terminal of the analog switch ASW4 and the gate side of the CMOS circuit 6 are connected, the gate side of the CMOS circuit 5 and the drain side of the CMOS circuit 6 are connected, and the CMOS circuit 6 The drain side of the CMOS circuit 7 And up side are connected, the drain side and the out terminal of the CMOS circuit 7 is connected.
  • the D latch circuit CSLi takes in the D signal (signal input to the D terminal) and latches it while the CK signal (signal input to the CK terminal) is active (High). That is, if the D signal changes from Low to High during the active period of the CK signal, the out signal (signal output from the out terminal) is raised from the potential of the power supply VCSL to the potential of the power supply VCSH, and then the potential of the power supply VCSH is increased. If the D signal changes from High to Low while the CK signal is active, the out signal (the signal output from the out terminal) drops from the potential of the power supply VCSH to the potential of the power supply VCSL, and then the power supply VCSL The potential will be maintained.
  • the own OUTB terminal is connected to the next SB terminal.
  • the OUTB terminal of the own stage is connected to one input terminal of the OR circuit corresponding to the own stage via an inverter, and the other OUTB terminal corresponding to the own stage is connected to the OUTB terminal of the next stage via the inverter.
  • the output of the OR circuit corresponding to the own stage is connected to the CK terminal of the D latch circuit corresponding to the own stage.
  • the OUTB terminal of the n-stage SRn is connected to the SB terminal of the (n + 1) -stage SRn + 1, and the OUTB terminal of the n-stage SRn is connected to one input terminal of the OR circuit corresponding to the n-stage SRn via the inverter.
  • the OUTB terminal of the (n + 1) stage SRn + 1 is connected to the other input terminal of the OR circuit corresponding to the n stage SRn stage via an inverter, and the output of the OR circuit corresponding to the n stage SRn is D corresponding to the n stage SRn. It is connected to the CK terminal of the latch circuit CSLn.
  • the GSPB signal is input to the first stage SB terminal of the shift register SR.
  • odd-numbered CKB terminals and even-numbered CKB terminals are connected to different GCK lines (lines for supplying GCK), and the INITB terminals of the respective stages are connected to a common INITB line (
  • the ONB terminal of each stage is connected to a common AONB line (line supplying an AON signal).
  • the CKB terminal of the n stage SRn is connected to the GCK2B signal line
  • the CKB terminal of the (n + 1) stage SRn + 1 is connected to the GCK1B signal line
  • the INITB terminals of the n stage SRn and the (n + 1) stage SRn + 1 are common INITB signals.
  • the ONB terminals of the n-stage SRn and the (n + 1) -stage SRn + 1 are connected to a common AONB signal line. Further, the D terminal is connected to a different CMI line (a line for supplying a CMI signal) for each of two D latch circuits corresponding to two consecutive stages.
  • the D terminal of the D latch circuit CSLn corresponding to the n stage SRn is connected to the CMI2 signal line
  • the D terminal of the D latch circuit CSLn + 1 corresponding to the (n + 1) stage SRn + 1 is connected to the CMI2 signal line
  • (n + 2) stages The D terminal of the D latch circuit CSLn + 2 corresponding to SRn + 2 is connected to the CMI1 signal line
  • the D terminal of the D latch circuit CSLn + 3 corresponding to the (n + 3) stage SRn + 3 is connected to the CMI1 signal line.
  • FIG. 40 is a timing chart showing a driving method of the liquid crystal display device 3d.
  • AONB means AONB signal
  • INITB means initialization signal
  • GSPB means gate start pulse bar signal
  • GCK1B means GCK1B signal
  • GCK2B means GCK2B signal
  • CMI1 means CMI1 signal
  • CMI2 means CMI2 signal
  • the cycle of the polarity signal POL is set to one horizontal scanning period 1H (that is, the polarity of the data signal supplied to the same data signal line is inverted every 1H), and CMI1 and CMI2 are in phase.
  • the following display preparation operation is performed before the first frame (vertical scanning period) of the display image.
  • both the AONB signal and the INITB signal are active (Low) for a predetermined period, the INITB signal is inactive after the AONB signal is inactive, and each GCKB signal is inactive while the AONB signal is active. While being fixed to active (Low), each CMI signal is fixed to High (or Low).
  • the AONB signal is output from the OUTB terminal via ASW1, and immediately after ASW1 is turned OFF and ASW2 is turned ON, the OUTB signals at all stages become active (Low).
  • a scanning signal line is selected.
  • Vcom is written to all PIX of the display unit DAR, and the FFs provided in each stage of the shift register The QB output is inactive (High), and the out signal (the potential of the storage capacitor line) of each D latch circuit is set to the potential of the power supply VCSL.
  • the OUTB signal of the own stage is Low (that is, the output of the NAND is High)
  • the GCKB signal is continuously taken into the own stage, and when the GCKB signal becomes High (inactive), The OUTB signal becomes High and the NAND output becomes Low. Thereafter, the AONB signal is output from the OUTB terminal, and the OUTB signal becomes High (inactive).
  • the D latch circuit corresponding to the own stage latches the CMI1 signal or the CMI2 signal, and further the next stage
  • the D latch circuit corresponding to the own stage again latches the CMI1 signal or the CMI2 signal.
  • the out signal of the D latch circuit corresponding to the self-stage (the potential of the storage capacitor wiring corresponding to the self-stage) is deactivated by the OUTB signal of the self-stage (the scanning signal line corresponding to the self-stage is OFF)
  • the potential of the power supply VCSL is increased to the potential of the power supply VCSH (when a positive polarity data signal is written to the pixel corresponding to the self-stage) or the potential of the power supply VCSH is decreased to the potential of the power supply VCSL. (When a negative polarity data signal is written to the pixel corresponding to the own stage).
  • the D latch circuit CSLn corresponding to the n stage SRn latches the CMI2 signal, and (n + 1) )
  • D latch circuit CSLn latches the CMI2 signal again.
  • the OUT signal of the D-stage latch circuit CSLn corresponding to the n-stage SRn (the potential of the storage capacitor line CSn corresponding to the n-stage SRn) becomes inactive (the corresponding to the n-stage SRn).
  • the potential of the power supply VCSH is lowered to the potential of the power supply VCSL.
  • a negative polarity data signal is written in the pixel PIXn corresponding to the n-stage SRn, as shown by POL, and the effective potential is lowered below the potential of the data signal by pushing down the storage capacitor line CSn. (The luminance of the pixel PIXn is increased).
  • the D latch circuit CSLn + 1 corresponding to the (n + 1) stage SRn + 1 latches the CMI2 signal
  • the D latch Circuit CSLn + 2 again latches the CMI2 signal.
  • the out signal (potential of the storage capacitor wiring CSn + 1) of the D latch circuit CSLn + 1 corresponding to the (n + 1) stage SRn + 1 is deactivated (the scanning signal line Gn + 1 is turned ON / OFF). After turning off), the potential of the power supply VCSL is pushed up to the potential of the power supply VCSH.
  • a positive polarity data signal is written in the pixel PIXn + 1 corresponding to the (n + 1) stage SRn + 1 as shown by POL, and the effective potential is made higher than the potential of the data signal by pushing up the storage capacitor wiring CSn + 1.
  • the luminance can be increased (the luminance of the pixel PIXn + 1 is increased).
  • the D latch circuit CSLn + 2 corresponding to the (n + 2) stage SRn + 2 latches the CMI1 signal
  • the D latch Circuit CSLn + 2 again latches the CMI1 signal.
  • the OUT signal of the D latch circuit CSLn + 2 corresponding to the (n + 2) stage SRn + 2 (potential of the storage capacitor line CSn + 2) is deactivated (the scanning signal line Gn + 2 is turned ON / OFF). After turning off, the potential of the power supply VCSH is pushed down to the potential of the power supply VCSL.
  • a negative polarity data signal is written to the pixel PIXn + 2 corresponding to the (n + 2) stage SRn + 2 as shown by POL, and the effective potential is made to be lower than the potential of the data signal by pushing down the storage capacitor line CSn + 2. (The luminance of the pixel PIXn + 2 can be increased).
  • the second and subsequent frames are displayed in the same manner as the first frame.
  • the POL phase is shifted by a half cycle every frame, the polarity of the data signal supplied to the same pixel is inverted every frame.
  • the push-up and push-down of the out signal (the potential of the storage capacitor wiring CSi) of the D latch circuit CSLi is also switched every frame.
  • the G-Cs driver can be reduced in size.
  • the same potential for example, Vcom
  • the shift register initialization initialization of flip-flops in each stage
  • writing the same potential to all pixels and initialization of the flip-flops are performed separately. Compared with the conventional liquid crystal display device performed in the above, display preparation can be completed promptly.
  • the shift register can be initialized reliably.
  • each pixel row can be appropriately CC-driven from the first frame, it is possible to eliminate screen distortion (horizontal stripe-like unevenness) of the first frame, which has been a problem with conventional CC driving.
  • the phase of the polarity signal POL is set to 2H (supplied to the same data signal line) only by shifting the phase of the CMI2 signal by a half cycle (from FIG. 40).
  • the polarity of the data signal is inverted every 2H), and each pixel row can be appropriately CC-driven from the first frame. That is, in the liquid crystal display device 3d, the cycle of the polarity signal POL can be switched from 1H to 2H only by controlling the phases of the CS inversion signals CMI1 and CMI2 signals, and screen disturbance at that time can be eliminated.
  • the shift register SR of the G-Cs driver of the liquid crystal display device 3d uses the flip-flop (for example, the configuration described in FIG. 3) described in each of the above embodiments in order to reduce the size. If an effect other than downsizing is emphasized, it is naturally possible to apply a conventional flip-flop (eg, the flip-flop of FIG. 70) to the shift register of the G-Cs driver.
  • FIG. 42 is a circuit diagram showing a configuration of a liquid crystal display device 3e according to the present invention.
  • the liquid crystal display device 3e is a so-called CC (charge coupled) drive liquid crystal display device, and includes a display unit DAR, a gate / Cs driver G-CsD, a source driver SD, and a display control circuit DCC.
  • the display control circuit DCC includes a gate driver GD, a gate start pulse GSP, a gate on enable signal GOE, an INITB signal (initialization signal), an AONB signal (all ON signal), a CS inversion signal CMI1, CMI2, and a gate clock signal.
  • GCK1B and GCK2B are supplied.
  • the display control circuit DCC supplies a source start pulse SSP, digital data DAT, a polarity signal POL, and a source clock signal SCK to the source driver SD.
  • the gate / Cs driver G-CsD includes a shift register SR having a plurality of stages and a plurality of D latch circuits CSL.
  • One inverter and one D latch circuit CSL are provided corresponding to one stage of the shift register. And one buffer.
  • a D latch circuit CSLi is provided corresponding to the i-stage SRi of the shift register.
  • the output signal (OUTB signal) from the i stage SRi of the shift register is supplied to the scanning signal line Gi of the display unit DAR via an inverter and a buffer.
  • the output signal (out signal, CS signal) from the D latch circuit CSLi corresponding to the i-stage SRi is supplied to the storage capacitor line CSi-1 of the display unit DAR.
  • the OUTB signal of the n stage SRn is supplied to the scanning signal line Gn via the inverter and the buffer, and the output signal (out signal, CS signal) from the D latch circuit CSLn corresponding to the n stage SRn is displayed on the display unit DAR. Is supplied to the storage capacitor line CSn-1.
  • the scanning signal line Gn is connected to the gate of a transistor connected to the pixel electrode in PIXn, and a storage capacitor (auxiliary capacitor) is formed between the pixel electrode in PIXn and the storage capacitor line CSn.
  • the scanning signal line Gn-1 is connected to the gate of a transistor connected to the pixel electrode in PIXn-1, and a storage capacitor (between the pixel electrode in PIXn-1 and the storage capacitor line CSn-1). Auxiliary capacity) is formed.
  • one analog switch asw and an inverter are provided corresponding to one data signal line, the input of this inverter is connected to the AONB signal line, and the end of the data signal line is one of the continuity of the analog switch asw.
  • the other conduction terminal of the analog switch asw is connected to the Vcom (common electrode potential) power source, the N channel side gate of the analog switch asw is connected to the output of the inverter, and the P channel side gate of the analog switch asw is Connected to AONB signal line.
  • FIG. 43 is a circuit diagram showing a configuration of i-stage SRi of shift register SR shown in FIG.
  • each stage of the shift register includes an SB terminal, an RB terminal, and an INITB terminal, the flip-flop FF described in the above embodiment, two analog switches ASW1 and ASW2, and NAND.
  • An inverter, a CKB terminal, an ONB terminal, and an M terminal are included, and the QB terminal of the flip-flop FF is connected to one input of the NAND.
  • the output of the inverter is connected to the N channel side gate of the analog switch ASW1 and the P channel side gate of the analog switch ASW2, and the analog switch ASW1.
  • One of the conductive electrodes is connected to the ONB terminal
  • the one conducting electrode of the analog switch ASW2 is connected to the CKB terminal, the other conducting electrode of the analog switch ASW1, the other conducting electrode of the analog switch ASW2, the OUTB terminal that is the output terminal of this stage, and the other of the NAND Is connected to the RB terminal of the FF.
  • the NAND output ( M signal) becomes Low (analog switch ASW1 is ON and ASW2 is OFF), and AONB signal (inactive and Vdd) is output to OUTB terminal, while OUTB signal (NAND other input Y) is Low (active) ),
  • the NAND output (M signal) becomes High (the analog switch ASW1 is OFF and ASW2 is ON), and the GCKB signal is captured and output from the OUTB terminal.
  • the NAND, the inverter, and the analog switches ASW1 and ASW2 constitute a signal generation circuit that generates the OUTB signal by using the output of the flip-flop FF.
  • the inverter and the analog switches ASW1 and ASW2 are NAND outputs (M signals).
  • a gate circuit that captures the AONB signal or the clock signal is configured according to the above.
  • the configuration of the D latch circuit CSLi is the same as that of FIG. 39, and the D signal (signal input to the D terminal) is captured during the period when the CK signal (signal input to the CK terminal) is active (High). Latch. That is, if the D signal changes from Low to High during the active period of the CK signal, the out signal (signal output from the out terminal) is raised from the potential of the power supply VCSL to the potential of the power supply VCSH, and then the potential of the power supply VCSH is increased.
  • the out signal (the signal output from the out terminal) drops from the potential of the power supply VCSH to the potential of the power supply VCSL, and then the power supply VCSL The potential will be maintained.
  • the OUTB terminal of its own stage is connected to the SB terminal of the next stage. Further, the M terminal of the own stage is connected to the CK terminal of the D latch circuit corresponding to the own stage.
  • the OUTB terminal of the n stage SRn is connected to the SB terminal of the (n + 1) stage SRn + 1
  • the M terminal of the n stage SRn is connected to the CK terminal of the D latch circuit CSLn corresponding to the n stage SRn.
  • the GSPB signal is input to the first stage SB terminal of the shift register SR.
  • odd-numbered CKB terminals and even-numbered CKB terminals are connected to different GCK lines (lines supplying GCK), and the INITB terminals of the respective stages supply a common INITB line (INITB signal).
  • the ONB terminal of each stage is connected to a common AONB line (line for supplying an AON signal).
  • the CKB terminal of the n stage SRn is connected to the GCK2B signal line
  • the CKB terminal of the (n + 1) stage SRn + 1 is connected to the GCK1B signal line
  • the INITB terminals of the n stage SRn and the (n + 1) stage SRn + 1 are common INITB signals.
  • the ONB terminals of the n-stage SRn and the (n + 1) -stage SRn + 1 are connected to a common AONB signal line. Further, the D terminal is connected to a different CMI line (a line for supplying a CMI signal) for each of two D latch circuits corresponding to two consecutive stages. For example, the D terminal of the D latch circuit CSLn-1 corresponding to the (n-1) stage SRn-1 is connected to the CMI1 signal line, and the D terminal of the D latch circuit CSLn corresponding to the n stage SRn is connected to the CMI1 signal line.
  • the D terminal of the D latch circuit CSLn + 1 corresponding to the (n + 1) stage SRn + 1 is connected to the CMI2 signal line
  • the D terminal of the D latch circuit CSLn + 2 corresponding to the (n + 2) stage SRn + 2 is connected to the CMI2 signal line.
  • FIG. 44 is a timing chart showing a driving method of the liquid crystal display device 3e.
  • AONB is an AON signal
  • INITB is an initialization signal
  • GSPB is a gate start pulse bar signal
  • GCK1B is a GCK1B signal
  • GCK2B is a GCK2B signal
  • CMI1 is a CMI1 signal
  • CMI2 is a CMI2 signal
  • the cycle of the polarity signal POL is set to one horizontal scanning period 1H (that is, the polarity of the data signal supplied to the same data signal line is inverted every 1H), and CMI1 and CMI2 are in phase.
  • the following display preparation operation is performed before the first frame (vertical scanning period) of the display image.
  • both the AONB signal and the INITB signal are active (Low) for a predetermined period, the INITB signal is inactive after the AONB signal is inactive, and each GCKB signal is inactive while the AONB signal is active.
  • Each CMI signal is fixed to High (or Low) while being fixed to Active (Low).
  • the AONB signal is output from the OUTB terminal via the ASW1, and the ASW1 is immediately turned OFF and the ASW2 is turned ON, so that the OUTB signals in all stages become active (Low). All scanning signal lines are selected.
  • Vcom is supplied to all the data signal lines.
  • the SB signal, the RB signal, and the INITB signal input to each stage are all active (Low)
  • the QB signal of the flip-flop at each stage is inactive (High).
  • the M signal at each stage (the signal output from the M terminal) is also active (High)
  • each D latch circuit latches the CMI1 signal (Low) or the CMI2 signal (Low) and applies it to the storage capacitor wiring.
  • the supplied out signal (CS signal) becomes the potential of the power supply VCSL.
  • Vcom is written to all PIX of the display unit DAR, and flip-flops provided at each stage of the shift register.
  • the QB output is inactive (High), and the out signal (the potential of the storage capacitor line) of each D latch circuit is set to the potential of the power supply VCSL.
  • the OUTB signal of the own stage is Low (that is, the output of the NAND is High)
  • the GCKB signal is continuously taken into the own stage, and when the GCKB signal becomes High (inactive), The OUTB signal becomes High and the NAND output becomes Low. Thereafter, the AONB signal is output from the OUTB terminal, and the OUTB signal becomes High (inactive).
  • the D latch circuit corresponding to the next stage latches the CMI1 signal or the CMI2 signal.
  • the out signal of the D latch circuit corresponding to the self-stage (the potential of the storage capacitor wiring corresponding to the self-stage) is deactivated by the OUTB signal of the self-stage (the scanning signal line corresponding to the self-stage is OFF)
  • the potential of the power supply VCSL is increased to the potential of the power supply VCSH (when a positive polarity data signal is written to the pixel corresponding to the self-stage) or the potential of the power supply VCSH is decreased to the potential of the power supply VCSL. (When a negative polarity data signal is written to the pixel corresponding to the own stage).
  • the D latch circuit CSLn corresponding to the n stage SRn latches the CMI1 signal.
  • the OUT signal of the D latch circuit CSLn (the potential of the storage capacitor line CSn-1) is deactivated by the OUTB signal of the (n-1) stage SRn-1 (the scanning signal line Gn-1 is turned ON / OFF).
  • the potential of the power supply VCSL is pushed up to the potential of the power supply VCSH.
  • a positive polarity data signal is written in the pixel PIXn ⁇ 1 corresponding to the (n ⁇ 1) stage SRn ⁇ 1, as shown by POL.
  • the potential can be made higher than the potential of the data signal (the luminance of the pixel PIXn-1 can be increased).
  • the D latch circuit CSLn + 1 corresponding to the (n + 1) stage SRn + 1 latches the CMI2 signal.
  • the out signal (the potential of the storage capacitor line CSn) of the D latch circuit CSLn + 1 is changed from the potential of the power supply VCSH after the OUTB signal of the n-stage SRn becomes inactive (the scanning signal line Gn is turned ON / OFF). Push down to the potential of the power supply VCSL.
  • a negative polarity data signal is written in the pixel PIXn corresponding to the n-stage SRn, as shown by POL, and the effective potential is lowered below the potential of the data signal by pushing down the storage capacitor line CSn. (The luminance of the pixel PIXn is increased).
  • the D latch circuit CSLn + 2 corresponding to the (n + 2) stage SRn + 2 latches the CMI2 signal.
  • the out signal of the D latch circuit CSLn + 2 (the potential of the storage capacitor line CSn + 1) is changed from the potential of the power supply VCSH after the OUTB signal of the n-stage SRn + 1 becomes inactive (the scanning signal line Gn + 1 is turned ON / OFF). Push up to the potential of the power supply VCSL.
  • a positive polarity data signal is written in the pixel PIXn + 1 corresponding to the (n + 1) stage SRn + 1 as shown by POL, and the effective potential is made higher than the potential of the data signal by pushing up the storage capacitor wiring CSn + 1.
  • the luminance can be increased (the luminance of the pixel PIXn + 1 is increased).
  • the second and subsequent frames are displayed in the same manner as the first frame.
  • the POL phase is shifted by a half cycle every frame, the polarity of the data signal supplied to the same pixel electrode PIXi is inverted every frame.
  • the push-up and push-down of the out signal (the potential of the storage capacitor wiring CSi) of the D latch circuit CSLi is also switched every frame.
  • the G-Cs driver can be reduced in size. Further, by inputting the internal signal (M signal) of the shift register to the CK terminal of the D latch circuit, a NOR circuit and an OR circuit are not required in the G-Cs driver, and further miniaturization is possible.
  • the same potential for example, Vcom
  • the shift register initialization is simultaneously performed when writing the same potential to all pixels, writing the same potential to all pixels and initialization of the flip-flops are performed separately.
  • the phase of the polarity signal POL is set to 2H (supplied to the same data signal line) only by shifting the phase of the CMI2 signal by a half cycle (from FIG. 44).
  • the polarity of the data signal is inverted every 2H), and each pixel row can be appropriately CC-driven from the first frame. That is, in the liquid crystal display device 3d, the cycle of the polarity signal POL can be switched from 1H to 2H only by controlling the phases of the CS inversion signals CMI1 and CMI2 signals, and screen disturbance at that time can be eliminated.
  • the shift register SR of the G-Cs driver of the liquid crystal display device 3e uses the flip-flop (for example, the configuration described in FIG. 3) described in each of the above embodiments in order to reduce the size. Since a NOR circuit or an OR circuit is not required in the G-Cs driver, miniaturization is realized. Therefore, a conventional flip-flop (for example, the flip-flop in FIG. 70) is applied to the shift register SR of the G-Cs driver. Of course it is also possible to do.
  • the phase of the polarity signal POL is switched from 1H to 3H only by shifting the phase of the CMI1 and CMI2 signals from the same (FIG. 47) to a half cycle (FIG. 48).
  • each pixel row can be appropriately CC-driven from the first frame.
  • the period of the polarity signal POL can be switched from 1H to 3H only by controlling the phases of the CS inversion signals CMI1 and CMI2 signals, and screen disturbance at that time can be eliminated.
  • ASW1 in FIG. 43 is a single channel (P channel) transistor TR. In this way, the shift register can be further reduced in size.
  • FIG. 51 is a circuit diagram showing a configuration of a liquid crystal display device 3g according to the present invention.
  • the liquid crystal display device 3g includes a display unit DAR, a gate driver GD, a source driver SD, and a display control circuit DCC.
  • the display control circuit DCC supplies the gate driver GD with an AONB signal (all ON signal), a gate start pulse GSP, a gate on enable signal GOE, and gate clock signals GCK1B and GCK2B.
  • the display control circuit DCC supplies a source start pulse SSP, digital data DAT, a polarity signal POL, and a source clock signal SCK to the source driver SD.
  • the gate driver GD includes a shift register SR having a plurality of stages.
  • the output signal (OUTB signal) from the i-stage SRi of the shift register is supplied to the scanning signal line Gi of the display unit DAR via the inverter.
  • the OUTB signal of the n stage SRn is supplied to the scanning signal line Gn via the inverter.
  • the scanning signal line Gn is connected to the gate of a transistor connected to the pixel electrode in PIXn, and a storage capacitor (auxiliary capacitor) is formed between the pixel electrode in PIXn and the storage capacitor line CSn. .
  • one analog switch asw and an inverter are provided corresponding to one data signal line, the input of this inverter is connected to the AONB signal line, and the end of the data signal line is one of the continuity of the analog switch asw.
  • the other conduction terminal of the analog switch asw is connected to the Vcom (common electrode potential) power source, the N channel side gate of the analog switch asw is connected to the output of the inverter, and the P channel side gate of the analog switch asw is Connected to AONB signal line.
  • FIG. 52 is a circuit diagram showing the configuration of the i-stage SRi of the shift register SR.
  • each stage of the shift register includes a flip-flop FF according to the second embodiment having an SB terminal and an RB terminal, two analog switches ASW1 and ASW2, a NAND, an inverter, and a CKB.
  • the ONB terminal, the QB terminal of the flip-flop FF is connected to one input of the NAND, and the output of the NAND is the input of the inverter, the P channel side gate of the analog switch ASW1, and the N of the analog switch ASW2.
  • the output of the inverter is connected to the N channel side gate of the analog switch ASW1 and the P channel side gate of the analog switch ASW2, and one conduction electrode of the analog switch ASW1 is connected to the ONB terminal
  • one conduction of the analog switch ASW2 The pole is connected to the CKB terminal, the other conductive electrode of the analog switch ASW1, the other conductive electrode of the analog switch ASW2, the OUTB terminal that is the output terminal of this stage, the other input of the NAND, and the RB terminal of the FF And are connected.
  • the OUTB terminal of its own stage is connected to the SB terminal of the next stage.
  • the OUTB terminal of the n stage SRn is connected to the SB terminal of the (n + 1) stage SRn + 1.
  • the GSPB signal is input to the SB terminal of the first stage SR1 of the shift register SR.
  • odd-numbered CKB terminals and even-numbered CKB terminals are connected to different GCK lines (lines for supplying GCK).
  • the CKB terminal of the n stage SRn is connected to the GCK2B signal line
  • the CKB terminal of the (n + 1) stage SRn + 1 is connected to the GCK1B signal line.
  • FIG. 53 is a timing chart showing a driving method of the liquid crystal display device 3g.
  • AONB is an AONB signal (all ON signal)
  • GSPB is a gate start pulse bar signal
  • GCK1B is a GCK1B signal
  • GCK2B is a GCK2B signal
  • the following display preparation operation is performed before the first frame (vertical scanning period) of the display image.
  • the AONB signal is active (Low) for a predetermined period, and each GCKB signal is fixed to active (Low) while the AONB signal is active.
  • the AONB signal is output from the OUTB terminal via the ASW1, and the ASW1 is immediately turned OFF and the ASW2 is turned ON, so that the OUTB signals in all stages become active (Low). All scanning signal lines are selected.
  • Vcom is supplied to all the data signal lines.
  • the FF QB signal is inactive (High). This is because in the flip-flop according to the second embodiment, when the SB signal and the RB signal are simultaneously activated, the RB signal (reset) is given priority and the QB signal is deactivated. After the above display preparation operation is completed (after the AONB signal is inactive), Vcom is written to all PIX of the display unit DAR, and the QB output of the FF provided in each stage of the shift register is inactive ( High).
  • the OUTB signal of the own stage is Low (that is, the output of the NAND is High)
  • the GCKB signal is continuously taken into the own stage, and when the GCKB signal becomes High (inactive), The OUTB signal becomes High and the NAND output becomes Low. Thereafter, the AONB signal is output from the OUTB terminal, and the OUTB signal becomes High (inactive).
  • the gate driver can be downsized. Since the shift register can be initialized without inputting the INITB signal, further downsizing is possible. In addition, since the same potential (for example, Vcom) can be simultaneously written in all the pixels before displaying the first frame, it is possible to eliminate screen disturbance before displaying the first frame. In addition, since the shift register initialization (initialization of flip-flops in each stage) is simultaneously performed when writing the same potential to all pixels, writing the same potential to all pixels and initialization of the flip-flops are performed separately. Compared with the conventional liquid crystal display device performed in the above, display preparation can be completed promptly.
  • Vcom for example, Vcom
  • the NAND of FIG. 52 is preferably configured as shown in FIG.
  • the source of the P-channel transistor p40 is connected to VDD
  • the gate is the input X of the NAND
  • the drain is the output M of the NAND
  • the source of the P-channel transistor p41 is connected to VDD
  • the gate is the input Y of the NAND
  • the drain is connected to the drain of the N-channel transistor n40
  • the gate of the N-channel transistor n40 is connected to the input Y
  • the source is connected to the drain of the N-channel transistor n41
  • the gate of the N-channel transistor n41 is connected to the input X
  • the drain is connected to VSS
  • the drive capability of the P-channel transistors p40 and 41 is made larger than that of the N-channel transistors n40 and 41.
  • the gate driver GD of the liquid crystal display device 3g can be changed to a CC-driven gate-Cs driver (G-CsD) as shown in FIG.
  • the liquid crystal display device 3h of FIG. 55 is obtained by changing each stage of the shift register SR included in the G-CsD of the liquid crystal display device 3d (see FIG. 37) to the configuration of FIG. 52 and further removing the input of the INITB signal. is there.
  • priority is given to the RB signal (reset) when the OUTB signal of all stages becomes active and the SB signal and RB signal of the flip-flop become active simultaneously (that is, the QB signal is Therefore, the shift register is initialized even if the INITB signal is not input.
  • each pixel row can be appropriately CC driven.
  • the G-Cs driver can be reduced in size.
  • the same potential for example, Vcom
  • Vcom for example, Vcom
  • the shift register initialization initialization of flip-flops in each stage
  • writing the same potential to all pixels and initialization of the flip-flops are performed separately. Compared with the conventional liquid crystal display device performed in the above, display preparation can be completed promptly.
  • each pixel row can be appropriately CC-driven from the first frame, it is possible to eliminate screen disturbance (striped unevenness) of the first frame that has been conventionally observed in CC driving. Since the shift register can be initialized without inputting the INITB signal, the circuit configuration of the G-CsD can be simplified (downsized). Furthermore, the period of the polarity signal POL can be switched from 1H to 2H only by controlling the phases of the CS inversion signals CMI1 and CMI2 signals, and screen disturbance at that time can be eliminated.
  • the G-CsD of the liquid crystal display device 3h can be changed as shown in FIG.
  • the flip-flop included in the shift register SR of the liquid crystal display device 3e (see FIG. 42) is changed to the configuration of FIG. 52, and the input of the INITB signal is removed.
  • the RB signal (reset) is prioritized when the OUTB signal of all stages becomes active and the SB signal and RB signal of the flip-flop become active simultaneously (that is, the QB signal is Therefore, the shift register is initialized even if the INITB signal is not input.
  • 59 and 60 are timing charts showing a driving method of the liquid crystal display device 3i.
  • the phase of the polarity signal POL is switched from 1H to 2H only by changing the phase of the CMI1 and CMI2 signals from the same (FIG. 59) to a half cycle (FIG. 60), and the first frame.
  • each pixel row can be appropriately CC driven.
  • liquid crystal display device 3i the same effect as that of the liquid crystal display device 3h can be obtained. Further, since a NOR circuit and an OR circuit are not required in the G-Cs driver, further miniaturization is possible.
  • FIG. 62 is a circuit diagram showing a configuration of i-stage SRi of a shift register included in liquid crystal display device 3j.
  • each stage of the shift register includes the flip-flop FF according to the second embodiment having an SB terminal and an RB terminal, analog switches ASW5 and ASW6, an ONB terminal, and a CKB terminal.
  • the Q terminal of the flip-flop FF is connected to the P channel side gate of the analog switch ASW5 and the N channel side gate of the analog switch ASW6, and the QB terminal is connected to the N channel side gate of the analog switch ASW5 and the P channel side of the analog switch ASW6.
  • the output terminal of this stage, OUTB terminal connected to the gate, one conduction electrode of the analog switch ASW5 and one conduction electrode of the analog switch ASW6 are connected, and the other conduction electrode of the analog switch ASW5 and the ONB terminal Is connected to the analog switch ASW6.
  • CKB terminal for other conductive electrode and the clock signal input is connected.
  • the OUTB terminal of its own stage is connected to the SB terminal of the next stage, and the OUTB terminal of the next stage is connected to the RB terminal of its own stage.
  • the gate driver GD odd-numbered CKB terminals and even-numbered CKB terminals are connected to different GCK lines (lines for supplying GCK).
  • FIG. 63 is a timing chart showing a driving method of the liquid crystal display device 3j, and the liquid crystal display device 3j can obtain the same effects as the liquid crystal display device 3g (see FIG. 51).
  • FIG. 64 is a circuit diagram showing a configuration of a liquid crystal display device 3k according to the present invention.
  • the liquid crystal display device 3k includes a display unit DAR, a gate driver GD, a source driver SD, and a display control circuit DCC.
  • the display control circuit DCC supplies the gate driver GD with a gate start pulse GSP, a gate-on enable signal GOE, an AONB signal (all ON signal), and gate clock signals GCK1B and GCK2B.
  • the display control circuit DCC supplies a source start pulse SSP, digital data DAT, a polarity signal POL, and a source clock signal SCK to the source driver SD.
  • the gate driver GD includes a shift register SR having a plurality of stages.
  • the output signal (OUTB signal) from the i-stage SRi of the shift register is supplied to the scanning signal line Gi of the display unit DAR via the inverter.
  • the OUTB signal of the n stage SRn is supplied to the scanning signal line Gn via the inverter.
  • the scanning signal line Gn is connected to the gate of a transistor connected to the pixel electrode in PIXn, and a storage capacitor (auxiliary capacitor) is formed between the pixel electrode in PIXn and the storage capacitor line CSn. .
  • one analog switch asw and an inverter are provided corresponding to one data signal line, the input of this inverter is connected to the AONB signal line, and the end of the data signal line is one of the continuity of the analog switch asw.
  • the other conduction terminal of the analog switch asw is connected to the Vcom (common electrode potential) power source, the N channel side gate of the analog switch asw is connected to the output of the inverter, and the P channel side gate of the analog switch asw is Connected to AONB signal line.
  • FIG. 65 is a circuit diagram showing a configuration of i stage SRi of shift register SR.
  • a flip-flop FF according to the present embodiment having an SB terminal, an RB terminal, and an INITB terminal, two analog switches ASW1 and ASW2, NAND, an inverter, , The ONB terminal, and the CKB terminal, the QB terminal of the flip-flop FF is connected to one input of the NAND, and the output of the NAND is the input of the inverter, the P channel side gate of the analog switch ASW1, and the analog switch ASW2.
  • the output of the inverter is connected to the N channel side gate of the analog switch ASW1 and the P channel side gate of the analog switch ASW2, and one conduction electrode of the analog switch ASW1 is connected to the ONB terminal and INITB.
  • One conduction electrode of the switch ASW2 is connected to the CKB terminal, the other conduction electrode of the analog switch ASW1, the other conduction electrode of the analog switch ASW2, the OUTB terminal which is the output terminal of this stage, and the other input of the NAND Are connected to the RB terminal of the FF.
  • the OUTB terminal of its own stage is connected to the SB terminal of the next stage.
  • the gate driver GD odd-numbered CKB terminals and even-numbered CKB terminals are connected to different GCK lines (lines for supplying GCK).
  • the driving method of the liquid crystal display device 3k is as shown in FIG. 53, and the following display preparation operation is performed before the first frame (vertical scanning period) of the display image.
  • the AONB signal is active (Low) for a predetermined period, and each GCKB signal is fixed to active (Low) while the AONB signal is active.
  • the AONB signal is output from the OUTB terminal via the ASW1, and the ASW1 is immediately turned OFF and the ASW2 is turned ON, so that the OUTB signals in all stages become active (Low). All scanning signal lines are selected.
  • Vcom is supplied to all the data signal lines. Further, since the AONB signal is input as an initialization signal to the INITB terminal of each stage flip-flop, the QB signal of each flip-flop becomes inactive (High). After the above display preparation operation is completed (after the AONB signal is inactive), Vcom is written to all PIX of the display unit DAR, and the QB output of the FF provided in each stage of the shift register is inactive ( High).
  • the OUTB signal of the own stage is Low (that is, the output of the NAND is High)
  • the GCKB signal is continuously taken into the own stage, and when the GCKB signal becomes High (inactive), The OUTB signal becomes High and the NAND output becomes Low. Thereafter, the AONB signal is output from the OUTB terminal, and the OUTB signal becomes High (inactive).
  • the gate driver can be downsized. Further, since the AONB signal is used as a signal for initializing the shift register, it is not necessary to separately input the INITB signal, and further miniaturization is possible. Note that since the same potential (for example, Vcom) can be simultaneously written in all the pixels before displaying the first frame, it is possible to eliminate screen disturbance before displaying the first frame. In addition, since the shift register initialization (initialization of flip-flops in each stage) is simultaneously performed when writing the same potential to all pixels, writing the same potential to all pixels and initialization of the flip-flops are performed separately. Compared with the conventional liquid crystal display device performed in the above, display preparation can be completed promptly.
  • the shift register initialization initialization of flip-flops in each stage
  • the gate driver GD of the liquid crystal display device 3k can be changed to a CC-driven gate-Cs driver (G-CsD) as shown in FIG.
  • the liquid crystal display device 3r in FIG. 66 is obtained by changing each stage of the shift register SR included in the G-CsD of the liquid crystal display device 3d (see FIG. 37) to the configuration in FIG. 65 and further removing the input of the INITB signal. is there.
  • the QB signal of each flip-flop becomes inactive when the OUTB signal of all stages becomes active.
  • the driving method of the liquid crystal display device 3r is as shown in FIGS. 56 and 57.
  • the phase of the polarity signal POL is set to 1H only by changing the phase of the CMI1 and CMI2 signals from the same (FIG. 56) to a half cycle (FIG. 57). To 2H, and each pixel row can be appropriately CC-driven from the first frame.
  • the liquid crystal display device 3r uses the flip-flop described in the above embodiment, the G-Cs driver can be reduced in size.
  • the same potential for example, Vcom
  • the shift register initialization initialization of flip-flops in each stage
  • writing the same potential to all pixels and initialization of the flip-flops are performed separately. Compared with the conventional liquid crystal display device performed in the above, display preparation can be completed promptly.
  • each pixel row can be appropriately CC-driven from the first frame, it is possible to eliminate screen disturbance (striped unevenness) of the first frame that has been conventionally observed in CC driving. Since the AONB signal is used as the initialization signal for the shift register, the G-CsD circuit configuration can be simplified (downsized). Furthermore, the period of the polarity signal POL can be switched from 1H to 2H only by controlling the phases of the CS inversion signals CMI1 and CMI2 signals, and screen disturbance at that time can be eliminated.
  • the G-CsD of the liquid crystal display device 3r can be changed as shown in FIG. 67, the flip-flop included in the shift register SR of the liquid crystal display device 3e (see FIG. 42) is changed to the configuration shown in FIG. 65, and the input of the INITB signal is removed.
  • the QB signal of each flip-flop becomes inactive when the OUTB signals of all stages become active.
  • the driving method of the liquid crystal display device 3s is as shown in FIG. 59 and FIG. 60.
  • the period of the polarity signal POL is changed only by changing the phases of the CMI1 and CMI2 signals from the same (FIG. 59) to a half cycle (FIG. 60). It is possible to switch from 1H to 2H and to appropriately CC drive each pixel row from the first frame.
  • the same effect as that of the liquid crystal display device 3r can be obtained, and further, since the NOR circuit and the OR circuit are not required in the G-Cs driver, the size can be further reduced.
  • FIG. 69 is a circuit diagram showing a configuration of i-stage SRi of a shift register included in the liquid crystal display device 3t.
  • each stage of the shift register includes a flip-flop FF according to each embodiment having an SB terminal, an RB terminal, and an INITB terminal, analog switches ASW5 and ASW6, an ONB terminal, and a CKB terminal.
  • the Q terminal of the flip-flop FF is connected to the P channel side gate of the analog switch ASW5 and the N channel side gate of the analog switch ASW6, and the QB terminal is connected to the N channel side gate of the analog switch ASW5 and the analog switch ASW6.
  • OUTB terminal which is the output terminal of this stage, one conductive electrode of analog switch ASW5 and one conductive electrode of analog switch ASW6 are connected, and the other conductive electrode of analog switch ASW5 ONB terminal and INITB terminal are connected Is a CKB terminal for other conductive electrode and the clock signal input of the analog switch ASW6 is connected.
  • the OUTB terminal of its own stage is connected to the SB terminal of the next stage, and the OUTB terminal of the next stage is connected to the RB terminal of its own stage.
  • the gate driver GD odd-numbered CKB terminals and even-numbered CKB terminals are connected to different GCK lines (lines for supplying GCK).
  • the driving method of the liquid crystal display device 3t is as shown in FIG. Further, the liquid crystal display device 3t can achieve the same effects as the liquid crystal display device 3k (see FIG. 64).
  • gate driver source driver, or gate-CS driver and the pixel circuit of the display unit may be formed monolithically (on the same substrate).
  • the flip-flop of the shift register may be configured as shown in FIG.
  • the FF 212 in FIG. 70A is the same as the FF 201 in FIG. 3, with the source of p5 (set transistor) connected to the INITB terminal, the RB terminal connected only to the gate of p7 and the gate of n8, and the drain of p6 to VDD. Connected.
  • FIG. 70B shows an operation timing chart of the FF 212
  • FIG. 70C shows a truth table of the FF 212.
  • the flip-flop FF212 when the SB signal is active (Low) and the RB signal is active (Low) while the INITB terminal is active (Low), the Q signal is Low and the QB signal is High (inactive). .
  • the flip-flop of the shift register may be configured as shown in FIG. That is, the FF 213 in FIG. 71 (a) adds the channel transistor nT to the FF 201 in FIG. 3, connects the gate of nT to the INTB terminal, connects the drain of nT to the source of p5 (set transistor), and Is connected to the RB terminal.
  • FIG. 71 (b) shows a truth table of the FF 213.
  • the AONB signal may be inactive (High) in the middle of the simultaneous selection period, or the INITB signal may be changed to AONB as shown in FIG. It may be active (Low) after it becomes active (Low) and before it becomes inactive (High). Also, as shown in FIG. 74, the INITB signal is changed from AON being active (Low) to inactive. It may be active (Low) after becoming (High).
  • the flip-flop of the present invention includes a first CMOS circuit in which gate terminals and drain terminals of a P-channel first transistor and an N-channel second transistor are connected to each other, a P-channel third transistor, and an N-channel fourth transistor.
  • a second CMOS circuit in which the gate terminals and the drain terminals are connected to each other, a plurality of input terminals, and a first output terminal and a second output terminal, and a first CMOS circuit gate side, a second CMOS circuit drain side, and a first CMOS terminal.
  • a flip-flop in which the gate side of the second CMOS circuit, the drain side of the first CMOS circuit, and the second output terminal are connected to each other, and the gate terminal and the source terminal are respectively connected to separate input terminals.
  • An input transistor to be connected is provided.
  • the drain terminal of the input transistor is connected to the first output terminal directly or via a relay transistor.
  • the output side of the two conductive electrodes of the transistor (P channel or N channel) is referred to as a drain terminal. According to the above configuration, even when the priority determination circuit required in the past is not provided, when the signals input to the separate input terminals become active at the same time, one of them can be prioritized and output. . Thereby, miniaturization of the flip-flop is realized.
  • the input transistor is a P-channel, and the source terminal of the input transistor is connected to the input terminal of a signal that has a first potential when inactive and a second potential lower than the first potential when active. It can also be set as the structure.
  • the input transistor is an N-channel, and the source terminal of the input transistor is connected to an input terminal of a signal that has a first potential when active and a second potential lower than the first potential when inactive. It can also be set as the structure.
  • the plurality of input terminals include a set signal input terminal and a reset signal input terminal.
  • the input transistor has a gate terminal connected to the set signal input terminal and a source.
  • the terminal may be a set transistor connected to an input terminal for a reset signal.
  • the plurality of input terminals further include an input terminal for an initialization signal, and the input terminal for the initialization signal is connected to one source terminal of the first to fourth transistors. It can also be set as the structure which is.
  • the flip-flop includes a reset transistor having a gate terminal connected to the reset signal input terminal, a source terminal connected to the first power supply line, and a drain terminal connected to the second output terminal. You can also.
  • the flip-flop includes a release transistor having a gate terminal connected to the reset signal input terminal, a source terminal connected to the second power supply line, and a drain terminal connected to the source terminal of the second transistor; Is connected to the input terminal of the set signal, the source terminal is connected to the second power supply line, and the drain terminal is at least one of the release transistor connected to the source terminal of the fourth transistor. it can.
  • the flip-flop includes a reset transistor having a gate terminal connected to the reset signal input terminal, a source terminal connected to the second power supply line, and a drain terminal connected to the second output terminal. You can also.
  • a release transistor having a gate terminal connected to the reset signal input terminal, a source terminal connected to the first power supply line, and a drain terminal connected to the source terminal of the first transistor; Is connected to the input terminal of the set signal, the source terminal is connected to the first power supply line, and the drain terminal is at least one of the release transistor connected to the source terminal of the third transistor.
  • the plurality of input terminals include a set signal input terminal and a reset signal input terminal, and the input transistor has a gate terminal connected to the reset signal input terminal and a source.
  • a configuration in which the terminal is a reset transistor connected to the input terminal of the set signal may be employed.
  • the plurality of input terminals further include an input terminal for an initialization signal, and the input terminal for the initialization signal is connected to one source terminal of the first to fourth transistors. It can also be set as the structure which is.
  • the flip-flop includes a set transistor having a gate terminal connected to a set signal input terminal, a source terminal connected to a first power supply line, and a drain terminal connected to a second output terminal. You can also.
  • a release transistor having a gate terminal connected to a set signal input terminal, a source terminal connected to a second power supply line, and a drain terminal connected to the source terminal of the second transistor; Is connected to the reset signal input terminal, the source terminal is connected to the second power supply line, and the drain terminal is at least one of the release transistor connected to the source terminal of the fourth transistor.
  • the flip-flop includes a set transistor having a gate terminal connected to a set signal input terminal, a source terminal connected to a second power supply line, and a drain terminal connected to a second output terminal. You can also.
  • a release transistor having a gate terminal connected to a set signal input terminal, a source terminal connected to the first power supply line, and a drain terminal connected to the source terminal of the first transistor; Is connected to the reset signal input terminal, the source terminal is connected to the first power supply line, and the drain terminal is at least one of the release transistor connected to the source terminal of the third transistor.
  • the first CMOS circuit in which the gate terminals and the drain terminals of the P-channel first transistor and the N-channel second transistor are connected to each other, and the gates of the P-channel third transistor and the N-channel fourth transistor.
  • a second CMOS circuit having terminals and drain terminals connected to each other, a plurality of input terminals, and first and second output terminals, the gate side of the first CMOS circuit, the drain side of the second CMOS circuit, and the first output terminal Are connected to each other, and the gate side of the second CMOS circuit, the drain side of the first CMOS circuit, and the second output terminal are connected to each other. It can also be configured to include an input transistor connected to one of the multiple input terminals. .
  • the input transistor is a P-channel, and the source terminal of the input transistor is connected to the input terminal of a signal that has a first potential when inactive and a second potential lower than the first potential when active. It can also be set as the structure.
  • the input transistor is an N-channel, and the source terminal of the input transistor is connected to an input terminal of a signal that has a first potential when active and a second potential lower than the first potential when inactive. It can also be set as the structure which has.
  • the first to fourth transistors may include a plurality of input transistors.
  • the first to fourth transistors include an input transistor whose source terminal is connected to the input terminal for the set signal and an input transistor whose source terminal is connected to the input terminal for the reset signal. It can also be set as the structure.
  • the first to fourth transistors may further include an input transistor having a source terminal connected to an input terminal for an initialization signal.
  • This shift register includes the flip-flop described above.
  • This display drive circuit includes the flip-flop.
  • This display device includes the flip-flop.
  • This display panel is characterized in that the display driving circuit and the pixel circuit are monolithically formed.
  • This shift register is used in a display driving circuit that performs simultaneous selection of signal lines at a predetermined timing.
  • the flip-flop and the simultaneous selection signal are input to each stage, and the output of the flip-flop is used to output the own stage.
  • a signal generation circuit for generating a signal.
  • the output signal of each stage is activated by the activation of the simultaneous selection signal and is active during the simultaneous selection.
  • the flip-flop is a set-reset type and its output is set.
  • a configuration may also be adopted in which the inactive signal and the reset signal are inactive during a period in which both are active.
  • the output signal of each stage is activated by the activation of the simultaneous selection signal, and is active during the simultaneous selection.
  • the flip-flop includes an initialization terminal, and the flip-flop The output can be inactive regardless of the state of other input terminals while the initialization terminal is active, and a simultaneous selection signal can be input to the initialization terminal.
  • the signal generation circuit may include a gate circuit that selectively takes in the simultaneous selection signal or the clock in accordance with the input switching signal and uses the same as the output signal.
  • the display driving circuit includes the shift register, and an output signal of each stage of the shift register is activated by the activation of the simultaneous selection signal and is active during the simultaneous selection.
  • the flip-flop is a set-reset type and its output becomes inactive if the initialization signal is active, regardless of whether the set signal and reset signal are active or inactive.
  • the initialization signal is made active before the end of the simultaneous selection and made inactive after the end.
  • the display driving circuit includes a pixel electrode connected to the data signal line and the scanning signal line through a switching element, and a signal potential written to the pixel electrode is connected to a storage capacitor wiring that forms a capacitance with the pixel electrode.
  • the shift register is used for a display device that supplies a modulation signal corresponding to the polarity.
  • one holding circuit is provided corresponding to each stage of the shift register, and a holding target signal is input to each holding circuit, and when the control signal generated in the own stage becomes active,
  • the holding circuit corresponding to the stage captures and holds the above holding target signal, supplies the output signal of the own stage to the scanning signal line connected to the pixel corresponding to the own stage, and the holding circuit corresponding to the own stage.
  • one holding circuit is provided corresponding to each stage of the shift register, and when a holding target signal is input to each holding circuit and a control signal generated in one stage is activated.
  • the holding circuit corresponding to this stage takes in the holding target signal and holds it, supplies the output of one holding circuit as the modulation signal to the holding capacitor wiring, and the control signal generated at each stage is displayed. It is also possible to adopt a configuration that becomes active before the first vertical scanning period of the image.
  • This display drive circuit may be configured to invert the polarity of the signal potential supplied to the data signal line every plural horizontal scanning periods.
  • one holding circuit is provided corresponding to each stage of the shift register, and a holding target signal is input to each holding circuit, and the output signal of the own stage and the output of the subsequent stage of the own stage are output.
  • Signal is input to the logic circuit, and when the output of the logic circuit becomes active, the holding circuit corresponding to the own stage takes in the holding target signal and holds it, and the output signal of the own stage is sent to the own stage.
  • the output of the holding circuit corresponding to the own stage is supplied as the modulation signal to the holding capacitor wiring forming the capacitor and the pixel electrode of the pixel corresponding to the own stage.
  • the phase of the holding target signal input to the plurality of holding circuits may be different from the phase of the holding target signal input to another plurality of holding circuits.
  • one holding circuit is provided corresponding to each stage of the shift register, and a holding target signal is input to each holding circuit, and when the control signal generated in the own stage becomes active,
  • the holding circuit corresponding to the stage captures and holds the above holding target signal, supplies the output signal of the own stage to the scanning signal line connected to the pixel corresponding to the own stage, and the holding circuit corresponding to the own stage.
  • the polarity of the signal potential supplied to the data signal line is inverted every n horizontal scanning periods (n is a natural number) and the polarity of the signal potential supplied to the data signal line is m horizontal scanning. It can also be set as the structure which switches the mode reversed every period (m is a natural number different from n).
  • the phase of the holding target signal input to each holding circuit belonging to the first group and the phase of the holding target signal input to each holding circuit belonging to the second group are determined according to each mode. It can also be set as the structure to set.
  • the present invention is not limited to the above-described embodiments, and those obtained by appropriately modifying the above-described embodiments based on known techniques and common general knowledge or combinations thereof are also included in the embodiments of the present invention. It is. In addition, the operational effects described in each embodiment are merely examples.
  • the flip-flop of the present invention and the shift register including the flip-flop are suitable for a liquid crystal display device, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 Pチャネルの第1トランジスタとNチャネルの第2トランジスタのゲート端子同士およびドレイン端子同士が接続された第1CMOS回路と、Pチャネルの第3トランジスタとNチャネルの第4トランジスタのゲート端子同士およびドレイン端子同士が接続された第2CMOS回路と、複数の入力端子と、第1および第2出力端子とを備え、第1CMOS回路のゲート側と第2CMOS回路のドレイン側と第1出力端子とが接続されるとともに、第2CMOS回路のゲート側と第1CMOS回路のドレイン側と第2出力端子とが接続されたフリップフロップであって、上記第1~第4トランジスタには、ソース端子が上記複数の入力端子の1つに接続された入力トランジスタが含まれている。上記構成によれば、フリップフロップを小型化することができる。

Description

フリップフロップ、シフトレジスタ、表示駆動回路、表示装置、表示パネル
 本発明は、フリップフロップや各種表示ドライバに関する。
 液晶表示装置のゲートドライバ等に用いられる従来のフリップフロップの構成を図75(a)に示す。同図に示すように、従来のフリップフロップ(FF)900は、5つのPチャネルトランジスタ(p100・p101・p102・p103・p104)および5つのNチャネルトランジスタ(n100・n101・n102・n103・n104)からなり、SB(セットバー)端子、R(リセット)端子、Q(出力)端子、QB(反転出力)端子、およびINITB(イニシャルバー)端子を備える。なお、以下では、SB端子に入力される信号をSB(セットバー)信号、R端子に入力される信号をR(リセット)信号、INITB端子に入力される信号をINITB(イニシャルバー)信号、Q端子から出力される信号をQ(出力)信号、QB端子から出力される信号をQB(反転出力)信号と称する。また、VDD(高電位側電源)の電位をVddとし、VSS(低電位側電源)の電位をVssとする。
 ここで、p100のソースがVDD(高電位側電源)に接続され、p100のドレインとn100のドレインとp102のドレインとn102のドレインとp104のゲートとn104のゲートとQ端子とが接続され、n100のソースとn101のドレインとが接続され、n101のソースがVSS(低電位側電源)に接続されている。また、p101のソースがVDDに接続され、p101のドレインとp102のソースとが接続され、n102のソースとn103のドレインとが接続され、n103のソースがVSSに接続され、p104のソースがVDDに接続され、p104のドレインとn104のドレインとが接続され、n104のソースがVSSに接続されている。また、p101のゲートとn100のゲートとR端子とが接続され、p100のゲートとn101のゲートとn103のゲートとSB端子とが接続され、p103のソースがVDDに接続され、p103のゲートがINITB端子に接続され、p102のゲートとn102のゲートとp103のドレインとQB端子とが接続されている。FF900では、p100がセット回路SCを構成し、n100がリセット回路RCを構成し、n101が優先決定回路PDCを構成し、p103が初期化回路ICを構成し、p101およびn103それぞれがラッチ解除回路LRCを構成し、p102、n102、p104およびn104がラッチ回路LCを構成する。
 図75(b)はFF900の動作を示すタイミングチャートであり、図75(c)はFF900の真理値表である。
 SB信号がアクティブ(=Low)でR信号が非アクティブ(=Low)となる場合((b)の期間t1)のFF900の動作は以下のとおりである。SB信号がアクティブ(=Low)になると、p100(セット回路SC)がONし、Q端子がp100を介してVDD(高電位側電源)に接続されてQ信号がアクティブ(=High)となる。SB端子はn103のゲートに接続され、SB信号がLowの期間はn103(ラッチ解除回路LRC)がオフになっているため、Q端子はVSS(低電位側電源)とショートしない。したがって、Q信号を安定的にアクティブ(=High)とすることができる。Q端子はp104のゲートとn104のゲートとに接続しているため、Q信号がHighの期間はp104がオフでn104がオンとなってQB端子がn104を介してVSS(低電位側電源)に接続され、QB信号がアクティブ(=Low)となる。QB端子はp102のゲートおよびn102のゲートに接続されているため、QB信号がLowの期間はp102がオンでn102がオフとなり、また、R信号がLowの期間はp101(ラッチ解除回路LRC)がオンしているため、Q端子はp101およびp102を介してVDD(高電位側電源)に接続される。このように、期間t1では、Q信号がアクティブ(=High)、QB信号がアクティブ(=Low)となる((c)のA参照)。
 SB信号が非アクティブ(=High)でR信号が非アクティブ(=Low)となる場合((b)の期間t2)のFF900の動作は以下のとおりである。SB信号がHighでR信号がLowになると、n103がオンとなり、p101・n103(ラッチ解除回路LRC)がともにオンとなるため、p102・n102からなるインバータおよびp104・n104からなるインバータによるラッチ回路が構成される(ラッチ回路LCがONとなる)。この時、Q端子にVDDを供給するp100(セット回路SC)およびVssを供給するn100(リセット回路RC)はともにオフであるため、ラッチ回路LCへは電位が供給されない。このラッチ状態により、SB信号が変化する前の状態が保持され、t2でもt1の状態(Q信号がHighでQB信号がLow)が保持される((c)のC参照)。
 SB信号が非アクティブ(=High)でR信号がアクティブ(=High)となる場合((b)の期間t3)のFF900の動作は以下のとおりである。R信号がアクティブ(=High)となると、n100(リセット回路RC)がオンとなる。SB信号はHighであるため、n101(優先決定回路PDC)はオンである。n100、n101がオンであるため、Q端子はVSSに接続される。R信号がHighの時はp101(ラッチ決定回路)がオフとなってQ端子がVDDとショートすることはない。したがって、Q信号を安定的に非アクティブ(=Low)とすることができる。また、Q信号がLowの時はn104がオフでp104がオンとなるため、QB端子がVDDに接続され、QB信号はHighとなる。また、QB信号がHighでSB信号がHighのときは、n102およびn103(ラッチ解除回路LRC)がともにONでp102がオフとなるため、Q端子はn102・n103を介してVSSに接続される。このように、期間t3では、Q信号が非アクティブ(=Low)、QB信号が非アクティブ(=High)となる(図75(c)のD参照)。
 SB信号が非アクティブ(=High)でR信号が非アクティブ(=Low)となる場合((b)の期間t4)のFF900の動作は以下のとおりである。SB信号がHighでR信号がLowになると、p101・n103(ラッチ解除回路LRC)がともにオンとなるため、ラッチ回路LCがONとなる。したがって、R信号が変化する前の状態が保持され、t4でもt3の状態(Q信号がLowでQB信号がHigh)が保持される。
 イニシャルバー信号(初期化信号)INITB信号は通常非アクティブ(=High)となっており、p103(初期化回路IC)は通常オフとなっている。フリップフロップを初期化したい場合には、INITB信号をアクティブにすることで、フリップフロップの出力(Q信号)を強制的に決定することができる。FF900では、INITB信号をアクティブ(=Low)にすると、p103がオンしてQB端子とVDDとが接続され、QB信号はHighとなる。QB信号がHighのときはn102がオンし、また、SB信号が非アクティブ(=High)のときにはn103もオンしているため、Q端子はn102・n103を介してVSSに接続され、Q信号は非アクティブ(=Low)となる。
 なお、n101(優先決定回路)は、SB信号およびR信号が同時にアクティブになった場合に、どちらを優先させるかを決めるものである。FF900では、SB信号がアクティブ(=Low)でR信号がアクティブ(=High)となった場合、p100およびn100がオンとなるが、n101(優先決定回路)がオフとなるため、リセット回路RCとVSSとは電気的に切り離され、Q端子はp100を介してVDDに接続される。すなわち、SB信号が優先される。
日本国公開特許公報「特開2001-135093号公報(公開日:2001年5月18日)」
 上記従来のフリップフロップでは回路面積が大きくなり、これを用いたデバイス(シフトレジスタや各種表示ドライバ)の小型化を阻んでいた。
 本発明は、フリップフロップやシフトレジスタあるいは各種表示ドライバの小型化を目的とする。
 本発明のフリップフロップは、Pチャネルの第1トランジスタとNチャネルの第2トランジスタのゲート端子同士およびドレイン端子同士が接続された第1CMOS回路と、Pチャネルの第3トランジスタとNチャネルの第4トランジスタのゲート端子同士およびドレイン端子同士が接続された第2CMOS回路と、複数の入力端子と、第1および第2出力端子とを備え、第1CMOS回路のゲート側と第2CMOS回路のドレイン側と第1出力端子とが接続されるとともに、第2CMOS回路のゲート側と第1CMOS回路のドレイン側と第2出力端子とが接続されたフリップフロップであって、ゲート端子およびソース端子それぞれが別々の入力端子に接続される入力トランジスタを備えることを特徴とする。なお、上記入力トランジスタのドレイン端子は、直接あるいは中継トランジスタを介して第1出力端子に接続される。
 本願では、トランジスタ(PチャンネルあるいはNチャネル)が有する2つの導通電極のうち出力側をドレイン端子と呼ぶことにする。上記構成によれば、従来必要とした優先決定回路を設けなくても、上記別々の入力端子に入力される信号それぞれが同時にアクティブになったときにいずれかを優先させて出力を行うことができる。これにより、フリップフロップの小型化が実現される。
 以上のように、フリップフロップやシフトレジスタ、表示駆動回路を小型化することができる。
[規則91に基づく訂正 26.04.2010] 
実施の形態1にかかるフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 実施の形態1にかかる他のフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 実施の形態2にかかるフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 実施の形態2にかかる他のフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 実施の形態3にかかるフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 実施の形態3にかかる他のフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 実施の形態2にかかるさらに他のフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 実施の形態2にかかるさらに他のフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 実施の形態3にかかるさらに他のフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 実施の形態3にかかるさらに他のフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 実施の形態2にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態2にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態3にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態3にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態2にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態2にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態3にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態3にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態1にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態1にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態1にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態2にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態3にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態1にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態1にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態1にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 実施の形態1にかかるさらに他のフリップフロップを説明する回路図(a)および真理値表(b)である。 本表示装置の構成を示す模式図である。 図28に示す表示装置のシフトレジスタの各段を示す回路図である。 図28の表示装置の駆動方法を示すタイミングチャートである。 本表示装置の他の構成を示す模式図である。 本表示装置のさらに他の構成を示す模式図である。 図32に示す表示装置のシフトレジスタの各段を示す回路図である。 図32の表示装置の駆動方法を示すタイミングチャートである。 本表示装置のさらに他の構成を示す模式図である。 本表示装置のさらに他の構成を示す模式図である。 本表示装置のさらに他の構成を示す模式図である。 図37に示す表示装置のシフトレジスタの各段を示す回路図である。 図37に示す表示装置のG-CSドライバのDラッチ回路を示す回路図である。 図37の表示装置の駆動方法を示すタイミングチャートである。 図37の表示装置の駆動方法を示すタイミングチャートである。 本表示装置のさらに他の構成を示す模式図である。 図42に示す表示装置のシフトレジスタの各段を示す回路図である。 図42の表示装置の駆動方法を示すタイミングチャートである。 図42の表示装置の駆動方法を示すタイミングチャートである。 本表示装置のさらに他の構成を示す模式図である。 図46の表示装置の駆動方法を示すタイミングチャートである。 図46の表示装置の駆動方法を示すタイミングチャートである。 図43の変形例を示す回路図である。 図40・44の変形例を示すタイミングチャートである。 本表示装置のさらに他の構成を示す模式図である。 図51に示す表示装置のシフトレジスタの各段を示す回路図である。 図51の表示装置の駆動方法を示すタイミングチャートである。 図51に示す表示装置のシフトレジスタ内のNAND回路を示す回路図である。 本表示装置のさらに他の構成を示す模式図である。 図55の表示装置の駆動方法を示すタイミングチャートである。 図55の表示装置の駆動方法を示すタイミングチャートである。 本表示装置のさらに他の構成を示す模式図である。 図58の表示装置の駆動方法を示すタイミングチャートである。 図58の表示装置の駆動方法を示すタイミングチャートである。 本表示装置のさらに他の構成を示す模式図である。 図61に示す表示装置のシフトレジスタの各段を示す回路図である。 図61の表示装置の駆動方法を示すタイミングチャートである。 本表示装置のさらに他の構成を示す模式図である。 図64に示す表示装置のシフトレジスタの各段を示す回路図である。 本表示装置のさらに他の構成を示す模式図である。 本表示装置のさらに他の構成を示す模式図である。 本表示装置のさらに他の構成を示す模式図である。 図68に示す表示装置のシフトレジスタの各段を示す回路図である。 本表示装置に用いる他のフリップフロップを説明する回路図(a)、タイミングチャート(b)、および真理値表(c)である。 本表示装置に用いるさらに他のフリップフロップを説明する回路図(a)、および真理値表(b)である。 本実施の形態3にかかるさらに他のフリップフロップを説明する回路図(a)、および真理値表(b)である。 図40・44のさらに他の変形例を示すタイミングチャートである。 図40・44のさらに他の変形例を示すタイミングチャートである。 従来のフリップフロップの構成を示す回路図である。
 本発明の実施の形態を図1~図74に基づいて説明すれば以下のとおりである。なお、以下では、セットリセット型フリップフロップ(以下、適宜FFと略記)のセット用端子(S端子またはSB端子)にはセット用信号(S信号またはSB信号)が入力され、リセット用端子(R端子またはRB端子)にはリセット用信号(R信号またはRB信号)が入力され、初期化用端子(INIT端子またはINITB端子)には初期化用信号(INIT信号またはINITB信号)が入力されるものとし、出力端子(Q端子)からはQ信号が出力され、反転出力端子(QB端子)からはQB信号が出力されるものとする。なお、高電位側電源(VDD)の電位をVdd(以下、適宜Highと記載)とし、低電位側電源(VSS)の電位をVss(以下、適宜Lowと記載)とする。S信号(セット信号)、R信号(リセット信号)、INIT信号(イニシャル信号)およびQ信号(出力信号)はアクティブ時にHighとなる信号であり、SB信号(セットバー信号)、RB信号(リセットバー信号)、INITB信号(イニシャルバー信号)およびQB信号(反転出力信号)はアクティブ時にLowとなる信号である。
 〔フリップフロップの形態1〕
 図1(a)は、実施の形態1にかかるフリップフロップの構成を示す回路図である。同図に示すように、FF101は、CMOS回路を構成するPチャネルトランジスタp1およびNチャネルトランジスタn1と、CMOS回路を構成するPチャネルトランジスタp2およびNチャネルトランジスタn2と、SB端子と、RB端子と、Q端子・QB端子と、INIT端子とを備え、p1のゲートとn1のゲートとp2のドレインとn2のドレインとQ端子とが接続されるとともに、p1のドレインとn1のドレインとp2のゲートとn2のゲートとQB端子とが接続され、p1のソースがSB端子に接続され、p2のソースがRB端子に接続され、n1のソースがINIT端子に接続され、n2のソースがVSS(低電位側電源)に接続されている構成である。ここでは、p1、n1、p2およびn2がラッチ回路LCを構成する。
 図1(b)は、FF101の動作を示すタイミングチャート(INIT信号が非アクティブの場合)であり、図1(c)はFF101の真理値表(INIT信号が非アクティブの場合)である。
 SB信号がアクティブ(=Low)でRB信号が非アクティブ(=High)となる場合(期間t1)のFF101の動作は以下のとおりである。SB信号がアクティブ(=Low)になると、それ以前にQ信号がLowでQB信号がHighであった場合にはp1がオンであるため、QB端子の電位が、Vss+Vth(閾値電圧)まで低下する。QB端子の電位がVss近くになると、p2がONする一方n2がオフし(n2の閾値がVth以上である場合にはn2は完全にオフする)、この時RB信号は非アクティブ(=High=Vdd)であるため、Q信号はHighとなる。Q端子はp1のゲートおよびn1のゲートに接続されているため、Q信号がHighになると、p1がオフしてn1がオンする。n1がオンすると、INIT信号は初期化時以外Low(Vss)であるため、QB信号もLow(Vss)となる。なお、QB信号がLowのときは、p2がオンでn2がオフであるため、Q端子はVSSから切り離されて、RB信号(High=Vdd)を出力する。このようにQB信号は、瞬間的にはVss+Vthに移行しようとするものの、ラッチ回路LCによってQ信号がフィードバックされて、Low(Vss)に安定する。なお、SB信号がHighからLowに移行する時、p1のドレインにはオン状態のトランジスタが接続されていないため、ラッチ解除回路は不要である。
 SB信号が非アクティブ(=High)でRB信号が非アクティブ(=High)となる場合(期間t2)のFF101の動作は以下のとおりである。SB信号がHighでRB信号がHighになると、INIT信号は初期化時以外Low(Vss)であるため、ラッチ回路LCがONとなる。したがって、SB信号が変化する前の状態が保持され、t2でもt1の状態(Q信号がHighでQB信号がLow)が保持される。
 SB信号が非アクティブ(=High)でRB信号がアクティブ(=Low)となる場合(期間t3)のFF101の動作は以下のとおりである。RB信号がアクティブ(=Low)になると、それ以前にQ信号がHighでQB信号がLowであった場合にはp2がオンであるため、Q端子の電位がVss+Vth(閾値電圧)まで低下する。Q端子の電位がVss近くになると、p1がONする一方n1がオフし(n1の閾値がVth以上である場合にはn1は完全にオフする)、この時SB信号は非アクティブ(=High=Vdd)であるため、QB信号もHighとなる。QB端子はp2のゲートおよびn2のゲートに接続されているため、QB信号がHighになると、p2がオフしてn2がオンする。n2がオンすると、Q端子がVSSに接続され、Q信号はLow(Vss)となる。なお、Q信号がLowのときは、p1がオンでn1がオフであるため、QB端子はINITから切り離されて、SB信号(High=Vdd)を出力する。このようにQ信号は、瞬間的にはVss+Vthに移行しようとするものの、ラッチ回路LCによってQB信号がフィードバックされて、Low(Vss)に安定する。なお、RB信号がHighからLowに移行する時、p2のドレインにはオン状態のトランジスタが接続されていないため、ラッチ解除回路は不要である。
 SB信号が非アクティブ(=High)でRB信号が非アクティブ(=High)となる場合(期間t4)のFF101の動作は以下のとおりである。SB信号がHighでRB信号がHighになると、INIT信号は初期化時以外Low(Vss)であるため、ラッチ回路LCがONとなる。したがって、RB信号が変化する前の状態が保持され、t4でもt3の状態(Q信号がLowでQB信号がHigh)が保持される。
 INIT信号がアクティブ(=High)となるとき(初期化時)のFF101の動作は以下のとおりである。まず、INIT信号がアクティブとなる以前にQ信号がLowでQB信号がHighであった場合には、n1がオフしているため、INIT信号がHighになってもフリップフロップの出力には影響しない(Q信号はLow、QB信号はHigh)。INIT信号がアクティブとなる以前にQ信号がHighでQB信号がLowであった場合には、n1がオンしているため、QB端子の電位が、Vdd-Vth(閾値電圧)まで上昇する。QB端子の電位がVdd近くになると、n2がONする一方p2がオフし(p2の閾値がVth以上である場合にはp2は完全にオフする)、Q端子はVSSに接続され、Q信号はLow(=Vss)となる。Q端子はp1のゲートおよびn1のゲートに接続されているため、Q信号がLowになると、n1がオフしてp1がオンする。p1がオンすると、この時SB信号は非アクティブ(=High=Vdd)であるため、QB信号もHighとなる。なお、QB信号がHighのときは、n2がオンでp2がオフであるため、Q端子はRB端子から切り離されて、Low(Vss)を出力する。このようにQB信号は、瞬間的にはVdd-Vthに移行しようとするものの、ラッチ回路LCによってQ信号がフィードバックされて、High(Vdd)に安定する。以上の方法で初期化が可能であるため、初期化回路は不要である。
 なお、SB信号およびRB信号がともにアクティブ(=Low)である場合、Q端子およびQB端子がともにVss+Vthとなったところでp1、p2、n1およびn2がオフとなり、フローティングとなる。このため、出力(Q信号・QB信号)は不定となる。
 このように、FF101では、p1、n1、p2およびn2(2つのCMOS)でラッチ回路を構成するとともに、p1のソースをSB端子に接続し、p2のソースをRB端子に接続し、かつn1のソースをINIT端子に接続することで、従来(図70参照)必要とされた、セット回路、リセット回路、ラッチ解除回路および初期化回路をなくしながら、セット、ラッチ、リセット、および初期化の各動作を実現している。
 なお、図1(a)においてn1のソースをVSSに接続し、図21(a)のFF105のように構成してもよい。FF105の真理値表は図21(b)に示すとおりである。
 図2(a)は、図1(a)の一変形例であるFF102の構成を示す回路図である。図2(a)に示すように、FF102は、CMOS回路を構成するPチャネルトランジスタp3およびNチャネルトランジスタn3と、CMOS回路を構成するPチャネルトランジスタp4およびNチャネルトランジスタn4と、S端子と、R端子と、Q端子・QB端子と、INITB端子とを備え、p3のゲートとn3のゲートとp4のドレインとn4のドレインとQ端子とが接続され、p3のドレインとn3のドレインとp4のゲートとn4のゲートとQB端子とが接続され、n4のソースがS端子に接続され、n3のソースがR端子に接続され、p4のソースがINITB端子に接続され、p3のソースがVDD(高電位側電源)に接続されている構成である。ここでは、p3、n3、p4およびn4がラッチ回路LCを構成する。
 図2(b)はFF102の動作を示すタイミングチャート(INITB信号が非アクティブの場合)であり、図2(c)はFF102の真理値表(INITB信号が非アクティブの場合)である。図2(b)(c)に示されるように、FF102のQ信号は、S信号がLow(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、S信号がLow(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、S信号がHigh(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)、S信号がHigh(アクティブ)かつR信号がHigh(アクティブ)の期間に不定状態となる。
 図19(a)は、実施の形態1にかかるフリップフロップの他の構成を示す回路図である。同図に示すように、FF103は、CMOS回路を構成するPチャネルトランジスタP1およびNチャネルトランジスタN1と、CMOS回路を構成するPチャネルトランジスタP2およびNチャネルトランジスタN2と、SB端子と、R端子と、INITB端子と、Q端子・QB端子とを備え、P1のゲートとN1のゲートとP2のドレインとN2のドレインとQ端子とが接続されるとともに、P1のドレインとN1のドレインとP2のゲートとN2のゲートとが接続され、SB端子がP1のソースに接続され、R端子がN1のソースに接続され、INITB端子がP2のソースに接続され、N2のソースがVSSに接続されている構成である。ここでは、P1、N1、P2およびN2がラッチ回路LCを構成している。
 図19(b)はFF103の真理値表(INITB信号が非アクティブの場合)である。図19(b)に示されるように、FF103のQ信号は、SB信号がHigh(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、SB信号がLow(アクティブ)かつR信号がHigh(アクティブ)の期間に不定、SB信号がLow(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)となる。
 図20(a)は、図19(a)の一変形例であるFF104の構成を示す回路図である。同図に示すように、FF104は、CMOS回路を構成するPチャネルトランジスタP3およびNチャネルトランジスタN3と、CMOS回路を構成するPチャネルトランジスタP4およびNチャネルトランジスタN4と、S端子と、RB端子と、INIT端子と、Q端子・QB端子とを備え、P3のゲートとN3のゲートとP4のドレインとN4のドレインとQ端子とが接続されるとともに、P3のドレインとN3のドレインとP4のゲートとN4のゲートとが接続され、S端子がN4のソースに接続され、RB端子がP4ソースに接続され、INIT端子がN3のソースに接続され、P3のソースがVDDに接続されている構成である。ここでは、P3、N3、P4およびN4がラッチ回路LCを構成している。
 図20(b)はFF104の真理値表(INITB信号が非アクティブの場合)である。20(b)に示されるように、FF104のQ信号は、S信号がHigh(アクティブ)かつRB信号がHigh(非アクティブ)の期間にHigh(アクティブ)、S信号がHigh(アクティブ)かつRB信号がLow(アクティブ)の期間に不定、S信号がLow(非アクティブ)かつRB信号がHigh(非アクティブ)の期間に保持状態、S信号がLow(非アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)となる。
 〔フリップフロップの形態2〕
 図3(a)は、実施の形態2にかかるフリップフロップの構成を示す回路図である。同図に示すように、FF201は、CMOS回路を構成するPチャネルトランジスタp6およびNチャネルトランジスタn5と、CMOS回路を構成するPチャネルトランジスタp8およびNチャネルトランジスタn7と、Pチャネルトランジスタp5・p7と、Nチャネルトランジスタn6・n8と、SB端子と、RB端子と、INITB端子と、Q端子・QB端子とを備え、p6のゲートとn5のゲートとp7のドレインとp8のドレインとn7のドレインとQB端子とが接続されるとともに、p6のドレインとn5のドレインとp5のドレインとp8のゲートとn7のゲートとQ端子とが接続され、n5のソースとn6のドレインとが接続され、n7のソースとn8のドレインとが接続され、SB端子がp5のゲートとn6のゲートとに接続され、RB端子がp5のソースとp7のゲートとn8のゲートとに接続され、INITB端子がp6のソースに接続され、p7およびp8のソースがVDDに接続され、n6およびn8のソースがVSSに接続されている構成である。ここでは、p6、n5、p8およびn7がラッチ回路LCを構成し、p5がセットトランジスタST、p7がリセットトランジスタRT、n6およびn8それぞれがラッチ解除トランジスタ(リリーストランジスタ)LRTとして機能する。
 図3(b)はFF201の動作を示すタイミングチャート(INITB信号が非アクティブの場合)であり、図3(c)はFF201の真理値表(INITB信号が非アクティブの場合)である。図3(b)(c)に示されるように、FF201のQ信号は、SB信号がLow(アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がLow(アクティブ)かつRB信号がHigh(非アクティブ)の期間にHigh(アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がHigh(非アクティブ)の期間に保持状態となる。
 例えば、図3(b)のt1では、Q端子にRB端子のVddが出力されてn7がONしてQB端子にはVss(Low)が出力される。t2では、SB信号がHighとなってp5がOFFしてn6がONするため、t1の状態を維持する。t3では、RB信号がLowとなるので、p7がONしてQB端子にはVdd(High)が出力され、さらに、n5がONしてQ端子にはVssが出力される。なお、SB信号およびRB信号がともにLow(アクティブ)となった場合は、p7がONしてQB端子にはVdd(High)が出力され、Q端子にはp5を介してVss+Vth(p5の閾値電圧)が出力される。
 さらに、INITB信号がアクティブの期間に、SB信号およびRB信号がともに非アクティブとなると、FF201のQ信号およびQB信号は非アクティブとなる。
 例えば、INITB信号がLow(アクティブ)の期間に、SB信号およびRB信号がともにLow(アクティブ)の状態(状態A)から、SB信号およびRB信号がともにHigh(非アクティブ)の状態(状態X)になった場合、状態Aでは、p7がONでp6がOFFで、QB端子にはVdd(High)、Q端子にVssが出力されるが、状態Xではp6はOFFのままであるため、Q端子およびQB端子の出力は状態Aから変わらない。また、INITB信号がLow(アクティブ)の期間に、SB信号がHigh(非アクティブ)でRB信号がLow(アクティブ)の状態(状態B)から、SB信号およびRB信号がともにHigh(非アクティブ)の状態(状態X)になった場合、状態Bでは、p7およびn5がONして、QB端子にVdd(High)、Q端子にVss(Low)が出力されるが、状態Xではp6はOFFのままであるため、Q端子およびQB端子の出力は状態Bと変わらない。さらに、INITB信号がLow(アクティブ)の期間に、SB信号がLow(アクティブ)でRB信号がHigh(非アクティブ)の状態(状態C)から、SB信号およびRB信号がともにHigh(非アクティブ)の状態(状態X)になった場合、状態Cでは、Q端子およびQB端子の出力は不定となるが、状態Xにおいて、状態Xへ変化する直前にp6がONしている場合には、Q端子が瞬間的にVss+Vth(p6の閾値電圧)になり、そのためp8がONしてQB端子にはVdd(High)が出力される。また、QB端子が接続されているn5がONするため、Q端子はVss(Low)となる。状態Xへ変化する直前にp6がOFFしている場合には、ラッチ回路LCを構成するp6がOFFしているため、インバータを構成する一方のトランジスタn5がONしていることになる。そのため、Q端子にはVss(Low)が出力され、Q端子がゲートに接続されているp8がONするため、QB端子にはVdd(High)が出力される。つまり、状態Cがどのような不定状態であっても、状態Xでは、Q端子はVss(Low)、QB端子はVdd(High)となる。
 このように、FF201では、p6、n5、p8およびn7(2つのCMOS)でラッチ回路を構成するとともに、RB端子を、リセットトランジスタRTとして機能するp7のゲートとセットトランジスタSTとして機能するp5のソースとに接続し、かつp6のソースをINITB端子に接続することで、従来(図70参照)必要とされた、優先決定回路および初期化回路をなくしながら、セット、ラッチ、リセット、SB信号とRB信号が同時にアクティブになったときの優先決定、および初期化の各動作を実現している。上記のとおり、FF201ではSB信号およびRB信号が同時アクティブになったときにはRB信号(リセット)が優先され、出力QBは非アクティブとなる。
 なお、図3(a)においてp6のソースをVDDに接続し、図22(a)のFF209のように構成してもよい。FF209の真理値表は図22(b)に示すとおりである。
 図4(a)は、図3(a)の一変形例であるFF202の構成を示す回路図である。同図に示すように、FF202は、CMOS回路を構成するPチャネルトランジスタp10およびNチャネルトランジスタn10と、CMOS回路を構成するPチャネルトランジスタp12およびNチャネルトランジスタn12と、Pチャネルトランジスタp9・p11と、Nチャネルトランジスタn9・n12と、S端子と、R端子と、INIT端子と、Q端子・QB端子とを備え、p10のゲートとn10のゲートとp12のドレインとn12のドレインとn9のドレインとQB端子とが接続されるとともに、p10のドレインとn10のドレインとn10のドレインとp12のゲートとn12のゲートとn11のドレインとQ端子とが接続され、p10のソースとp9のドレインとが接続され、p12のソースとp11のドレインとが接続され、S端子がn9のゲートとp11のゲートとに接続され、R端子がn9のソースとp9のゲートとn11のゲートとに接続され、INIT端子がn12のソースに接続され、p9およびp11のソースがVDDに接続され、n10およびn11のソースがVSSに接続されている構成である。ここでは、p10、n10、p12およびn12がラッチ回路LCを構成し、n9がセットトランジスタST、n11がリセットトランジスタRT、p9およびp11それぞれがラッチ解除トランジスタLRTとして機能する。
 図4(b)はFF202の動作を示すタイミングチャート(INIT信号が非アクティブの場合)であり、図4(c)はFF202の真理値表(INIT信号が非アクティブの場合)である。図4(b)(c)に示されるように、FF202のQ信号は、S信号がLow(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、S信号がLow(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、S信号がHigh(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)、S信号がHigh(アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)となる。
 さらに、INIT信号がアクティブの期間に、S信号およびR信号がともに非アクティブとなると、FF202のQ信号およびQB信号は非アクティブとなる。
 図7(a)は、実施の形態2にかかるフリップフロップの他の構成を示す回路図である。同図に示すように、FF203は、CMOS回路を構成するPチャネルトランジスタp22およびNチャネルトランジスタn21と、CMOS回路を構成するPチャネルトランジスタp23およびNチャネルトランジスタn22と、Pチャネルトランジスタp21と、SB端子と、RB端子と、INIT端子と、Q端子・QB端子とを備え、p22のゲートとn21のゲートとp23のドレインとn22のドレインとp21のドレインとQ端子とが接続されるとともに、p22のドレインとn21のドレインとp23のゲートとn22のゲートとQB端子とが接続され、SB端子がp21のゲートに接続され、RB端子がp21のソースとp23のソースとに接続され、INIT端子がn21のソースに接続され、n22のソースがVSSに接続されている構成である。ここでは、p22、n21、p23およびn22がラッチ回路LCを構成し、p21がセットトランジスタSTとして機能する。
 図7(b)はFF203の動作を示すタイミングチャート(INIT信号が非アクティブの場合)であり、図7(c)はFF203の真理値表(INIT信号が非アクティブの場合)である。図7(b)(c)に示されるように、FF203のQ信号は、SB信号がLow(アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がLow(アクティブ)かつRB信号がHigh(非アクティブ)の期間にHigh(アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がHigh(非アクティブ)の期間に保持状態となる。
 例えば、図7(b)のt1では、Q端子にRB端子のVdd(High)が出力されてn21がONしてQB端子にはVss(Low)が出力される。t2では、SB信号がHighとなってp21がOFFするため、t1の状態を維持する。t3では、RB信号がLowとなるので、p23を介してQ端子に一旦Vss+Vth(p23の閾値電圧)が出力され、これにより、p22がONしてQB端子にVdd(High)が出力される。さらに、QB端子がVddになるため、n22がONしてQ端子にVssが出力される。なお、SB信号およびRB信号がともにLow(アクティブ)となった場合は、Q端子にp21を介して一旦Vss+Vthが出力され、これにより、p22がONしてQB端子にVdd(High)が出力される。さらに、QB端子がVddになるため、n22がONしてQ端子にVssが出力される。
 このように、FF203では、p22、n21、p23およびn22(2つのCMOS)でラッチ回路を構成するとともに、RB端子を、セットトランジスタSTとして機能するp21のソースとp23のソースとに接続し、かつn21のソースをINIT端子に接続することで、従来(図70参照)必要とされた、リセット回路、ラッチ解除回路、優先決定回路および初期化回路をなくしながら、セット、ラッチ、リセット、SB信号とRB信号が同時にアクティブになったときの優先決定、および初期化の各動作を実現している。上記のとおり、FF203ではSB信号およびRB信号が同時アクティブになったときにはRB信号(リセット)が優先され、出力Q・QBは非アクティブとなる。
 図8(a)は、図7(a)の一変形例であるFF204の構成を示す回路図である。同図に示すように、FF204は、CMOS回路を構成するPチャネルトランジスタp24およびNチャネルトランジスタn24と、CMOS回路を構成するPチャネルトランジスタp25およびNチャネルトランジスタn25と、Nチャネルトランジスタn23と、S端子と、R端子と、INITB端子と、Q端子・QB端子とを備え、p24のゲートとn24のゲートとp25のドレインとn25のドレインとn23のドレインとQB端子とが接続されるとともに、p24のドレインとn24のドレインとp25のゲートとn25のゲートとQ端子とが接続され、S端子がn23のゲートに接続され、R端子がn23のソースとn25のソースに接続され、INITB端子がp24のソースに接続され、p25のソースがVDDに接続され、n24のソースがVSSに接続されている構成である。ここでは、p24、n24、p25およびn25がラッチ回路LCを構成し、n23がセットトランジスタSTとして機能する。
 図8(b)はFF204の動作を示すタイミングチャート(INITB信号が非アクティブの場合)であり、図8(c)はFF204の真理値表(INITB信号が非アクティブの場合)である。図8(b)(c)に示されるように、FF204のQ信号は、S信号がLow(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、S信号がLow(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、S信号がHigh(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)、S信号がHigh(アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)となる。
 図11(a)は、実施の形態2にかかるフリップフロップのさらに他の構成を示す回路図である。同図に示すように、FF205は、CMOS回路を構成するPチャネルトランジスタp32およびNチャネルトランジスタn31と、CMOS回路を構成するPチャネルトランジスタp34およびNチャネルトランジスタn32と、Pチャネルトランジスタp31・p33と、SB端子と、RB端子と、INITB端子と、Q端子・QB端子とを備え、p32のゲートとn31のゲートとp34のドレインとn32のドレインとp33のドレインとQB端子とが接続されるとともに、p32のドレインとn31のドレインとp34のゲートとn32のゲートとp31のドレインとQ端子とが接続され、SB端子がp31のゲートに接続され、RB端子がp31のソースとp33のゲートとに接続され、INITB端子がp32のソースに接続され、p33およびp34のソースがVDDに接続され、n31およびn32のソースがVSSに接続されている構成である。ここでは、p32、n31、p34およびn32がラッチ回路LCを構成し、p31がセットトランジスタST、p33がリセットトランジスタRTとして機能する。
 図11(b)はFF205の真理値表(INIT信号が非アクティブの場合)である。図11(b)に示されるように、FF205のQ信号は、SB信号がLow(アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がLow(アクティブ)かつRB信号がHigh(非アクティブ)の期間にHigh(アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がHigh(非アクティブ)の期間に保持状態となる。
 図12(a)は、図11(a)の一変形例であるFF206の構成を示す回路図である。同図に示すように、FF206は、CMOS回路を構成するPチャネルトランジスタp35およびNチャネルトランジスタn34と、CMOS回路を構成するPチャネルトランジスタp36およびNチャネルトランジスタn36と、Nチャネルトランジスタn33・35と、S端子と、R端子と、INITB端子と、Q端子・QB端子とを備え、p35のゲートとn34のゲートとp36のドレインとn36のドレインとn33のドレインとQB端子とが接続されるとともに、p35のドレインとn34のドレインとp36のゲートとn36のゲートとn35のドレインとQ端子とが接続され、S端子がn33のゲートに接続され、R端子がn33のソースとn35のゲートとに接続され、INITB端子がp35のソースに接続され、p36のソースがVDDに接続され、n35のソースがVSSに接続されている構成である。ここでは、p35、n34、p36およびn36がラッチ回路LCを構成し、n33がセットトランジスタST、n35がリセットトランジスタRTとして機能する。
 図12(b)はFF206の真理値表(INITB信号が非アクティブの場合)である。図12(b)(c)に示されるように、FF206のQ信号は、S信号がLow(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、S信号がLow(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、S信号がHigh(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)、S信号がHigh(アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)となる。
 図15(a)は、実施の形態2にかかるフリップフロップのさらに他の構成を示す回路図である。同図に示すように、FF207は、CMOS回路を構成するPチャネルトランジスタp44およびNチャネルトランジスタn43と、CMOS回路を構成するPチャネルトランジスタp45およびNチャネルトランジスタn44と、Pチャネルトランジスタp43と、Nチャネルトランジスタn45と、SB端子と、RB端子と、INIT端子と、Q端子・QB端子とを備え、p44のゲートとn43のゲートとp45のドレインとn44のドレインとp43のドレインとQ端子とが接続されるとともに、p44のドレインとn43のドレインとp45のゲートとn44のゲートとQB端子とが接続され、n44のソースとn45のドレインとが接続され、SB端子がp43のゲートとn45のゲートとに接続され、RB端子がp43のソースとp45のソースとに接続され、INIT端子がn43のソースに接続され、p44のソースがVDDに接続され、n45のソースがVSSに接続されている構成である。ここでは、p44、n43、p45およびn44がラッチ回路LCを構成し、p43がセットトランジスタST、n45がラッチ解除回路トランジスタLRTとして機能する。
 図15(b)はFF207の真理値表(INIT信号が非アクティブの場合)である。図15(b)に示されるように、FF207のQ信号は、SB信号がLow(アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がLow(アクティブ)かつRB信号がHigh(非アクティブ)の期間にHigh(アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がHigh(非アクティブ)の期間に保持状態となる。
 図16(a)は、図15(a)の一変形例であるFF208の構成を示す回路図である。同図に示すように、FF208は、CMOS回路を構成するPチャネルトランジスタp46およびNチャネルトランジスタn47と、CMOS回路を構成するPチャネルトランジスタp48およびNチャネルトランジスタn48と、Nチャネルトランジスタn46と、Pチャネルトランジスタp47と、S端子と、R端子と、INITB端子と、Q端子・QB端子とを備え、p46のゲートとn47のゲートとp48のドレインとn48のドレインとn46のドレインとQB端子とが接続されるとともに、p46のドレインとn47のドレインとp48のゲートとn48のゲートとQ端子とが接続され、p47のドレインとp48のソースとが接続され、S端子がn46のゲートとp47のゲートとに接続され、R端子がn46のソースとn48のソースとに接続され、INITB端子がp46のソースに接続され、p47のソースがVDDに接続され、n47のソースがVSSに接続されている構成である。ここでは、p46、n47、p48およびn48がラッチ回路LCを構成し、n46がセットトランジスタST、p47がラッチ解除トランジスタLRTとして機能する。
 図16(b)はFF208の真理値表(INITB信号が非アクティブの場合)である。図16(b)に示されるように、FF208のQ信号は、S信号がLow(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、S信号がLow(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、S信号がHigh(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)、S信号がHigh(アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)となる。
 図25(a)は、FF210の構成を示す回路図である。同図に示すように、FF210は、CMOS回路を構成するPチャネルトランジスタp84およびNチャネルトランジスタn84と、CMOS回路を構成するPチャネルトランジスタp85およびNチャネルトランジスタn85と、Pチャネルトランジスタp81・p82・p83と、Nチャネルトランジスタn82・n83と、SB端子と、R端子と、INIT端子と、Q端子・QB端子とを備え、p84のゲートとn84のゲートとp85のドレインとn85のドレインとQB端子とが接続されるとともに、p84のドレインとn84のドレインとp81のドレインとn82のドレインとp85のゲートとn85のゲートとQ端子とが接続され、n84のソースとn83のドレインとが接続され、p84のソースとp83のドレインとが接続され、p81のソースとp82のドレインとが接続され、SB端子がp81のゲートとn83のゲートとに接続され、R端子がn82のゲートとp82のゲートとp83のゲートとに接続され、INIT端子がn85のソースに接続され、p82、p83およびp85のソースがVDDに接続され、n82およびn83のソースがVSSに接続されている構成である。ここでは、p84、n84、p85およびn85がラッチ回路LCを構成し、p81がセットトランジスタST、n82がリセットトランジスタRT、p83およびn83それぞれがラッチ解除トランジスタLRT、p82が優先決定トランジスタPDTとして機能する。
 図25(b)はFF210の真理値表(INIT信号が非アクティブの場合)である。図25(b)に示されるように、FF210のQ信号は、SB信号がHigh(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、SB信号がLow(アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、SB信号がLow(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)となる。
 なお、図25(a)においてp85のソースをINITB端子に接続するとともに、n85のソースをVSSに接続し、図27(a)のFF211のように構成してもよい。FF211の真理値表は図27(b)に示すとおりである。
 〔フリップフロップの形態3〕
 図5(a)は、実施の形態3にかかるフリップフロップの構成を示す回路図である。同図に示すように、FF301は、CMOS回路を構成するPチャネルトランジスタp14およびNチャネルトランジスタn13と、CMOS回路を構成するPチャネルトランジスタp16およびNチャネルトランジスタn15と、Pチャネルトランジスタp13・p15と、Nチャネルトランジスタn14・n16と、SB端子と、RB端子と、INITB端子と、Q端子・QB端子とを備え、p14のゲートとn13のゲートとp16のドレインとp15のドレインとp15のドレインとQ端子とが接続されるとともに、p14のドレインとn13のドレインとp16のゲートとn15のゲートとp13のドレインとQB端子とが接続され、n13のソースとn14のドレインとが接続され、n15のソースとn16のドレインとが接続され、SB端子がp13のソースとp15のゲートとn16のゲートとに接続され、RB端子がp13のゲートとn14のゲートとに接続され、INITB端子がp16のソースに接続され、p14およびp15のソースがVDDに接続され、n14およびn16のソースがVSSに接続されている構成である。ここでは、p14、n13、p16およびn15がラッチ回路LCを構成し、p15がセットトランジスタST、p13がリセットトランジスタRT、n14およびn16それぞれがラッチ解除トランジスタLRTとして機能する。
 図5(b)はFF301の動作を示すタイミングチャート(INITB信号が非アクティブの場合)であり、図5(c)はFF301の真理値表(INITB信号が非アクティブの場合)である。図5(b)(c)に示されるように、FF301のQ信号は、SB信号がLow(アクティブ)かつRB信号がLow(アクティブ)の期間にHigh(アクティブ)、SB信号がLow(アクティブ)かつRB信号がHigh(非アクティブ)の期間にHigh(アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がHigh(非アクティブ)の期間に保持状態となる。
 例えば、図5(b)のt1では、p15がONしてQ端子にはVdd(High)が出力され、これにより、n13がONしてQB端子にはVss(Low)が出力される。t2では、SB信号がHighとなってp15がOFFしてn14およびn16がONするため、t1の状態を維持する。t3では、RB信号がLowとなるので、QB端子にはSB端子のVdd(High)が出力され、これにより、n15がONして、Q端子にはVss(Low)が出力される。なお、SB信号およびRB信号がともにLow(アクティブ)となった場合は、p15がONしてQ端子にはVdd(High)が出力され、QB端子にはp13を介してVss+Vth(p13の閾値電圧)が出力される。
 さらに、INITB信号がアクティブの期間に、SB信号およびRB信号がともに非アクティブとなると、FF301のQ信号およびQB信号は非アクティブとなる。
 例えば、INITB信号がLow(アクティブ)の期間に、SB信号がLow(アクティブ)でRB信号がLow(アクティブ)の状態(状態A)から、SB信号およびRB信号がともにHigh(非アクティブ)の状態(状態X)になった場合、状態AではQ端子およびQB端子の出力は不定となるが、状態Xにおいて、状態Xへ変化する直前にp16がONしている場合には、Q端子が瞬間的にVss+Vth(p16の閾値電圧)になり、そのためp14がONしてQB端子にはVdd(High)が出力される。また、QB端子が接続されているn15がONするため、Q端子はVss(Low)となる。状態Xへ変化する直前にp16がOFFしている場合には、ラッチ回路LCを構成するp16がOFFしているため、インバータを構成する一方のトランジスタn15がONしていることになる。そのため、Q端子にはVss(Low)が出力され、Q端子がゲートに接続されているp14がONするため、QB端子にはVdd(High)が出力される。つまり、状態Aがどのような不定状態であっても、状態Xでは、Q端子はVss(Low)、QB端子はVdd(High)となる。また、INITB信号がLow(アクティブ)の期間に、SB信号がLow(アクティブ)でRB信号がH(非アクティブ)の状態(状態B)から、SB信号およびRB信号がともにHigh(非アクティブ)の状態(状態X)になった場合、状態BではQ端子およびQB端子の出力は不定となるが、状態Xにおいて、状態Xへ変化する直前にp16がONしている場合には、Q端子が瞬間的にVss+Vth(p16の閾値電圧)になり、そのためp14がONしてQB端子にはVdd(High)が出力される。また、QB端子が接続されているn15がONするため、Q端子はVss(Low)となる。状態Xへ変化する直前にp16がOFFしている場合には、ラッチ回路LCを構成するp16がOFFしているため、インバータを構成する一方のトランジスタn15がONしていることになる。そのため、Q端子にはVss(Low)が出力され、Q端子がゲートに接続されているp14がONするため、QB端子にはVdd(High)が出力される。QB端子にはVdd(High)が出力される。つまり、状態Bがどのような不定状態であっても、状態Xでは、Q端子はVss(Low)、QB端子はVdd(High)となる。
 このように、FF301では、p14、n13、p16およびn15(2つのCMOS)でラッチ回路を構成するとともに、SB端子を、セットトランジスタSTとして機能するp15のゲートとリセットトランジスタRTとして機能するp13のソースとに接続し、かつp16のソースをINITB端子に接続することで、従来(図70参照)必要とされた、優先決定回路および初期化回路をなくしながら、セット、ラッチ、リセット、SB信号とRB信号が同時にアクティブになったときの優先決定、および初期化の各動作を実現している。上記のとおり、FF301ではSB信号およびRB信号が同時アクティブになったときにはSB信号(セット)が優先され、出力Qはアクティブとなる。
 なお、図5(a)においてp16のソースをVDDに接続し、図23(a)のFF309のように構成してもよい。FF309の真理値表は図23(b)に示すとおりである。
 図6(a)は、図5(a)の一変形例であるFF302の構成を示す回路図である。同図に示すように、FF302は、CMOS回路を構成するPチャネルトランジスタp18およびNチャネルトランジスタn18と、CMOS回路を構成するPチャネルトランジスタp20およびNチャネルトランジスタn20と、Pチャネルトランジスタp17・p19と、Nチャネルトランジスタn17・n19と、S端子と、R端子と、INIT端子と、Q端子・QB端子とを備え、p18のゲートとn18のゲートとp20のドレインとn20のドレインとn17のドレインとQ端子とが接続されるとともに、p18のドレインとn18のドレインとp20のゲートとn20のゲートとn19のドレインとQB端子とが接続され、p20のソースとp19のドレインとが接続され、p18のソースとp17のドレインとが接続され、S端子がp17のゲートとn19のゲートとn17のソースとに接続され、R端子がp19のゲートとn17のゲートとに接続され、INIT端子がn18のソースに接続され、p17およびp19のソースがVDDに接続され、n19およびn20のソースがVSSに接続されている構成である。ここでは、p18、n18、p20およびn20がラッチ回路LCを構成し、n19がセットトランジスタST、n17がリセットトランジスタRT、p17およびp19それぞれがラッチ解除トランジスタLRTとして機能する。
 図6(b)はFF302の動作を示すタイミングチャート(INIT信号が非アクティブの場合)であり、図6(c)はFF302の真理値表(INIT信号が非アクティブの場合)である。図6(b)(c)に示されるように、FF302のQ信号は、S信号がLow(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、S信号がLow(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、S信号がHigh(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)、S信号がHigh(アクティブ)かつR信号がHigh(アクティブ)の期間にHigh(アクティブ)となる。
 さらに、INIT信号がアクティブの期間に、S信号およびR信号がともに非アクティブとなると、FF302のQ信号およびQB信号は非アクティブとなる。
 図9(a)は、実施の形態3にかかるフリップフロップの他の構成を示す回路図である。同図に示すように、FF303は、CMOS回路を構成するPチャネルトランジスタp27およびNチャネルトランジスタn26と、CMOS回路を構成するPチャネルトランジスタp28およびNチャネルトランジスタn27と、Pチャネルトランジスタp26と、SB端子と、RB端子と、INIT端子と、Q端子・QB端子とを備え、p27のゲートとn26のゲートとp28のドレインとn27のドレインとp26のドレインとQB端子とが接続されるとともに、p27のドレインとn26のドレインとp28のゲートとn27のゲートとQ端子とが接続され、RB端子がp26のゲートに接続され、SB端子がp26のソースとp28のソースとに接続され、INIT端子がn27のソースに接続され、n26のソースがVSSに接続され、p27のソースにVDDが接続されている構成である。ここでは、p27、n26、p28およびn27がラッチ回路LCを構成し、p26がリセットトランジスタRTとして機能する。
 図9(b)はFF303の動作を示すタイミングチャート(INIT信号が非アクティブの場合)であり、図9(c)はFF303の真理値表(INIT信号が非アクティブの場合)である。図9(b)(c)に示されるように、FF303のQ信号は、SB信号がLow(アクティブ)かつRB信号がLow(アクティブ)の期間にHigh(アクティブ)、SB信号がLow(アクティブ)かつRB信号がHigh(非アクティブ)の期間にHigh(アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がHigh(非アクティブ)の期間に保持状態となる。
 例えば、図9(b)のt1では、p28を介してQB端子に一旦Vss+Vth(p28の閾値電圧)が出力され、これにより、p27がONしてQ端子にVdd(High)が出力される。さらに、Q端子がVddになるため、n27がONしてQB端子にVssが出力される。t2では、p28はOFFしているため、SB信号がHighとなってもt1の状態を維持する。t3では、RB信号がLowとなるので、QB端子にSB端子のVddが出力され、これにより、n26がONしてQ端子にVss(Low)が出力される。なお、SB信号およびRB信号がともにLow(アクティブ)となった場合は、QB端子にp26を介して一旦Vss+Vthが出力され、これにより、p27がONしてQ端子にVdd(High)が出力される。さらに、Q端子がVddになるため、n27がONしてQB端子にINIT端子のVss(Low)が出力される。
 このように、FF303では、p27、n26、p28およびn27(2つのCMOS)でラッチ回路を構成するとともに、SB端子を、p28のソースとリセットトランジスタRTとして機能するp26のソースとに接続し、かつn27のソースをINIT端子に接続することで、従来(図70参照)必要とされた、セット回路、ラッチ解除回路、優先決定回路および初期化回路をなくしながら、セット、ラッチ、リセット、SB信号とRB信号が同時にアクティブになったときの優先決定、および初期化の各動作を実現している。上記のとおり、FF303ではSB信号およびRB信号が同時アクティブになったときにはSB信号(セット)が優先され、出力Q・QBはアクティブとなる。
 図10(a)は、図9(a)の一変形例であるFF304の構成を示す回路図である。同図に示すように、FF304は、CMOS回路を構成するPチャネルトランジスタp29およびNチャネルトランジスタn29と、CMOS回路を構成するPチャネルトランジスタp30およびNチャネルトランジスタn30と、Nチャネルトランジスタn28と、S端子と、R端子と、INITB端子と、Q端子・QB端子とを備え、p29のゲートとn29のゲートとn28のドレインとp30のドレインとn30のドレインとQ端子とが接続されるとともに、p29のドレインとn29のドレインとp30のゲートとn30のゲートとQB端子とが接続され、R端子がn28のゲートに接続され、S端子がn28のソースとn30のソースに接続され、INITB端子がp30のソースに接続され、p29のソースがVDDに接続され、n29のソースがVSSに接続されている構成である。ここでは、p29、n29、p30およびn30がラッチ回路LCを構成し、n28がリセットトランジスタRTとして機能する。
 図10(b)はFF304の動作を示すタイミングチャート(INITB信号が非アクティブの場合)であり、図10(c)はFF304の真理値表(INITB信号が非アクティブの場合)である。図10(b)(c)に示されるように、FF304のQ信号は、S信号がLow(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、S信号がLow(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、S信号がHigh(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)、S信号がHigh(アクティブ)かつR信号がHigh(アクティブ)の期間にHigh(アクティブ)となる。
 図13(a)は、実施の形態3にかかるフリップフロップのさらに他の構成を示す回路図である。同図に示すように、FF305は、CMOS回路を構成するPチャネルトランジスタp38およびNチャネルトランジスタn37と、CMOS回路を構成するPチャネルトランジスタp40およびNチャネルトランジスタn38と、Pチャネルトランジスタp37・p39と、SB端子と、RB端子と、INIT端子と、Q端子・QB端子とを備え、p38のゲートとn37のゲートとp40のドレインとn38のドレインとp39のドレインとQ端子とが接続されるとともに、p38のドレインとn37のドレインとp40のゲートとn38のゲートとp37のドレインとQB端子とが接続され、RB端子がp37のゲートに接続され、SB端子がp37のソースとp39のゲートとに接続され、INITB端子がp40のソースに接続され、n37およびn38のソースがVSSに接続され、p38およびp39のソースがVDDに接続されている構成である。ここでは、p38、n37、p40およびn38がラッチ回路LCを構成し、p37がリセットトランジスタRT、p39がセットトランジスタSTとして機能する。
 図13(b)はFF305の真理値表(INITB信号が非アクティブの場合)である。図13(b)に示されるように、FF305のQ信号は、SB信号がLow(アクティブ)かつRB信号がLow(アクティブ)の期間にHigh(アクティブ)、SB信号がLow(アクティブ)かつRB信号がHigh(非アクティブ)の期間にHigh(アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がHigh(非アクティブ)の期間に保持状態となる。
 図14(a)は、図13(a)の一変形例であるFF306の構成を示す回路図である。同図に示すように、FF306は、CMOS回路を構成するPチャネルトランジスタp41およびNチャネルトランジスタn40と、CMOS回路を構成するPチャネルトランジスタp42およびNチャネルトランジスタn42と、Nチャネルトランジスタn39・n41と、S端子と、R端子と、INITB端子と、Q端子・QB端子とを備え、p41のゲートとn40のゲートとn39のドレインとp42のドレインとn42のドレインとQ端子とが接続されるとともに、p41のドレインとn40のドレインとp42のゲートとn42のゲートとn41のドレインとQB端子とが接続され、R端子がn39のゲートに接続され、S端子がn39のソースとn41のゲートとに接続され、INITB端子がp42のソースに接続され、p41のソースがVDDに接続され、n40・n41・n42のソースがVSSに接続されている構成である。ここでは、p41、n40、p42およびn42がラッチ回路LCを構成し、n39がリセットトランジスタRT、n41がセットトランジスタSTとして機能する。
 図14(b)はFF306の真理値表(INITB信号が非アクティブの場合)である。図14(b)に示されるように、FF306のQ信号は、S信号がLow(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、S信号がLow(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、S信号がHigh(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)、S信号がHigh(アクティブ)かつR信号がHigh(アクティブ)の期間にHigh(アクティブ)となる。
 図17(a)は、実施の形態3にかかるフリップフロップのさらに他の構成を示す回路図である。同図に示すように、FF307は、CMOS回路を構成するPチャネルトランジスタp50およびNチャネルトランジスタn49と、CMOS回路を構成するPチャネルトランジスタp51およびNチャネルトランジスタn50と、Pチャネルトランジスタp49と、Nチャネルトランジスタn51と、SB端子と、RB端子と、INITB端子と、Q端子・QB端子とを備え、p50のゲートとn49のゲートとp51のドレインとn50のドレインとp49のドレインとQB端子とが接続されるとともに、p50のドレインとn49のドレインとp51のゲートとn50のゲートとQ端子とが接続され、n50のソースとn51のドレインとが接続され、RB端子がp49のゲートとn51のゲートとに接続され、SB端子がp49のソースとp51のソースとに接続され、INITB端子がp50のソースに接続され、n49およびn51のソースがVSSに接続されている構成である。ここでは、p50、n49、p51およびn50がラッチ回路LCを構成し、p49がリセットトランジスタRT、n51がラッチ解除トランジスタLRTとして機能する。
 図17(b)はFF307の真理値表(INITB信号が非アクティブの場合)である。図17(b)に示されるように、FF307のQ信号は、SB信号がLow(アクティブ)かつRB信号がLow(アクティブ)の期間にHigh(アクティブ)、SB信号がLow(アクティブ)かつRB信号がHigh(非アクティブ)の期間にHigh(アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がHigh(非アクティブ)の期間に保持状態となる。
 図18(a)は、図17(a)の一変形例であるFF308の構成を示す回路図である。同図に示すように、FF308は、CMOS回路を構成するPチャネルトランジスタp52およびNチャネルトランジスタn53と、CMOS回路を構成するPチャネルトランジスタp54およびNチャネルトランジスタn54と、Nチャネルトランジスタn52と、Pチャネルトランジスタp53と、S端子と、R端子と、INIT端子と、Q端子・QB端子とを備え、p52のゲートとn53のゲートとn52のドレインとp54のドレインとn54のドレインとQ端子とが接続されるとともに、p52のドレインとn53のドレインとp54のゲートとn54のゲートとQB端子とが接続され、p53のドレインとp54のソースとが接続され、R端子がn52のゲートとp53のゲートとに接続され、S端子がn54のソースとn52のソースとに接続され、INIT端子がn53のソースに接続され、p52・p53のソースがVDDに接続されている構成である。ここでは、p52、n53、p54およびn54がラッチ回路LCを構成し、n52がリセットトランジスタRT、p53がラッチ解除トランジスタとして機能する。
 図18(b)はFF308の真理値表(INIT信号が非アクティブの場合)である。図18(b)に示されるように、FF308のQ信号は、S信号がLow(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、S信号がLow(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、S信号がHigh(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)、S信号がHigh(アクティブ)かつR信号がHigh(アクティブ)の期間にHigh(アクティブ)となる。
 図24(a)は、実施の形態3にかかるフリップフロップのさらに他の構成を示す回路図である。同図に示すように、FF310は、CMOS回路を構成するPチャネルトランジスタp75およびNチャネルトランジスタn75と、CMOS回路を構成するPチャネルトランジスタp76およびNチャネルトランジスタn76と、Pチャネルトランジスタp71・p74と、Nチャネルトランジスタn71・n73・n74と、SB端子と、R端子と、INIT端子と、Q端子・QB端子とを備え、p75のゲートとn75のゲートとp76のドレインとn76のドレインとQB端子とが接続されるとともに、p75のドレインとn75のドレインとp71のドレインとn71のドレインとp76のゲートとn76のゲートとQ端子とが接続され、n75のソースとn74のドレインとが接続され、n71のソースとn73のドレインとが接続され、p75のソースとp74のドレインとが接続され、SB端子がp71のゲートとn73のゲートとn74のゲートとに接続され、R端子がp74のゲートとn71のゲートとに接続され、INIT端子がn76のソースに接続され、p71、p74およびp76のソースがVDDに接続され、n73およびn74のソースがVSSに接続されている構成である。ここでは、p75、n75、p76およびn76がラッチ回路LCを構成し、p71がセットトランジスタST、n71がリセットトランジスタRT、n74およびp74それぞれがラッチ解除トランジスタLRT、n73が優先決定トランジスタPDTとして機能する。
 図24(b)はFF310の真理値表(INITB信号が非アクティブの場合)である。図24(b)に示されるように、FF310のQ信号は、SB信号がHigh(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、SB信号がLow(アクティブ)かつR信号がHigh(アクティブ)の期間にHigh(アクティブ)、SB信号がLow(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)となる。
 なお、図24(a)においてp76のソースをINITB端子に接続するとともに、n76のソースをVSSに接続し、図26(a)のFF311のように構成してもよい。FF311の真理値表は図26(b)に示すとおりである。
 また、実施の形態3のフリップフロップを、図72(a)のように構成してもよい。すなわち、図72(a)のFF312では、p82(セットトランジスタ)のソースがINITB端子に接続され、p82のゲートがSB端子とn81のゲートとn83のゲートとに接続され、p82のドレインがQ端子に接続されている。また、n82(リセットトランジスタ)のドレインがn81のソースに接続され、n82のゲートがR端子とp83のゲートとに接続され、n82のソースがVSSに接続されている。なお、p83およびn83それぞれのドレインはラッチ回路LCに接続されている。図72(b)にFF312の真理値表を示しておく。
 〔シフトレジスタへの適用形態1〕
 図28は本発明にかかる液晶表示装置3aの構成を示す回路図である。液晶表示装置3aは、表示部DAR、ゲートドライバGD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、INITB信号(初期化用信号)、およびゲートクロック信号GCK1B・GCK2Bを供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲートドライバGDには、複数段からなるシフトレジスタSRが含まれている。以下適宜、シフトレジスタのi段(i=1・・・n-1・n・n+1・・・)をi段SRiと略記する。
 シフトレジスタのi段SRiからの出力信号(OUTB信号)は、インバータを介して表示部DARの走査信号線Giに供給される。例えば、n段SRnのOUTB信号は、インバータを介して走査信号線Gnに供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続され、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成されている。
 図29はシフトレジスタのi段SRiの構成を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子、RB端子およびINITB端子を備える本実施の形態にかかるフリップフロップFFと、アナログスイッチASWと、PチャネルトランジスタTrとCKB端子とが含まれ、フリップフロップFFのQ端子が、トランジスタTrのゲートとアナログスイッチASWのNチャネル側ゲートとに接続され、QB端子がアナログスイッチASWのPチャネル側ゲートに接続され、トランジスタTrのソースがVDDに接続され、トランジスタTrのドレインが、この段の出力端子であるOUTB端子とアナログスイッチASWの一方の導通電極とに接続され、アナログスイッチASWの他方の導通電極がクロック信号入力用のCKB端子に接続されている。
 i段SRiでは、フリップフロップFFのQ信号がLow(非アクティブ)の期間は、アナログスイッチASWがOFFでトランジスタTrがONするためOUTB信号はHigh(非アクティブ)となり、Q信号がHigh(アクティブ)の期間は、アナログスイッチASWがONしてトランジスタTrがOFFするため、GCKB信号が取り込まれてOUTB端子から出力される。すなわち、トランジスタTrとアナログスイッチASWは、フリップフロップFFの出力を用いてOUTB信号を生成する信号生成回路(FFの出力に応じて電源電位あるいはクロック信号を取り込むゲート回路)を構成する。
 シフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続され、次段のOUTB端子が自段のRB端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続され、(n+1)段SRn+1のOUTB端子がn段SRnのRB端子に接続されている。なお、シフトレジスタSRの初段SR1のSB端子にはGSPB信号が入力される。また、ゲートドライバGDでは、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続され、各段のINITB端子は共通のINITBライン(INITB信号を供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続され、n段SRnおよび(n+1)段SRn+1それぞれのINITB端子は共通のINITB信号ラインに接続されている。
 図30は、液晶表示装置3aの駆動方法を示すタイミングチャートである。なお、図中、INITBは初期化信号、GSPBはゲートスタートパルスバー信号、GCK1BはGCK1B信号、GCK2BはGCK2B信号を意味し、SBi、RBi、QBi、およびOUTBi(i=n-1・n・n+1)はそれぞれ、i段SRiにおけるSB信号(SB端子の電位)、RB信号(RB端子の電位)、QB信号(QB端子の電位)およびOUTB信号(OUTB端子の電位)を意味する。
 シフトレジスタSRでは、自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFの出力がセットされてアクティブになり、自段がGCKB信号を取り込む。自段のGCKB信号がアクティブ(=Low)になると、自段のOUTB信号がアクティブ(=Low)になるとともに次段のSB信号がアクティブになる。これにより、次段のFFの出力がアクティブになって次段がGCKB信号を取り込み、次段のGCKB信号がアクティブ(=Low)になると、自段のFFがリセットされてQ信号がLow(非アクティブ)となり、自段のOUTB端子がVDDに接続されてOUTB信号はHigh(非アクティブ)となる。
 図31は、図28のシフトレジスタSRをソースドライバ側に用いた液晶表示装置3Aの構成を示す回路図である。この構成では、シフトレジスタSRの初段にソーススタートパルスSSPが入力されるとともに、各段のCKB端子には、ソースクロックバー信号SCK1BまたはSCK2Bが入力される。また、i段SRiから出力されるOUTB信号はサンプリング回路SACおよび出力回路OCを介して表示部DARのデータ信号線SLiに供給される。例えば、n段SRnのOUTB信号は、サンプリング回路SACおよび出力回路OCを介してデータ信号線SLnに供給される。表示部DARでは、データ信号線SLnが、PIXn内の画素電極に繋がるトランジスタのソースに接続されている。
 図32は、図28のシフトレジスタSRの構成を変更した液晶表示装置3bの構成を示す回路図である。
 図33は、図32に示すシフトレジスタSRのi段SRiの構成を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子、RB端子およびINITB端子を備える本実施の形態にかかるフリップフロップFFと、2つのアナログスイッチASW1・ASW2と、NANDと、インバータと、CKB端子とが含まれ、フリップフロップFFのQB端子が、NANDの一方の入力に接続され、NANDの出力が、インバータの入力とアナログスイッチASW1のPチャネル側ゲートとアナログスイッチASW2のNチャネル側ゲートとに接続され、インバータの出力が、アナログスイッチASW1のNチャネル側ゲートとアナログスイッチASW2のPチャネル側ゲートとに接続され、アナログスイッチASW1の一方の導通電極がVDD端子に接続されるとともに、アナログスイッチASW2の一方の導通電極がCKB端子に接続され、アナログスイッチASW1の他方の導通電極と、アナログスイッチASW2の他方の導通電極と、この段の出力端子であるOUTB端子と、NANDの他方の入力と、FFのRB端子とが接続されている。
 i段SRiでは、フリップフロップFFのQB信号(NANDの一方入力X)がHigh(非アクティブ)の期間は、OUTB信号(NANDの他方入力Y)がHigh(非アクティブ)であればNANDの出力(M)はLowとなり(アナログスイッチASW1がONでASW2がOFFし)、OUTB信号はVdd(非アクティブ)となる一方、OUTB信号(NANDの他方入力Y)がLow(アクティブ)であればNANDの出力(M)はHighとなり(アナログスイッチASW1がOFFでASW2がONし)、GCKB信号が取り込まれてOUTB端子から出力される。また、フリップフロップFFのQB信号がLow(アクティブ)の期間は、NANDの一方入力XがLowかつNANDの他方入力YがLowであるため、NANDの出力(M)はHighとなり(アナログスイッチASW1がOFFでASW2がONし)、GCKB信号が取り込まれてOUTB端子から出力される。すなわち、NAND、インバータおよびアナログスイッチASW1・ASW2は、フリップフロップFFの出力を用いてOUTB信号を生成する信号生成回路を構成し、特にインバータおよびアナログスイッチASW1・ASW2は、NANDの出力Mに応じて電源電位あるいはクロック信号を取り込むゲート回路を構成する。
 図32のシフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続されている。なお、シフトレジスタSRの初段SR1のSB端子にはGSPB信号が入力される。図32のゲートドライバGDでは、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続され、各段のINITB端子は共通のINITBライン(INITB信号を供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続され、n段SRnおよび(n+1)段SRn+1それぞれのINITB端子は共通のINITB信号ラインに接続されている。
 図34は、液晶表示装置3bの駆動方法を示すタイミングチャートである。図32のシフトレジスタSRでは、自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFの出力がセットされてアクティブになり、自段がGCKB信号を取り込む。自段のGCKB信号がアクティブ(=Low)になると、自段のOUTB信号がアクティブ(=Low)になるとともに次段のSB信号がアクティブになり、かつ自段のFFがリセットされてHigh(非アクティブ)となる。このとき自段のOUTB信号はLow(すなわち、NANDの出力はHigh)であるため、自段にはGCKB信号が取り込まれ続け、GCKB信号がHigh(非アクティブ)となったときに、自段のOUTB信号がHighになるとともにNANDの出力がLowとなり、以後OUTB端子はVDDに接続されてOUTB信号はHigh(非アクティブ)となる。
 図35は、図32のシフトレジスタSRをソースドライバ側に用いた液晶表示装置3Bの構成を示す回路図である。この構成では、シフトレジスタSRの初段にソーススタートパルスSSPが入力されるとともに、各段のCKB端子には、ソースクロックバー信号SCK1BまたはSCK2Bが入力される。また、i段SRiから出力されるOUTB信号はサンプリング回路SACおよび出力回路OCを介して表示部DARのデータ信号線SLiに供給される。例えば、n段SRnのOUTB信号は、サンプリング回路SACおよび出力回路OCを介してデータ信号線SLnに供給される。表示部DARでは、データ信号線SLnが、PIXn内の画素電極に繋がるトランジスタのソースに接続されている。
 また、図36は、図32のシフトレジスタSRを双方向シフト可能にした液晶表示装置3cの構成を示す回路図である。この構成では、各段に対応してアップダウンスイッチUDSWが設けられる。各アップダウンUDSWには、UD信号およびUDB信号が供給され、例えば、UDSWn-1は、(n-1)段SRn-1のOUTB端子と、n段SRnのSB端子と、(n+1)段SRn+1のOUTB端子とに接続され、UDSWnは、n段SRnのOUTB端子と、(n+1)段SRn+1のSB端子と、(n+2)段SRn+2のOUTB端子とに接続されている。そして、例えばn段SRnから(n+1)段SRn+1にダウンシフトする場合には、UD・UDB信号によって、UDSWn内で、SRnのOUTB端子とSRn+1のSB端子とが接続される。また、(n+1段)SRn+1からn段SRnにアップシフトする場合には、UD・UDB信号によって、UDSWn-1内で、SRn+1のOUTB端子とSRnのSB端子とが接続される。
 液晶表示装置3a~3c・3A・3Bでは、上記実施の形態で記載したフリップフロップを用いているため、G-Csドライバを小型化することができる。
 〔シフトレジスタへの適用形態2〕
 図37は本発明にかかる液晶表示装置3dの構成を示す回路図である。液晶表示装置3dはいわゆるCC(charge coupled)駆動の液晶表示装置であり、表示部DAR、ゲート・CsドライバG-CsD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、INITB信号(初期化用信号)、AONB信号(全ON信号)、CS反転信号CMI1・CMI2、およびゲートクロック信号GCK1B・GCK2Bを供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲート・CsドライバG-CsDには、複数段からなるシフトレジスタSRと、複数のDラッチ回路CSLが含まれ、シフトレジスタの1段に対応して、1つのインバータと、1つのOR回路と、1つのDラッチ回路CSLとが設けられている。以下適宜、シフトレジスタのi段(i=1・・・n-1・n・n+1・・・)をi段SRiと略記する。また、シフトレジスタのi段SRiに対応して、Dラッチ回路CSLiが設けられている。
 シフトレジスタのi段SRiからの出力信号(OUTB信号)は、インバータとバッファを介して表示部DARの走査信号線Giに供給される。また、i段SRiに対応するDラッチ回路CSLiからの出力信号(out信号、CS信号)は、表示部DARの保持容量配線CSiに供給される。例えば、n段SRnのOUTB信号は、インバータおよびバッファを介して走査信号線Gnに供給され、n段SRnに対応するDラッチ回路CSLnからの出力信号(out信号、CS信号)は、表示部DARの保持容量配線CSnに供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続され、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成されている。
 また、1本のデータ信号線に対応して1つのアナログスイッチaswとインバータとが設けられ、このインバータの入力がAONB信号ラインに接続され、データ信号線の端部がアナログスイッチaswの一方の導通端子に接続され、アナログスイッチaswの他方の導通端子がVcom(共通電極電位)電源に接続され、アナログスイッチaswのNチャネル側ゲートがインバータの出力に接続され、アナログスイッチaswのPチャネル側ゲートがAONB信号ラインに接続されている。
 図38は、図37に示すシフトレジスタSRのi段SRiの構成を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子、RB端子およびINITB端子を備える、上記実施の形態に記載したフリップフロップFFと、2つのアナログスイッチASW1・ASW2と、NANDと、インバータと、CKB端子と、ONB端子とが含まれ、フリップフロップFFのQB端子が、NANDの一方の入力に接続され、NANDの出力が、インバータの入力とアナログスイッチASW1のPチャネル側ゲートと、アナログスイッチASW2のNチャネル側ゲートとに接続され、インバータの出力がアナログスイッチASW1のNチャネル側ゲートと、アナログスイッチASW2のPチャネル側ゲートとに接続され、アナログスイッチASW1の一方の導通電極がONB端子に接続されるとともに、アナログスイッチASW2の一方の導通電極がCKB端子に接続され、アナログスイッチASW1の他方の導通電極と、アナログスイッチASW2の他方の導通電極と、この段の出力端子であるOUTB端子と、NANDの他方の入力と、FFのRB端子とが接続されている。
 i段SRiでは、フリップフロップFFのQB信号(NANDの一方入力X)がHigh(非アクティブ)の期間は、OUTB信号(NANDの他方入力Y)がHigh(非アクティブ)であればNANDの出力(M)はLowとなり(アナログスイッチASW1がONでASW2がOFFし)、OUTB端子にはAONB信号(非アクティブでVdd)が出力される一方、OUTB信号(NANDの他方入力Y)がLow(アクティブ)であればNANDの出力(M)はHighとなり(アナログスイッチASW1がOFFでASW2がONし)、GCKB信号が取り込まれてOUTB端子から出力される。また、フリップフロップFFのQB信号がLow(アクティブ)の期間は、NANDの一方入力XがLowかつNANDの他方入力YがLowであるため、NANDの出力(M)はHighとなり(アナログスイッチASW1がOFFでASW2がONし)、GCKB信号が取り込まれてOUTB端子から出力される。すなわち、NAND、インバータおよびアナログスイッチASW1・ASW2は、フリップフロップFFの出力を用いてOUTB信号を生成する信号生成回路を構成し、特にインバータおよびアナログスイッチASW1・ASW2は、NANDの出力Mに応じてAONB信号あるいはクロック信号を取り込むゲート回路を構成する。
 図39は、図37に示すシフトレジスタSRのi段SRiに対応するDラッチ回路CSLiの構成を示す回路図である。同図に示すように、Dラッチ回路CSLiは、3つのCMOS回路5~7と、アナログスイッチASW3・ASW4と、インバータと、CK端子と、D端子と、out端子とを備える。CMOS回路5・6はそれぞれ、1つのPチャネルトランジスタおよび1つのNチャネルトランジスタのゲート同士が接続されるとともにドレイン同士が接続され、かつPチャネルトランジスタのソースがVDDに接続され、NチャネルトランジスタのソースがVSSに接続された構成である。CMOS回路7は、1つのPチャネルトランジスタおよび1つのNチャネルトランジスタのゲート同士が接続されるとともにドレイン同士が接続され、かつPチャネルトランジスタのソースが電源VCSHに接続され、Nチャネルトランジスタのソースが電源VCSLに接続された構成である。そして、CK端子とインバータの入力とアナログスイッチASW3のNチャネル側ゲートとアナログスイッチASW4のPチャネル側ゲートとが接続され、インバータの出力とアナログスイッチASW3のPチャネル側ゲートとアナログスイッチASW4のNチャネル側ゲートとが接続され、CMOS回路5のドレイン側とアナログスイッチASW4の一方の導通端子とアナログスイッチASW3の一方の導通端子とCMOS回路6のゲート側とが接続され、アナログスイッチASW3の他方の導通端子とD端子とが接続され、アナログスイッチASW4の他方の導通端子とCMOS回路6のゲート側とが接続され、CMOS回路5のゲート側とCMOS回路6のドレイン側とが接続され、CMOS回路6のドレイン側とCMOS回路7のゲート側とが接続され、CMOS回路7のドレイン側とout端子とが接続されている。
 Dラッチ回路CSLiは、CK信号(CK端子に入力される信号)がアクティブ(High)である期間にD信号(D端子に入力される信号)を取り込み、これをラッチする。すなわち、CK信号がアクティブの期間にD信号がLowからHighになれば、out信号(out端子から出力される信号)は、電源VCSLの電位から電源VCSHの電位に突き上げて以後電源VCSHの電位を維持し、CK信号がアクティブの期間にD信号がHighからLowになれば、out信号(out端子から出力される信号)は、電源VCSHの電位から電源VCSLの電位に突き下げて以後電源VCSLの電位を維持することになる。
 液晶表示装置3dのG-CsDでは、自段のOUTB端子が次段のSB端子に接続されている。また、自段のOUTB端子がインバータを介して自段に対応するOR回路の一方の入力端子に接続されるとともに、次段のOUTB端子がインバータを介して上記自段に対応するOR回路の他方の入力端子に接続され、該自段に対応するOR回路の出力が自段に対応するDラッチ回路のCK端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続され、n段SRnのOUTB端子がインバータを介してn段SRnに対応するOR回路の一方の入力端子に接続されるとともに、(n+1)段SRn+1のOUTB端子がインバータを介してn段SRn段に対応するOR回路の他方の入力端子に接続され、n段SRnに対応するOR回路の出力がn段SRnに対応するDラッチ回路CSLnのCK端子に接続されている。なお、シフトレジスタSRの初段のSB端子にはGSPB信号が入力される。
 また、液晶表示装置3dのG-CsDでは、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続され、各段のINITB端子は共通のINITBライン(INITB信号を供給するライン)に接続され、各段のONB端子は共通のAONBライン(AON信号を供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続され、n段SRnおよび(n+1)段SRn+1それぞれのINITB端子は共通のINITB信号ラインに接続され、n段SRnおよび(n+1)段SRn+1それぞれのONB端子は共通のAONB信号ラインに接続されている。さらに、連続する2段に対応する2つのDラッチ回路ごとにD端子が異なるCMIライン(CMI信号を供給するライン)に接続されている。例えば、n段SRnに対応するDラッチ回路CSLnのD端子はCMI2信号ラインに接続され、(n+1)段SRn+1に対応するDラッチ回路CSLn+1のD端子はCMI2信号ラインに接続され、(n+2)段SRn+2に対応するDラッチ回路CSLn+2のD端子はCMI1信号ラインに接続され、(n+3)段SRn+3に対応するDラッチ回路CSLn+3のD端子はCMI1信号ラインに接続されている。
 図40は、液晶表示装置3dの駆動方法を示すタイミングチャートである。なお、図中、AONBはAONB信号、INITBは初期化信号、GSPBはゲートスタートパルスバー信号、GCK1BはGCK1B信号、GCK2BはGCK2B信号、CMI1はCMI1信号、CMI2はCMI2信号を意味し、SBi、RBi、QBi、およびOUTBi(i=n-1・n・n+1)はそれぞれ、i段SRiにおけるSB信号(SB端子の電位)、RB信号(RB端子の電位)、QB信号(QB端子の電位)およびOUTB信号(OUTB端子の電位)を意味し、CSi(i=n-1・n・n+1)は、i段SRiに対応する保持容量配線CSiの電位(=Dラッチ回路CSLiのout端子の電位)を意味する。なお本図では、極性信号POLの周期を一水平走査期間1Hとし(すなわち、同一データ信号線に供給されるデータ信号の極性は1Hごとに反転する)、CMI1・CMI2それぞれを同位相としている。
 液晶表示装置3dでは、表示映像の最初のフレーム(垂直走査期間)の前に、以下の表示準備動作が行われる。具体的には、AONB信号およびINITB信号がともに所定期間アクティブ(Low)とされ、AONB信号が非アクティブとされた後にINITB信号が非アクティブとされ、AONB信号がアクティブの間は、各GCKB信号がアクティブ(Low)に固定されるとともに、各CMI信号はHigh(またはLow)に固定される。これにより、シフトレジスタSRの各段では、AONB信号がASW1を介してOUTB端子から出力され、すぐにASW1がOFFしてASW2がONするため、全段のOUTB信号がアクティブ(Low)となり、全走査信号線が選択される。なおこのとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。また、各段に入力されるSB信号、RB信号およびINITB信号はすべてアクティブ(Low)となるため、FFのQB信号は非アクティブ(High)となる。また、各段に対応するOR回路の出力もアクティブ(High)となるので、各Dラッチ回路は、CMI1信号(High)またはCMI2信号(High)をラッチし、保持容量配線に供給されるout信号(CS信号)は電源VCSLの電位となる。以上の表示準備動作の終了後(AONB信号およびINITB信号がこの順で非アクティブとなった後)は、表示部DARの全PIXにVcomが書き込まれ、シフトレジスタの各段に設けられたFFのQB出力が非アクティブ(High)とされ、各Dラッチ回路のout信号(保持容量配線の電位)が電源VCSLの電位とされた状態となる。
 液晶表示装置3dでは、最初のフレーム表示時(最初の垂直走査期間)に以下の動作が行われる。すなわち、シフトレジスタSRの自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFの出力がセットされてアクティブになり、自段がGCKB信号を取り込む。自段のGCKB信号がアクティブ(=Low)になると、自段のOUTB信号がアクティブ(=Low)になるとともに次段のSB信号がアクティブになり、かつ自段のFFがリセットされてHigh(非アクティブ)となる。このとき自段のOUTB信号はLow(すなわち、NANDの出力はHigh)であるため、自段にはGCKB信号が取り込まれ続け、GCKB信号がHigh(非アクティブ)となったときに、自段のOUTB信号がHighになるとともにNANDの出力がLowとなり、以後OUTB端子からAONB信号が出力されてOUTB信号はHigh(非アクティブ)となる。
 また、自段のOUTB信号がアクティブになると(自段に対応するOR回路の出力がアクティブになるため)、自段に対応するDラッチ回路がCMI1信号またはCMI2信号をラッチし、さらに次段のOUTB信号がアクティブになると(自段に対応するOR回路の出力がアクティブになるため)、上記自段に対応するDラッチ回路が再びCMI1信号またはCMI2信号をラッチする。これにより、自段に対応するDラッチ回路のout信号(自段に対応する保持容量配線の電位)は、自段のOUTB信号が非アクティブとなった(自段に対応する走査信号線がOFFした)後に、電源VCSLの電位から電源VCSHの電位への突き上げる(自段に対応する画素にプラス極性のデータ信号が書き込まれ場合)か、あるいは電源VCSHの電位から電源VCSLの電位への突き下げる(自段に対応する画素にマイナス極性のデータ信号が書き込まれ場合)。
 例えば、n段SRnのOUTB信号がアクティブになると(n段SRnに対応するOR回路の出力がアクティブになるため)、n段SRnに対応するDラッチ回路CSLnがCMI2信号をラッチし、さらに(n+1)段SRn+1のOUTB信号がアクティブになると(n段SRnに対応するOR回路の出力がアクティブになるため)、Dラッチ回路CSLnが再びCMI2信号をラッチする。これにより、n段SRnに対応するDラッチ回路CSLnのout信号(n段SRnに対応する保持容量配線CSnの電位)は、n段SRnのOUTB信号が非アクティブとなった(n段SRnに対応する走査信号線GnがON・OFFした)後に、電源VCSHの電位から電源VCSLの電位に突き下げる。ここで、n段SRnに対応する画素PIXnには、POLに示されるようにマイナス極性のデータ信号が書き込まれており、保持容量配線CSnの突き下げによって、実効電位をデータ信号の電位よりも低下させる(画素PIXnの輝度を高める)ことができる。
 また、(n+1)段SRn+1のOUTB信号がアクティブになると、(n+1)段SRn+1に対応するDラッチ回路CSLn+1がCMI2信号をラッチし、さらに(n+2)段SRn+2のOUTB信号がアクティブになると、Dラッチ回路CSLn+1が再びCMI2信号をラッチする。これにより、(n+1)段SRn+1に対応するDラッチ回路CSLn+1のout信号(保持容量配線CSn+1の電位)は、(n+1)段SRn+1のOUTB信号が非アクティブとなった(走査信号線Gn+1がON・OFFした)後に、電源VCSLの電位から電源VCSHの電位に突き上げる。ここで、(n+1)段SRn+1に対応する画素PIXn+1には、POLに示されるようにプラス極性のデータ信号が書き込まれており、保持容量配線CSn+1の突き上げによって、実効電位をデータ信号の電位よりも上昇させる(画素PIXn+1の輝度を高める)ことができる。
 また、(n+2)段SRn+2のOUTB信号がアクティブになると、(n+2)段SRn+2に対応するDラッチ回路CSLn+2がCMI1信号をラッチし、さらに(n+3)段SRn+3のOUTB信号がアクティブになると、Dラッチ回路CSLn+2が再びCMI1信号をラッチする。これにより、(n+2)段SRn+2に対応するDラッチ回路CSLn+2のout信号(保持容量配線CSn+2の電位)は、(n+2)段SRn+2のOUTB信号が非アクティブとなった(走査信号線Gn+2がON・OFFした)後に、電源VCSHの電位から電源VCSLの電位に突き下げる。ここで、(n+2)段SRn+2に対応する画素PIXn+2には、POLに示されるようにマイナス極性のデータ信号が書き込まれており、保持容量配線CSn+2の突き下げによって、実効電位をデータ信号の電位よりも上昇させる(画素PIXn+2の輝度を高める)ことができる。
 なお、2フレーム目以降も、最初のフレームと同様の表示が行われる。ただし、1フレームごとにPOLの位相が半周期ずれるため、同一画素に供給されるデータ信号の極性は1フレームごとに反転する。これに合わせて、Dラッチ回路CSLiのout信号(保持容量配線CSiの電位)の突き上げおよび突き下げも1フレームごとに入れ替わる。
 液晶表示装置3dでは、上記実施の形態で記載したフリップフロップを用いているため、G-Csドライバを小型化することができる。また、最初のフレームを表示する前に全画素に同時に同電位(例えばVcom)を書き込めるため、最初のフレームを表示する前の画面乱れをなくすことができる。また、全画素への同電位の書き込み時にシフトレジスタの初期化(各段のフリップフロップの初期化)も同時に実行されるため、全画素への同電位の書き込みとフリップフロップの初期化とを別々に行う従来の液晶表示装置に比べて表示準備を速やかに完了することができる。また、INITB信号の戻り(非アクティブ化)をAONB信号の戻り(非アクティブ化)よりも遅らせているため、AONB信号の戻りに伴う各段のSB信号の戻りと、AONB信号の戻りに伴うRB信号の戻りとにずれが生じても(特に、SB信号の戻りが遅れた場合でも)シフトレジスタの初期化を確実に行うことができる。また、最初のフレームから各画素行を適切にCC駆動できるため、従来のCC駆動で問題となっていた最初のフレームの画面乱れ(横縞状のムラ)もなくすことができる。
 さらに注目すべきは、液晶表示装置3dでは、図41に示すように、CMI2信号の位相を(図40から)半周期ずらすだけで、極性信号POLの周期を2H(同一データ信号線に供給されるデータ信号の極性が2Hごとに反転)に切り替え、かつ最初のフレームから各画素行を適切にCC駆動することができる点である。すなわち、液晶表示装置3dでは、CS反転信号CMI1およびCMI2信号それぞれの位相を制御するだけで、極性信号POLの周期を1Hから2Hに切り替えることができ、そのときの画面乱れもなくすことができる。
 なお、液晶表示装置3dのG-CsドライバのシフトレジスタSRには、その小型化のために上記各実施の形態に記載のフリップフロップ(例えば、図3に記載の構成)を用いているが、小型化以外の効果を重視するのであれば、G-Csドライバのシフトレジスタに従来型のフリップフロップ(例えば、図70のフリップフロップ)を適用することも当然可能である。
 〔シフトレジスタへの適用形態3〕
 図42は本発明にかかる液晶表示装置3eの構成を示す回路図である。液晶表示装置3eはいわゆるCC(charge coupled)駆動の液晶表示装置であり、表示部DAR、ゲート・CsドライバG-CsD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、INITB信号(初期化用信号)、AONB信号(全ON信号)、CS反転信号CMI1・CMI2、およびゲートクロック信号GCK1B・GCK2Bを供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲート・CsドライバG-CsDには、複数段からなるシフトレジスタSRと、複数のDラッチ回路CSLが含まれ、シフトレジスタの1段に対応して、1つのインバータと、1つのDラッチ回路CSLと、1つのバッファとが設けられている。以下適宜、シフトレジスタのi段(i=1・・・n-1・n・n+1・・・)をi段SRiと略記する。また、シフトレジスタのi段SRiに対応して、Dラッチ回路CSLiが設けられている。
 シフトレジスタのi段SRiからの出力信号(OUTB信号)は、インバータとバッファを介して表示部DARの走査信号線Giに供給される。また、i段SRiに対応するDラッチ回路CSLiからの出力信号(out信号、CS信号)は、表示部DARの保持容量配線CSi-1に供給される。例えば、n段SRnのOUTB信号は、インバータおよびバッファを介して走査信号線Gnに供給され、n段SRnに対応するDラッチ回路CSLnからの出力信号(out信号、CS信号)は、表示部DARの保持容量配線CSn-1に供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続されるとともに、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成され、また、走査信号線Gn-1が、PIXn-1内の画素電極に繋がるトランジスタのゲートに接続されるとともに、PIXn-1内の画素電極と保持容量配線CSn-1との間に保持容量(補助容量)が形成されている。
 また、1本のデータ信号線に対応して1つのアナログスイッチaswとインバータとが設けられ、このインバータの入力がAONB信号ラインに接続され、データ信号線の端部がアナログスイッチaswの一方の導通端子に接続され、アナログスイッチaswの他方の導通端子がVcom(共通電極電位)電源に接続され、アナログスイッチaswのNチャネル側ゲートがインバータの出力に接続され、アナログスイッチaswのPチャネル側ゲートがAONB信号ラインに接続されている。
 図43は、図42に示すシフトレジスタSRのi段SRiの構成を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子、RB端子およびINITB端子を備える、上記実施の形態に記載したフリップフロップFFと、2つのアナログスイッチASW1・ASW2と、NANDと、インバータと、CKB端子と、ONB端子と、M端子とが含まれ、フリップフロップFFのQB端子が、NANDの一方の入力に接続され、NANDの出力が、M端子とインバータの入力とアナログスイッチASW1のPチャネル側ゲートと、アナログスイッチASW2のNチャネル側ゲートとに接続され、インバータの出力がアナログスイッチASW1のNチャネル側ゲートと、アナログスイッチASW2のPチャネル側ゲートとに接続され、アナログスイッチASW1の一方の導通電極がONB端子に接続されるとともに、アナログスイッチASW2の一方の導通電極がCKB端子に接続され、アナログスイッチASW1の他方の導通電極と、アナログスイッチASW2の他方の導通電極と、この段の出力端子であるOUTB端子と、NANDの他方の入力と、FFのRB端子とが接続されている。
 i段SRiでは、フリップフロップFFのQB信号(NANDの一方入力X)がHigh(非アクティブ)の期間は、OUTB信号(NANDの他方入力Y)がHigh(非アクティブ)であればNANDの出力(M信号)はLowとなり(アナログスイッチASW1がONでASW2がOFFし)、OUTB端子にはAONB信号(非アクティブでVdd)が出力される一方、OUTB信号(NANDの他方入力Y)がLow(アクティブ)であればNANDの出力(M信号)はHighとなり(アナログスイッチASW1がOFFでASW2がONし)、GCKB信号が取り込まれてOUTB端子から出力される。また、フリップフロップFFのQB信号がLow(アクティブ)の期間は、NANDの一方入力XがLowかつNANDの他方入力YがLowであるため、NANDの出力(M信号)はHighとなり(アナログスイッチASW1がOFFでASW2がONし)、GCKB信号が取り込まれてOUTB端子から出力される。すなわち、NAND、インバータおよびアナログスイッチASW1・ASW2は、フリップフロップFFの出力を用いてOUTB信号を生成する信号生成回路を構成し、特にインバータおよびアナログスイッチASW1・ASW2は、NANDの出力(M信号)に応じてAONB信号あるいはクロック信号を取り込むゲート回路を構成する。
 Dラッチ回路CSLiの構成は図39と同一であり、CK信号(CK端子に入力される信号)がアクティブ(High)である期間にD信号(D端子に入力される信号)を取り込み、これをラッチする。すなわち、CK信号がアクティブの期間にD信号がLowからHighになれば、out信号(out端子から出力される信号)は、電源VCSLの電位から電源VCSHの電位に突き上げて以後電源VCSHの電位を維持し、CK信号がアクティブの期間にD信号がHighからLowになれば、out信号(out端子から出力される信号)は、電源VCSHの電位から電源VCSLの電位に突き下げて以後電源VCSLの電位を維持することになる。
 液晶表示装置3eのG-CsDのシフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続されている。また、自段のM端子が、自段に対応するDラッチ回路のCK端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続され、n段SRnのM端子が、n段SRnに対応するDラッチ回路CSLnのCK端子に接続されている。なお、シフトレジスタSRの初段のSB端子にはGSPB信号が入力される。
 また、G-CsDでは、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続され、各段のINITB端子は共通のINITBライン(INITB信号を供給するライン)に接続され、各段のONB端子は共通のAONBライン(AON信号を供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続され、n段SRnおよび(n+1)段SRn+1それぞれのINITB端子は共通のINITB信号ラインに接続され、n段SRnおよび(n+1)段SRn+1それぞれのONB端子は共通のAONB信号ラインに接続されている。さらに、連続する2段に対応する2つのDラッチ回路ごとにD端子が異なるCMIライン(CMI信号を供給するライン)に接続されている。例えば、(n-1)段SRn-1に対応するDラッチ回路CSLn-1のD端子はCMI1信号ラインに接続され、n段SRnに対応するDラッチ回路CSLnのD端子はCMI1信号ラインに接続され、(n+1)段SRn+1に対応するDラッチ回路CSLn+1のD端子はCMI2信号ラインに接続され、(n+2)段SRn+2に対応するDラッチ回路CSLn+2のD端子はCMI2信号ラインに接続されている。
 図44は、液晶表示装置3eの駆動方法を示すタイミングチャートである。なお、図中、AONBはAON信号、INITBは初期化信号、GSPBはゲートスタートパルスバー信号、GCK1BはGCK1B信号、GCK2BはGCK2B信号、CMI1はCMI1信号、CMI2はCMI2信号を意味し、SBi、RBi、QBi、およびOUTBi(i=n-1・n・n+1)はそれぞれ、i段SRiにおけるSB信号(SB端子の電位)、RB信号(RB端子の電位)、QB信号(QB端子の電位)およびOUTB信号(OUTB端子の電位)を意味し、CSi(i=n-1・n・n+1)は、i段SRiに対応する保持容量配線CSiの電位(=Dラッチ回路CSLiのout端子の電位)を意味する。なお本図では、極性信号POLの周期を一水平走査期間1Hとし(すなわち、同一データ信号線に供給されるデータ信号の極性は1Hごとに反転する)、CMI1・CMI2それぞれを同位相としている。
 液晶表示装置3eでは、表示映像の最初のフレーム(垂直走査期間)の前に、以下の表示準備動作が行われる。具体的には、AONB信号およびINITB信号がともに所定期間アクティブ(Low)とされ、AONB信号が非アクティブとされた後にINITB信号が非アクティブとされ、AONB信号がアクティブの間は、各GCKB信号がアクティブ(Low)に固定されるとともに各CMI信号はHigh(またはLow)に固定される。これにより、シフトレジスタSRの各段では、AONB信号がASW1を介してOUTB端子から出力され、すぐにASW1がOFFして、ASW2がONするため、全段のOUTB信号がアクティブ(Low)となり、全走査信号線が選択される。なおこのとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。また、各段に入力されるSB信号、RB信号およびINITB信号はすべてアクティブ(Low)となるため、各段のフリップフロップのQB信号は非アクティブ(High)となる。また、各段のM信号(M端子から出力される信号)もアクティブ(High)となるので、各Dラッチ回路は、CMI1信号(Low)またはCMI2信号(Low)をラッチし、保持容量配線に供給されるout信号(CS信号)は電源VCSLの電位となる。以上の表示準備動作の終了後(AONB信号およびINITB信号がこの順で非アクティブとなった後)は、表示部DARの全PIXにVcomが書き込まれ、シフトレジスタの各段に設けられたフリップフロップのQB出力が非アクティブ(High)とされ、各Dラッチ回路のout信号(保持容量配線の電位)が電源VCSLの電位とされた状態となる。
 液晶表示装置3eでは、最初のフレーム表示時(最初の垂直走査期間)に以下の動作が行われる。すなわち、シフトレジスタSRの自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFの出力がセットされてアクティブになり、自段がGCKB信号を取り込む。自段のGCKB信号がアクティブ(=Low)になると、自段のOUTB信号がアクティブ(=Low)になるとともに次段のSB信号がアクティブになり、かつ自段のFFがリセットされてHigh(非アクティブ)となる。このとき自段のOUTB信号はLow(すなわち、NANDの出力はHigh)であるため、自段にはGCKB信号が取り込まれ続け、GCKB信号がHigh(非アクティブ)となったときに、自段のOUTB信号がHighになるとともにNANDの出力がLowとなり、以後OUTB端子からAONB信号が出力されてOUTB信号はHigh(非アクティブ)となる。
 また、次段のM信号がアクティブになると、次段に対応するDラッチ回路がCMI1信号またはCMI2信号をラッチする。これにより、自段に対応するDラッチ回路のout信号(自段に対応する保持容量配線の電位)は、自段のOUTB信号が非アクティブとなった(自段に対応する走査信号線がOFFした)後に、電源VCSLの電位から電源VCSHの電位への突き上げる(自段に対応する画素にプラス極性のデータ信号が書き込まれ場合)か、あるいは電源VCSHの電位から電源VCSLの電位への突き下げる(自段に対応する画素にマイナス極性のデータ信号が書き込まれ場合)。
 例えば、n段SRnのM信号がアクティブになると、n段SRnに対応するDラッチ回路CSLnがCMI1信号をラッチする。これにより、Dラッチ回路CSLnのout信号(保持容量配線CSn-1の電位)は、(n-1)段SRn-1のOUTB信号が非アクティブとなった(走査信号線Gn-1がON・OFFした)後に、電源VCSLの電位から電源VCSHの電位に突き上げる。ここで、(n-1)段SRn-1に対応する画素PIXn-1には、POLに示されるようにプラス極性のデータ信号が書き込まれており、保持容量配線CSn-1の突き上げによって、実効電位をデータ信号の電位よりも上昇させる(画素PIXn-1の輝度を高める)ことができる。
 また、(n+1)段SRn+1のM信号がアクティブになると、(n+1)段SRn+1に対応するDラッチ回路CSLn+1がCMI2信号をラッチする。これにより、Dラッチ回路CSLn+1のout信号(保持容量配線CSnの電位)は、n段SRnのOUTB信号が非アクティブとなった(走査信号線GnがON・OFFした)後に、電源VCSHの電位から電源VCSLの電位に突き下げる。ここで、n段SRnに対応する画素PIXnには、POLに示されるようにマイナス極性のデータ信号が書き込まれており、保持容量配線CSnの突き下げによって、実効電位をデータ信号の電位よりも低下させる(画素PIXnの輝度を高める)ことができる。
 また、(n+2)段SRn+2のM信号がアクティブになると、(n+2)段SRn+2に対応するDラッチ回路CSLn+2がCMI2信号をラッチする。これにより、Dラッチ回路CSLn+2のout信号(保持容量配線CSn+1の電位)は、n段SRn+1のOUTB信号が非アクティブとなった(走査信号線Gn+1がON・OFFした)後に、電源VCSHの電位から電源VCSLの電位に突き上げる。ここで、(n+1)段SRn+1に対応する画素PIXn+1には、POLに示されるようにプラス極性のデータ信号が書き込まれており、保持容量配線CSn+1の突き上げによって、実効電位をデータ信号の電位よりも上昇させる(画素PIXn+1の輝度を高める)ことができる。
 なお、2フレーム目以降も、最初のフレームと同様の表示が行われる。ただし、1フレームごとにPOLの位相が半周期ずれるため、同一画素電極PIXiに供給されるデータ信号の極性は1フレームごとに反転する。これに合わせて、Dラッチ回路CSLiのout信号(保持容量配線CSiの電位)の突き上げおよび突き下げも1フレームごとに入れ替わる。
 液晶表示装置3eでは、上記実施の形態で記載したフリップフロップを用いているため、G-Csドライバを小型化することができる。また、シフトレジスタの内部信号(M信号)をDラッチ回路のCK端子に入力することでG-Csドライバ内にNOR回路やOR回路が不要となり、さらなる小型化が可能となる。また、最初のフレームを表示する前に全画素に同時に同電位(例えばVcom)を書き込めるため、最初のフレームを表示する前の画面乱れをなくすことができる。また、全画素への同電位の書き込み時にシフトレジスタの初期化(各段のフリップフロップの初期化)も同時に実行されるため、全画素への同電位の書き込みとフリップフロップの初期化とを別々に行う従来の液晶表示装置に比べて表示準備を速やかに完了することができる。また、INITB信号の戻り(非アクティブ化)をAONB信号の戻り(非アクティブ化)よりも遅らせているため、AONB信号の戻りによる各段のSB信号の戻りとRB信号の戻りとに遅延(ずれ)が生じてもフリップフロップの初期化を確実に行うことができる。また、最初のフレームから各画素行を適切にCC駆動できるため、CC駆動で従来みられた最初のフレームの画面乱れ(縞状のムラ)もなくすことができる。
 さらに注目すべきは、液晶表示装置3eでは、図45に示すように、CMI2信号の位相を(図44から)半周期ずらすだけで、極性信号POLの周期を2H(同一データ信号線に供給されるデータ信号の極性が2Hごとに反転)に切り替え、かつ最初のフレームから各画素行を適切にCC駆動することができる点である。すなわち、液晶表示装置3dでは、CS反転信号CMI1およびCMI2信号それぞれの位相を制御するだけで、極性信号POLの周期を1Hから2Hに切り替えることができ、そのときの画面乱れもなくすことができる。
 なお、液晶表示装置3eのG-CsドライバのシフトレジスタSRには、その小型化のために上記各実施の形態に記載のフリップフロップ(例えば、図3に記載の構成)を用いているが、G-Csドライバ内にNOR回路やOR回路が不要となることによって小型化が実現されるため、G-CsドライバのシフトレジスタSRに従来型のフリップフロップ(例えば、図70のフリップフロップ)を適用することも当然可能である。
 液晶表示装置3eにおける各Dラッチ回路とCMI1ラインおよびCMI2ラインとの接続を変更して、図46の液晶表示装置3fのように構成することもできる。すなわち、Dラッチ回路CSLi(i=1,2・・・)のiが3の倍数または3の倍数+2であるものはCMI1に接続し、3の倍数+1のものはCMI2に接続する。こうすれば、図47・48に示すように、CMI1およびCMI2信号の位相を、同一(図47)から半周期ずれ(図48)とするだけで、極性信号POLの周期を1Hから3Hに切り替え、かつ最初のフレームから各画素行を適切にCC駆動することができる。すなわち、液晶表示装置3fでは、CS反転信号CMI1およびCMI2信号それぞれの位相を制御するだけで、極性信号POLの周期を1Hから3Hに切り替えることができ、そのときの画面乱れもなくすことができる。
 液晶表示装置3eにおけるシフトレジスタの各段の構成(図43参照)を、図49のように変更することもできる。すなわち、図43のASW1を単チャネル(Pチャネル)トランジスタTRとする。こうすれば、シフトレジスタのさらなる小型化が可能となる。
 〔シフトレジスタへの適用形態4〕
 図51は本発明にかかる液晶表示装置3gの構成を示す回路図である。液晶表示装置3gは、表示部DAR、ゲートドライバGD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、AONB信号(全ON信号)、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、およびゲートクロック信号GCK1B・GCK2Bを供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲートドライバGDには、複数段からなるシフトレジスタSRが含まれている。以下適宜、シフトレジスタのi段(i=1・・・n-1・n・n+1・・・)をi段SRiと略記する。
 シフトレジスタのi段SRiからの出力信号(OUTB信号)は、インバータを介して表示部DARの走査信号線Giに供給される。例えば、n段SRnのOUTB信号は、インバータを介して走査信号線Gnに供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続され、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成されている。
 また、1本のデータ信号線に対応して1つのアナログスイッチaswとインバータとが設けられ、このインバータの入力がAONB信号ラインに接続され、データ信号線の端部がアナログスイッチaswの一方の導通端子に接続され、アナログスイッチaswの他方の導通端子がVcom(共通電極電位)電源に接続され、アナログスイッチaswのNチャネル側ゲートがインバータの出力に接続され、アナログスイッチaswのPチャネル側ゲートがAONB信号ラインに接続されている。
 図52は、シフトレジスタSRのi段SRiの構成を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子およびRB端子を備える本実施の形態2にかかるフリップフロップFFと、2つのアナログスイッチASW1・ASW2と、NANDと、インバータと、CKB端子と、ONB端子とが含まれ、フリップフロップFFのQB端子が、NANDの一方の入力に接続され、NANDの出力が、インバータの入力とアナログスイッチASW1のPチャネル側ゲートとアナログスイッチASW2のNチャネル側ゲートとに接続され、インバータの出力が、アナログスイッチASW1のNチャネル側ゲートとアナログスイッチASW2のPチャネル側ゲートとに接続され、アナログスイッチASW1の一方の導通電極がONB端子に接続されるとともに、アナログスイッチASW2の一方の導通電極がCKB端子に接続され、アナログスイッチASW1の他方の導通電極と、アナログスイッチASW2の他方の導通電極と、この段の出力端子であるOUTB端子と、NANDの他方の入力と、FFのRB端子とが接続されている。
 シフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続されている。なお、シフトレジスタSRの初段SR1のSB端子にはGSPB信号が入力される。また、ゲートドライバGDでは、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続されている。
 図53は、液晶表示装置3gの駆動方法を示すタイミングチャートである。なお、図中、AONBはAONB信号(全ON信号)、GSPBはゲートスタートパルスバー信号、GCK1BはGCK1B信号、GCK2BはGCK2B信号を意味し、SBi、RBi、QBi、およびOUTBi(i=n-1・n・n+1)はそれぞれ、i段SRiにおけるSB信号(SB端子の電位)、RB信号(RB端子の電位)、QB信号(QB端子の電位)およびOUTB信号(OUTB端子の電位)を意味する。
 液晶表示装置3gでは、表示映像の最初のフレーム(垂直走査期間)の前に、以下の表示準備動作が行われる。具体的には、AONB信号が所定期間アクティブ(Low)とされ、AONB信号がアクティブの間は、各GCKB信号がアクティブ(Low)に固定される。これにより、シフトレジスタSRの各段では、AONB信号がASW1を介してOUTB端子から出力され、すぐにASW1がOFFして、ASW2がONするため、全段のOUTB信号がアクティブ(Low)となり、全走査信号線が選択される。なおこのとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。また、各段に入力されるSB信号およびRB信号はアクティブ(Low)となるため、FFのQB信号は非アクティブ(High)となる。これは、実施の形態2のフリップフロップでは、SB信号およびRB信号が同時アクティブになったときにはRB信号(リセット)が優先され、QB信号が非アクティブとなるからである。以上の表示準備動作の終了後(AONB信号が非アクティブとなった後)は、表示部DARの全PIXにVcomが書き込まれ、シフトレジスタの各段に設けられたFFのQB出力が非アクティブ(High)とされた状態となる。
 また、液晶表示装置3gでは、各垂直走査期間(各フレーム表示時)に以下の動作が行われる。すなわち、シフトレジスタSRの自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFの出力がセットされてアクティブになり、自段がGCKB信号を取り込む。自段のGCKB信号がアクティブ(=Low)になると、自段のOUTB信号がアクティブ(=Low)になるとともに次段のSB信号がアクティブになり、かつ自段のFFがリセットされてHigh(非アクティブ)となる。このとき自段のOUTB信号はLow(すなわち、NANDの出力はHigh)であるため、自段にはGCKB信号が取り込まれ続け、GCKB信号がHigh(非アクティブ)となったときに、自段のOUTB信号がHighになるとともにNANDの出力がLowとなり、以後OUTB端子からAONB信号が出力されてOUTB信号はHigh(非アクティブ)となる。
 液晶表示装置3gでは、上記実施の形態2で記載したフリップフロップを用いているため、ゲートドライバを小型化することができる。そして、INITB信号の入力なしにシフトレジスタを初期化することができるため、さらなる小型化が可能となる。また、最初のフレームを表示する前に全画素に同時に同電位(例えばVcom)を書き込めるため、最初のフレームを表示する前の画面乱れをなくすことができる。また、全画素への同電位の書き込み時にシフトレジスタの初期化(各段のフリップフロップの初期化)も同時に実行されるため、全画素への同電位の書き込みとフリップフロップの初期化とを別々に行う従来の液晶表示装置に比べて表示準備を速やかに完了することができる。
 なお、図52のようにシフトレジスタの各段に実施の形態2のフリップフロップを用いた場合には、OUTB信号のフリップフロップのRB端子へのフィードバックがNANDへのフィードバックよりも先立ってしまうおそれがある。そこで、図52のNANDを図54のように構成することが好ましい。すなわち、Pチャネルトランジスタp40のソースをVDDに接続し、ゲートをNANDの入力Xとし、ドレインをNANDの出力Mとし、Pチャネルトランジスタp41のソースをVDDに接続し、ゲートをNANDの入力Yとし、ドレインをNチャネルトランジスタn40のドレインに接続し、Nチャネルトランジスタn40のゲートを入力Yに接続し、ソースをNチャネルトランジスタn41のドレインに接続し、Nチャネルトランジスタn41のゲートを入力Xに接続し、ドレインをVSSに接続しておき、Pチャネルトランジスタp40・41の駆動能力を、Nチャネルトランジスタn40・41のそれよりも大きくしておく。こうすれば、QB信号が十分に非アクティブ(High)になるまで、OUTB信号がアクティブ(=Low)を保つようになり、RB端子へのフィードバックがNANDへのフィードバックよりも先立ってしまうことを防止することができる。
 液晶表示装置3gのゲートドライバGDを、図55に示すように、CC駆動用のゲート-Csドライバ(G-CsD)に変更することもできる。図55の液晶表示装置3hは、液晶表示装置3d(図37参照)のG-CsDに含まれるシフトレジスタSRの各段を図52の構成に変更し、さらにINITB信号の入力を除いたものである。液晶表示装置3hのシフトレジスタでは、全段のOUTB信号がアクティブとなってフリップフロップのSB信号およびRB信号が同時アクティブになったときにRB信号(リセット)が優先される(すなわち、QB信号が非アクティブになる)ため、INITB信号が入力されなくともシフトレジスタが初期化される。
 図56・57は、液晶表示装置3hの駆動方法を示すタイミングチャートである。これらの図に示すように、CMI1およびCMI2信号の位相を、同一(図56)から半周期ずれ(図57)とするだけで、極性信号POLの周期を1Hから2Hに切り替え、かつ最初のフレームから各画素行を適切にCC駆動することができる。
 液晶表示装置3hでは、上記実施の形態2で記載したフリップフロップを用いているため、G-Csドライバを小型化することができる。また、最初のフレームを表示する前に全画素に同時に同電位(例えばVcom)を書き込めるため、最初のフレームを表示する前の画面乱れをなくすことができる。また、全画素への同電位の書き込み時にシフトレジスタの初期化(各段のフリップフロップの初期化)も同時に実行されるため、全画素への同電位の書き込みとフリップフロップの初期化とを別々に行う従来の液晶表示装置に比べて表示準備を速やかに完了することができる。また、最初のフレームから各画素行を適切にCC駆動できるため、CC駆動で従来みられた最初のフレームの画面乱れ(縞状のムラ)もなくすことができる。そして、INITB信号の入力なしにシフトレジスタを初期化することができるため、G-CsDの回路構成を簡素化(小型化)することができる。さらに、CS反転信号CMI1およびCMI2信号それぞれの位相を制御するだけで、極性信号POLの周期を1Hから2Hに切り替えることができ、そのときの画面乱れもなくすことができる。
 液晶表示装置3h(図55参照)のG-CsDを図58のように変更することもできる。図58の液晶表示装置3iは、液晶表示装置3e(図42参照)のシフトレジスタSRに含まれるフリップフロップを図52の構成に変更し、INITB信号の入力を除いたものである。液晶表示装置3iのシフトレジスタでは、全段のOUTB信号がアクティブとなってフリップフロップのSB信号およびRB信号が同時アクティブになったときにRB信号(リセット)が優先される(すなわち、QB信号が非アクティブになる)ため、INITB信号が入力されなくともシフトレジスタが初期化される。
 図59・60は、液晶表示装置3iの駆動方法を示すタイミングチャートである。これらの図に示すように、CMI1およびCMI2信号の位相を、同一(図59)から半周期ずれ(図60)とするだけで、極性信号POLの周期を1Hから2Hに切り替え、かつ最初のフレームから各画素行を適切にCC駆動することができる。
 液晶表示装置3iでは、液晶表示装置3hと同様の効果を得ることができ、さらに、G-Csドライバ内にNOR回路やOR回路が不要となるため、一層の小型化が可能となる。
 液晶表示装置3g(図51)におけるシフトレジスタSRの構成を変更し、図61に示す液晶表示装置3jのように構成することもできる。図62は液晶表示装置3jに含まれるシフトレジスタのi段SRiの構成を示す回路図である。図62に示すように、シフトレジスタの各段には、SB端子およびRB端子を備える実施の形態2にかかるフリップフロップFFと、アナログスイッチASW5・ASW6と、ONB端子と、CKB端子とが含まれ、フリップフロップFFのQ端子が、アナログスイッチASW5のPチャネル側ゲートとアナログスイッチASW6のNチャネル側ゲートとに接続され、QB端子がアナログスイッチASW5のNチャネル側ゲートとアナログスイッチASW6のPチャネル側ゲートとに接続され、この段の出力端子であるOUTB端子とアナログスイッチASW5の一方の導通電極とアナログスイッチASW6の一方の導通電極とが接続され、アナログスイッチASW5の他方の導通電極とONB端子とが接続され、アナログスイッチASW6の他方の導通電極とクロック信号入力用のCKB端子とが接続されている。
 また、シフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続され、次段のOUTB端子が自段のRB端子に接続されている。また、ゲートドライバGDでは、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続されている。
 図63は、液晶表示装置3jの駆動方法を示すタイミングチャートであり、液晶表示装置3jでも液晶表示装置3g(図51参照)と同様の効果を得ることができる。
 〔シフトレジスタへの適用形態5〕
 図64は本発明にかかる液晶表示装置3kの構成を示す回路図である。液晶表示装置3kは、表示部DAR、ゲートドライバGD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、AONB信号(全ON信号)、およびゲートクロック信号GCK1B・GCK2Bを供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲートドライバGDには、複数段からなるシフトレジスタSRが含まれている。以下適宜、シフトレジスタのi段(i=1・・・n-1・n・n+1・・・)をi段SRiと略記する。
 シフトレジスタのi段SRiからの出力信号(OUTB信号)は、インバータを介して表示部DARの走査信号線Giに供給される。例えば、n段SRnのOUTB信号は、インバータを介して走査信号線Gnに供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続され、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成されている。
 また、1本のデータ信号線に対応して1つのアナログスイッチaswとインバータとが設けられ、このインバータの入力がAONB信号ラインに接続され、データ信号線の端部がアナログスイッチaswの一方の導通端子に接続され、アナログスイッチaswの他方の導通端子がVcom(共通電極電位)電源に接続され、アナログスイッチaswのNチャネル側ゲートがインバータの出力に接続され、アナログスイッチaswのPチャネル側ゲートがAONB信号ラインに接続されている。
 図65は、シフトレジスタSRのi段SRiの構成を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子、RB端子およびINITB端子を備える本実施の形態にかかるフリップフロップFFと、2つのアナログスイッチASW1・ASW2と、NANDと、インバータと、ONB端子と、CKB端子とが含まれ、フリップフロップFFのQB端子が、NANDの一方の入力に接続され、NANDの出力が、インバータの入力とアナログスイッチASW1のPチャネル側ゲートとアナログスイッチASW2のNチャネル側ゲートとに接続され、インバータの出力が、アナログスイッチASW1のNチャネル側ゲートとアナログスイッチASW2のPチャネル側ゲートとに接続され、アナログスイッチASW1の一方の導通電極がONB端子とINITB端子とに接続されるとともに、アナログスイッチASW2の一方の導通電極がCKB端子に接続され、アナログスイッチASW1の他方の導通電極と、アナログスイッチASW2の他方の導通電極と、この段の出力端子であるOUTB端子と、NANDの他方の入力と、FFのRB端子とが接続されている。
 シフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続されている。また、ゲートドライバGDでは、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続されている。
 液晶表示装置3kの駆動方法は図53のとおりであり、表示映像の最初のフレーム(垂直走査期間)の前に、以下の表示準備動作が行われる。具体的には、AONB信号が所定期間アクティブ(Low)とされ、AONB信号がアクティブの間は、各GCKB信号がアクティブ(Low)に固定される。これにより、シフトレジスタSRの各段では、AONB信号がASW1を介してOUTB端子から出力され、すぐにASW1がOFFして、ASW2がONするため、全段のOUTB信号がアクティブ(Low)となり、全走査信号線が選択される。なおこのとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。また、各段のフリップフロップのINITB端子には、初期化用信号としてAONB信号が入力されるため、各フリップフロップのQB信号は非アクティブ(High)となる。以上の表示準備動作の終了後(AONB信号が非アクティブとなった後)は、表示部DARの全PIXにVcomが書き込まれ、シフトレジスタの各段に設けられたFFのQB出力が非アクティブ(High)とされた状態となる。
 また、液晶表示装置3kでは、各垂直走査期間(各フレーム表示時)に以下の動作が行われる。すなわち、シフトレジスタSRの自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFの出力がセットされてアクティブになり、自段がGCKB信号を取り込む。自段のGCKB信号がアクティブ(=Low)になると、自段のOUTB信号がアクティブ(=Low)になるとともに次段のSB信号がアクティブになり、かつ自段のFFがリセットされてHigh(非アクティブ)となる。このとき自段のOUTB信号はLow(すなわち、NANDの出力はHigh)であるため、自段にはGCKB信号が取り込まれ続け、GCKB信号がHigh(非アクティブ)となったときに、自段のOUTB信号がHighになるとともにNANDの出力がLowとなり、以後OUTB端子からAONB信号が出力されてOUTB信号はHigh(非アクティブ)となる。
 液晶表示装置3kでは、上記実施の形態で記載したフリップフロップを用いているため、ゲートドライバを小型化することができる。また、AONB信号をシフトレジスタの初期化用信号として用いることで別途INITB信号を入力しなくて済み、さらなる小型化が可能となる。なお、最初のフレームを表示する前に全画素に同時に同電位(例えばVcom)を書き込めるため、最初のフレームを表示する前の画面乱れをなくすことができる。また、全画素への同電位の書き込み時にシフトレジスタの初期化(各段のフリップフロップの初期化)も同時に実行されるため、全画素への同電位の書き込みとフリップフロップの初期化とを別々に行う従来の液晶表示装置に比べて表示準備を速やかに完了することができる。
 液晶表示装置3kのゲートドライバGDを、図66に示すように、CC駆動用のゲート-Csドライバ(G-CsD)に変更することもできる。図66の液晶表示装置3rは、液晶表示装置3d(図37参照)のG-CsDに含まれるシフトレジスタSRの各段を図65の構成に変更し、さらにINITB信号の入力を除いたものである。液晶表示装置3rのシフトレジスタでは、AONB信号をシフトレジスタの初期化用信号として用いているため、全段のOUTB信号がアクティブとなったときに、各フリップフロップのQB信号は非アクティブとなる。
 液晶表示装置3rの駆動方法は図56・57のとおりであり、CMI1およびCMI2信号の位相を、同一(図56)から半周期ずれ(図57)とするだけで、極性信号POLの周期を1Hから2Hに切り替え、かつ最初のフレームから各画素行を適切にCC駆動することができる。
 液晶表示装置3rでは、上記実施の形態で記載したフリップフロップを用いているため、G-Csドライバを小型化することができる。また、最初のフレームを表示する前に全画素に同時に同電位(例えばVcom)を書き込めるため、最初のフレームを表示する前の画面乱れをなくすことができる。また、全画素への同電位の書き込み時にシフトレジスタの初期化(各段のフリップフロップの初期化)も同時に実行されるため、全画素への同電位の書き込みとフリップフロップの初期化とを別々に行う従来の液晶表示装置に比べて表示準備を速やかに完了することができる。また、最初のフレームから各画素行を適切にCC駆動できるため、CC駆動で従来みられた最初のフレームの画面乱れ(縞状のムラ)もなくすことができる。そして、AONB信号をシフトレジスタの初期化用信号として用いているため、G-CsDの回路構成を簡素化(小型化)することができる。さらに、CS反転信号CMI1およびCMI2信号それぞれの位相を制御するだけで、極性信号POLの周期を1Hから2Hに切り替えることができ、そのときの画面乱れもなくすことができる。
 液晶表示装置3rのG-CsDを図67のように変更することもできる。図67の液晶表示装置3sは、液晶表示装置3e(図42参照)のシフトレジスタSRに含まれるフリップフロップを図65の構成に変更し、INITB信号の入力を除いたものである。液晶表示装置3sのシフトレジスタでは、AONB信号をシフトレジスタの初期化用信号として用いているため、全段のOUTB信号がアクティブとなったときに、各フリップフロップのQB信号は非アクティブとなる。
 液晶表示装置3sの駆動方法は図59・図60のとおりであり、CMI1およびCMI2信号の位相を、同一(図59)から半周期ずれ(図60)とするだけで、極性信号POLの周期を1Hから2Hに切り替え、かつ最初のフレームから各画素行を適切にCC駆動することができる。
 液晶表示装置3sでは、液晶表示装置3rと同様の効果を得ることができ、さらに、G-Csドライバ内にNOR回路やOR回路が不要となるため、一層の小型化が可能となる。
 液晶表示装置3k(図64参照)におけるシフトレジスタSRの構成を変更し、図68に示す液晶表示装置3tのように構成することもできる。図69は液晶表示装置3tに含まれるシフトレジスタのi段SRiの構成を示す回路図である。図69に示すように、シフトレジスタの各段には、SB端子、RB端子およびINITB端子を備える各実施の形態にかかるフリップフロップFFと、アナログスイッチASW5・ASW6と、ONB端子と、CKB端子とが含まれ、フリップフロップFFのQ端子が、アナログスイッチASW5のPチャネル側ゲートとアナログスイッチASW6のNチャネル側ゲートとに接続され、QB端子がアナログスイッチASW5のNチャネル側ゲートとアナログスイッチASW6のPチャネル側ゲートとに接続され、この段の出力端子であるOUTB端子とアナログスイッチASW5の一方の導通電極とアナログスイッチASW6の一方の導通電極とが接続され、アナログスイッチASW5の他方の導通電極とONB端子とINITB端子とが接続され、アナログスイッチASW6の他方の導通電極とクロック信号入力用のCKB端子とが接続されている。
 また、シフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続され、次段のOUTB端子が自段のRB端子に接続されている。また、ゲートドライバGDでは、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続されている。
 液晶表示装置3tの駆動方法は図63のとおりである。また、液晶表示装置3tでも液晶表示装置3k(図64参照)と同様の効果を得ることができる。
 なお、上記ゲートドライバ、ソースドライバあるいはゲート-CSドライバと、表示部の画素回路とがモノリシック(同一基板上)に形成されていてもよい。
 なお、液晶表示装置3d・3e(図37・42参照)では、シフトレジスタのフリップフロップを、図70(a)のように構成してもよい。図70(a)のFF212は、図3のFF201において、p5(セットトランジスタ)のソースをINITB端子に接続し、RB端子をp7のゲートおよびn8のゲートのみに接続し、p6のドレインをVDDに接続したものである。図70(b)にFF212の動作タイミングチャートを、図70(c)にFF212の真理値表を示しておく。フリップフロップFF212では、INITB端子がアクティブ(Low)の期間にSB信号がアクティブ(Low)でRB信号がアクティブ(Low)になった場合、Q信号はLowでQB信号はHigh(非アクティブ)となる。また、液晶表示装置3d・3eでは、シフトレジスタのフリップフロップを、図71(a)のように構成してもよい。すなわち、図71(a)のFF213は、図3のFF201にチャネルトランジスタnTを加え、nTのゲートをINTB端子に接続し、nTのドレインをp5(セットトランジスタ)のソースに接続し、nTのソースをRB端子に接続したものである。図71(b)に、FF213の真理値表を示しておく。
 また、液晶表示装置3d・3eの駆動では、図50のように、AONB信号を同時選択期間の途中で非アクティブ(High)としてもよいし、また、図73のように、INITB信号を、AONBがアクティブ(Low)になった後でかつ非アクティブ(High)になる前にアクティブ(Low)としてもよいし、また、図74のように、INITB信号を、AONBがアクティブ(Low)から非アクティブ(High)になった後にアクティブ(Low)としてもよい。
 本発明のフリップフロップは、Pチャネルの第1トランジスタとNチャネルの第2トランジスタのゲート端子同士およびドレイン端子同士が接続された第1CMOS回路と、Pチャネルの第3トランジスタとNチャネルの第4トランジスタのゲート端子同士およびドレイン端子同士が接続された第2CMOS回路と、複数の入力端子と、第1および第2出力端子とを備え、第1CMOS回路のゲート側と第2CMOS回路のドレイン側と第1出力端子とが接続されるとともに、第2CMOS回路のゲート側と第1CMOS回路のドレイン側と第2出力端子とが接続されたフリップフロップであって、ゲート端子およびソース端子それぞれが別々の入力端子に接続される入力トランジスタを備えることを特徴とする。なお、上記入力トランジスタのドレイン端子は、直接あるいは中継トランジスタを介して第1出力端子に接続される。
 本願では、トランジスタ(PチャンネルあるいはNチャネル)が有する2つの導通電極のうち出力側をドレイン端子と呼ぶことにする。上記構成によれば、従来必要とした優先決定回路を設けなくても、上記別々の入力端子に入力される信号それぞれが同時にアクティブになったときにいずれかを優先させて出力を行うことができる。これにより、フリップフロップの小型化が実現される。
 本フリップフロップでは、上記入力トランジスタはPチャネルであって、該入力トランジスタのソース端子は、非アクティブ時に第1電位でアクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されている構成とすることもできる。
 本フリップフロップでは、上記入力トランジスタはNチャネルであって、該入力トランジスタのソース端子は、アクティブ時に第1電位で非アクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されている構成とすることもできる。
 本フリップフロップでは、上記複数の入力端子に、セット用信号の入力端子とリセット用信号の入力端子とが含まれ、上記入力トランジスタは、ゲート端子がセット用信号の入力端子に接続されるとともにソース端子がリセット用信号の入力端子に接続されたセットトランジスタである構成とすることもできる。
 本フリップフロップでは、上記複数の入力端子に、さらに初期化用信号の入力端子が含まれ、この初期化用信号の入力端子が第1~第4トランジスタのいずれか1つのソース端子に接続されている構成とすることもできる。
 本フリップフロップでは、ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第2出力端子に接続されたリセットトランジスタを備える構成とすることもできる。
 本フリップフロップでは、ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第2トランジスタのソース端子に接続されたリリーストランジスタと、ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第4トランジスタのソース端子に接続されたリリーストランジスタとの少なくとも一方を備える構成とすることもできる。
 本フリップフロップでは、ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第2出力端子に接続されたリセットトランジスタを備える構成とすることもできる。
 本フリップフロップでは、ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第1トランジスタのソース端子に接続されたリリーストランジスタと、ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第3トランジスタのソース端子に接続されたリリーストランジスタとの少なくとも一方を備える構成とすることもできる。
 本フリップフロップでは、上記複数の入力端子に、セット用信号の入力端子とリセット用信号の入力端子とが含まれ、上記入力トランジスタは、ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子がセット用信号の入力端子に接続されたリセットトランジスタである構成とすることもできる。
 本フリップフロップでは、上記複数の入力端子に、さらに初期化用信号の入力端子が含まれ、この初期化用信号の入力端子が第1~第4トランジスタのいずれか1つのソース端子に接続されている構成とすることもできる。
 本フリップフロップでは、ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第2出力端子に接続されたセットトランジスタを備える構成とすることもできる。
 本フリップフロップでは、ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第2トランジスタのソース端子に接続されたリリーストランジスタと、ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第4トランジスタのソース端子に接続されたリリーストランジスタとの少なくとも一方を備える構成とすることもできる。
 本フリップフロップでは、ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第2出力端子に接続されたセットトランジスタを備える構成とすることもできる。
 本フリップフロップでは、ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第1トランジスタのソース端子に接続されたリリーストランジスタと、ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第3トランジスタのソース端子に接続されたリリーストランジスタとの少なくとも一方を備える構成とすることもできる。
 本フリップフロップでは、Pチャネルの第1トランジスタとNチャネルの第2トランジスタのゲート端子同士およびドレイン端子同士が接続された第1CMOS回路と、Pチャネルの第3トランジスタとNチャネルの第4トランジスタのゲート端子同士およびドレイン端子同士が接続された第2CMOS回路と、複数の入力端子と、第1および第2出力端子とを備え、第1CMOS回路のゲート側と第2CMOS回路のドレイン側と第1出力端子とが接続されるとともに、第2CMOS回路のゲート側と第1CMOS回路のドレイン側と第2出力端子とが接続されたフリップフロップであって、上記第1~第4トランジスタには、ソース端子が上記複数の入力端子の1つに接続された入力トランジスタが含まれている構成とすることもできる。
 本フリップフロップでは、上記入力トランジスタはPチャネルであって、該入力トランジスタのソース端子は、非アクティブ時に第1電位でアクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されている構成とすることもできる。
 本フリップフロップでは、上記入力トランジスタはNチャネルであって、該入力トランジスタのソース端子は、アクティブ時に第1電位で非アクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されている構成とすることもできる。
 本フリップフロップでは、上記第1~第4トランジスタには、入力トランジスタが複数含まれている構成とすることもできる。
 本フリップフロップでは、上記第1~第4トランジスタには、ソース端子がセット用信号の入力端子に接続された入力トランジスタと、ソース端子がリセット用信号の入力端子に接続された入力トランジスタとが含まれている構成とすることもできる。
 本フリップフロップでは、上記第1~第4トランジスタには、さらにソース端子が初期化用信号の入力端子に接続された入力トランジスタが含まれている構成とすることもできる。
 本シフトレジスタは上記フリップフロップを備えることを特徴とする。
 本表示駆動回路は、上記フリップフロップを備えることを特徴とする。
 本表示装置は、上記フリップフロップを備えることを特徴とする。
 本表示パネルは、上記表示駆動回路と画素回路とがモノリシックに形成されていることを特徴とする。
 本シフトレジスタは所定のタイミングで信号線の同時選択を行う表示駆動回路に用いられ、各段に、上記フリップフロップと、同時選択信号が入力され、該フリップフロップの出力を用いて自段の出力信号を生成する信号生成回路とが含まれることを特徴とする。
 本シフトレジスタでは、各段の出力信号は、上記同時選択信号のアクティブ化によりアクティブとなって上記同時選択が行われる間アクティブとされ、上記フリップフロップはセットリセット型であるとともにその出力は、セット用信号およびリセット用信号がともにアクティブである期間に非アクティブとなる構成とすることもできる。
 本シフトレジスタでは、各段の出力信号は、上記同時選択信号のアクティブ化によりアクティブとなって上記同時選択が行われる間アクティブとされ、上記フリップフロップに初期化用端子が含まれるとともに、該フリップフロップは、初期化用端子がアクティブである期間は他の入力端子の状態にかかわらずその出力が非アクティブとなり、上記初期化用端子に同時選択信号が入力されている構成とすることもできる。
 本シフトレジスタでは、上記信号生成回路は、入力される切り替え信号に応じて上記同時選択信号またはクロックを選択的に取り込んで自段の出力信号とするゲート回路を備える構成とすることもできる。
 本表示駆動回路は、上記シフトレジスタを備え、上記シフトレジスタの各段の出力信号は、上記同時選択信号のアクティブ化によりアクティブとなって上記同時選択が行われる間アクティブとされ、上記各段のフリップフロップはセットリセット型であるとともに、その出力は、初期化用信号がアクティブであれば、セット用信号およびリセット用信号それぞれがアクティブであっても非アクティブであっても、非アクティブとなり、上記初期化用信号が、同時選択の終了前にアクティブとされ、終了後に非アクティブとされることを特徴とする。
 本表示駆動回路は、スイッチング素子を介してデータ信号線および走査信号線に接続される画素電極を備えるとともに、該画素電極と容量を形成する保持容量配線に、画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられ、上記シフトレジスタを備えることを特徴とする。
 本表示駆動回路では、上記シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、自段で生成された制御信号がアクティブになると自段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、自段の出力信号を、自段に対応する画素と接続する走査信号線に供給するとともに、自段に対応する保持回路の出力を、自段よりも前の段に対応する画素の画素電極と容量を形成する保持容量配線に、上記変調信号として供給する構成とすることもできる。
 本表示駆動回路では、上記シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、1つの段で生成された制御信号がアクティブになるとこの段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、1つの保持回路の出力を、上記変調信号として保持容量配線に供給し、各段で生成される制御信号が、表示映像の最初の垂直走査期間よりも前にアクティブとなる構成とすることもできる。
 本表示駆動回路では、上記データ信号線に供給される信号電位の極性を複数水平走査期間ごとに反転させる構成とすることもできる。
 本表示駆動回路では、上記シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、自段の出力信号と自段よりも後段の出力信号とが論理回路に入力されるとともに、該論理回路の出力がアクティブになると自段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、自段の出力信号を、自段に対応する画素と接続する走査信号線に供給するとともに、自段に対応する保持回路の出力を、自段に対応する画素の画素電極と容量を形成する保持容量配線に、上記変調信号として供給し、複数の保持回路に入力される保持対象信号の位相と、別の複数の保持回路に入力される保持対象信号の位相とを異ならせている構成とすることもできる。
 本表示駆動回路では、上記シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、自段で生成された制御信号がアクティブになると自段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、自段の出力信号を、自段に対応する画素と接続する走査信号線に供給するとともに、自段に対応する保持回路の出力を、自段よりも前の段に対応する画素の画素電極と容量を形成する保持容量配線に、上記変調信号として供給し、複数の保持回路に入力される保持対象信号の位相と、別の複数の保持回路に入力される保持対象信号の位相とを異ならせている構成とすることもできる。
 本表示駆動回路では、上記データ信号線に供給される信号電位の極性をn水平走査期間(nは自然数)ごとに反転させるモードと、データ信号線に供給される信号電位の極性をm水平走査期間(mはnと異なる自然数)ごとに反転させるモードとを切り替える構成とすることもできる。
 本表示駆動回路では、第1グループに属する各保持回路に入力される保持対象信号の位相と、第2グループに属する各保持回路に入力される保持対象信号の位相とを、各モードに応じて設定する構成とすることもできる。
 本発明は上記の実施の形態に限定されるものではなく、上記実施の形態を公知技術や技術常識に基づいて適宜変更したものやそれらを組み合わせて得られるものも本発明の実施の形態に含まれる。また、各実施の形態で記載した作用効果等もほんの例示に過ぎない。
 本発明のフリップフロップおよびこれを備えたシフトレジスタは、例えば液晶表示装置に好適である。
 FF フリップフロップ
 ST セットトランジスタ(入力トランジスタ)
 RT リセットトランジスタ(入力トランジスタ)
 LRT ラッチ解除トランジスタ
 LC ラッチ回路
 SR シフトレジスタ
 SRn シフトレジスタのn段
 DCC 表示制御回路
 GD ゲートドライバ
 SD ソースドライバ
 G-CsD ゲート-Csドライバ
 DAR 表示部
 Gn 走査信号線
 CSn 保持容量配線
 PIXn 画素
 CSLn Dラッチ回路
 POL (データ)極性信号
 CMI1 CMI2 CS反転信号
 ASW1~ASW6 asw アナログスイッチ
 3a~3k 3r・3s・3t 液晶表示装置

Claims (39)

  1.  Pチャネルの第1トランジスタとNチャネルの第2トランジスタのゲート端子同士およびドレイン端子同士が接続された第1CMOS回路と、Pチャネルの第3トランジスタとNチャネルの第4トランジスタのゲート端子同士およびドレイン端子同士が接続された第2CMOS回路と、複数の入力端子と、第1および第2出力端子とを備え、第1CMOS回路のゲート側と第2CMOS回路のドレイン側と第1出力端子とが接続されるとともに、第2CMOS回路のゲート側と第1CMOS回路のドレイン側と第2出力端子とが接続されたフリップフロップであって、
     ゲート端子およびソース端子それぞれが別々の入力端子に接続された入力トランジスタを備えることを特徴とするフリップフロップ。
  2.  上記入力トランジスタのドレイン端子が第1出力端子に接続されていることを特徴とする請求項1記載のフリップフロップ。
  3.  上記入力トランジスタはPチャネルであって、該入力トランジスタのソース端子は、非アクティブ時に第1電位でアクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されていることを特徴とする請求項1記載のフリップフロップ。
  4.  上記入力トランジスタはNチャネルであって、該入力トランジスタのソース端子は、アクティブ時に第1電位で非アクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されていることを特徴とする請求項1記載のフリップフロップ。
  5.  上記複数の入力端子に、セット用信号の入力端子とリセット用信号の入力端子とが含まれ、上記入力トランジスタは、ゲート端子がセット用信号の入力端子に接続されるとともにソース端子がリセット用信号の入力端子に接続されたセットトランジスタであることを特徴とする請求項2に記載のフリップフロップ。
  6.  上記複数の入力端子に、さらに初期化用信号の入力端子が含まれ、この初期化用信号の入力端子が第1~第4トランジスタのいずれか1つのソース端子に接続されていることを特徴とする請求項2記載のフリップフロップ。
  7.  ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第2出力端子に接続されたリセットトランジスタを備えることを特徴とする請求項5記載のフリップフロップ。
  8.  ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第2トランジスタのソース端子に接続されたリリーストランジスタと、ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第4トランジスタのソース端子に接続されたリリーストランジスタとの少なくとも一方を備えることを特徴とする請求項5に記載のフリップフロップ。
  9.  ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第2出力端子に接続されたリセットトランジスタを備えることを特徴とする請求項5記載のフリップフロップ。
  10.  ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第1トランジスタのソース端子に接続されたリリーストランジスタと、ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第3トランジスタのソース端子に接続されたリリーストランジスタとの少なくとも一方を備えることを特徴とする請求項9に記載のフリップフロップ。
  11.  上記複数の入力端子に、セット用信号の入力端子とリセット用信号の入力端子とが含まれ、上記入力トランジスタは、ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子がセット用信号の入力端子に接続されたリセットトランジスタであることを特徴とする請求項2に記載のフリップフロップ。
  12.  上記複数の入力端子に、さらに初期化用信号の入力端子が含まれ、この初期化用信号の入力端子が第1~第4トランジスタのいずれか1つのソース端子に接続されていることを特徴とする請求項11記載のフリップフロップ。
  13.  ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第2出力端子に接続されたセットトランジスタを備えることを特徴とする請求項11記載のフリップフロップ。
  14.  ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第2トランジスタのソース端子に接続されたリリーストランジスタと、ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第4トランジスタのソース端子に接続されたリリーストランジスタとの少なくとも一方を備えることを特徴とする請求項13に記載のフリップフロップ。
  15.  ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第2電源ラインに接続され、かつドレイン端子が第2出力端子に接続されたセットトランジスタを備えることを特徴とする請求項11記載のフリップフロップ。
  16.  ゲート端子がセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第1トランジスタのソース端子に接続されたリリーストランジスタと、ゲート端子がリセット用信号の入力端子に接続されるとともにソース端子が第1電源ラインに接続され、かつドレイン端子が第3トランジスタのソース端子に接続されたリリーストランジスタとの少なくとも一方を備えることを特徴とする請求項15に記載のフリップフロップ。
  17.  Pチャネルの第1トランジスタとNチャネルの第2トランジスタのゲート端子同士およびドレイン端子同士が接続された第1CMOS回路と、Pチャネルの第3トランジスタとNチャネルの第4トランジスタのゲート端子同士およびドレイン端子同士が接続された第2CMOS回路と、複数の入力端子と、第1および第2出力端子とを備え、第1CMOS回路のゲート側と第2CMOS回路のドレイン側と第1出力端子とが接続されるとともに、第2CMOS回路のゲート側と第1CMOS回路のドレイン側と第2出力端子とが接続されたフリップフロップであって、
     上記第1~第4トランジスタには、ソース端子が上記複数の入力端子の1つに接続された入力トランジスタが含まれていることを特徴とするフリップフロップ。
  18.  上記入力トランジスタはPチャネルであって、該入力トランジスタのソース端子は、非アクティブ時に第1電位でアクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されていることを特徴とする請求項17記載のフリップフロップ。
  19.  上記入力トランジスタはNチャネルであって、該入力トランジスタのソース端子は、アクティブ時に第1電位で非アクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されていることを特徴とする請求項17記載のフリップフロップ。
  20.  上記第1~第4トランジスタには、入力トランジスタが複数含まれていることを特徴とする請求項17に記載のフリップフロップ。
  21.  上記第1~第4トランジスタには、ソース端子がセット用信号の入力端子に接続された入力トランジスタと、ソース端子がリセット用信号の入力端子に接続された入力トランジスタとが含まれていることを特徴とする請求項20に記載のフリップフロップ。
  22.  上記第1~第4トランジスタには、さらにソース端子が初期化用信号の入力端子に接続された入力トランジスタが含まれていることを特徴とする請求項21に記載のフリップフロップ。
  23.  請求項1~22のいずれか1項に記載のフリップフロップを備えることを特徴とするシフトレジスタ。
  24.  請求項1~22のいずれか1項に記載のフリップフロップを備えることを特徴とする表示駆動回路。
  25.  請求項1~22のいずれか1項に記載のフリップフロップを備えることを特徴とする表示装置。
  26.  請求項24記載の表示駆動回路と画素回路とがモノリシックに形成されていることを特徴とする表示パネル。
  27.  所定のタイミングで信号線の同時選択を行う表示駆動回路に用いられ、各段に、請求項1に記載のフリップフロップと、同時選択信号が入力され、該フリップフロップの出力を用いて自段の出力信号を生成する信号生成回路とが含まれることを特徴とするシフトレジスタ。
  28.  各段の出力信号は、上記同時選択信号のアクティブ化によりアクティブとなって上記同時選択が行われる間アクティブとされ、
     上記フリップフロップはセットリセット型であるとともにその出力は、セット用信号およびリセット用信号がともにアクティブである期間に非アクティブとなることを特徴とする請求項27に記載のシフトレジスタ。
  29.  各段の出力信号は、上記同時選択信号のアクティブ化によりアクティブとなって上記同時選択が行われる間アクティブとされ、
     上記フリップフロップに初期化用端子が含まれるとともに、該フリップフロップは、初期化用端子がアクティブである期間は他の入力端子の状態にかかわらずその出力が非アクティブとなり、
     上記初期化用端子に同時選択信号が入力されていることを特徴とする請求項27に記載のシフトレジスタ。
  30.  上記信号生成回路は、入力される切り替え信号に応じて上記同時選択信号またはクロックを選択的に取り込んで自段の出力信号とするゲート回路を備えることを特徴とする請求項27記載のシフトレジスタ。
  31.  請求項27のシフトレジスタを備え、
     上記シフトレジスタの各段の出力信号は、上記同時選択信号のアクティブ化によりアクティブとなって上記同時選択が行われる間アクティブとされ、
     上記各段のフリップフロップはセットリセット型であるとともに、その出力は、初期化用信号がアクティブであれば、セット用信号およびリセット用信号それぞれがアクティブであっても非アクティブであっても、非アクティブとなり、
     上記初期化用信号が、同時選択の終了前にアクティブとされ、終了後に非アクティブとされることを特徴とする表示駆動回路。
  32.  スイッチング素子を介してデータ信号線および走査信号線に接続される画素電極を備えるとともに、該画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられ、請求項23記載のシフトレジスタを備えることを特徴とする表示駆動回路。
  33.  上記シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、自段で生成された制御信号がアクティブになると自段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、
     自段の出力信号を、自段に対応する画素と接続する走査信号線に供給するとともに、自段に対応する保持回路の出力を、自段よりも前の段に対応する画素の画素電極と容量を形成する保持容量配線に、上記変調信号として供給することを特徴とする請求項32記載の表示駆動回路。
  34.  上記シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、
     1つの段で生成された制御信号がアクティブになるとこの段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、
     1つの保持回路の出力を、上記変調信号として保持容量配線に供給し、
     各段で生成される制御信号が、表示映像の最初の垂直走査期間よりも前にアクティブとなることを特徴とする請求項32記載の表示駆動回路。
  35.  上記データ信号線に供給される信号電位の極性を複数水平走査期間ごとに反転させることを特徴とする請求項32記載の表示駆動回路。
  36.  上記シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、
     自段の出力信号と自段よりも後段の出力信号とが論理回路に入力されるとともに、該論理回路の出力がアクティブになると自段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、
     自段の出力信号を、自段に対応する画素と接続する走査信号線に供給するとともに、自段に対応する保持回路の出力を、自段に対応する画素の画素電極と容量を形成する保持容量配線に、上記変調信号として供給し、
     複数の保持回路に入力される保持対象信号の位相と、別の複数の保持回路に入力される保持対象信号の位相とを異ならせていることを特徴とする請求項35記載の表示駆動回路。
  37.  上記シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、自段で生成された制御信号がアクティブになると自段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、
     自段の出力信号を、自段に対応する画素と接続する走査信号線に供給するとともに、自段に対応する保持回路の出力を、自段よりも前の段に対応する画素の画素電極と容量を形成する保持容量配線に、上記変調信号として供給し、
     複数の保持回路に入力される保持対象信号の位相と、別の複数の保持回路に入力される保持対象信号の位相とを異ならせていることを特徴とする請求項35記載の表示駆動回路。
  38.  上記データ信号線に供給される信号電位の極性をn水平走査期間(nは自然数)ごとに反転させるモードと、データ信号線に供給される信号電位の極性をm水平走査期間(mはnと異なる自然数)ごとに反転させるモードとを切り替えることを特徴とする請求項36または37記載の表示駆動回路。
  39.  第1グループに属する各保持回路に入力される保持対象信号の位相と、第2グループに属する各保持回路に入力される保持対象信号の位相とを、各モードに応じて設定することを特徴とする請求項38記載の表示駆動回路。
PCT/JP2010/002196 2009-06-17 2010-03-26 フリップフロップ、シフトレジスタ、表示駆動回路、表示装置、表示パネル WO2010146756A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080026980.2A CN102460971B (zh) 2009-06-17 2010-03-26 触发器、移位寄存器、显示驱动电路、显示装置、显示面板
JP2011519495A JP5209117B2 (ja) 2009-06-17 2010-03-26 フリップフロップ、シフトレジスタ、表示駆動回路、表示装置、表示パネル
EP10789141.8A EP2445108B1 (en) 2009-06-17 2010-03-26 Flip-flop, shift register, display drive circuit, display apparatus, and display panel
US13/378,214 US9014326B2 (en) 2009-06-17 2010-03-26 Flip-flop, shift register, display drive circuit, display apparatus, and display panel
BRPI1014498A BRPI1014498A2 (pt) 2009-06-17 2010-03-26 "multivibrador biestável, registrador de deslocamento, circuito de acionamento de exibição, aparelho de exibição e painel de exibição"
RU2012101244/08A RU2507680C2 (ru) 2009-06-17 2010-03-26 Триггер, регистр сдвига, схема возбуждения устройства отображения, устройство отображения и панель устройства отображения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-144746 2009-06-17
JP2009144746 2009-06-17

Publications (1)

Publication Number Publication Date
WO2010146756A1 true WO2010146756A1 (ja) 2010-12-23

Family

ID=43356093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002196 WO2010146756A1 (ja) 2009-06-17 2010-03-26 フリップフロップ、シフトレジスタ、表示駆動回路、表示装置、表示パネル

Country Status (7)

Country Link
US (1) US9014326B2 (ja)
EP (2) EP2445108B1 (ja)
JP (1) JP5209117B2 (ja)
CN (1) CN102460971B (ja)
BR (1) BRPI1014498A2 (ja)
RU (1) RU2507680C2 (ja)
WO (1) WO2010146756A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002191A1 (ja) * 2011-06-30 2013-01-03 シャープ株式会社 保持回路、表示駆動回路、表示パネル、および表示装置
WO2013002228A1 (ja) * 2011-06-30 2013-01-03 シャープ株式会社 シフトレジスタ、表示駆動回路、表示パネル、及び表示装置
WO2013089071A1 (ja) * 2011-12-16 2013-06-20 シャープ株式会社 シフトレジスタ、走査信号線駆動回路、表示パネル、及び表示装置
CN103609021A (zh) * 2011-06-30 2014-02-26 夏普株式会社 触发器、移位寄存器、显示面板以及显示装置
KR102174586B1 (ko) * 2019-07-09 2020-11-05 충북대학교 산학협력단 단방향 및 양방향 서머미터 코드 래치
JP2021097317A (ja) * 2019-12-17 2021-06-24 セイコーエプソン株式会社 フリップフロップ回路および発振器

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1014498A2 (pt) * 2009-06-17 2016-04-05 Sharp Kk "multivibrador biestável, registrador de deslocamento, circuito de acionamento de exibição, aparelho de exibição e painel de exibição"
WO2013189036A1 (zh) * 2012-06-20 2013-12-27 青岛海信信芯科技有限公司 一种信号处理方法
US9412764B2 (en) * 2012-11-28 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
KR102072214B1 (ko) * 2013-07-09 2020-02-03 삼성디스플레이 주식회사 주사 구동 장치 및 이를 포함하는 표시 장치
US9484134B2 (en) * 2014-03-26 2016-11-01 Mediatek Inc. Feedthrough signal transmission circuit and method utilizing permanently on buffer and switchable normal buffer
EP2940865A1 (en) * 2014-04-29 2015-11-04 Nxp B.V. Redundant clock transition tolerant latch circuit
US9728153B2 (en) 2014-10-21 2017-08-08 Omnivision Technologies, Inc. Display system and method using set/reset pixels
CN104517575B (zh) * 2014-12-15 2017-04-12 深圳市华星光电技术有限公司 移位寄存器及级传栅极驱动电路
CN104658508B (zh) * 2015-03-24 2017-06-09 京东方科技集团股份有限公司 一种移位寄存器单元、栅极驱动电路及显示装置
WO2016190186A1 (ja) 2015-05-25 2016-12-01 シャープ株式会社 シフトレジスタ回路
RU2585263C1 (ru) * 2015-07-24 2016-05-27 Сергей Петрович Маслов Троичный реверсивный регистр сдвига
KR102487109B1 (ko) * 2015-12-15 2023-01-09 엘지디스플레이 주식회사 게이트 구동회로 및 이를 포함하는 표시 장치
KR102455054B1 (ko) 2015-12-17 2022-10-13 엘지디스플레이 주식회사 GIP(Gate In Panel) 구동회로와 이를 이용한 표시장치
KR20170072514A (ko) * 2015-12-17 2017-06-27 엘지디스플레이 주식회사 게이트 구동회로와 이를 이용한 표시장치
JP6668193B2 (ja) * 2016-07-29 2020-03-18 株式会社ジャパンディスプレイ センサ及び表示装置
TWI713005B (zh) * 2017-09-01 2020-12-11 瑞鼎科技股份有限公司 源極驅動器及其運作方法
CN112399111B (zh) * 2020-10-09 2022-04-08 电子科技大学中山学院 一种移位寄存器及cmos固态成像传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160008A (ja) * 1984-08-31 1986-03-27 Toshiba Corp フリツプフロツプ回路
JPH02266609A (ja) * 1989-04-06 1990-10-31 Matsushita Electric Ind Co Ltd セット・リセット式フリップフロップ回路

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806786A (en) * 1987-11-02 1989-02-21 Motorola, Inc. Edge set/reset latch circuit having low device count
JP3227932B2 (ja) * 1993-09-27 2001-11-12 ソニー株式会社 レベル変換回路
US5410583A (en) * 1993-10-28 1995-04-25 Rca Thomson Licensing Corporation Shift register useful as a select line scanner for a liquid crystal display
RU2133058C1 (ru) * 1997-11-17 1999-07-10 Ульяновский государственный технический университет Устройство управления тонкопленочной электролюминесцентной панелью
WO2000031871A1 (en) * 1998-11-25 2000-06-02 Nanopower, Inc. Improved flip-flops and other logic circuits and techniques for improving layouts of integrated circuits
US6861670B1 (en) * 1999-04-01 2005-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having multi-layer wiring
JP3473745B2 (ja) * 1999-05-28 2003-12-08 シャープ株式会社 シフトレジスタ、および、それを用いた画像表示装置
JP3588020B2 (ja) 1999-11-01 2004-11-10 シャープ株式会社 シフトレジスタおよび画像表示装置
TW538400B (en) 1999-11-01 2003-06-21 Sharp Kk Shift register and image display device
GB2361121A (en) * 2000-04-04 2001-10-10 Sharp Kk A CMOS LCD scan pulse generating chain comprising static latches
KR100890025B1 (ko) * 2002-12-04 2009-03-25 삼성전자주식회사 액정 표시 장치, 액정 표시 장치의 구동 장치 및 방법
GB2397710A (en) 2003-01-25 2004-07-28 Sharp Kk A shift register for an LCD driver, comprising reset-dominant RS flip-flops
US7123057B2 (en) * 2003-06-19 2006-10-17 Texas Instruments Incorporated Self-biased comparator with hysteresis control for power supply monitoring and method
JP4608982B2 (ja) 2004-01-15 2011-01-12 ソニー株式会社 パルス信号生成方法、シフト回路、および表示装置
JP4494050B2 (ja) * 2004-03-17 2010-06-30 シャープ株式会社 表示装置の駆動装置、表示装置
US7242614B2 (en) * 2004-03-30 2007-07-10 Impinj, Inc. Rewriteable electronic fuses
CN101361109A (zh) * 2006-02-06 2009-02-04 夏普株式会社 显示装置、有源矩阵基板、液晶显示装置、电视接收机
US20090009449A1 (en) 2006-02-06 2009-01-08 Toshihisa Uchida Display device, active matrix substrate, liquid crystald display device and television receiver
WO2007108177A1 (ja) * 2006-03-23 2007-09-27 Sharp Kabushiki Kaisha 表示装置およびその駆動方法
EP1895545B1 (en) * 2006-08-31 2014-04-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
GB2452278A (en) * 2007-08-30 2009-03-04 Sharp Kk A scan pulse shift register for an active matrix LCD display
WO2010146751A1 (ja) * 2009-06-17 2010-12-23 シャープ株式会社 表示駆動回路、表示パネル、表示装置
BRPI1012072A2 (pt) * 2009-06-17 2016-03-22 Sharp Kk registrador de deslocamento, circuito de excitação de vídeo, painel de exibição e dispositivo de exibição
BRPI1014498A2 (pt) * 2009-06-17 2016-04-05 Sharp Kk "multivibrador biestável, registrador de deslocamento, circuito de acionamento de exibição, aparelho de exibição e painel de exibição"
US7852119B1 (en) * 2009-12-10 2010-12-14 Advantest Corporation SR-flip flop with level shift function
US8030965B2 (en) * 2009-12-10 2011-10-04 Advantest Corporation Level shifter using SR-flip flop
CN103609021B (zh) * 2011-06-30 2016-09-21 夏普株式会社 触发器、移位寄存器、显示面板以及显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160008A (ja) * 1984-08-31 1986-03-27 Toshiba Corp フリツプフロツプ回路
JPH02266609A (ja) * 1989-04-06 1990-10-31 Matsushita Electric Ind Co Ltd セット・リセット式フリップフロップ回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2445108A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002191A1 (ja) * 2011-06-30 2013-01-03 シャープ株式会社 保持回路、表示駆動回路、表示パネル、および表示装置
WO2013002228A1 (ja) * 2011-06-30 2013-01-03 シャープ株式会社 シフトレジスタ、表示駆動回路、表示パネル、及び表示装置
CN103609021A (zh) * 2011-06-30 2014-02-26 夏普株式会社 触发器、移位寄存器、显示面板以及显示装置
US9124260B2 (en) 2011-06-30 2015-09-01 Sharp Kabushiki Kaisha Flip-flop, shift register, display panel, and display device
US9336740B2 (en) 2011-06-30 2016-05-10 Sharp Kabushiki Kaisha Shift register, display drive circuit, display panel, and display device
CN103609021B (zh) * 2011-06-30 2016-09-21 夏普株式会社 触发器、移位寄存器、显示面板以及显示装置
WO2013089071A1 (ja) * 2011-12-16 2013-06-20 シャープ株式会社 シフトレジスタ、走査信号線駆動回路、表示パネル、及び表示装置
US9711238B2 (en) 2011-12-16 2017-07-18 Sharp Kabushiki Kaisha Shift register, scan signal line driver circuit, display panel and display device
KR102174586B1 (ko) * 2019-07-09 2020-11-05 충북대학교 산학협력단 단방향 및 양방향 서머미터 코드 래치
JP2021097317A (ja) * 2019-12-17 2021-06-24 セイコーエプソン株式会社 フリップフロップ回路および発振器

Also Published As

Publication number Publication date
RU2012101244A (ru) 2013-07-20
RU2507680C2 (ru) 2014-02-20
EP2445108A1 (en) 2012-04-25
BRPI1014498A2 (pt) 2016-04-05
JPWO2010146756A1 (ja) 2012-11-29
US20120092323A1 (en) 2012-04-19
EP2445108A4 (en) 2013-12-11
EP2445108B1 (en) 2015-11-04
JP5209117B2 (ja) 2013-06-12
US9014326B2 (en) 2015-04-21
CN102460971B (zh) 2015-01-07
EP2447951A3 (en) 2013-12-11
CN102460971A (zh) 2012-05-16
EP2447951A2 (en) 2012-05-02
EP2447951B1 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5209117B2 (ja) フリップフロップ、シフトレジスタ、表示駆動回路、表示装置、表示パネル
JP5384634B2 (ja) シフトレジスタ、表示駆動回路、表示パネル、表示装置
JP5575764B2 (ja) シフトレジスタ、表示駆動回路、表示パネル、表示装置
JP5459726B2 (ja) 表示駆動回路、表示パネル、表示装置
JP4391128B2 (ja) 表示装置のドライバ回路およびシフトレジスタならびに表示装置
JP4782191B2 (ja) 表示装置およびその駆動方法
JP4503456B2 (ja) 表示装置のドライバ回路及び表示装置
JP2011253169A (ja) ディスプレイ装置の駆動回路
JP5442732B2 (ja) 表示駆動回路、表示装置及び表示駆動方法
WO2006040977A1 (ja) 表示装置の駆動回路、および、それを備えた表示装置
WO2024051658A9 (zh) 移位寄存器单元及显示面板
JP2005227390A (ja) 表示装置のドライバ回路および表示装置
WO2013002191A1 (ja) 保持回路、表示駆動回路、表示パネル、および表示装置
JP3767752B2 (ja) 画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026980.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789141

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519495

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13378214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010789141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9781/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012101244

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014498

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014498

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111215