WO2010146726A1 - 無線icタグ、該無線icタグを用いたコンクリート構造物品質管理システム - Google Patents

無線icタグ、該無線icタグを用いたコンクリート構造物品質管理システム Download PDF

Info

Publication number
WO2010146726A1
WO2010146726A1 PCT/JP2009/067684 JP2009067684W WO2010146726A1 WO 2010146726 A1 WO2010146726 A1 WO 2010146726A1 JP 2009067684 W JP2009067684 W JP 2009067684W WO 2010146726 A1 WO2010146726 A1 WO 2010146726A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
tag
sensor
ferroelectric memory
concrete structure
Prior art date
Application number
PCT/JP2009/067684
Other languages
English (en)
French (fr)
Inventor
加賀規矩男
芦澤重夫
Original Assignee
三智商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三智商事株式会社 filed Critical 三智商事株式会社
Priority to CN2009801283306A priority Critical patent/CN102099658A/zh
Priority to BRPI0916929A priority patent/BRPI0916929A2/pt
Priority to US13/001,702 priority patent/US20110115613A1/en
Priority to CA2746172A priority patent/CA2746172A1/en
Publication of WO2010146726A1 publication Critical patent/WO2010146726A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • G01B7/20Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance formed by printed-circuit technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D9/00Recording measured values
    • G01D9/005Solid-state data loggers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0716Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising a sensor or an interface to a sensor
    • G06K19/0717Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising a sensor or an interface to a sensor the sensor being capable of sensing environmental conditions such as temperature history or pressure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card

Definitions

  • the present invention relates to a wireless IC tag and a quality control system for a concrete structure using the wireless IC tag, and in particular, has a sensoring function of various values related to a concrete structure and stores a large capacity. And a system using the wireless IC tag.
  • This nonvolatile memory device includes a power supply unit that receives an external radio wave and resonates with it to generate a current, an antenna unit for wireless communication, and a control unit that controls them (Patent Document 1). .
  • the non-volatile memory device disclosed in Patent Document 1 is compared with an EEPROM or the like conventionally used for an IC tag, the number of rewrites, a low write voltage, no power supply, long service life, cell There are advantages in various aspects such as small size.
  • one IC tag has a storage capacity of about 8 Kbytes, and functions as a storage device as well as a CPU as an arithmetic device.
  • This passive type wireless IC tag also called an RFID tag, uses a magnetic field generated around an antenna by a radio wave applied to a coil antenna as a transmission medium, and communicates with the outside by induced electromotive force induced by the antenna. Is.
  • the concrete structure has been subjected to temperature cracking in order to prevent damage caused by handling of the product after demolding of the concrete, or to confirm that the cement product has the desired strength at the time of casting. It is necessary to control the temperature for suppression. Therefore, it is necessary to monitor the temperature change with time in the concrete structure.
  • the cement product constituting the concrete structure has a strong alkalinity of Ph12 to 13, and due to this strong alkalinity, a dense oxide film ( ⁇ ) having a thickness of about 3 nm called a passive film is formed on the surface of the reinforcing steel in the reinforced concrete.
  • Fe203 ⁇ nH20 is made and protected from oxidation.
  • the passive film is destroyed and the reinforcing bar starts to corrode. Therefore, it is necessary to monitor the change with time of the hydrogen ion index in the concrete structure.
  • Patent Document 2 An embedded RFID module
  • Patent Document 3 A seismic sensor
  • Patent Document 3 A seismic sensor
  • these structure management systems are equipped with only sensors that measure a specific value.
  • a wireless IC tag of the present invention is a wireless IC tag attached or embedded in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, A ferroelectric memory using a ferroelectric having an antenna for receiving radio waves from the outside and resonating with the power to generate a current and an antenna for wireless communication in a predetermined frequency band, and the ferroelectric memory And temperature data of the structure measured by the temperature sensor is stored in the ferroelectric memory.
  • a wireless IC tag attached to or embedded in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, which receives radio waves from the outside and resonates with it to generate current.
  • a ferroelectric memory using a ferroelectric substance having an antenna part for wireless communication with a power source part for generating a predetermined frequency band, and a Ph sensor electrically connected to the ferroelectric memory, Hydrogen ion exponent data of the structure measured by the Ph sensor is stored in the ferroelectric memory.
  • a wireless IC tag embedded in or embedded in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, which receives radio waves from the outside and resonates with it.
  • a ferroelectric memory using a ferroelectric having a power supply that generates current and an antenna for wireless communication in a predetermined frequency band, and a strain sensor electrically connected to the ferroelectric memory. And strain data of the structure measured by the strain sensor is stored in the ferroelectric memory.
  • a wireless IC tag attached to or embedded in a concrete structure that can write and read data by wireless communication with a writing / reading device. It receives external radio waves and resonates with them to generate current.
  • a ferroelectric memory using a ferroelectric substance having an antenna part for wireless communication with a power source part to perform a predetermined frequency band, and a temperature sensor, a Ph sensor electrically connected to the ferroelectric memory, There are at least two types of strain sensors, and temperature data of the structure measured by the temperature sensor, hydrogen ion index data of the structure measured by the Ph sensor, and the structure measured by the strain sensor It is characterized in that at least one of the distortion data of the object is stored in the ferroelectric memory.
  • the wireless IC tag is a ferroelectric memory using a ferroelectric having an antenna unit for wirelessly communicating in a predetermined frequency band with a power source unit that receives a radio wave from the outside and generates a current by resonating with the radio wave.
  • a UHF band communication antenna chip that receives radio waves in the UHF band are connected to each other and mounted on a substrate, and communication in a long frequency band exceeding the UHF band is performed by the antenna portion of the ferroelectric memory, and data is transmitted to the ferroelectric memory. And storing the data in a body memory, performing UHF band communication with the antenna chip for UHF band communication, and storing the data in the ferroelectric memory.
  • the wireless IC tag is a ferroelectric memory using a ferroelectric having an antenna unit for wirelessly communicating in a predetermined frequency band with a power source unit that receives a radio wave from the outside and generates a current by resonating with the radio wave.
  • a substrate on which is mounted is covered with an insulating material.
  • the temperature sensor is any one of a resistance temperature detector, a thermocouple, and a thermistor, and an electrical signal detected by the temperature sensor is stored in the ferroelectric memory.
  • the Ph sensor makes contact with the measurement site of the concrete structure on the film disposed on the sensor, so that the reactivity at the measurement site, the amount of acid / alkali attached, the acid
  • a semiconductor imaging sensor that detects the amount of alkali or the like, or a glass electrode sensor that has a glass electrode and a reference electrode and detects a potential difference between the electrodes, and the electrical signal detected by the Ph sensor is stored in the ferroelectric memory. It is memorized.
  • the strain sensor is a displacement sensor for detecting a change in relative position of at least two points of the concrete structure, and an electrical signal detected by the strain sensor is stored in the ferroelectric memory.
  • the senor of the wireless IC tag is mounted on a substrate.
  • the wireless IC tag is characterized in that it is electrically connected to a battery that is charged in a non-contact manner from a charging device.
  • the battery is characterized in that it is a battery that is charged in a non-contact manner by radio waves in a predetermined frequency band from a charging device.
  • the battery is characterized by being mounted on a substrate.
  • a charging device for charging a battery is provided in a writing / reading device.
  • the sensor of the wireless IC tag is driven by being supplied with power from a battery that is charged in a non-contact manner from a charging device.
  • the wireless IC tag is characterized in that it is electrically connected to a power generation mechanism that generates power by vibration, heat, or radio waves.
  • the power generation mechanism is mounted on a substrate.
  • the sensor of the wireless IC tag is driven by being supplied with power from a power generation mechanism that generates power by vibration, heat, or radio waves.
  • a concrete structure quality control system using a wireless IC tag is a wireless IC embedded in or placed in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device.
  • a temperature sensor electrically connected to the ferroelectric memory, and a control unit mounted on the ferroelectric memory controls the temperature sensor; and the temperature sensor is a temperature of the concrete structure.
  • means for storing the measured temperature data of the structure in the ferroelectric memory is a wireless IC embedded in or placed in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device.
  • a wireless IC tag that is embedded in or placed in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, which receives radio waves from the outside and resonates with it.
  • a ferroelectric memory using a ferroelectric material having a power supply unit that generates current and an antenna unit for wireless communication in a predetermined frequency band, and a Ph sensor electrically connected to the ferroelectric memory.
  • the control unit mounted on the ferroelectric memory controls the Ph sensor, the Ph sensor measures the hydrogen ion index of the concrete structure, and the measured hydrogen of the structure.
  • a means for storing ion exponent data in the ferroelectric memory is provided.
  • a wireless IC tag that is embedded in or placed in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, which receives radio waves from the outside and resonates with it.
  • a ferroelectric memory using a ferroelectric having a power supply that generates current and an antenna for wireless communication in a predetermined frequency band, and a strain sensor electrically connected to the ferroelectric memory.
  • a control unit mounted on the ferroelectric memory for controlling the strain sensor, the strain sensor for measuring the strain of the concrete structure, and the measured strain data of the structure. It has means for storing in the ferroelectric memory.
  • a wireless IC tag that is embedded in or placed in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device. It receives radio waves from the outside and resonates with it.
  • Ferroelectric memory using a ferroelectric material having a power supply unit for generating current and an antenna unit for wireless communication in a predetermined frequency band, and a temperature sensor and a Ph sensor electrically connected to the ferroelectric memory
  • a wireless IC tag attached to or embedded in a concrete structure that can write and read data by wireless communication with a writing / reading device. It receives external radio waves and resonates with them to generate current.
  • Ferroelectric memory using a ferroelectric material having an antenna unit for wireless communication with a power source unit that performs a predetermined frequency band, and a temperature sensor, a Ph sensor, and a strain sensor electrically connected to the ferroelectric memory And a means for storing the detected data in the ferroelectric memory when any of the sensors detects a change amount.
  • the wireless IC tag is electrically connected to a battery that is charged in a contactless manner from a charging device, and the sensor of the wireless IC tag is driven by being supplied with power from the battery.
  • the wireless IC tag is electrically connected to a power generation mechanism that generates power by vibration, heat, or radio waves, and the sensor of the wireless IC tag is driven by being supplied with power from the power generation mechanism.
  • the wireless IC tag of the present invention is a wireless IC tag attached to or embedded in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, A ferroelectric memory using a ferroelectric having an antenna unit for receiving radio waves from and resonating with the power source unit and generating radio current in a predetermined frequency band; and the ferroelectric memory A wireless IC tag with a temperature sensor capable of wirelessly communicating data by storing temperature data of the structure measured by the temperature sensor in the ferroelectric memory.
  • the temperature data measured can be stored at the same time, making it easy and quick to estimate the strength of the concrete using the temperature and accumulated temperature by the on-site personnel and the manager after placing for each concrete actually used. Can contribute to improving the safety of concrete structures.
  • a wireless IC tag attached to or embedded in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, which receives radio waves from the outside and resonates with it to generate current.
  • a ferroelectric memory using a ferroelectric substance having an antenna part for wireless communication with a power source part for generating a predetermined frequency band, and a Ph sensor electrically connected to the ferroelectric memory, By storing the hydrogen ion index data of the structure measured by the Ph sensor in the ferroelectric memory, a wireless IC tag with a Ph sensor capable of wireless data communication is used.
  • Ion index measurement and extraction of hydrogen ion index data are easy, and the large capacity memory of this wireless IC tag
  • the stored hydrogen ion index data can be stored, and the concrete hydrogen ion index can be measured for each concrete actually used. This makes it possible to easily and quickly estimate the neutralization of concrete using, which contributes to improving the safety of concrete structures.
  • a wireless IC tag embedded in or embedded in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, which receives radio waves from the outside and resonates with it.
  • a ferroelectric memory using a ferroelectric having a power supply that generates current and an antenna for wireless communication in a predetermined frequency band, and a strain sensor electrically connected to the ferroelectric memory. And storing the strain data of the structure measured by the strain sensor in the ferroelectric memory, so that a wireless IC tag with a strain sensor capable of wireless data communication is used. It is easy to measure strain and retrieve strain data, and the hydrogen ion finger measured at regular intervals in the large-capacity memory of this wireless IC tag. Data can be stored, and the strain of concrete can be measured for each concrete actually used. It is possible to easily and quickly find cracks in concrete structures due to external factors such as earthquakes, and contribute to improving the safety of concrete structures.
  • a wireless IC tag attached to or embedded in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, which receives radio waves from the outside and resonates with it to generate current.
  • the sensor has at least two types of sensors, strain sensors, temperature data of the structure measured by the temperature sensor, hydrogen ion index data of the structure measured by the Ph sensor, and measured by the strain sensor
  • By storing at least one of the strain data of the structure in the ferroelectric memory Since it is possible to provide a wireless IC tag including a composite sensor that can measure and store the temperature, hydrogen ion index, and strain of a structure with a single medium, in addition to the above effects,
  • the concrete structure can be measured comprehensively, and the on-site staff and post-installation manager can acquire multiple data with one writing / reading device, making
  • the wireless IC tag is a ferroelectric memory using a ferroelectric having an antenna unit for wirelessly communicating in a predetermined frequency band with a power source unit that receives a radio wave from the outside and generates a current by resonating with the radio wave.
  • a UHF band communication antenna chip that receives radio waves in the UHF band are connected to each other and mounted on a substrate, and communication in a long frequency band exceeding the UHF band is performed by the antenna portion of the ferroelectric memory, and data is transmitted to the ferroelectric memory.
  • the frequency band used by conventional wireless IC tags such as the LF band is stored in the body memory
  • UHF band communication is performed by the antenna chip for UHF band communication
  • the data is stored in the ferroelectric memory.
  • UHF band communication having a wide communication range can be performed, and even in a large-scale concrete structure, it is easy to use a writing / reading device. It can read and write data to the speed.
  • the wireless IC tag is a ferroelectric memory using a ferroelectric having an antenna unit for wirelessly communicating in a predetermined frequency band with a power source unit that receives a radio wave from the outside and generates a current by resonating with the radio wave.
  • the temperature sensor is any one of a resistance temperature detector, a thermocouple, and a thermistor, and an electrical signal detected by the temperature sensor is stored in the ferroelectric memory, so that the temperature can be accurately measured, and wireless
  • a small temperature sensor that can be connected to the IC tag or provided on the same substrate can be formed, and a relatively small wireless IC tag for sensoring can be provided.
  • the Ph sensor makes contact with the measurement site of the concrete structure on the film disposed on the sensor, so that the reactivity at the measurement site, the amount of acid / alkali attached, the acid
  • a semiconductor imaging sensor that detects the amount of alkali or the like, or a glass electrode sensor that has a glass electrode and a reference electrode and detects a potential difference between the electrodes, and the electrical signal detected by the Ph sensor is stored in the ferroelectric memory.
  • the strain sensor is a displacement sensor that detects the amount of change in the relative position of at least two points of the concrete structure, and the electrical signal detected by the strain sensor is stored in the ferroelectric memory, so that the concrete structure can be accurately detected.
  • a small strain sensor that can be connected to the wireless IC tag or provided on the same substrate can be configured, and a relatively small sensor ring device can be provided.
  • the quality of the concrete structure can be controlled with a small and thin sensor device.
  • the wireless IC tag is electrically connected to a battery that is charged in a non-contact manner from a charging device, so that the wireless IC tag is embedded in a concrete structure or in cement products such as ready-mixed concrete. Even when the wireless IC tag is located at a place where electric power cannot be supplied to the wireless IC tag by wire as in the case where the wireless IC tag is mixed, it can be charged wirelessly from the outside. Therefore, a wireless rechargeable wireless IC tag can be provided.
  • a battery is a battery that is charged in a non-contact manner by radio waves of a predetermined frequency band from a charging device, so that it can be charged by radio waves from a wireless communication device or other transmitting device. For example, charging using electromagnetic induction Compared to the above, there is no fear of heat generation, and non-contact charging can be performed safely.
  • the battery is mounted on a substrate, so that it is possible to provide a small-sized wireless IC tag with a sensor that can be modularized and charged.
  • the charging device for charging the battery can be charged to the wireless IC tag by using data writing to or reading from the wireless IC tag by being provided in the writing / reading device.
  • the sensor that the wireless IC tag has can be powered easily by supplying power from a battery that is charged in a non-contact manner from the charging device, thereby supplying power to the temperature sensor, the Ph sensor, and the strain sensor located in the concrete structure. These sensors can be driven without being connected to an external power source.
  • the wireless IC tag is electrically connected to a power generation mechanism that generates power by vibration, heat, or radio waves, so that the wireless IC tag is embedded in a concrete structure or cement products such as ready-mixed concrete. Even if the wireless IC tag is located in a place where electricity cannot be supplied by wire to the wireless IC tag as in the case of mixing, the wireless IC tag self-generates due to factors such as vibration, heat, radio waves, etc. It is possible to store the electric power generated according to the conditions. Therefore, a self-power generation type wireless IC tag can be provided.
  • the power generation mechanism can provide a small-sized sensor-equipped wireless IC tag capable of generating power modularized by being mounted on a substrate.
  • the sensor of the wireless IC tag can easily supply power to the temperature sensor, Ph sensor, and strain sensor located in the concrete structure by being powered and driven by a power generation mechanism that generates power by vibration, heat, or radio waves. These sensors can be driven without being connected to an external power source.
  • a wireless IC tag that is embedded in or placed in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device. It receives radio waves from the outside and resonates with it.
  • a ferroelectric memory using a ferroelectric material having a power supply unit for generating current and an antenna unit for wireless communication in a predetermined frequency band; and a temperature sensor electrically connected to the ferroelectric memory. Means for controlling a temperature sensor by a control unit mounted on the ferroelectric memory; means for measuring the temperature of the concrete structure; and temperature data of the measured structure.
  • a wireless IC tag that is embedded in or placed in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, which receives radio waves from the outside and resonates with it.
  • a ferroelectric memory using a ferroelectric material having a power supply unit that generates current and an antenna unit for wireless communication in a predetermined frequency band, and a Ph sensor electrically connected to the ferroelectric memory.
  • the control unit mounted on the ferroelectric memory controls the Ph sensor, the Ph sensor measures the hydrogen ion index of the concrete structure, and the measured hydrogen of the structure.
  • a wireless IC tag with a Ph sensor capable of wireless data communication by having means for storing ion index data in the ferroelectric memory Therefore, it is easy to measure the hydrogen ion index inside the concrete and take out the hydrogen ion index data, and to store the hydrogen ion index data measured at regular intervals in the large-capacity memory of this wireless IC tag. It is possible to measure the hydrogen ion index of concrete for each concrete actually used, so it is easy for site managers and post-placement managers to estimate the neutralization of concrete using the hydrogen ion index data. It is possible to provide a concrete structure management system that can be performed quickly and contributes to improving the safety of the concrete structure.
  • a wireless IC tag that is embedded in or placed in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device, which receives radio waves from the outside and resonates with it.
  • a ferroelectric memory using a ferroelectric having a power supply that generates current and an antenna for wireless communication in a predetermined frequency band, and a strain sensor electrically connected to the ferroelectric memory.
  • a control unit mounted on the ferroelectric memory for controlling the strain sensor, the strain sensor for measuring the strain of the concrete structure, and the measured strain data of the structure.
  • a wireless IC tag with a strain sensor capable of wireless data communication is used by storing in the ferroelectric memory, a concrete structure
  • the strain data can be easily measured and the strain data can be taken out, and the strain data measured at regular intervals can be stored in the large-capacity memory of this wireless IC tag. It is easy to quickly detect the deterioration of concrete structures and cracks in concrete structures due to external factors such as earthquakes by using the strain data.
  • the concrete structure management system which can be performed and contributes to the improvement of the safety
  • a wireless IC tag that is embedded in or placed in a concrete structure capable of writing / reading data by wireless communication with a writing / reading device. It receives radio waves from the outside and resonates with it.
  • Ferroelectric memory using a ferroelectric material having a power supply unit for generating current and an antenna unit for wireless communication in a predetermined frequency band, and a temperature sensor and a Ph sensor electrically connected to the ferroelectric memory
  • a means having at least two types of strain sensors and a control unit mounted on the ferroelectric memory for controlling each sensor; and a means for each sensor to measure data of the concrete structure; And having means for storing the measured data of the concrete structure in the ferroelectric memory,
  • a wireless IC tag attached to or embedded in a concrete structure that can write and read data by wireless communication with a writing / reading device. It receives external radio waves and resonates with them to generate current.
  • Ferroelectric memory using a ferroelectric material having an antenna unit for wireless communication with a power source unit that performs a predetermined frequency band, and a temperature sensor, a Ph sensor, and a strain sensor electrically connected to the ferroelectric memory
  • the wireless IC tag is electrically connected to a battery that is charged in a non-contact manner from a charging device, and the sensor of the wireless IC tag is driven by being powered by the battery, so that each sensor is wired. Electric power is supplied regardless of the connected external power source.
  • the wireless IC tag is electrically connected to a power generation mechanism that generates power by vibration, heat, or radio waves, and the sensor included in the wireless IC tag is driven by being supplied with power from the power generation mechanism. Electric power is supplied regardless of an external power source connected by wire.
  • FIG. 1 is a schematic perspective view of a wireless IC tag according to a first embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of a Ph sensor used in the wireless IC tag shown in FIG. 1.
  • the schematic diagram which shows the example of the management system using the radio
  • FIG. 9 is a schematic diagram illustrating an example of a management system using the wireless IC tag illustrated in FIG. 8.
  • FIG. 1 is a schematic perspective view of the wireless IC tag according to the first embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a temperature sensor used in the wireless IC tag shown in FIG. 1
  • FIG. It is a typical perspective view of the Ph sensor used for the wireless IC tag shown in FIG.
  • FIG. 4 is a schematic perspective view of the wireless IC tag according to the second embodiment of the present invention
  • FIG. 5 is a sectional view of the wireless IC tag shown in FIG. 4 covered with an insulating material
  • FIG. FIG. 7 is a schematic view showing an example of a management system using the wireless IC tag of the invention
  • FIG. 7 is a perspective view showing a state where the wireless IC tag of the invention is embedded in a concrete structure.
  • FIG. 8 is a schematic perspective view of the wireless IC tag according to the third embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing an example of a management system using the wireless IC tag shown in FIG.
  • FIG. 11 is a schematic perspective view of a wireless IC tag according to the fourth embodiment of the present invention
  • FIG. 11 is a schematic perspective view showing the fifth embodiment of the present invention
  • FIG. 12 is a sixth perspective view of the present invention. It is a typical perspective view which shows this embodiment.
  • a wireless IC tag 1 of the present invention showing a first embodiment of the present invention is a storage device capable of writing and reading data, also called an RFID tag, and as shown in FIG. 1, as a memory element for an IC tag.
  • a FeRAM chip 3 called a ferroelectric memory using a ferroelectric material is mounted on a substrate 2 made of a metal plate, a ceramic plate or the like, and the FeRAM chip 3 and various sensors are connected to each other.
  • This is a wireless IC tag for use in a management system.
  • the wireless IC tag 1 is embedded or attached to the concrete structure 11 and measures various data of the concrete structure 11, stores the measurement data, and writes / reads data as shown in FIG. Data is written to and read from a reader / writer 9 serving as a reading device, and reading is performed wirelessly.
  • the type of FeRAM constituting the FeRAM chip 3 of the wireless IC tag 1 may be any type, and may be either a capacitor type or a transistor type.
  • a passive type FeRAM that rectifies radio waves for data access from outside without using a power source and uses it as a power source.
  • the FeRAM chip 3 includes a FeRAM that is a nonvolatile memory using a ferroelectric, a power supply unit that receives electric waves from the outside instead of incorporating a battery for driving, and generates a current by resonating with the radio wave, A film-like antenna unit for wireless communication and a control unit for controlling the FeRAM chip 3 and a sensor to be described later are mounted.
  • the FeRAM constituting the FeRAM chip 3 has a number of rewrites of about 10 to the 5th power of the EEPROM, whereas FeRAM has a power of 10 to the 13th power. Has excellent performance and more than times.
  • the writing voltage is 12V in the conventional EEPROM, whereas FeRAM can be written at a very low voltage of DC1.1V to 3V, and externally without incorporating a battery in the wireless IC tag.
  • a passive type equipped with a power supply unit that resonates with the radio wave and generates power is sufficient, and has a writing speed 5000 times that of an EEPROM used in a conventional IC tag. Data storage period is as long as 10 years or more. Further, even in the case of rewrite access, most of the conventional EEPROM and flash memory are written in units of blocks, whereas FeRAM has an advantage that data can be written randomly in units of words.
  • the control unit can make additional settings so that the information once written can not be falsified, but it can also be set so that it cannot be overwritten, and data can be written and read using an encrypted protocol. Is good. Therefore, in a memory capacity of about 8 KB, various data can be written / read by wireless communication with the reader / writer 9 as a writing / reading device as shown in FIG.
  • the frequency band in which the FeRAM chip 3 can wirelessly communicate can be freely set and can be used from the LF band to the UHF band.
  • the antenna unit can stably communicate with the ground wave and has directivity. It is suitable to set to LF band communication that is weak, relatively less susceptible to water, dust, and metal, and capable of highly reliable data communication. It may be set for frequency band communication of VHF band, HF band, and MF band.
  • a management flag that can be read by the reader / writer 9 is stored in advance in the FeRAM chip 3 of the wireless IC tag 1 or at the time of writing, and this management flag is set when the reader / writer 9 writes / reads information. By reading, it is possible to identify the wireless IC tag 1 constituting a predetermined management system. If necessary, the wireless IC tag 1 is equipped with an anti-collision function, so that a situation in which communication is not possible due to interference even when a plurality of wireless IC tags 1 are located in the vicinity can be prevented.
  • the wireless IC tag 1 is provided with a temperature sensor 4 that is connected to the FeRAM chip 3 by a wiring 21 so that the detection part of the temperature sensor can contact the concrete structure 11 and measure the temperature of the concrete structure 11. It has become.
  • the temperature sensor 4 is, for example, one of a temperature sensor, a thermocouple, and a thermistor, and is preferably small enough to be mounted on the substrate 2.
  • the resistance temperature detector is a temperature sensor that utilizes the fact that the electrical resistivity of metal changes in proportion to the temperature.
  • a thermocouple joins two kinds of metals, such as platinum, rhenium, tungsten, silver, and gold, which have different thermopowers. When these two junctions are at different temperatures, current flows in a certain direction, and thermoelectromotive force is generated.
  • It is a temperature sensor that uses the Seebeck effect that occurs and is often used near normal temperatures, but it can also be used in high-temperature and low-temperature regions, and it is embedded in concrete because it has heat resistance, acid resistance, alkali resistance, etc. It is excellent as a sensor and can be mounted on the substrate 2 by using a foil thermocouple.
  • the thermistor is a temperature sensor that utilizes a change in the resistance of a resistor whose electrical resistance changes greatly according to a temperature change, and can be used from -50 ° C to about 350 ° C, and is excellent as a sensor embedded in concrete.
  • Fig. 2 shows an example of a temperature sensor 4 using a thermistor.
  • the surface mount type chip thermistor 41 is disposed on the substrate 2 so as to be in contact with the internal electrode 42, and has a configuration in which the periphery thereof is covered with plating layers 43 and 44 and the upper portion is covered with a protective film 45.
  • the temperature is measured using the principle that the resistance increases with increasing or decreases with increasing temperature.
  • This temperature sensor 4 measures the concrete temperature of the concrete structure 11 at a predetermined time interval by reading a measurement signal from the control unit of the FeRAM chip 3, at the time of reading by the reader / writer 9 or at all times, and is output as an electric signal. Temperature data is stored in the memory of the FeRAM chip 3.
  • the temperature sensor 4 is mounted on the substrate 2, but it is not always necessary to mount it on the substrate 2, and it is only necessary that the FeRAM chip 3 can be energized. Further, as shown in FIG. 7, an external power supply 12 may be used as the power supply for the temperature sensor 4. Moreover, the kind of temperature sensor is not restricted to what was mentioned above.
  • the wireless IC tag 1 is provided with a Ph sensor 5 connected to the FeRAM chip 3 by wiring 22, and the detection part of the Ph sensor comes into contact with the concrete structure 11 and hydrogen ions of the concrete structure 11 are arranged. The index can be measured.
  • the Ph sensor 5 is formed by, for example, forming a thin gel film on the imaging sensor and bringing the surface of the measurement site of the concrete structure into contact with the gel film.
  • FIG. 3 shows an example of the Ph sensor 5 using a sheet-type composite glass electrode.
  • the detection part of the surface-mount type sheet-type composite glass electrode sensor has a Ph-responsive glass electrode 51, a reference electrode 52, and a liquid junction 53, and detects a potential difference between the glass electrode and the reference electrode to detect a hydrogen ion index. Measure.
  • An imaging sensor using a semiconductor is suitable for use after the concrete structure is cured.
  • the Ph sensor 5 measures the hydrogen ion index of the concrete of the concrete structure 11 at a predetermined time interval by reading a measurement signal output from the control unit of the FeRAM chip 3, at the time of reading by the reader / writer 9, or at all times as an electric signal.
  • the output hydrogen ion index data is stored in the memory of the FeRAM chip 3.
  • the Ph sensor 5 is mounted on the substrate 2.
  • the Ph sensor 5 is not necessarily mounted on the substrate 2, and may be wired in a state in which the FeRAM chip 3 can be energized.
  • an external power supply 12 may be used as the power supply of the Ph sensor 5.
  • the kind of Ph sensor is not restricted to what was mentioned above.
  • the wireless IC tag 1 is provided with a strain sensor 6 that is connected to the FeRAM chip 3 by a wiring 23 so that the detection unit of the strain sensor can measure the strain of the concrete structure 11.
  • This strain sensor is a displacement sensor that detects the amount of change in the relative position of at least two points of the concrete structure, and is preferably small enough to be mounted on the substrate 2.
  • the displacement sensor is a strain gauge that uses a bridge circuit that is arranged by connecting at least two points in the XY direction of the concrete structure in order to detect changes in the position, displacement, etc. of at least two points of the concrete structure.
  • strain sensors using electromagnetic techniques, volumetric strain gauges, etc.
  • the distortion of the entire concrete structure may be measured by comprehensively detecting the position change of the strain sensors of some wireless IC tags.
  • This strain sensor measures the amount of change in strain of the concrete structure 11 at a predetermined time interval by the measurement signal output from the control unit of the FeRAM chip 3, or when the reader / writer 9 reads, or outputs it as an electrical signal.
  • the strain data to be processed is stored in the memory of the FeRAM chip 3.
  • the strain sensor 5 is mounted on the substrate 2, but it is not always necessary to mount it on the substrate 2, and it is only necessary that the FeRAM chip 3 can be energized.
  • an external power source 12 may be used as the power source of the strain sensor 5.
  • the type of strain sensor is not limited to the above.
  • the temperature sensor 4, the Ph sensor 5, and the strain sensor 6 are connected to one FeRAM chip 3 and mounted on one substrate 2, and the temperature of the concrete structure 11, the hydrogen ion index
  • the sensor provided in the wireless IC tag may be any one sensor or two sensors.
  • a wireless IC tag 7 of the present invention showing a second embodiment of the present invention is a storage device capable of writing and reading data, also called an RFID tag.
  • a memory element for an IC tag For example, a FeRAM chip 3 called a ferroelectric memory using a ferroelectric material is mounted on a substrate 2 made of a metal plate, a ceramic plate, etc., and also manages a moving body or a large area.
  • the hybrid wireless IC tag 7 is a wireless IC tag for use in a concrete structure quality control system including various sensors electrically connected to the FeRAM chip 3.
  • the wireless IC tag 7 is embedded in a concrete structure, measures various data of the concrete structure, stores the measurement data, writes data to and from the reader / writer 9, and performs reading wirelessly. It has become.
  • the FeRAM chip 3 and the UHF band communication antenna chip 8 are controlled by a control unit mounted on the FeRAM chip 3. Depending on the communication frequency band of the reader / writer, communication is performed with the antenna section of the FeRAM chip 3 or the UHF band communication antenna chip 8, and the transmitted data is controlled by the control section and recorded in the large capacity memory of the FeRAM chip 3. To do.
  • the antenna unit of the FeRAM chip 3 receives this radio wave, and the control unit stores the transmitted data in the memory unit of the FeRAM chip 3. Control.
  • the UHF band communication antenna chip 8 receives this radio wave, and when the UHF band communication antenna chip 8 receives the radio wave, the transmitted data is transferred to the FeRAM chip. The data is stored in the memory unit of the FeRAM chip 3 via the UHF band communication antenna chip 4.
  • a management flag readable by the reader / writer 9 is stored in advance in the FeRAM chip 3 of the wireless IC tag 7 or at the time of writing, and this management flag is set when information is written / read by the reader / writer 9. By reading, it is possible to identify the wireless IC tag 1 constituting a predetermined management system. If necessary, the wireless IC tag 1 is equipped with an anti-collision function so that there is no situation in which even if a plurality of wireless IC tags 7 are located in the vicinity, communication cannot be performed due to interference.
  • the temperature sensor 4, the Ph sensor 5, and the strain sensor 6 are connected to the FeRAM chip 2 by wiring 24, wiring 25, and wiring 26, respectively. Since the configuration of each sensor is the same as that of the first embodiment, a description thereof will be omitted.
  • each sensor is mounted on the substrate 2. However, it is not always necessary to mount the sensor on the substrate 2, and it is only necessary that the FeRAM chip 3 is electrically connected. As shown in FIG. 7, an external power source 12 may be used as the power source for each sensor.
  • the type of sensor is not limited to the above.
  • the temperature sensor 4, the Ph sensor 5, and the strain sensor 6 are connected to one FeRAM chip 3, and the temperature, hydrogen ion index, and strain of the concrete structure 11 are set to one wireless IC tag 7.
  • the sensor provided in the wireless IC tag 7 may be either one sensor or two sensors.
  • the embedded wireless IC tag covers the wireless IC tag with an insulating material while maintaining the state in which each sensor can detect temperature, hydrogen ion index, and strain to protect the chip. I want to do it.
  • this wireless IC tag 13 is a wireless IC tag in which a battery 14 that can be charged by wireless communication is disposed on the wireless IC tag 1 of the first embodiment, and is provided with a charging mechanism. It is a tag. Then, for example, as shown in FIG. 9, the battery is charged by communication from a reader / writer 9 equipped with a charging device or also serving as a charging device. Other configurations are the same as those of the wireless IC tag 1 of the first embodiment.
  • the wireless IC tag 13 is mounted with an FeRAM chip 3 equipped with FeRAM using a ferroelectric as a memory element for an IC tag, a temperature sensor 4, a Ph sensor 5, and a strain sensor 6.
  • the wireless communication mechanism provided in the charging device and the wireless communication mechanism provided on the wireless IC tag 13 side communicate with each other using a short-range wireless technology to charge the battery 14 on the wireless IC tag side.
  • the accumulated power is used as a power source for driving the wireless IC tag 15, the temperature sensor 4, the Ph sensor 5, and the strain sensor 6.
  • a wireless IC tag 13 embedded in a concrete structure or the like is configured such that a battery 14 is charged when a reader / writer 9 equipped with a charging device performs wireless communication.
  • the sensor is driven by power supplied from the battery 14 and measures various data of the concrete structure.
  • the charging method is such that a coil is disposed in the charging device and the battery, and when a current is passed through the coil on the charging device side, the current is supplied to the coil on the battery side that forms a pair. It may be based on a system using electromagnetic induction for storing the flow. Moreover, you may prepare a charging device separately, without mounting a charging device in the reader / writer 9. FIG. Further, the battery 14 may not be disposed on the substrate 2 and may be electrically connected to the wireless IC tag.
  • the wireless IC tag 13 includes the temperature sensor 4, the Ph sensor 5, and the strain sensor 6. However, the wireless IC tag may have any one sensor or two sensors. In other words, the battery 14 may be connected to the sensor electrically connected to the FeRAM chip 3.
  • the battery 14 that can be charged by the above-described wireless communication is disposed in the wireless IC tag 7 of the present invention showing the second embodiment of the present invention.
  • This wireless IC tag 15 is provided with a battery 14 in a hybrid wireless IC tag 7 including a FeRAM chip 3, a UHF band communication antenna chip 8, a temperature sensor 4, a Ph sensor 5, and a strain sensor 6.
  • This is a wireless IC tag in which a battery 14 and a temperature sensor 4, a Ph sensor 5, and a strain sensor 6 are electrically connected.
  • the wireless IC tag 16 is a wireless IC tag including the power generation mechanism 17 provided with the power generation mechanism 17 in the wireless IC tag 1 of the first embodiment.
  • Other configurations are the same as those of the wireless IC tag 1 of the first embodiment.
  • the wireless IC tag has a FeRAM chip 3 mounted with FeRAM using a ferroelectric substance as a memory element for the IC tag.
  • the power generation mechanism 17 is disposed on the substrate and is electrically connected to the temperature sensor 4, the Ph sensor 5, and the strain sensor 6.
  • This power generation mechanism 17 is a vibration power generation element that generates electric power by vibration, and generates relatively weak electricity by human motion, vibration due to driving of the apparatus, vibration due to passage of a building or bridge through a vehicle, and the like.
  • the electric power generated by the power generation mechanism may be used as it is, or may be stored in a secondary battery provided in the power generation mechanism.
  • the power generated by the power generation mechanism 17 is used as a power source for driving the wireless IC tag 16, the temperature sensor 4, the Ph sensor 5, and the strain sensor 6.
  • the power generation mechanism 17 when a person carrying the wireless IC tag 16 moves, or when the wireless IC tag 16 attached by a technique such as embedding or sticking to a concrete structure, a bridge, or a product is passed by a vehicle or shaking during transportation. When it vibrates, the power generation mechanism 17 generates power using these vibrations as energy.
  • the power generation mechanism 17 is not limited to the vibration power generation element described above, and may be a mechanism that generates power by heat from the outside as a thermoelectric element, or generates power by external radio waves such as RF waves.
  • a power generation mechanism by wireless communication may be used, and a mechanism using various external energies generally called harvester technology can be used.
  • the power generation mechanism 17 may be disposed in the vicinity of the wireless IC tag without being disposed on the substrate 2 and electrically connected to each sensor.
  • the above-described power generation mechanism 17 is provided in the wireless IC tag 7 of the present invention showing the second embodiment of the present invention, and the power generation mechanism is provided. It is a wireless IC tag.
  • This wireless IC tag 18 includes a power generation mechanism 17 in a hybrid wireless IC tag 7 including an FeRAM chip 3, a UHF band communication antenna chip 8, a temperature sensor 4, a Ph sensor 5, and a strain sensor 6.
  • the power generation mechanism 17 is a wireless IC tag in which the temperature sensor 4, the Ph sensor 5, and the strain sensor 6 are electrically connected.
  • the wireless IC tag 1 is placed in concrete during construction of a concrete structure 11 in which concrete or mortar formed by placing cement, aggregate, and water is placed in a mold. Used buried. Moreover, it may be used by attaching to the wall surface of the concrete structure 11 after placement as needed. At this time, driving power to each sensor may be taken from the external power supply 12.
  • the temperature, hydrogen ion index, and strain of the concrete structure 11 before the concrete structure 11 is cured, and the temperature, hydrogen ion index, and strain of the concrete structure 11 after the curing are stored in advance in the control unit of the FeRAM chip 3. Measured at regular intervals by control or when communicating with the reader / writer 9.
  • the control unit 3 of the FeRAM chip 3 controls the temperature sensor 4, the Ph sensor 5, and the strain sensor 6 connected to the FeRAM chip 3, and each sensor determines the concrete temperature of the concrete structure 11 based on this control, The hydrogen ion index of the concrete structure 11 and the strain of the concrete structure 11 are measured, and the control unit stores the measured data in the memory of the FeRAM chip 3.
  • the control unit 3 of the FeRAM chip 3 operates, and the concrete detected by each sensor.
  • the concrete temperature of the structure 11, the hydrogen ion index of the concrete structure 11, and the strain data of the concrete structure 11 may be stored in the memory of the FeRAM chip 3.
  • the reader / writer 9 is a device capable of data communication with the wireless IC tag 1, and reads and writes various data and the like by wireless communication with the wireless IC tag.
  • the manager of the concrete structure 11 such as a construction official or a building manager communicates the reader / writer 9 to the place where the wireless IC tag 1 is embedded or attached, and the wireless IC tag Each stored data is read out.
  • the data read by the reader / writer 9 may be stored and managed in the computer 10.
  • the antenna portion of the FeRAM chip 3 constituting the wireless IC tag 1 receives the data, and this data is stored in the memory of the FeRAM chip 3.
  • an automatic measuring device for the cement product has a water / cement ratio of the cement product, Manufacturing information including a product characteristic value obtained by measuring a product characteristic value such as a cement admixture and temperature, a manufacturing date, and the like may be written.
  • the temperature, hydrogen ion index, and strain of the concrete structure can be known at any time, and the risk of collapse due to external factors such as deterioration of the concrete structure and earthquakes should be estimated. That can increase the safety of the building.
  • the system including all of the temperature sensor 4, the Ph sensor 5, and the strain sensor 6 has been described. However, any one sensor or two sensors are connected to the FeRAM chip 3, and the one sensor is connected. Or you may make it the system which controls two sensors.
  • the wireless IC tag used in the above-described system is the wireless IC tag according to the second embodiment of the present invention in which the wireless IC tag itself includes a charging mechanism or a power generation mechanism in addition to the wireless IC tag according to the first embodiment of the present invention.
  • the wireless IC tag of the form to the wireless IC tag of the fifth embodiment may be used. In this case, it is not necessary to provide the external power source 12, and a power source for driving each sensor can be disposed in the wireless IC tag.
  • a wireless IC tag with a temperature sensor capable of wireless data communication Since a wireless IC tag with a temperature sensor capable of wireless data communication is used, it is easy to measure the temperature inside the concrete and retrieve the temperature data. Temperature data can be stored, and for each concrete actually used, the person in charge at the site and the manager after placement can easily and quickly estimate the strength of the concrete using the temperature and accumulated temperature. Can contribute to improving the safety of concrete structures.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

【課題】コンクリート構造物の温度、水素イオン指数、歪みを監視する無線ICタグを提供すること。 【解決手段】コンクリート構造物11に取り付けまたは埋設される無線ICタグ1であって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリ、温度センサー4、Phセンサー5、歪みセンサー6を基板上2に実装し、温度センサー2で計測した構造物の温度データ、Phセンサー5で計測した構造物の水素イオン指数データ、歪みセンサー6で計測した構造物の歪みデータの少なくともいずれかのデータを前記強誘電体メモリに記憶する。

Description

無線ICタグ、該無線ICタグを用いたコンクリート構造物品質管理システム
 本発明は、無線ICタグ、該無線ICタグを用いたコンクリート構造物の品質管理システムに関するものであり、特に、コンクリート構造物に関する種々値のセンサリング機能を備えてなり大容量の記憶をすることができる無線ICタグと該無線ICタグを用いたシステムである。
 近年、ICタグ用のメモリ素子として強誘電体を利用したFeRAMを用いた不揮発性記憶装置が開発されている。この不揮発性記憶装置は、外部からの電波を受信しこれと共振して電流を発生する電源部と、無線通信するためのアンテナ部と、これらを制御する制御部とからなる(特許文献1)。
 特許文献1に示された不揮発性記憶装置は、従来ICタグに用いられていたEEPROM等と比較し、書換回数、書き込み電圧の低さ、電源が不要であること、使用寿命の長さ、セルサイズが小型である等、様々な面で利点がある。そして現在、一個のICタグは、約8Kbyteの記憶容量を有し、それ自身が記憶装置として機能するとともに、演算装置としてのCPUとして機能するようになっている。
 RFIDタグとも呼ばれるこの電磁誘導方式によるパッシヴ型の無線ICタグは、コイルアンテナに印加する電波により、アンテナ周囲に発生する磁界を伝送媒体とし、アンテナに誘起される誘導起電力により外部と通信を行うものである。
 一方、セメント、骨材、水を混練し、これを打設するコンクリートやモルタルからなるコンクリート構造物において、温度、水素イオン指数、歪みの有無はその構造物の安全性を保持するためには極めて重要な指針となる。
 すなわち、コンクリート構造物は、コンクリート脱型後の製品の取り扱いによる損傷の防止するため、または、打設時にセメント製品が所望される強度を保持していることの確認するため、さらには温度ひび割れの抑制のために温度管理をする必要がある。したがって、コンクリート構造物における温度の経時変化の監視が必要となる。
 また、コンクリート構造物を構成するセメント製品はPh12~13の強アルカリ性であり、この強アルカリ性により、鉄筋コンクリート中の鉄筋の表面には不動態皮膜と呼ばれる厚さ約3nmの緻密な酸化皮膜(γ—Fe203・nH20)が作られ、酸化から保護されている。しかしこの強アルカリ性のコンクリートの中性化が進み鉄筋周辺の水素イオン指数がPh11.5を下回ると、不動態皮膜が破壊され、鉄筋は腐食し始める。したがって、コンクリート構造物における水素イオン指数の経時変化の監視が必要となる。
 さらには、コンクリート構造物は、上述した理由によるコンクリート構造物の劣化、あるいは、地震等外的な要因による構造物の変形により構造物が倒壊する危険を未然に回避する必要がある。そこで、コンクリート構造物に生じる歪みの経時変化の監視が必要となる。
 コンクリート構造物の品質を管理するシステムは、従来からいくつか案出されており、打設コンクリート中に温度センサーを備えた埋込型RFIDモジュール(特許文献2)、また、建物の壁体内に設けられる耐震センサー(特許文献3)等が案出されている。しかしながら、これらの構造物管理システムは、ある特定の値を測定するセンサーのみを搭載したものである。
 しかしながら、打設時により安全なコンクリート構造物を建てるため、また、耐震性や劣化による構造物の倒壊などの危険を早い段階で察知して品質管理してコンクリート構造物の安全性を高めるためには、コンクリート構造物の温度、水素イオン指数、歪みという複数の要因からコンクリート構造物を総合的に監視する必要があり、これらのデータの計測を、コンクリート構造物からコンクリートサンプルを採取することなく容易かつ確実に行いたいという要請が生じた。
特開2007−241576号公報 特開2006−71575号公報 特開2007−16486号公報
 上記課題を達成するため、本発明の無線ICタグは、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサーを有し、前記温度センサーで計測した前記構造物の温度データを前記強誘電体メモリに記憶することを特徴とする。
 また、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続されたPhセンサーを有し、前記Phセンサーで計測した前記構造物の水素イオン指数データを前記強誘電体メモリに記憶することを特徴とする。
 また、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設されるに埋設する無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された歪みセンサーを有し、前記歪みセンサーで計測した構造物の歪みデータを前記強誘電体メモリに記憶することを特徴とする。
 書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続されてなる、温度センサー、Phセンサー、歪みセンサーのうち少なくとも二種類以上のセンサーを有し、前記温度センサーで計測した前記構造物の温度データ、前記Phセンサーで計測した前記構造物の水素イオン指数データ、前記歪みセンサーで計測した前記構造物の歪みデータの少なくともいずれかのデータを前記強誘電体メモリに記憶することを特徴とする。
 また、無線ICタグは、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、UHF帯域の電波を受信するUHF帯通信アンテナチップとを連結させて基板上に実装し、UHF帯を超える長い周波数帯の通信を前記強誘電体メモリのアンテナ部で行いデータを前記強誘電体メモリに記憶させるとともに、UHF帯の通信を前記UHF帯通信用アンテナチップで行い、前記データを前記強誘電体メモリに記憶させることを特徴とする。
 また、無線ICタグは、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリを実装した基板を絶縁材料で覆ってなることを特徴とする。
 また、温度センサーは、測温抵抗体、熱電対、サーミスタのいずれかとし、前記温度センサーが検出した電気信号を前記強誘電体メモリに記憶することを特徴とする。
 また、Phセンサーは、コンクリート構造物の測定部位をセンサーに配設されるフィルム上に接触させることで、測定部位での反応性、酸・アルカリの付着量、測定部位内部から放出される酸・アルカリ量などを検出する半導体イメージングセンサー、または、ガラス電極と比較電極を有してなり該電極間の電位差を検出するガラス電極センサーとし、前記Phセンサーが検出した電気信号を前記強誘電体メモリに記憶することを特徴とする。
 また、歪みセンサーはコンクリート構造物の少なくとも二点の相対位置の変化量を検出する変位センサーとし、前記歪みセンサーが検出した電気信号を前記強誘電体メモリに記憶することを特徴とする。
 また、無線ICタグが有するセンサーは、基板上に実装したことを特徴とする。
 無線ICタグは、充電装置から非接触で充電される電池と電気的に接続されてなることを特徴とする。
 電池は、充電装置からの所定の周波数帯の電波により非接触で充電される電池であることを特徴とする。
 電池は、基板上に実装されてなることを特徴とする。
 電池に充電する充電装置は、書き込み・読み取り装置に備えられてなることを特徴とする。
 無線ICタグが有するセンサーは、充電装置から非接触で充電される電池から電源供給されて駆動することを特徴とする。
 無線ICタグは、振動、熱または電波により自己発電する発電機構と電気的に接続されてなることを特徴とする。
 発電機構は、基板上に実装されてなることを特徴とする。
 無線ICタグが有するセンサーは、振動、熱または電波により自己発電する発電機構から電源供給されて駆動することを特徴とする。
 本発明の無線ICタグを用いたコンクリート構造物品質管理システムは、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサーを有し、前記強誘電体メモリに搭載されてなる制御部が温度センサーを制御する手段と、前記温度センサーが、前記コンクリート構造物の温度を計測する手段と、計測した前記構造物の温度データを前記強誘電体メモリに記憶する手段を有することを特徴とする。
 また、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続されたPhセンサーを有し、前記強誘電体メモリに搭載されてなる制御部がPhセンサーを制御する手段と、前記Phセンサーが、前記コンクリート構造物の水素イオン指数を計測する手段と、計測した前記構造物の水素イオン指数データを前記強誘電体メモリに記憶する手段を有することを特徴とする。
 また、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された歪みセンサーを有し、前記強誘電体メモリに搭載されてなる制御部が歪みセンサーを制御する手段と、前記歪みセンサーが、前記コンクリート構造物の歪みを計測する手段と、計測した前記構造物の歪みデータを前記強誘電体メモリに記憶する手段を有することを特徴とする。
 書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサー、Phセンサー、歪みセンサーのうち少なくとも二種類以上のセンサーを有し、前記強誘電体メモリに搭載されてなる制御部が各センサーを制御する手段と、各センサーが前記コンクリート構造物のデータを計測する手段と、計測した前記コンクリート構造物のデータを前記強誘電体メモリに記憶する手段を有することを特徴とする。
 書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサー、Phセンサー、歪みセンサーの少なくともいずれかのセンサーを有し、前記センサーのいずれかが変化量を検出すると検出したデータを前記強誘電体メモリに記憶する手段を有することを特徴とする。
 無線ICタグは、充電装置から非接触で充電される電池と電気的に接続されてなり、無線ICタグが有するセンサーは、前記電池から電源供給されて駆動することを特徴とする。
 無線ICタグは、振動、熱または電波により自己発電する発電機構と電気的に接続されてなり、無線ICタグが有するセンサーは、前記発電機構から電源供給されて駆動することを特徴とする。
 上記構成によれば、本発明の無線ICタグは、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサーを有し、前記温度センサーで計測した前記構造物の温度データを前記強誘電体メモリに記憶することにより、無線でデータ通信可能な温度センサー付きの無線ICタグを使用しているので、コンクリート内部の温度測定と温度データの取り出しが容易であるとともに、この無線ICタグの大容量メモリに一定期間ごとに測定した温度データを記憶させておくことができるので、実際に使用したコンクリート毎に、現場担当者、打設後の管理者が温度、積算温度を利用したコンクリートの強度推定を容易かつ迅速に行うことができ、コンクリート構造物の安全性の向上に資する。
 また、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続されたPhセンサーを有し、前記Phセンサーで計測した前記構造物の水素イオン指数データを前記強誘電体メモリに記憶することにより、無線でデータ通信可能なPhセンサー付きの無線ICタグを使用しているので、コンクリート内部の水素イオン指数測定と水素イオン指数データの取り出しが容易であるとともに、この無線ICタグの大容量メモリに一定期間ごとに測定した水素イオン指数データを記憶させておくことができ、実際に使用したコンクリート毎にコンクリートの水素イオン指数を測定することができるので、現場担当者、打設後の管理者が水素イオン指数データを利用したコンクリートの中性化の推定を容易かつ迅速に行うことができ、コンクリート構造物の安全性の向上に資する。
 また、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設されるに埋設する無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された歪みセンサーを有し、前記歪みセンサーで計測した構造物の歪みデータを前記強誘電体メモリに記憶することにより、無線でデータ通信可能な歪みセンサー付きの無線ICタグを使用しているので、コンクリート構造物の歪みの測定と歪みデータの取り出しが容易であるとともに、この無線ICタグの大容量メモリに一定期間ごとに測定した水素イオン指数データを記憶させておくことができ、実際に使用したコンクリート毎にコンクリートの歪みを測定することができるので、現場担当者、打設後の管理者が歪みデータ利用してコンクリート構造物の劣化や、地震等外的要因によるコンクリート構造物の亀裂等の発見を容易かつ迅速に行うことができ、コンクリート構造物の安全性の向上に資する
 また、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続されてなる、温度センサー、Phセンサー、歪みセンサーのうち少なくとも二種類以上のセンサーを有し、前記温度センサーで計測した前記構造物の温度データ、前記Phセンサーで計測した前記構造物の水素イオン指数データ、前記歪みセンサーで計測した前記構造物の歪みデータの少なくともいずれかのデータを前記強誘電体メモリに記憶することにより、コンクリート構造物の温度、水素イオン指数、歪みを一つの媒体で測定し記憶することができる複合センサーを備えた無線ICタグを提供することができるので、上記効果に加えて一つの無線ICタグで、コンクリート構造物の測定を総合的に行うことができ、現場担当者、打設後の管理者も一つの書き込み・読み取り装置で複数のデータを取得可能であり、コンクリート構造物の品質管理を容易かつ迅速に行うことができる。
 また、無線ICタグは、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、UHF帯域の電波を受信するUHF帯通信アンテナチップとを連結させて基板上に実装し、UHF帯を超える長い周波数帯の通信を前記強誘電体メモリのアンテナ部で行いデータを前記強誘電体メモリに記憶させるとともに、UHF帯の通信を前記UHF帯通信用アンテナチップで行い、前記データを前記強誘電体メモリに記憶させることにより、LF帯等従来の無線ICタグが用いていた周波数帯の他、広い通信範囲を有するUHF帯の通信を行うことができ、規模の大きなコンクリート構造物においても書き込み・読み取り装置を用いて容易かつ迅速にデータの読み取りと書き込みを行うことができる。
 また、無線ICタグは、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリを実装した基板を絶縁材料で覆ってなることにより、無線ICタグをコンクリート構造物に埋設しても、無線ICタグに損傷を生じることなく、長期間に亘って無線ICタグを用いることができる。
 また、温度センサーは、測温抵抗体、熱電対、サーミスタのいずれかとし、前記温度センサーが検出した電気信号を前記強誘電体メモリに記憶することにより、正確に温度測定可能であって、無線ICタグと連結または同一基板上に設けることができる小型の温度センサーを構成することができ、比較的小型のセンサリング用の無線ICタグを提供することができる。
 また、Phセンサーは、コンクリート構造物の測定部位をセンサーに配設されるフィルム上に接触させることで、測定部位での反応性、酸・アルカリの付着量、測定部位内部から放出される酸・アルカリ量などを検出する半導体イメージングセンサー、または、ガラス電極と比較電極を有してなり該電極間の電位差を検出するガラス電極センサーとし、前記Phセンサーが検出した電気信号を前記強誘電体メモリに記憶することにより、正確に水素イオン指数を測定可能であって、無線ICタグと連結または同一基板上に設けることができる小型のPhセンサーを構成することができ、比較的小型のセンサリング用の無線ICタグを提供することができる。
 また、歪みセンサーはコンクリート構造物の少なくとも二点の相対位置の変化量を検出する変位センサーとし、前記歪みセンサーが検出した電気信号を前記強誘電体メモリに記憶することにより、正確にコンクリート構造物の歪みを検出でき、無線ICタグと連結または同一基板上に設けることができる小型の歪みセンサーを構成することができ、比較的小型のセンサリング装置を提供することができる。
 また、無線ICタグが有するセンサーは基板上に実装したことにより、小型かつ薄型の一のセンサー装置で、コンクリート構造物の品質管理をすることができる。
 また、無線ICタグは、充電装置から非接触で充電される電池と電気的に接続されてなることにより、コンクリート構造物に無線ICタグを埋設する場合や生コンクリート等のセメント製品に無線ICタグを混入する場合のように無線ICタグに対して有線により電気供給できない場所に無線ICタグが位置する場合であっても、外部から無線により充電をすることができる。よって、無線充電式の無線ICタグを提供することができる。
 電池は、充電装置からの所定の周波数帯の電波により非接触で充電される電池であることにより、無線通信装置やその他発信機器からの電波で充電することができ、例えば電磁誘導を利用した充電等に比べて発熱等のおそれがなく安全に非接触の充電をすることができる。
 電池は、基板上に実装されてなることにより、モジュール化された充電のできる小型のセンサー付き無線ICタグを提供することができる。
 電池に充電する充電装置は、書き込み・読み取り装置に備えられてなることにより、無線ICタグへのデータ書き込みまたはデータ読み取りを利用して無線ICタグに対して充電することができる。
 無線ICタグが有するセンサーは、充電装置から非接触で充電される電池から電源供給されて駆動することにより、コンクリート構造物中に位置する温度センサー、Phセンサー、歪みセンサーに容易に給電することができ、外部電源に接続しなくともこれ等センサーを駆動させることができる。
 無線ICタグは、振動、熱または電波により自己発電する発電機構と電気的に接続されてなることにより、コンクリート構造物に無線ICタグを埋設する場合や生コンクリート等のセメント製品に無線ICタグを混入する場合のように無線ICタグに対して有線により電気供給できない場所に無線ICタグが位置する場合であっても、無線ICタグは、振動、熱、電波等の要因により自己発電し、必要に応じて発電した電力を蓄電することができる。よって、自己発電式の無線ICタグを提供することができる。
 発電機構は、基板上に実装されてなることにより、モジュール化された発電のできる小型のセンサー付き無線ICタグを提供することができる。
 無線ICタグが有するセンサーは、振動、熱または電波により自己発電する発電機構から電源供給されて駆動することにより、コンクリート構造物中に位置する温度センサー、Phセンサー、歪みセンサーに容易に給電することができ、外部電源に接続しなくともこれ等センサーを駆動させることができる。
 書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサーを有し、前記強誘電体メモリに搭載されてなる制御部が温度センサーを制御する手段と、前記温度センサーが、前記コンクリート構造物の温度を計測する手段と、計測した前記構造物の温度データを前記強誘電体メモリに記憶する手段を有することにより、無線でデータ通信可能な温度センサー付きの無線ICタグを使用しているので、コンクリート内部の温度測定と温度データの取り出しが容易であるとともに、この無線ICタグの大容量メモリに一定期間ごとに測定した温度データを記憶させておくことができるので、実際に使用したコンクリート毎に、現場担当者、打設後の管理者が温度、積算温度を利用したコンクリートの強度推定を容易かつ迅速に行うことができ、コンクリート構造物の安全性の向上に資するコンクリート構造物の管理システムを提供することができる。
 また、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続されたPhセンサーを有し、前記強誘電体メモリに搭載されてなる制御部がPhセンサーを制御する手段と、前記Phセンサーが、前記コンクリート構造物の水素イオン指数を計測する手段と、計測した前記構造物の水素イオン指数データを前記強誘電体メモリに記憶する手段を有することにより、無線でデータ通信可能なPhセンサー付きの無線ICタグを使用しているので、コンクリート内部の水素イオン指数測定と水素イオン指数データの取り出しが容易であるとともに、この無線ICタグの大容量メモリに一定期間ごとに測定した水素イオン指数データを記憶させておくことができ、実際に使用したコンクリート毎にコンクリートの水素イオン指数を測定することができるので、現場担当者、打設後の管理者が水素イオン指数データを利用したコンクリートの中性化の推定を容易かつ迅速に行うことができ、コンクリート構造物の安全性の向上に資するコンクリート構造物管理システムを提供することができる。
 また、書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された歪みセンサーを有し、前記強誘電体メモリに搭載されてなる制御部が歪みセンサーを制御する手段と、前記歪みセンサーが、前記コンクリート構造物の歪みを計測する手段と、計測した前記構造物の歪みデータを前記強誘電体メモリに記憶することにより、無線でデータ通信可能な歪みセンサー付きの無線ICタグを使用しているので、コンクリート構造物の歪みの測定と歪みデータの取り出しが容易であるとともに、この無線ICタグの大容量メモリに一定期間ごとに測定した歪みデータを記憶させておくことができ、実際に使用したコンクリート毎にコンクリートの歪みを測定することができるので、現場担当者、打設後の管理者が歪みデータ利用してコンクリート構造物の劣化や、地震等外的要因によるコンクリート構造物の亀裂等の発見を容易かつ迅速に行うことができ、コンクリート構造物の安全性の向上に資するコンクリート構造物管理システムを提供することができる。
 書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサー、Phセンサー、歪みセンサーのうち少なくとも二種類以上のセンサーを有し、前記強誘電体メモリに搭載されてなる制御部が各センサーを制御する手段と、各センサーが前記コンクリート構造物のデータを計測する手段と、計測した前記コンクリート構造物のデータを前記強誘電体メモリに記憶する手段を有することにより、コンクリート構造物の温度、水素イオン指数、歪み等いくつかの要素を一つの媒体で測定し記憶することができるので、上記効果に加えてコンクリート構造物の測定を総合的に行うことができ、現場担当者、打設後の管理者も一つの書き込み・読み取り装置で複数のデータを取得可能であり、コンクリート構造物の品質管理を総合的であって容易かつ迅速に行うことができる、コンクリート構造物管理システムを提供することができる。
 書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサー、Phセンサー、歪みセンサーの少なくともいずれかのセンサーを有し、前記センサーのいずれかが変化量を検出すると検出したデータを前記強誘電体メモリに記憶する手段を有することにより、常時または比較的短い時間間隔でセンサリングをし、データに変化があったときにデータを記憶させることができ、メモリ容量に対する記憶するデータ容量が少なくて済むため、長期間運用できるコンクリート構造物品質管理システムを提供することができる。
 無線ICタグは、充電装置から非接触で充電される電池と電気的に接続されてなり、無線ICタグが有するセンサーは、前記電池から電源供給されて駆動することにより、各センサーには有線により接続される外部電源によらずとも電力が供給される。
 無線ICタグは、振動、熱または電波により自己発電する発電機構と電気的に接続されてなり、無線ICタグが有するセンサーは、前記発電機構から電源供給されて駆動することにより、各センサーには有線により接続される外部電源によらずとも電力が供給される。
本発明の第一の実施の形態の無線ICタグの模式的斜視図。 図1に示す無線ICタグに用いる温度センサーの模式的斜視図。 図1に示す無線ICタグに用いるPhセンサーの模式的斜視図。 本発明の第二の実施の形態の無線ICタグの模式的斜視図。 図4に示す無線ICタグを絶縁材料で被覆した状態の断面図。 本発明の無線ICタグを用いた管理システムの例を示す模式図。 本発明の無線ICタグをコンクリート構造物に埋設した状態を示す斜視図。 本発明の第三の実施の形態の無線ICタグの模式的斜視図。 図8に示す無線ICタグを用いた管理システムの例を示す模式図。 本発明の第四の実施の形態の無線ICタグの模式的斜視図。 本発明の第五の実施の形態を示す模式的斜視図。 本発明の第六の実施の形態を示す模式的斜視図。
 1 無線ICタグ
 2 基板
 21配線
 22配線
 23配線
 24配線
 25配線
 26配線
 3 FeRAMチップ
 4 温度センサー
 41サーミスタ
 42内部電極
 43メッキ層
 44メッキ層
 45保護膜
 5 Phセンサー
 51ガラス電極
 52比較電極
 53液絡孔
 6 歪みセンサー
 7 無線ICタグ
 71絶縁材料
 8 UHF帯通信アンテナチップ
 9 リーダーライター
 10 コンピュータ
 11 コンクリート構造物
 12 外部電源
 13 無線ICタグ
 14 電池
 15 無線ICタグ
 16 無線ICタグ
 17 発電機構
 18 無線ICタグ
 図1は、本発明の第一の実施の形態の無線ICタグの模式的斜視図、図2は、図1に示す無線ICタグに用いる温度センサーの模式的斜視図、図3は、図1に示す無線ICタグに用いるPhセンサーの模式的斜視図である。図4は、本発明の第二の実施の形態の無線ICタグの模式的斜視図、図5は、図4に示す無線ICタグを絶縁材料で被覆した状態の断面図、図6は、本発明の無線ICタグを用いた管理システムの例を示す模式図、図7は、本発明の無線ICタグをコンクリート構造物に埋設した状態を示す斜視図である。また、図8は、本発明の第三の実施の形態の無線ICタグの模式的斜視図、図9は、図8に示す無線ICタグを用いた管理システムの例を示す模式図、図10は、本発明の第四の実施の形態の無線ICタグの模式的斜視図、図11は、本発明の第五の実施の形態を示す模式的斜視図、図12は、本発明の第六の実施の形態を示す模式的斜視図である。
 本発明第一の実施の形態を示す本発明の無線ICタグ1は、RFIDタグとも呼ばれるデータの書き込みおよび読み取りができる記憶装置であって、図1に示すように、ICタグ用のメモリ素子として強誘電体を利用した強誘電体メモリと呼ばれるFeRAMチップ3が金属板、セラミック板等からなる基板2上に実装されるとともに、このFeRAMチップ3と各種センサーが連結されており、コンクリート構造物品質管理システムに用いるための無線ICタグである。無線ICタグ1は、図7に示すように、コンクリート構造物11に埋設または取り付けられてコンクリート構造物11の各種データを計測し、該計測データを記憶するとともに、図6に示すように書き込み・読み取り装置としてのリーダーライター9との間でデータを書き込み、読み取りを無線により行うように構成されている。
 無線ICタグ1のFeRAMチップ3を構成するFeRAMのタイプは、どのようなものであってもよく、キャパシター型、トランジスタ型いずれのタイプであってもよい。尚、製品等の管理システムに用いやすいのは、電源を搭載せず外部からのデータアクセス用の電波を整流して電源とするパッシヴ型のFeRAMである。このFeRAMチップ3には、強誘電体を利用した不揮発性メモリであるFeRAMと、駆動用に電池を内蔵する代わりに外部からの電波を受信しこれと共振して電流を発生する電源部と、無線交信するためのフィルム状のアンテナ部と、FeRAMチップ3と後述するセンサーを制御する制御部が搭載されている。
 このFeRAMチップ3を構成するFeRAMは、従来の無線ICタグに用いられていたEEPROMと比較すると、その書き換え回数が、EEPROMが10の5乗回程度であるのに対し、FeRAMは10の13乗回以上と優れた性能を備えている。また、書き込み電圧は従来のEEPROMが12Vであるのに対して、FeRAMはDC1.1V~3Vと極めて低い電圧で書き込みを行うことができ、無線ICタグ内部に電池を内蔵することなく、外部からの電波に共振して発電する電源部を備えたパッシブタイプでも十分足りるとともに、従来のICタグに用いられていたEEPROMと比較して5000倍もの書き込み速度を有している。データの保存期間が10年以上と長い。さらに、書き換えのアクセスにあっても、従来のEEPROMやフラッシュメモリーではほとんどがブロック単位の書き込みであったのに対し、FeRAMはワード単位でランダムに書き込みを行えるという利点がある。
 制御部は、一旦書き込まれた情報が改ざんされることがないように、追記はできるものの、上書きをできない設定とすることも可能で、データの書き込み・読み取りは暗号化したプロトコルを用いて行うことがよい。よって、約8KBのメモリ容量中に、各種データを、図4に示すその都度、書き込み・読み取り装置としてのリーダーライター9と間の無線通信により、書き込み・読み取りができる。また、FeRAMチップ3が無線交信可能な周波数帯域は、自由に設定することができLF帯からUHF帯まで用いることができるが、アンテナ部は、地表波による安定した通信が可能で、指向性が弱く、水や埃、金属の影響を比較的受けにくく、信頼性の高いデータ通信のできるLF帯の通信に設定することが適している。尚、VHF帯、HF帯、MF帯の周波数帯通信用に設定してもよい。
 尚、無線ICタグ1のFeRAMチップ3には、リーダーライター9で読み取り可能な管理フラグを、あらかじめ、または、書き込み時に記憶させ、リーダーライター9で情報の書き込み・読み取りを行う際にこの管理フラグを読み取ることにより、所定の管理システムを構成する無線ICタグ1であることが識別可能になっている。尚、必要に応じて、無線ICタグ1には、アンチコリジョン機能を搭載し、複数の無線ICタグ1が近傍に位置していても混信して通信できないという事態がないようにできる。
 無線ICタグ1は、FeRAMチップ3と配線21で連結されてなる温度センサー4が配設されて、温度センサーの検知部がコンクリート構造物11に当接してコンクリート構造物11の温度を計測できるようになっている。
 この温度センサー4は、例えば、測温抵抗体、熱電対、サーミスタのいずれかの温度センサーであって、基板2上に実装できる程度に小型であることがのぞましい。
 測温抵抗体は、金属の電気抵抗率が温度に比例して変わることを利用した温度センサーである。熱電対は、熱電能の互いに異なるプラチナ、レニウム、タングステン、銀、金等二種類の金属を接合し、この2つの接合点を異なる温度にすると、一定の方向に電流が流れ、熱起電力が生じるゼーベック効果を利用した温度センサーであり、常温付近で使用されることが多いが、高温領域や低温領域でも用いることができ、耐熱性や耐酸性・耐アルカリ性などを有することよりコンクリートに埋設するセンサーとして優れており、箔熱電対を用いれば基板2上に実装することも可能である。サーミスタは、温度変化により電気抵抗が大きく変化する抵抗体を用抵抗の変化を利用した温度センサーであり、−50℃から350℃程度まで用いることができ、コンクリートに埋設するセンサーとして優れている。
 図2にサーミスタによる温度センサー4の例を示す。面実装タイプのチップ型のサーミスタ41は、内部電極42と接するように基板2上に配設され、その周囲をメッキ層43、44が、上部を保護膜45が覆ってなる構成であり、温度の増加に伴って抵抗が増加するか、または、温度の増加に伴って抵抗が減少する原理を用いて温度を測定する。
 この温度センサー4は、FeRAMチップ3の制御部からの測定信号出力により所定の時間間隔で、またはリーダーライター9の読み取り時に、あるいは常時コンクリート構造物11のコンクリート温度を計測し、電気信号として出力される温度データをFeRAMチップ3のメモリに記憶するようになっている。
 尚、図1においては、温度センサー4を基板2上に実装しているが、必ずしも基板2上に実装する必要はなく、FeRAMチップ3と通電可能な状態に配線されていればよい。また、図7に示すように、温度センサー4の電源は、外部電源12を用いてもよい。また、温度センサーの種類は上述したものに限られるものではない。
 また、無線ICタグ1には、FeRAMチップ3と配線22で連結されてなるPhセンサー5が配設されて、Phセンサーの検知部がコンクリート構造物11に当接してコンクリート構造物11の水素イオン指数を計測できるようになっている。
 このPhセンサー5は、例えば、イメージングセンサー上に薄いゲルフィルムを形成し、コンクリート構造物の測定部位表面をゲルフィルム上に接触させることで、表面での反応性、アルカリの付着量、測定部位内部から放出される酸・アルカリ量などを検出する半導体を用いたイメージングセンサー、または、ガラス電極と比較電極を有してなり該電極間の電位差を検出するガラス電極センサーであって、繰り返し水素イオン指数を測定できるとともに、基板2上に実装できる程度に小型であることがのぞましい。
 図3にシート型複合ガラス電極を用いたPhセンサー5の例を示す。面実装タイプのシート型複合ガラス電極センサーの検出部は、Ph応答性のガラス電極51と比較電極52および液絡部53を有し、ガラス電極と比較電極間の電位差を検出して水素イオン指数を測定する。尚、コンクリート構造物の硬化後に使用する場合には、半導体を用いたイメージングセンサーが適している。
 このPhセンサー5は、FeRAMチップ3の制御部の測定信号出力により所定の時間間隔で、またはリーダーライター9の読み取り時に、あるいは常時コンクリート構造物11のコンクリートの水素イオン指数を計測し、電気信号として出力される水素イオン指数データをFeRAMチップ3のメモリに記憶するようになっている。
 尚、図1においては、Phセンサー5を基板2上に実装しているが、必ずしも基板2上に実装する必要はなく、FeRAMチップ3と通電可能な状態に配線されていればよい。また、図7に示すように、Phセンサー5の電源は、外部電源12を用いてもよい。また、Phセンサーの種類は上述したものに限られるものではない。
 無線ICタグ1は、FeRAMチップ3と配線23で連結されてなる歪みセンサー6が配設されて、歪みセンサーの検知部がコンクリート構造物11の歪みを計測できるようになっている。
 この歪みセンサーはコンクリート構造物の少なくとも二点の相対位置の変化量を検出する変位センサーとし、基板2上に実装できる程度に小型であることがのぞましい。
 変位センサーは、コンクリート構造物の少なくとも二点の位置の歪み、変位等の変化量を検出するべく、コンクリート構造物の少なくともXY方向の二点を繋いで配設されるブリッジ回路を用いた歪みゲージ、電磁的手法を用いた歪みセンサー、体積歪み計等がのぞましい。またいくつかの無線ICタグの歪みセンサーの位置の変動を総合的に検知して、コンクリート構造物全体の歪みを計測するようにしてもよい。
 この歪みセンサーは、FeRAMチップ3の制御部からの測定信号出力により所定の時間間隔で、またはリーダーライター9の読み取り時、あるいは常時コンクリート構造物11の歪みの変化量を計測し、電気信号として出力される歪みデータをFeRAMチップ3のメモリに記憶するようになっている。
 尚、図1においては、歪みセンサー5を基板2上に実装しているが、必ずしも基板2上に実装する必要はなく、FeRAMチップ3と通電可能な状態に配線されていればよい。また、図7に示すように、歪みセンサー5の電源は、外部電源12を用いてもよい。また、歪みセンサーの種類は上述したものに限られるものではない。
 また、本実施の形態においては、温度センサー4、Phセンサー5、歪みセンサー6を一つのFeRAMチップ3に連結させて、一の基板2上に実装し、コンクリート構造物11の温度、水素イオン指数、歪みを一の無線ICタグ1で測定し記憶可能としたが、無線ICタグに設けるセンサーはいずれか一つのセンサーであってもよいし、二つのセンサーであってもよい。
 本発明の第二の実施の形態を示す本発明の無線ICタグ7は、RFIDタグとも呼ばれるデータの書き込みおよび読み取りができる記憶装置であって、図4に示すように、ICタグ用のメモリ素子として強誘電体を利用した強誘電体メモリと呼ばれるFeRAMチップ3が金属板、セラミック板等からなる基板2上に実装されるとともに、移動体の管理や、広いエリアでの管理を行う場合のために、リーダーライター9を用いたデータの読み取り、書き込みの通信距離が数メートルと広い通信エリアを有するUHF帯の通信をするUHF帯通信アンテナチップ8が搭載されているハイブリット型の無線ICタグ7である。
 そして、このハイブリット型の無線ICタグ7は、FeRAMチップ3と電気的に接続された各種センサーからなるコンクリート構造物品質管理システムに用いるための無線ICタグである。無線ICタグ7は、コンクリート構造物に埋設されてコンクリート構造物の各種データを計測し、該計測データを記憶するとともに、リーダーライター9との間でのデータを書き込み、読み取りを無線により行うようになっている。
 この無線ICタグ7において、FeRAMチップ3とUHF帯通信アンテナチップ8の制御は、FeRAMチップ3に搭載された制御部が行う。リーダーライターの通信周波数帯に応じて、FeRAMチップ3のアンテナ部または、UHF帯通信アンテナチップ8で通信を行うとともに、伝達されたデータを制御部が制御し、FeRAMチップ3の大容量メモリに記録する。
 例えば、リーダーライターからLF帯の周波数の電波が出力されたときには、FeRAMチップ3のアンテナ部がこの電波を受信し、制御部は、送られたデータをFeRAMチップ3のメモリ部に記憶するように制御する。一方、リーダーライター9からUHF帯の周波数の電波が出力されたときには、UHF帯通信アンテナチップ8がこの電波を受信し、UHF帯通信アンテナチップ8が電波を受信すると、送られたデータをFeRAMチップ3のメモリ部に記憶するように制御し、データは、UHF帯通信アンテナチップ4を介してFeRAMチップ3のメモリ部に記憶される。
 尚、無線ICタグ7のFeRAMチップ3には、リーダーライター9で読み取り可能な管理フラグを、あらかじめ、または、書き込み時に記憶させ、リーダーライター9で情報の書き込み・読み取りを行う際にこの管理フラグを読み取ることにより、所定の管理システムを構成する無線ICタグ1であることが識別可能になっている。尚、必要に応じて、無線ICタグ1には、アンチコリジョン機能を搭載し、複数の無線ICタグ7が近傍に位置していても混信して通信できないという事態がないようにできる。
 温度センサー4、Phセンサー5、歪みセンサー6は、それぞれ配線24、配線25、配線26によりFeRAMチップ2と連結されている。各センサーの構成は、第一の実施の形態と同様であるので省略する。
 尚、図4においては、各センサーを基板2上に実装しているが、必ずしも基板2上に実装する必要はなく、FeRAMチップ3と通電可能な状態に配線されていればよい。また、図7に示すように、各センサーの電源は、外部電源12を用いてもよい。また、センサーの種類は上述したものに限られるものではない。
 また、本実施の形態においては、温度センサー4、Phセンサー5、歪みセンサー6を一つのFeRAMチップ3に連結させて、コンクリート構造物11の温度、水素イオン指数、歪みを一の無線ICタグ7で測定し記憶可能としたが、無線ICタグ7に設けるセンサーはいずれか一つのセンサーであってもよいし、二つのセンサーであってもよい。
 また、図5に示すように、埋設した無線ICタグは、チップを保護すべく、各センサーが温度、水素イオン指数、歪みを検知可能な状態を保持しながら、無線ICタグを絶縁材料で被覆することがのぞましい。
 次に本発明の第三の実施の形態として、充電装置から非接触で充電される電池が電気的に接続された状態の無線ICタグ13について説明する。図8に示す如くこの無線ICタグ13は、第一の実施の形態の無線ICタグ1に、無線通信にて充電が可能な電池14を配設したものであり充電機構を備えてなる無線ICタグである。そして、例えば、図9に示す如く充電装置を搭載したまたは充電装置を兼ねたリーダーライター9からの通信により充電される。他の構成については第一の実施の形態の無線ICタグ1と同様である。
 無線ICタグ13は、ICタグ用のメモリ素子として強誘電体を利用したFeRAMを搭載したFeRAMチップ3と、温度センサー4、Phセンサー5、歪みセンサー6が実装されている。特定の周波数帯域の電波を受信する無線通信機構を備えた二次電池である電池14は基板2上に配設され、温度センサー4、Phセンサー5、歪みセンサー6と電気的に接続されている。充電装置に設けられた無線通信機構と無線ICタグ13側に設けられた無線通信機構との間で近距離無線技術を用いて通信し無線ICタグ側の電池14に充電される。この蓄積された電力を無線ICタグ15や温度センサー4、Phセンサー5、歪みセンサー6を駆動させる電源として用いるようになっている。
 例えば、図9に示す如く、コンクリート構造物等に埋設された無線ICタグ13は、充電装置を備えたリーダーライター9が無線通信をするときに電池14に充電されるようになっていて、各センサーはこの電池14から電力供給されて駆動し、コンクリート構造物の各種データを計測するようになっている。
 尚、充電の方式は、上述の近距離無線技術の他、充電装置と電池とにコイルを配設し、充電装置側のコイルに電流を流すとこれと対になる電池側のコイルに電流が流れこれを蓄電する電磁誘導を利用した方式によるものであってもよい。また、充電装置はリーダーライター9に搭載することなく、別途充電装置を用意してもよい。また、電池14は基板2上に配設しなくてもよく、無線ICタグと電気的に接続するようにしてもよい。
 尚、無線ICタグ13は、温度センサー4、Phセンサー5、歪みセンサー6を備えているが、無線ICタグが有するセンサーはいずれか一つのセンサーであってもいいし、二つのセンサーであってもよく、FeRAMチップ3に電気的に接続されたセンサーと電池14とを接続すればよい。
 また、本発明の第四の実施の形態は、本発明の第二の実施の形態を示す本発明の無線ICタグ7に上述した無線通信にて充電が可能な電池14を配設したものであり充電機構を備えてなる無線ICタグである。この無線ICタグ15は、FeRAMチップ3、UHF帯通信アンテナチップ8、温度センサー4、Phセンサー5、歪みセンサー6を備えてなるハイブリット型の無線ICタグ7に、電池14を配設し、この電池14と温度センサー4、Phセンサー5、歪みセンサー6とが電気的に接続されている無線ICタグである。
 次に本発明の第五の実施の形態として、発電機構が電気的に接続された状態の無線ICタグ16について説明する。図11に示す如くこの無線ICタグ16は、第一の実施の形態の無線ICタグ1に自己発電する発電機構17を配設したものであり、発電機構17を備えてなる無線ICタグである。他の構成については第一の実施の形態の無線ICタグ1と同様である。
 無線ICタグは、ICタグ用のメモリ素子として強誘電体を利用したFeRAMを搭載したFeRAMチップ3が実装されている。発電機構17は基板上に配設され温度センサー4、Phセンサー5、歪みセンサー6と電気的に接続されている。この発電機構17は、振動により発電する振動発電素子であり、人間の動作や、装置の駆動による振動、建物や橋梁の車両通過等による振動により比較的微弱な電気を発電する。そしてこの発電機構により発電された電力をそのまま用いてもよいし発電機構に配設された二次電池に蓄電してもよい。この発電機構17により発電された電力を無線ICタグ16や温度センサー4、Phセンサー5、歪みセンサー6を駆動させる電源として用いるようになっている。
 例えば、無線ICタグ16を携帯した人間が動作したときや、コンクリート構造物や橋梁、または製品に埋設、貼付等の手法により取り付けられた無線ICタグ16が車両等の通過や運搬中の揺れにより振動したときに発電機構17はこれらの振動をエネルギーとして発電するようになっている。
 尚、発電機構17は、上述の発電機構は振動発電素子に限られるものではなく熱電素子として、外部からの熱により発電する機構であってもよいし、RF波等外部からの電波により発電する無線通信による発電機構であってもよく、一般にハーベスタ技術と呼ばれる種々の外部エネルギーを用いる機構とすることができる。尚、発電機構17は基板2上に配設せずに無線ICタグの近傍に配設して各センサーと電気的に接続するようにしてもよい。
 また、本発明の第六の実施の形態は、本発明の第二の実施の形態を示す本発明の無線ICタグ7に上述した発電機構17を配設したものであり発電機構を備えてなる無線ICタグである。この無線ICタグ18は、FeRAMチップ3、UHF帯通信アンテナチップ8、温度センサー4、Phセンサー5、歪みセンサー6を備えてなるハイブリット型の無線ICタグ7に、発電機構17を配設し、この発電機構17と温度センサー4、Phセンサー5、歪みセンサー6とが電気的に接続されている無線ICタグである。
 無線ICタグ1を用いたコンクリート構造物11の品質管理システムについて説明する。図7に示すように、無線ICタグ1は、セメント、骨材、水を打設して形成されるコンクリートまたはモルタルを型枠内に打設してなるコンクリート構造物11の建設時にコンクリート中に埋設されて使用される。また必要に応じて打設後にコンクリート構造物11の壁面に取り付けて使用されることもある。このとき各センサーへの駆動電力は外部電源12からとってもよい。
 そしてコンクリート構造物11が硬化する前のコンクリート構造物11の温度、水素イオン指数、歪み、および、硬化後のコンクリート構造物11の温度、水素イオン指数、歪みを、あらかじめFeRAMチップ3の制御部の制御により定時的にまたはリーダーライター9との通信時に測定する。
 測定時になるとFeRAMチップ3の制御部3は、FeRAMチップ3に連結する温度センサー4、Phセンサー5、歪みセンサー6を制御し、各センサーはこの制御に基づいて、コンクリート構造物11のコンクリート温度、コンクリート構造物11の水素イオン指数、コンクリート構造物11の歪みを計測し、制御部は計測したデータをFeRAMチップ3のメモリに記憶する。
 また、反対に、常時計測を行う状態に設定された温度センサー4、Phセンサー5、歪みセンサー6が変化を検出したときに、FeRAMチップ3の制御部3は作動し、各センサーが検出したコンクリート構造物11のコンクリート温度、コンクリート構造物11の水素イオン指数、コンクリート構造物11の歪みのデータをFeRAMチップ3のメモリに記憶するようにしてもよい。
 図6に示すように、リーダーライター9は、無線ICタグ1との間でデータ通信可能な装置であり、各種データ等を無線ICタグとの間で無線通信により、読み取り、書き込みするようになっており、工事関係者、建物管理者等のコンクリート構造物11の管理者は、このリーダーライター9を、無線ICタグ1の埋設または取り付けられている個所に向けて通信を行い、無線ICタグに記憶された上述の各データを読み出すようになっている。リーダーライター9で読み取ったデータは、コンピュータ10に格納して管理するようにしてもよい。
 また、リーダーライター9から書き込みデータが出力されると、無線ICタグ1を構成するFeRAMチップ3のアンテナ部が該データを受信し、このデータはFeRAMチップ3のメモリに記憶される。
 また、コンクリート構造物11埋設前の無線ICタグ1に、セメント、砂利等の骨材、水等を混練するセメント製品の製造工程において、セメント製品の自動測定装置がセメント製品の水/セメント比、セメント混和剤、温度等の製品特性値を測定した製品特性値および製造年月日等からなる製造情報を書き込んでおいてもよい。
 このようなコンクリート品質管理システムを構成することで、コンクリート打設時からコンクリート構造物完成後に亘って、現場の施工業者、施工依頼主、利用者、各種業界団体は、リーダーライター9を用いて、無線ICタグ1と通信をするだけで、コンクリート構造物の温度、水素イオン指数、歪みを随時知ることができ、コンクリート構造物の劣化、地震等外的要因による倒壊の危険性等を推定することができ、ひいては建築物の安全性を高めることができるのである。尚、本実施例では、温度センサー4、Phセンサー5、歪みセンサー6全てを備えたシステムについて説明したが、いずれか一つのセンサー、または二つのセンサーをFeRAMチップ3に連結させ、当該一つのセンサーまたは二つのセンサーを制御するシステムにしてもよい。
 また、上述したシステムに用いる無線ICタグは、本発明の第一の実施の形態の無線ICタグの他、無線ICタグ自体が充電機構または発電機構を備えてなる本発明の第二の実施の形態の無線ICタグ乃至第五の実施の形態の無線ICタグであってもよい。この場合には、外部電源12を設ける必要がなく、各センサーを駆動させる電源を無線ICタグに配設することができるのである。
 無線でデータ通信可能な温度センサー付きの無線ICタグを使用しているので、コンクリート内部の温度測定と温度データの取り出しが容易であるとともに、この無線ICタグの大容量メモリに一定期間ごとに測定した温度データを記憶させておくことができるので、実際に使用したコンクリート毎に、現場担当者、打設後の管理者が温度、積算温度を利用したコンクリートの強度推定を容易かつ迅速に行うことができ、コンクリート構造物の安全性の向上に資する。
 また、無線でデータ通信可能なPhセンサー付きの無線ICタグを使用しているので、コンクリート内部の水素イオン指数測定と水素イオン指数データの取り出しが容易であるとともに、この無線ICタグの大容量メモリに一定期間ごとに測定した水素イオン指数データを記憶させておくことができ、実際に使用したコンクリート毎にコンクリートの水素イオン指数を測定することができるので、現場担当者、打設後の管理者が水素イオン指数データを利用したコンクリートの中性化の推定を容易かつ迅速に行うことができ、コンクリート構造物の安全性の向上に資する。
 また、無線でデータ通信可能な歪みセンサー付きの無線ICタグを使用しているので、コンクリート構造物の歪みの測定と歪みデータの取り出しが容易であるとともに、この無線ICタグの大容量メモリに一定期間ごとに測定した水素イオン指数データを記憶させておくことができ、実際に使用したコンクリート毎にコンクリートの歪みを測定することができるので、現場担当者、打設後の管理者が歪みデータ利用してコンクリート構造物の劣化や、地震等外的要因によるコンクリート構造物の亀裂等の発見を容易かつ迅速に行うことができ、コンクリート構造物の安全性の向上に資する

Claims (25)

  1.  書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサーを有し、前記温度センサーで計測した前記構造物の温度データを前記強誘電体メモリに記憶することを特徴とする無線ICタグ。
  2.  書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続されたPhセンサーを有し、前記Phセンサーで計測した前記構造物の水素イオン指数データを前記強誘電体メモリに記憶することを特徴とする無線ICタグ。
  3.  書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設されるに埋設する無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された歪みセンサーを有し、前記歪みセンサーで計測した構造物の歪みデータを前記強誘電体メモリに記憶することを特徴とする無線ICタグ。
  4.  書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続されてなる、温度センサー、Phセンサー、歪みセンサーのうち少なくとも二種類以上のセンサーを有し、前記温度センサーで計測した前記構造物の温度データ、前記Phセンサーで計測した前記構造物の水素イオン指数データ、前記歪みセンサーで計測した前記構造物の歪みデータの少なくともいずれかのデータを前記強誘電体メモリに記憶することを特徴とする無線ICタグ。
  5.  無線ICタグは、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、UHF帯域の電波を受信するUHF帯通信アンテナチップとを連結させて基板上に実装し、UHF帯を超える長い周波数帯の通信を前記強誘電体メモリのアンテナ部で行いデータを前記強誘電体メモリに記憶させるとともに、UHF帯の通信を前記UHF帯通信用アンテナチップで行い、前記データを前記強誘電体メモリに記憶させることを特徴とする請求項1乃至請求項4のいずれかに記載の無線ICタグ。
  6.  無線ICタグは、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリを実装した基板を絶縁材料で覆ってなることを特徴とする請求項1乃至請求項5のいずれかに記載の無線ICタグ。
  7.  温度センサーは、測温抵抗体、熱電対、サーミスタのいずれかとし、前記温度センサーが検出した電気信号を前記強誘電体メモリに記憶することを特徴とする請求項1または請求項4乃至請求項6のいずれかに記載の無線ICタグ。
  8.  Phセンサーは、コンクリート構造物の測定部位をセンサーに配設されるフィルム上に接触させることで、測定部位での反応性、酸・アルカリの付着量、測定部位内部から放出される酸・アルカリ量などを検出する半導体イメージングセンサー、または、ガラス電極と比較電極を有してなり該電極間の電位差を検出するガラス電極センサーとし、前記Phセンサーが検出した電気信号を前記強誘電体メモリに記憶することを特徴とする請求項2または請求項4乃至請求項7のいずれかに記載の無線ICタグ。
  9.  歪みセンサーはコンクリート構造物の少なくとも二点の相対位置の変化量を検出する変位センサーとし、前記歪みセンサーが検出した電気信号を前記強誘電体メモリに記憶することを特徴とする請求項3または請求項4乃至請求項8のいずれかに記載の無線ICタグ。
  10.  無線ICタグが有するセンサーは、基板上に実装されることを特徴とする請求項1乃至請求項9のいずれかに記載の無線ICタグ。
  11.  無線ICタグは、充電装置から非接触で充電される電池と電気的に接続されてなることを特徴とする請求項1乃至請求項10のいずれかに記載の無線ICタグ。
  12.  電池は、充電装置からの所定の周波数帯の電波により非接触で充電される電池であることを特徴とする請求項11に記載の無線ICタグ。
  13.  電池は、基板上に実装されてなることを特徴とする請求項11または請求項12に記載の無線ICタグ。
  14.  電池に充電する充電装置は、書き込み・読み取り装置に備えられてなることを特徴とする請求項11乃至請求項13のいずれかに記載の無線ICタグ。
  15.  無線ICタグが有するセンサーは、充電装置から非接触で充電される電池から電源供給されて駆動することを特徴とする請求項11乃至請求項14のいずれかに記載の無線ICタグ。
  16.  無線ICタグは、振動、熱または電波により自己発電する発電機構と電気的に接続されてなることを特徴とする請求項1乃至請求項15のいずれかに記載の無線ICタグ。
  17.  発電機構は、基板上に実装されてなることを特徴とする請求項16に記載の無線ICタグ。
  18.  無線ICタグが有するセンサーは、振動、熱または電波により自己発電する発電機構から電源供給されて駆動することを特徴とする請求項16または請求項17に記載の無線ICタグ。
  19.  書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサーを有し、前記強誘電体メモリに搭載されてなる制御部が温度センサーを制御する手段と、前記温度センサーが、前記コンクリート構造物の温度を計測する手段と、計測した前記構造物の温度データを前記強誘電体メモリに記憶する手段を有することを特徴とする無線ICタグを用いたコンクリート構造物品質管理システム。
  20.  書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続されたPhセンサーを有し、前記強誘電体メモリに搭載されてなる制御部がPhセンサーを制御する手段と、前記Phセンサーが、前記コンクリート構造物の水素イオン指数を計測する手段と、計測した前記構造物の水素イオン指数データを前記強誘電体メモリに記憶する手段を有することを特徴とする無線ICタグを用いたコンクリート構造物品質管理システム。
  21.  書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された歪みセンサーを有し、前記強誘電体メモリに搭載されてなる制御部が歪みセンサーを制御する手段と、前記歪みセンサーが、前記コンクリート構造物の歪みを計測する手段と、計測した前記構造物の歪みデータを前記強誘電体メモリに記憶する手段を有することを特徴とする無線ICタグを用いたコンクリート構造物品質管理システム。
  22.  書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは打設時に埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサー、Phセンサー、歪みセンサーのうち少なくとも二種類以上のセンサーを有し、前記強誘電体メモリに搭載されてなる制御部が各センサーを制御する手段と、各センサーが前記コンクリート構造物のデータを計測する手段と、計測した前記コンクリート構造物のデータを前記強誘電体メモリに記憶する手段を有することを特徴とする請求項19乃至請求項21のいずれかに記載の無線ICタグを用いたコンクリート構造物品質管理システム。
  23.  書き込み・読み取り装置との間で無線通信によりデータの書き込み・読み取りが可能なコンクリート構造物に取り付けまたは埋設される無線ICタグであって、外部からの電波を受信しこれと共振して電流を発生する電源部と所定の周波数帯域で無線交信するためのアンテナ部を有する強誘電体を利用した強誘電体メモリと、前記強誘電体メモリに電気的に接続された温度センサー、Phセンサー、歪みセンサーの少なくともいずれかのセンサーを有し、前記センサーのいずれかが変化量を検出すると検出したデータを前記強誘電体メモリに記憶する手段を有することを特徴とする無線ICタグを用いたコンクリート構造物品質管理システム。
  24.  無線ICタグは、充電装置から非接触で充電される電池と電気的に接続されてなり、無線ICタグが有するセンサーは、前記電池から電源供給されて駆動することを特徴とする請求項19乃至請求項23のいずれかに記載の無線ICタグを用いたコンクリート構造物品質管理システム。
  25.  無線ICタグは、振動、熱または電波により自己発電する発電機構と電気的に接続されてなり、無線ICタグが有するセンサーは、前記発電機構から電源供給されて駆動することを特徴とする請求項19乃至請求項24のいずれかに記載の無線ICタグを用いたコンクリート構造物品質管理システム。
PCT/JP2009/067684 2009-06-18 2009-10-06 無線icタグ、該無線icタグを用いたコンクリート構造物品質管理システム WO2010146726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801283306A CN102099658A (zh) 2009-06-18 2009-10-06 无线ic标签及使用该无线ic标签的混凝土结构体质量管理系统
BRPI0916929A BRPI0916929A2 (pt) 2009-06-18 2009-10-06 etiqueta de ci sem fio, e, sistema de administração de qualidade de objeto estrutural de concreto
US13/001,702 US20110115613A1 (en) 2009-06-18 2009-10-06 Wireless ic tag, concrete structural object quality management system using same
CA2746172A CA2746172A1 (en) 2009-06-18 2009-10-06 Wireless ic tag, concrete structural object quality management system using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009145829 2009-06-18
JP2009-145829 2009-06-18
JP2009-187642 2009-08-13
JP2009187642A JP2011022982A (ja) 2009-06-18 2009-08-13 無線icタグ、該無線icタグを用いたコンクリート構造物品質管理システム

Publications (1)

Publication Number Publication Date
WO2010146726A1 true WO2010146726A1 (ja) 2010-12-23

Family

ID=43356063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067684 WO2010146726A1 (ja) 2009-06-18 2009-10-06 無線icタグ、該無線icタグを用いたコンクリート構造物品質管理システム

Country Status (6)

Country Link
US (1) US20110115613A1 (ja)
JP (1) JP2011022982A (ja)
CN (1) CN102099658A (ja)
BR (1) BRPI0916929A2 (ja)
CA (1) CA2746172A1 (ja)
WO (1) WO2010146726A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237696A (ja) * 2011-05-13 2012-12-06 Seiko Epson Corp センサー装置
CN102917809A (zh) * 2011-01-24 2013-02-06 三智商事株式会社 用于装载无线ic标签的直立型装置
CN108693337A (zh) * 2018-03-15 2018-10-23 中广核工程有限公司 一种用于核电站混凝土安全壳裂缝监测的装置和方法
WO2021065925A1 (ja) * 2019-10-02 2021-04-08 ナブテスコ株式会社 センサ装置、管理システム、管理サーバ、受入検査装置、センサ装置が実行する方法および銘板

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1403612B1 (it) * 2010-12-22 2013-10-31 St Microelectronics Srl Dispositivo elettronico integrato per il monitoraggio di parametri all'interno di una struttura solida e sistema di monitoraggio impiegante tale dispositivo
JP5442593B2 (ja) * 2010-12-27 2014-03-12 株式会社Just.Will リサイクル対応型枠
JP2012198120A (ja) * 2011-03-22 2012-10-18 Seiko Epson Corp センサー装置
JP2012198121A (ja) 2011-03-22 2012-10-18 Seiko Epson Corp センサー装置および測定方法
JP5734785B2 (ja) * 2011-08-08 2015-06-17 株式会社Just.Will リサイクル対応型枠
JP5690254B2 (ja) * 2011-10-28 2015-03-25 公益財団法人鉄道総合技術研究所 鉄筋腐食によるrc構造物の劣化モニタリング方法及びその装置
JP5690255B2 (ja) * 2011-10-28 2015-03-25 公益財団法人鉄道総合技術研究所 Rc構造物の表面被覆材の性能確認試験方法及びその装置
US9254583B2 (en) 2012-01-23 2016-02-09 Quipip, Llc Systems, methods and apparatus for providing comparative statistical information for a plurality of production facilities in a closed-loop production management system
US9836801B2 (en) 2012-01-23 2017-12-05 Quipip, Llc Systems, methods and apparatus for providing comparative statistical information in a graphical format for a plurality of markets using a closed-loop production management system
CN102607644B (zh) * 2012-02-23 2014-11-12 中建钢构有限公司 一种建筑施工监测系统及其监测方法
CL2012002626A1 (es) * 2012-09-21 2013-05-24 Univ Pontificia Catolica Chile Sistema para medir en tiempo real los desplazamientos dinamicos de estructuras en realcion a una referncia, y que comprende uno o mas elementos axiales instalados y pretensados entre dos puntos de conexion de una estructura flexible, y un sensor de medicion de rotacion para medir la rotacion de los eleemntos axiales.
US20140168409A1 (en) * 2012-12-18 2014-06-19 Mitomo Corporation Construction image data recording system and data recording unit adapted to be embedded in a structure
FR3003946B1 (fr) * 2013-03-29 2015-12-04 Greensystech Appareil de mesure de temperature
JP6087246B2 (ja) * 2013-09-10 2017-03-01 日本電信電話株式会社 マンホール天井劣化検知方法
WO2015103483A1 (en) * 2014-01-03 2015-07-09 Mc10, Inc. Integrated devices for low power quantitative measurements
US10184928B2 (en) 2014-01-29 2019-01-22 Quipip, Llc Measuring device, systems, and methods for obtaining data relating to condition and performance of concrete mixtures
US9194855B2 (en) 2014-02-28 2015-11-24 Quipip, Llc Systems, methods and apparatus for providing to a driver of a vehicle carrying a mixture real-time information relating to a characteristic of the mixture
US20170016773A1 (en) * 2014-03-06 2017-01-19 Citizen Holdings Co., Ltd. Wireless temperature sensor
KR101604618B1 (ko) * 2014-07-10 2016-03-21 중앙대학교 산학협력단 탱크형 구조물의 변형정보 실시간 감지 장치
WO2016073413A1 (en) 2014-11-07 2016-05-12 3M Innovative Properties Company Wireless sensor for thermal property with thermal source
US20160192801A1 (en) * 2015-01-02 2016-07-07 Jeff Wu Circulator cooker
US9766221B2 (en) 2015-01-30 2017-09-19 Quipip, Llc Systems, apparatus and methods for testing and predicting the performance of concrete mixtures
JP6455199B2 (ja) * 2015-02-09 2019-01-23 凸版印刷株式会社 表示機能付き電子デバイス及びカバン物品
CN105424214A (zh) * 2015-12-18 2016-03-23 深圳市敏杰电子科技有限公司 一体型薄膜温度传感器
JP6489527B2 (ja) * 2016-02-15 2019-03-27 公立大学法人 富山県立大学 コンクリート構造物の現有歪み測定方法及び測定装置
EP3254979B1 (en) * 2016-06-09 2018-12-19 Tetra Laval Holdings & Finance S.A. Unit and method for forming/advancing a pack or a portion of a pack
US20190184601A1 (en) * 2016-06-20 2019-06-20 The Board Of Regents For Oklahoma State University System and method for labeling and monitoring cementitious composites
CA2947925C (en) * 2016-08-16 2023-11-07 John Petrachek System and method for monitoring water level on a roof
CN106839965A (zh) * 2017-03-13 2017-06-13 同济大学 用于测量金属构件表面应变的标签、测量系统及其应用方法
US20200363392A1 (en) * 2018-02-07 2020-11-19 Porous Technologies, Llc Smart porous concrete slab
EP3699856A1 (en) * 2019-02-21 2020-08-26 INL - International Iberian Nanotechnology Laboratory Tagging of an object
KR102071282B1 (ko) * 2019-05-20 2020-01-30 김창혁 매트형 변형률 게이지 및 그것을 이용한 변형률 분석 시스템
JP7385478B2 (ja) * 2020-01-10 2023-11-22 サトーホールディングス株式会社 物品管理システムおよび物品管理方法
JP7489195B2 (ja) * 2020-01-10 2024-05-23 サトーホールディングス株式会社 物品管理システムおよび物品管理方法
EP3862334A1 (en) 2020-02-07 2021-08-11 Secil-Companhia Geral de Cal e Cimento S.A. Cement-based substrate for induction energy transfer systems
DE102020112981A1 (de) 2020-05-13 2021-11-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Faserverbund-Fertigungsanlage und Verfahren zur Herstellung eines Faserverbundbauteils
CN111947563A (zh) * 2020-08-10 2020-11-17 南京智慧基础设施技术研究院有限公司 一种基于射频识别技术的混凝土坝分缝监测装置与方法
CN112525061B (zh) * 2020-11-09 2022-09-13 西南科技大学 一种采用纳米复合材料的无线应变测试装置及方法
JP7546508B2 (ja) 2021-03-29 2024-09-06 太平洋セメント株式会社 水硬性組成物の強度発現時期の判定方法、水硬性組成物の強度発現時期の判定システム
KR20220168932A (ko) 2021-06-17 2022-12-26 주식회사 하벤 수동형 멀티채널 센서태그로부터 측정된 온도값들을 이용하여 신선물류박스 내부 물품의 실온도를 예측하는 인공지능 기반 물품 실온도 예측방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199010U (ja) * 1984-12-04 1986-06-25
JP2001187611A (ja) * 1999-10-21 2001-07-10 Denso Corp センサ付きidタグおよびこれを設けた容器、体温計並びに温度管理システム、位置管理システム
JP2004021612A (ja) * 2002-06-17 2004-01-22 Nissan Motor Co Ltd 充電式管理タグ
JP2005091034A (ja) * 2003-09-12 2005-04-07 Yokohama Rubber Co Ltd:The 鋼材コンクリート構造物の塩害検知システム及びその検知装置並びに鋼材コンクリート構造物
JP2006349535A (ja) * 2005-06-16 2006-12-28 Taiheiyo Cement Corp 複合センサモジュールおよびセンサデバイス
JP2008063900A (ja) * 2006-09-11 2008-03-21 Mitomo Shoji Kk 無線icタグを用いたコンクリート品質管理システム及びセメント製品
JP2008182579A (ja) * 2007-01-25 2008-08-07 Matsushita Electric Works Ltd 無線認証システムおよびそれを用いる入出場管理システム
JP2009080743A (ja) * 2007-09-27 2009-04-16 Brother Ind Ltd 無線タグ通信装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300875A (en) * 1992-06-08 1994-04-05 Micron Technology, Inc. Passive (non-contact) recharging of secondary battery cell(s) powering RFID transponder tags
US5479172A (en) * 1994-02-10 1995-12-26 Racom Systems, Inc. Power supply and power enable circuit for an RF/ID transponder
JP4314197B2 (ja) * 2002-11-27 2009-08-12 欣増 岸田 光ファイバー計測モジュール
US20070118739A1 (en) * 2004-06-04 2007-05-24 Mitsubishi Denki Kabushhiki Kaisha Certificate issuance server and certification system for certifying operating environment
CN100581066C (zh) * 2004-06-10 2010-01-13 松下电器产业株式会社 无线标签和无线标签的通信距离改变方法
US20080252483A1 (en) * 2007-04-11 2008-10-16 Science Applications International Corporation Radio frequency transponders embedded in surfaces
US8451124B2 (en) * 2007-09-14 2013-05-28 The Regents Of The University Of Michigan Passive wireless readout mechanisms for nanocomposite thin film sensors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199010U (ja) * 1984-12-04 1986-06-25
JP2001187611A (ja) * 1999-10-21 2001-07-10 Denso Corp センサ付きidタグおよびこれを設けた容器、体温計並びに温度管理システム、位置管理システム
JP2004021612A (ja) * 2002-06-17 2004-01-22 Nissan Motor Co Ltd 充電式管理タグ
JP2005091034A (ja) * 2003-09-12 2005-04-07 Yokohama Rubber Co Ltd:The 鋼材コンクリート構造物の塩害検知システム及びその検知装置並びに鋼材コンクリート構造物
JP2006349535A (ja) * 2005-06-16 2006-12-28 Taiheiyo Cement Corp 複合センサモジュールおよびセンサデバイス
JP2008063900A (ja) * 2006-09-11 2008-03-21 Mitomo Shoji Kk 無線icタグを用いたコンクリート品質管理システム及びセメント製品
JP2008182579A (ja) * 2007-01-25 2008-08-07 Matsushita Electric Works Ltd 無線認証システムおよびそれを用いる入出場管理システム
JP2009080743A (ja) * 2007-09-27 2009-04-16 Brother Ind Ltd 無線タグ通信装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917809A (zh) * 2011-01-24 2013-02-06 三智商事株式会社 用于装载无线ic标签的直立型装置
JP2012237696A (ja) * 2011-05-13 2012-12-06 Seiko Epson Corp センサー装置
CN108693337A (zh) * 2018-03-15 2018-10-23 中广核工程有限公司 一种用于核电站混凝土安全壳裂缝监测的装置和方法
WO2021065925A1 (ja) * 2019-10-02 2021-04-08 ナブテスコ株式会社 センサ装置、管理システム、管理サーバ、受入検査装置、センサ装置が実行する方法および銘板

Also Published As

Publication number Publication date
JP2011022982A (ja) 2011-02-03
US20110115613A1 (en) 2011-05-19
CN102099658A (zh) 2011-06-15
CA2746172A1 (en) 2010-12-23
BRPI0916929A2 (pt) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2010146726A1 (ja) 無線icタグ、該無線icタグを用いたコンクリート構造物品質管理システム
JP6657695B2 (ja) モニタリングタグ
US9097637B2 (en) Integrated electronic device for monitoring parameters within a solid structure and monitoring system using such a device
US20190271664A1 (en) Block Made of a Building Material
EP2124170B1 (en) Wireless identification tag
US20150330212A1 (en) Self-powered microsensors for in-situ spatial and temporal measurements and methods of using same in hydraulic fracturing
Watters et al. Design and performance of wireless sensors for structural health monitoring
US9581559B2 (en) Corrosion detection sensor embedded within a concrete structure with a diffusion layer placed over the sacrificial transducer
Perveen et al. Corrosion potential sensor for remote monitoring of civil structure based on printed circuit board sensor
JP2004515757A (ja) ワイヤレス多機能センサープラットフォーム、該プラットフォームを有するシステム及びその使用方法
JP2007128187A (ja) センサ入力機能付きバッテリーレス型rfidタグを用いた崩落予知システム
Ceylan et al. Highway infrastructure health monitoring using micro-electromechanical sensors and systems (MEMS)
ITMI20120912A1 (it) Package in materiale edilizio per dispositivo di monitoraggio di parametri, all'interno di una struttura solida, e relativo dispositivo.
US8860399B2 (en) Device for monitoring at least a physical characteristic of a building material
Aono et al. Quasi-self-powered piezo-floating-gate sensing technology for continuous monitoring of large-scale bridges
ITMI20122240A1 (it) Dispositivo elettronico integrato per la rilevazione di un parametro locale correlato ad una forza avvertita lungo una direzione predeterminata, all'interno di una struttura solida
JP2019074410A (ja) 塩化物イオン濃度推定方法
US20170248529A1 (en) Detecting structural integrity of a structural component
JP2011058199A (ja) セグメント、充填判定システム及び充填判定方法
Ceylan et al. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements: volume I
JP6821986B2 (ja) コンクリート建造物検査方法
JP5105490B2 (ja) 無線icタグ、該無線icタグを用いた管理システム
US11933680B2 (en) System and method for detecting a modification of a compound during a transient period
Yang et al. Integration of a prototype wireless communication system with micro-electromechanical temperature and humidity sensor for concrete pavement health monitoring
US20130257473A1 (en) Long-life power source, long-life embedded structure sensor, remote long-life fluid measurement and analysis system, long-life off-grid enclosed space proximity change detector, surface-mount encryption device with volatile long-life key storage and volume intrusion response, and portable encrypted data storage with volatile long-life key storage and volume intrusion response

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128330.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 8153/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13001702

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2746172

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0916929

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110202