WO2010146722A1 - 放射性医薬品およびその標識化合物原料としての放射性テクネチウムの濃縮および溶出回収方法、およびシステム - Google Patents
放射性医薬品およびその標識化合物原料としての放射性テクネチウムの濃縮および溶出回収方法、およびシステム Download PDFInfo
- Publication number
- WO2010146722A1 WO2010146722A1 PCT/JP2009/062570 JP2009062570W WO2010146722A1 WO 2010146722 A1 WO2010146722 A1 WO 2010146722A1 JP 2009062570 W JP2009062570 W JP 2009062570W WO 2010146722 A1 WO2010146722 A1 WO 2010146722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- concentration
- activated carbon
- high concentration
- recovery
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G1/00—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
- G21G1/001—Recovery of specific isotopes from irradiated targets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/12—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
- A61K51/1282—Devices used in vivo and carrying the radioactive therapeutic or diagnostic agent, therapeutic or in vivo diagnostic kits, stents
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/42—Reprocessing of irradiated fuel
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/42—Reprocessing of irradiated fuel
- G21C19/44—Reprocessing of irradiated fuel of irradiated solid fuel
- G21C19/46—Aqueous processes, e.g. by using organic extraction means, including the regeneration of these means
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G1/00—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
- G21G1/001—Recovery of specific isotopes from irradiated targets
- G21G2001/0042—Technetium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Definitions
- the present invention relates to a method for concentrating, purifying and eluting and recovering 99m Tc (radiotechnetium) as a raw material for a radiopharmaceutical and its labeled compound, and a system thereof.
- Tc is a transition metal of atomic number 43 located in Group 7 and 5th period.
- 99m Tc emits only gamma rays with a short half-life (6 hours) suitable for diagnostic imaging and weak energy (140 keV) suitable for in-vitro measurement, and a generator utilizing radiation equilibrium with 99 Mo. ( 99 Mo- 99m Tc generator) and is used for nuclear medicine imaging. Since 99m Tc has a short half-life, it is usually used in a method for obtaining 99m Tc from 99 Mo by obtaining 99 Mo (half-life 66 hours) of its parent nuclide.
- a fission method that uses 99 Mo, which has a very high specific activity, and is separated and used in the uranium fission method.
- the alumina is used as a 99 Mo adsorbent and is eluted with physiological saline.
- the method of obtaining 99m Tc is used as an actual manufacturing technique.
- 99 Mo is generated by using (n, ⁇ ) reaction of 98 Mo isotope contained in a molybdenum compound as a raw material without using uranium as a raw material for obtaining 99 Mo.
- 99 Mo produced by the (, ⁇ ) method has a specific activity of 99 Mo lower than that of the Fission method, which is about 1 / 10,000. Therefore, the (n, ⁇ ) method is contained in a large amount of Mo for practical use. It is necessary to separate and purify and collect a trace amount of 99m Tc as a daughter nuclide generated from a trace amount of 99 Mo. So far, the sol-gel method, the MEK method, and the sublimation method are known as methods studied and put into practical use as the (n, ⁇ ) method. The inventors of the present invention separately proposed a PZC method as the (n, ⁇ ) method.
- Patent Document 1 98 Mo (n, ⁇ ) radioactive molybdenum 99 Mo which is the parent nuclide of technetium in a nuclear reactor method is generated by the reaction, apparatus is described.
- Patent Document 2 describes a Mo adsorbent for 99 Mo- 99m Tc generator. And it is described that this Mo adsorbent is formed by a zirconium-based inorganic polymer having high Mo adsorbing ability and Tc elution, which is insoluble in water and has a water solubility of Mo (including 99 Mo). 99 including Mo) only adsorbed, it is described that, eluting 99m Tc generated from 99 Mo is a radioactive isotope.
- ZrO 99 is prepared by reacting Na 2 Mo ( 99 Mo) O 4 in which Mo ( 99 Mo) O 3 is dissolved with ZrOCl 2 or ZrO (NO 3 ) 2 by the (n, ⁇ ) method. It is described that a MoO 4 xH 2 O gel can be synthesized, dried, ground and packed into a column, and 99m Tc can be eluted by milking. Patent Document 3 describes that technetium is eluted from activated carbon obtained by adsorbing and separating technetium from a solution containing technetium such as high-level radioactive liquid waste generated by reprocessing spent nuclear fuel and spent nuclear fuel solution.
- technetium is not a short half-life of 99m Tc (technetium 99m) used for nuclear medicine imaging diagnosis, but it remains in the nuclear waste and has a very long half-life of 99 Tc (technetium 99: half). 210,000 years).
- the present invention uses 99m Tc as a raw material for radiopharmaceuticals, uses radioactive Mo produced by the (n, ⁇ ) method, reduces waste liquid and waste, and contains a small amount of 99 Mo. It is an object of the present invention to provide a method and system capable of purifying and recovering a very small amount of 99m Tc from a large amount of Mo in a high yield (95% or more) without Mo ( 99 Mo) contamination.
- a high concentration Na 2 Mo ( 99 Mo) O 4 solution having a pH neutrality formed by dissolving a large amount of Mo ( 99 Mo) O 3 with alkali (NaOH) is formed.
- a small amount of 99m Tc produced in a concentration Mo solution can be selectively adsorbed on the activated carbon, and Mo (including 99 Mo) remaining in the pores of the activated carbon is desorbed from the activated carbon to leave 99m Tc. It was found that by collecting this extremely small amount of 99m Tc, it was possible to obtain concentrated 99m Tc at the concentration required for the raw material of the radiopharmaceutical and its labeled compound.
- the present invention forms a high-concentration Mo solution containing radiomolybdenum ( 99 Mo), which is a parent nuclide of 99m Tc as a raw material of the radiopharmaceutical and its labeled compound, and 99m Tc which is a daughter nuclide is produced from 99 Mo.
- 99 Mo radiomolybdenum
- the present invention also provides a high-concentration Na 2 MoO 4 solution containing a radionuclide 99 Mo and a pH-neutral high-concentration Na 2 Mo ( 99 formed by dissolving Mo ( 99 Mo) O 3 in an alkaline solution.
- the present invention is also, in the 99m Tc to recover the 99m Tc performs desorption processing from activated carbon adsorption, 99m Tc remains in the activated carbon is washed with dilute alkali solution activated carbon having adsorbed Mo a (99 Mo)
- a method of highly concentrating 99m Tc and purifying and recovering 99m Tc which is characterized by performing 99m Tc desorption treatment with a highly concentrated alkaline solution after washing and removal.
- the present invention also provides a 99m Tc high concentration and elution purification recovery method, wherein the activated carbon is eluted with a 0.05M NaOH solution at 100 ° C or higher and 5 atm or higher at 99 ° C or higher. To do.
- the present invention is also the performs desorption processing of 99m Tc, when recovering the 99m Tc, highly concentrated and 99m Tc which 99m Tc is characterized in that electrochemical treatment of the activated carbon adsorption as a cathode (cathode)
- An elution purification recovery method is provided.
- the 99m Tc is desorbed, and when 99m Tc is recovered, the activated carbon adsorbed with 99m Tc is reduced with a reducing agent, 99m Tc high concentration and elution recovery method I will provide a.
- a 99m Tc high concentration and elution purification recovery method characterized by combining the above high concentration alkali, electrochemical method and method using a reducing agent.
- the present invention is a pH-neutral high-concentration Mo solution forming means for forming a high-concentration Mo solution containing 99 Mo, which is a parent nuclide of 99m Tc as a radiopharmaceutical and its labeled compound raw material,
- the high concentration Mo (99 Mo) high concentration Mo (99 Mo) that produces a high concentration Mo (99 Mo) solution containing 99m Tc to generate 99m Tc to radiation equilibrium for solutions solution forming means,
- the resulting the high concentration Mo (99 Mo) solution was passed through the adsorption column that incorporates activated carbon is selectively adsorb 99m Tc traces of the high concentration Mo (99 Mo) solution to the activated carbon, 99m Tc A means for washing and removing Mo ( 99 Mo) remaining in the activated carbon adsorbing the carbon with a Mo desorbing agent; Mo remaining the 99m Tc in the activated
- MoO 3 containing 99 Mo irradiated with neutron in a nuclear reactor is dissolved in an alkaline solution.
- PH neutral high-concentration Mo solution forming means formed by The high concentration Mo (99 Mo) the 99m Tc is the daughter nuclide of 99 Mo for solution generated until radioactive equilibrium state 99 Mo and 99m high concentration Mo containing Tc (99 Mo) solution to produce a high concentration Mo (99 Mo) Solution forming means,
- the high-concentration Mo ( 99 Mo) solution after 99m Tc desorption / recovery processing is
- the present invention forms Na 2 Mo ( 99 Mo) in which 99m Tc in a radiation equilibrium state is generated and mixed from 99 Mo by forming a high-concentration Mo (containing radioactive 99 Mo) solution as described above and leaving it for about 24 hours. and O 4 solution state, passed through this way, Na 2 Mo (99 Mo) O 4 solution containing 99m Tc formed by the activated carbon.
- FIG. 1 is a diagram showing a system configuration of an embodiment of the present invention.
- FIG. 2 is a diagram showing a specific example of the processing means and processing method according to the embodiment of the present invention.
- FIG. 3 is a diagram showing a process flow of the embodiment of the present invention.
- FIG. 4 is a diagram showing Tc dynamic adsorption performance of an AC (activated carbon) adsorption column.
- FIG. 5 is a graph showing Tc adsorption column: Mo washout efficiency.
- FIG. 6 is a diagram showing Tc recovery from a Tc adsorption column: alk-PLE efficiency.
- FIG. 7 is a diagram showing 99 Mo dynamic adsorption performance during alumina column performance evaluation: 99m Tc purification and recovery.
- FIG. 8 is a graph showing 99m Tc yield in alumina column separation.
- FIG. 9 is a diagram showing the process time required, the material balance, and the amount of waste generated by the 99 Mo 500 Ci scale 99m Tc acquisition process ( 99m Tc master milker process).
- FIG. 1 shows the concept of a 99m Tc high concentration and elution recovery system (hereinafter referred to as the present system, and the method implemented by this system is referred to as the present system method) according to an embodiment of the present invention.
- the 99m Tc high concentration and elution recovery system can be equipped with a purification separation means.
- the system 100 is installed in a hot cell 1 that shields radiation emitted from 99 Mo and 99m Tc.
- the system 100 includes a Mo container (1) 2, a Mo container (2) 3, and a control tank 4.
- a plurality of Mo containers may be provided.
- the Mo container (1) 2 and the Mo container (2) 3 were previously irradiated with neutrons in a nuclear reactor to produce 99 Mo, and MoO 3 contained therein was dissolved in an alkali (NaOH) solution to produce Na 2 99 MoO 4.
- a solution is supplied. That is, a Mo solution containing radionuclide 99 Mo as a radiopharmaceutical raw material is supplied to the Mo container (1) 2 and the Mo container (2) 3.
- a pH neutral Na 2 99 MoO 4 solution is formed as shown in the figure. This example corresponds to FIG. 3 described later.
- the Mo solution containing radioactive 99 Mo is a high-concentration Mo solution containing 500 g of Mo in 2 L, for example.
- this solution is referred to as a high concentration Mo solution.
- the high concentration is, for example, a concentration at which a high concentration Mo solution containing 500 g of Mo in 2 L described above is required to obtain a necessary amount of 99m Tc of about 500 Ci at a time.
- pipes 7 and 8 each having three-way valves 5 and 6 are provided, and the Mo container (1) 2 and the Mo container (2) 3 are Three-way valves 5 and 6 and pipes 7 and 8 are connected to the bottom of the control tank 4 via other pipes 9 and 10.
- a three-way valve 13 is provided at the end of the pipes 7 and 8.
- the control tank 4 has a function as a liquid level adjustment mechanism.
- the bottom of the control tank 4 is further connected to one end (upper surface in the figure) of the Tc concentration purification system 16 via a pipe 14 and a three-way valve 15 provided in the pipe 14.
- the Tc concentration purification / recovery system 16 includes an adsorption column containing activated carbon.
- the other end (lower end in the figure) of the Tc concentration purification system 16 is provided with a pipe 17 and a three-way valve 18 provided on the pipe 17 and connected to a three-way valve 13 provided at the end of the pipe 7 and the pipe 8.
- 99m Tc which is a daughter nuclide of 99 Mo, is generated in the high concentration Mo solution to form a high concentration Mo solution containing the radionuclides 99 Mo and 99m Tc. Is done.
- a new high-concentration Mo solution containing 99 Mo is alternately supplied to, for example, every Mo container (1) 2 and Mo container (2) 3 every two weeks.
- Technetium 99 ( 99m Tc) which emits weak energy gamma rays (radiation), is used for medical diagnosis such as SPECT, but its half-life is 6 hours, so its radioactivity is reduced to 1/16 of a day. Will decrease.
- a 99 Mo which is the parent nuclide of 99m Tc in order to compensate for this, to separate and use the 99m Tc born causing the beta-minus decay.
- a method for obtaining a daughter nuclide using the radiation equilibrium relationship between the parent nuclide and the daughter nuclide is called milking.
- the method of obtaining the daughter nuclide by using the radiation equilibrium relationship between the parent nuclide and the daughter nuclide is called milking.
- performing this milking is called a milking process
- the solution containing a daughter nuclide is called a milking solution.
- the high-concentration Mo ( 99 Mo) solution is introduced into the Tc concentration purification / recovery system 16 containing the activated carbon column from the lower part of the Tc concentration purification / recovery system 16 via the pipe 7, the pipe 8, the three-way valve 13, and the pipe 17.
- the Tc concentration purification and recovery system 16 includes an adsorption column, and activated carbon is incorporated in the adsorption column. By passing a high-concentration Mo ( 99 Mo) solution containing a necessary amount of 99 m Tc through this activated carbon, 99 m Tc can be selectively adsorbed. In this step, 99m Tc is purified and concentrated.
- the relationship between the 99 Mo amount and the 99m Tc amount with respect to the Mo amount (here, 500 g) in the high-concentration Mo solution is as follows.
- 500 Ci 99 Mo amount 1.04 mg (1 / 500,000 for 500 g Mo)
- 500 Ci 99m Tc amount 0.095 mg (1/5 million for 500 g Mo)
- 99 Mo 5 ⁇ 10 4 Bq or less 6 ⁇ 10 ⁇ 15 or less with respect to 500 gMo
- 99 m Tc 6 ⁇ 10 4 Bq or less 6 ⁇ 10 ⁇ 16 or less with respect to 500 gMo
- the pole of the high concentration Mo solution Even if only 99m Tc is present, it can be adsorbed by activated carbon.
- a large amount of Mo containing 99 Mo which is not adsorbed by the Tc concentration purification / recovery system 16 is transferred to the control tank 4 via the three-way valve 15 and the pipe 14 and further to either the Mo container (1) 2 or the Mo container (2) 3. It will be returned.
- Mo 99m Tc adsorption step daily every 24 hours, Mo 99m Tc was recovered solution (either 2 or 3) the original Mo vessel Returned to After this step, 99m Tc adsorbed and recovered by the Tc concentration purification system 16 is transferred to the desorption step.
- a high-concentration Mo solution containing the radionuclide 99 Mo is dissolved in the Mo compound (MoO 3 ) irradiated with neutrons in the nuclear reactor directly with an alkaline solution to form a high-concentration Mo solution containing 99 Mo.
- the high concentration Mo ( 99 Mo) solution supplied to the plurality of Mo containers is alternately passed through the adsorption column containing the activated carbon, and Tc is adsorbed and concentrated. Elution purification is performed.
- An external supply system 22 is connected to the three-way valve 18 via a pipe 20 and a three-way valve 21, and Mo ( 99 Mo) remaining in the Tc concentration purification / recovery system 16 (activated carbon column) is desorbed from the supply system 22.
- Tc concentration purification system 16 Cleaning solution, Tc eluate and the like are supplied, and these solutions are introduced into the Tc concentration purification system 16.
- 99 Mo desorbent is introduced from the supply system 22, Mo ( 99 Mo) is desorbed, and this solution is introduced into the cleaning waste liquid 32.
- Mo ( 99 Mo) desorption process is stopped, the Tc desorbent is introduced from the supply system 22, and the process proceeds to the Tc desorption process in which the Tc adsorbed on the activated carbon is desorbed.
- the Tc concentration purification / recovery system 16 is connected to a liquidity adjustment system 25 via a three-way valve 15 and a pipe 23 and a three-way valve 24 provided thereon.
- the desorbed Tc is introduced into the liquid property adjusting system 25 together with the desorbing agent.
- a liquid adjustment reagent 34 is added to adjust the liquidity.
- the liquid adjustment reagent 34 is further connected to the secondary purification system 27 via the pipe 26 and further connected to the Tc recovery device 29 via the pipe 28.
- this system 100 is provided with 99 Mo waste liquid systems 30 and 31 and a cleaning waste liquid system 32, and each system is appropriately controlled by a control system 33.
- FIG. 2 shows a method and means for purifying and recovering Tc by treatment using the method system shown in FIG. In FIG.
- the 99m Tc highly concentrated, purified separation and elution recovery system of the present embodiment includes (n, ⁇ ) 99 Mo forming means 41, high concentration Mo ( 99 Mo) solution forming means 42, and Tc generation processing means 43. , 44, 99m Tc adsorption, elution purification and recovery means 49, 99m Tc liquidity adjustment secondary purification means 50, 99m Tc acquisition means 51 and high concentration Mo solution recirculation means 52.
- 99m Tc 99 Mo is necessary, and in order to manufacture it in large quantities, Mo pellet forming means 41 is used and (n, ⁇ ) is used to irradiate natural Mo in a nuclear reactor (n, ⁇ ). ⁇ ) 99 Mo is formed.
- pellets formed by the (n, ⁇ ) method are used. It may be a powder.
- the high concentration Mo solution forming means 42 the alkaline solution was poured and dissolved thus formed 99 Mo the Mo pellets are produced directly in an alkaline solution.
- NaOH can be used as the alkali.
- the Tc generation processing means 43 and 44 are used to generate Tc.
- the system 1 (43) and the system 2 (44) are used. These systems (1) and (2) correspond to the Mo container (1) 2 and the Mo container (2) 3 in FIG.
- a high concentration Mo (99 Mo) solution 99 daughter nuclide 99m Tc of Mo is produced, to form a high concentration Mo (99 Mo) solution containing radionuclide 99 Mo and 99m Tc.
- a Na 2 Mo ( 99 Mo) O 4 solution obtained by dissolving a MoO 3 target irradiated in a nuclear reactor with an alkali (NaOH solution) is prepared once a week by the system 1 and the system 2 ( The two Mo ( 99 Mo) solutions are alternately introduced into the previous week and the current week, respectively, and introduced into 99m Tc adsorption / elution purification / recovery means 49 constituting the Tc concentrated product recovery system 16 (FIG. 1).
- the liquid is passed through the Tc adsorption column 53.
- the adsorption column 53 contains activated carbon 54.
- the Tm adsorption column 53 containing the activated carbon 54 constitutes a 99m Tc adsorption means.
- the high-concentration Na 2 Mo ( 99 Mo) O 4 solution is passed through the activated carbon 54 and in either or both of the high-concentration Na 2 Mo ( 99 Mo) O 4 solutions of both systems 1 and 2.
- Activated carbon 54 selectively adsorbs 99m Tc.
- trace amounts of 99m Tc is adsorbed alternately, along with this, the amount of 99m Tc adsorbed increases.
- the recovered Tc is subjected to 99m Tc liquidity adjustment secondary purification means 50 and then subjected to secondary purification by removing residual 99 Mo by an alumina column method, and 99m Tc acquisition means 51 Acquired and collected.
- the high-concentration Mo solution circulating means 52 circulates the high-concentration Mo ( 99 Mo) solution after adsorption of 99m Tc to the systems 1 and 2 for reuse. That is, the high concentration Mo (99 Mo) solution is reused are returned to the system 1 or system 2, 99m Tc generation process in these systems is performed, so that to produce a new 99m Tc. In this way, the high-concentration Mo ( 99 Mo) solution is circulated and reused.
- FIG. 3 shows the 99m Tc high concentration, purification separation and elution recovery process.
- this process includes Mo ( 99 Mo) O 3 formation S 1, Mo ( 99 Mo) dissolution step S 2, 99m Tc generation treatment step S 3, 99m Tc adsorption purification step S 4 on activated carbon, water and NaOH 0.
- the process consists of the above eight steps.
- a method for elution and recovery of 99m Tc adsorbed on activated carbon after highly concentrated adsorption of 99m Tc in a high-concentration Mo ( 99 Mo) solution using activated carbon the remaining Mo ( 99 Mo) was washed off, higher concentrations alkaline solution is treated with that efficiently elute purified recovering 99m Tc, a high concentration Mo (99 Mo) of 99m Tc in solution highly concentrated and purified separation and elution recovery It can be performed.
- FIG. 4 shows the Tc dynamic adsorption performance of an AC (activated carbon) adsorption column.
- the Tc adsorption zone is the same even if the SV (empty cylinder speed: 114 to 273h ⁇ 1 ) fluctuates.
- the transit time of 99 Mo solution in the AC (5 g) column layer is 4.4 to 11 seconds (flow rate: 0.5 to 1.3 cm / s), and 99m Tc in the high concentration Mo solution has an efficiency of 98% or more.
- FIG. 5 shows the Mo washout efficiency of the Tc concentration purification / recovery system 16. From this figure, it can be seen that there is no movement of the Tc adsorption zone even with the Mo washout process.
- FIG. 6 shows 99 Tc elution efficiency when alkaline pressure solution extraction (alk-PLE), which is a Tc recovery operation from a Tc adsorption column, is performed. From this figure, it can be seen that the adsorption zone of 99m Tc adsorbed on the activated carbon column by the alk-PLE treatment moves. The recovery rate of AC adsorption Tc by this alk-PLE treatment is 98-99%.
- FIG. 7 shows 99 Mo dynamic adsorption performance during 99m Tc purification and recovery as an alumina column performance evaluation.
- 99 Tc can be 100% eluted and recovered in a state where 99 Mo is trapped in the alumina column.
- 99m Tc of FIG. 8 shows 99 Tc yield in alumina column separation.
- the Tc purification recovery rate with an alumina column is 100%.
- FIG. 9 shows the mass balance in the 99 Mo500Ci scale process.
- this system as a 99 Mo solution type Tc master milker does not use a solid or gel-like 99 Mo adsorption holder, leaching and mixing of adsorbent constituent elements (for example, Zr) due to radiation damage of the 99 Mo adsorption holder Moreover, since 99m Tc is dissolved in the 99 Mo solution, there is no need to worry about 99m Tc milking efficiency from the 99 Mo adsorption holder.
- the activated carbon used in the present system can selectively adsorb 99m Tc with high efficiency without adsorbing 99 Mo in the high-concentration Mo solution generated in the previous step.
- the Tc adsorbed on the activated carbon is eluted to form a physiological saline-based 99m Tc solution, it can be used in an optimal state as a radiopharmaceutical raw material. Further, in the process of selective high concentration, purification separation and elution recovery of a very small amount of 99m Tc from the high concentration Mo ( 99 Mo) solution of the present invention, 99m Tc is recovered from activated carbon adsorbed with 99m Tc using high concentration alkali. If so, 99m Tc maintains the form of pertechnetic acid ( 99m TcO 4 ⁇ ) in the entire process.
- This system as a 99 Mo solution type 99m Tc master milker is advantageous in terms of pharmaceutical application because it does not use a 99 Mo adsorption carrier and is low in cost, and generates radioactive waste liquid and solid waste due to 99m Tc recovery. There is an advantage of a small amount. In addition, a very small amount of 99m Tc in a high-concentration Mo ( 99 Mo) solution can be purified and recovered with high efficiency (95% or more) without mixing 99 Mo. According to the 99 Mo solution method of this example, a 99m Tc product ( 99m Tc concentration / liquid amount) equivalent to 99m Tc elution recovery in the current Fission- 99 Mo alumina column method is obtained as (n, ⁇ ) 99 Mo solution. And a technology that can be used in a production line as a 99m Tc master milker is established.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Dispersion Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
99mTcを放射性医薬品およびその標識化合物原料として用いるために、高濃度Mo(99Mo) 中の微量の99mTcを99Moの混入無く高収率(95%以上)精製回収する。 放射性医薬品およびその標識化合物原料としての99mTcを、その親核種である放射性核種99Moを含む高濃度Mo溶液を形成し、放射平衡状態まで99mTcを生成して放射性核種99Moおよび99mTcを含む高濃度Mo(99Mo)溶液を生成し、当該高濃度Mo(99Mo)溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に当該溶液中の99mTcを選択的に吸着させ、99mTcを吸着した活性炭から脱着剤による99mTcの脱着精製処理を行って、高純度の99mTcを回収する。
Description
本発明は、放射性医薬品およびその標識化合物原料としての99mTc(放射性テクネチウム)の濃縮、精製分離および溶出回収方法、およびそのシステムに関する。
Tcは第7族、第5周期に位置する原子番号43の遷移金属である。同位体の内、99mTcは画像診断に適した短い半減期(6時間)と体外計測に適した弱いエネルギー(140keV)のγ線のみを放射し、さらに99Moとの放射平衡を利用したジェネレータ(99Mo−99mTcジェネレータ)で生成され得、核医学画像診断に用いられている。99mTcは短半減期のため、通常その親核種の99Mo(半減期66時間)を得て、99Moから99mTcを得る方法で使われているが、99Moを得る方法としては、まずウランの核分裂法で比放射能の極めて高い99Moを生成させ分離して用いるFission法(核分裂法)があり、その場合は99Mo吸着体としてアルミナを用いて生理食塩水で溶出させるミルキング操作によって99mTcを得る方法が、実際の製造技術として使われている。一方、99Moを得るための原料にウランを用いず、モリブデン化合物を原料としてそれに含まれる98Mo同位体の(n,γ)反応を利用して99Moを生成する方法があり、この(n,γ)法で生成する99MoはFission法に比べ、99Moの比放射能が約1万分の1と低く、そのため(n,γ)法を実用化するには大量のMo中に含まれる微量の99Moから生成する娘核種としての微量の99mTcを分離し精製回収する必要がある。これまで、(n,γ)法として検討や実用化された方法としてはゾルゲル法、MEK法、昇華法が知られている。本件発明者等は別途、(n,γ)法としてのPZC法を提案した。
特許文献1には、テクネチウムの親核種である放射性モリブデン99Moを原子炉で98Mo(n,γ)反応によって生成される方法、装置が記載されている。
特許文献2には、99Mo−99mTcジェネレータ用Mo吸着剤が記載されている。そして、このMo吸着剤は高いMo吸着能とTc溶離性を有するジルコニウム系無機高分子によって形成されることが記載され、水に不溶で、Mo(99Mo含む)を含有する水溶性からMo(99Mo含む)のみを吸着し、放射性同位元素である99Moから生成する99mTcを溶離することが記載されている。更に、この特許文献には、(n,γ)法でMo(99Mo)O3を溶解したNa2Mo(99Mo)O4とZrOCl2あるいはZrO(NO3)2を反応させてZrO99MoO4・xH2Oのゲルを合成し、このゲルを乾燥し、粉砕してカラムに充填し、ミルキングにより99mTcを溶出させることができることが記載されている。
特許文献3には、使用済核燃料の再処理によって発生する高レベル放射性廃液、使用済核燃料溶解液等のテクネチウムを含む溶液からテクネチウムを吸着分離した活性炭からテクネチウムを溶出することが記載されている。この場合のテクネチウムは、核医学画像診断用に使われる短半減期の99mTc(テクネチウム99m)では無く、核廃棄物中に残存して問題となる極めて長い半減期の99Tc(テクネチウム99:半減期21万年)を対象としている。
特開2008−102078号公報
特開平8−309182号公報
特開平2−54732号公報
特許文献1には、テクネチウムの親核種である放射性モリブデン99Moを原子炉で98Mo(n,γ)反応によって生成される方法、装置が記載されている。
特許文献2には、99Mo−99mTcジェネレータ用Mo吸着剤が記載されている。そして、このMo吸着剤は高いMo吸着能とTc溶離性を有するジルコニウム系無機高分子によって形成されることが記載され、水に不溶で、Mo(99Mo含む)を含有する水溶性からMo(99Mo含む)のみを吸着し、放射性同位元素である99Moから生成する99mTcを溶離することが記載されている。更に、この特許文献には、(n,γ)法でMo(99Mo)O3を溶解したNa2Mo(99Mo)O4とZrOCl2あるいはZrO(NO3)2を反応させてZrO99MoO4・xH2Oのゲルを合成し、このゲルを乾燥し、粉砕してカラムに充填し、ミルキングにより99mTcを溶出させることができることが記載されている。
特許文献3には、使用済核燃料の再処理によって発生する高レベル放射性廃液、使用済核燃料溶解液等のテクネチウムを含む溶液からテクネチウムを吸着分離した活性炭からテクネチウムを溶出することが記載されている。この場合のテクネチウムは、核医学画像診断用に使われる短半減期の99mTc(テクネチウム99m)では無く、核廃棄物中に残存して問題となる極めて長い半減期の99Tc(テクネチウム99:半減期21万年)を対象としている。
従来法にあっては、性能の安定性や操作が煩雑であったりという難点、あるいは放射線ダメージが生起したり、(n,γ)法特有の大量のMoの操作が困難であるなどの問題があり、Fission法と同等の実用技術の確立には至っていない。
(n,γ)法で生成した99Moの娘核種の99mTcを放射性医薬品原料として用いるために、放射性モリブデン(99Mo)を含む高濃度Mo中の極微量の99mTcを99Moの混入無く高い収率で精製回収する必要がある。このため、微量の99Moを含む高濃度Mo中の微量の99mTcを高効率で吸着する吸着材を用いること、さらにその吸着材に吸着した99mTcを高効率で溶出回収するための回収処理が求められる。
従来の技術にあっては、吸着体にMo(99Mo含む)が吸着されている固体状あるいはゲル状のMo(99Mo)吸着体から99mTcを溶出することを行っている。上述した特許文献3には、活性炭によってテクネチウムを吸着分離することが記載され、活性炭がテクネチウムを吸着分離する性能があることを示しているが、その対象としては使用済核燃料の再処理によって発生する強い硝酸酸性の高レベル放射性廃液中に含まれる半減期の長い99Tc(テクネチウム99)であって医療用に用いられる半減期の短い99mTc(テクネチウム99m)のためのものではなく、放射性医薬品原料の生成に際しての極微量の99mTcの高効率精製回収のための手法については記述していない。
本発明は、かかる点に鑑みて99mTcを放射性医薬品原料として用いるために、(n,γ)法によって生成した放射性Moを用いて、廃液、廃棄物を少なくして、微量の99Moを含む大量のMoからの極微量の99mTcをMo(99Mo)コンタミ無く高収率(95%以上)で精製回収することのできるようにした方法およびシステムを提供することを目的とする。
(n,γ)法で生成した99Moの娘核種の99mTcを放射性医薬品原料として用いるために、放射性モリブデン(99Mo)を含む高濃度Mo中の極微量の99mTcを99Moの混入無く高い収率で精製回収する必要がある。このため、微量の99Moを含む高濃度Mo中の微量の99mTcを高効率で吸着する吸着材を用いること、さらにその吸着材に吸着した99mTcを高効率で溶出回収するための回収処理が求められる。
従来の技術にあっては、吸着体にMo(99Mo含む)が吸着されている固体状あるいはゲル状のMo(99Mo)吸着体から99mTcを溶出することを行っている。上述した特許文献3には、活性炭によってテクネチウムを吸着分離することが記載され、活性炭がテクネチウムを吸着分離する性能があることを示しているが、その対象としては使用済核燃料の再処理によって発生する強い硝酸酸性の高レベル放射性廃液中に含まれる半減期の長い99Tc(テクネチウム99)であって医療用に用いられる半減期の短い99mTc(テクネチウム99m)のためのものではなく、放射性医薬品原料の生成に際しての極微量の99mTcの高効率精製回収のための手法については記述していない。
本発明は、かかる点に鑑みて99mTcを放射性医薬品原料として用いるために、(n,γ)法によって生成した放射性Moを用いて、廃液、廃棄物を少なくして、微量の99Moを含む大量のMoからの極微量の99mTcをMo(99Mo)コンタミ無く高収率(95%以上)で精製回収することのできるようにした方法およびシステムを提供することを目的とする。
本発明者等の研究によれば、大量のMo(99Mo)O3をアルカリ(NaOH)溶解してできるpH中性の高濃度Na2Mo(99Mo)O4溶液を形成し、その高濃度Mo溶液中に生成される微量の99mTcを選択的に活性炭に吸着させることができ、活性炭の孔に残留するMo(99Mo含む)を活性炭から脱着して、99mTcを残留させ、残留したこの極微量の99mTcを回収することによって放射性医薬品およびその標識化合物原料として必要とされる濃度の濃縮99mTcを得ることができることが分かった。
本発明は、放射性医薬品およびその標識化合物原料としての99mTcの親核種である放射性モリブデン(99Mo)を含む高濃度Mo溶液を形成し、99Moから娘核種である99mTcが生成するが、その放射性核種99Moおよび99mTcを含む高濃度Mo溶液から、
当該Mo(99Mo)溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に当該Mo(99Mo)溶液中の99mTcを選択的に吸着させ、次に活性炭の孔に残留するMo(99Mo)を脱着剤によってMo(99Mo)の脱着を行い、活性炭に吸着残留した微量の99mTcを活性炭から99mTcの脱着剤・脱着操作による99mTcの脱着処理を行って、99mTcを回収し、
回収した99mTcについてその中に僅かに残留するMo(99Mo)をアルミナカラム法で除去する二次精製を行い、
99mTc吸着処理後の高濃度Na2Mo(99Mo)O4溶液を99mTcが再生成する24時間後に再度99mTcを回収するため再循環回収すること、
を特徴とする放射性医薬品原料としての99mTcの高濃縮および溶出精製回収方法を提供する。
本発明は、また、放射性核種99Moを含む高濃度Na2MoO4溶液を、Mo(99Mo)O3をアルカリ溶液で溶解することで形成されるpH中性の高濃度Na2Mo(99Mo)O4溶液から直接的に99mTcを高濃縮および溶出精製回収する方法を提供する。
本発明は、また、前記99mTcが吸着した活性炭から脱着処理を行って99mTcを回収するに際して、99mTcが吸着した活性炭を希アルカリ溶液で洗浄して活性炭に残留するMo(99Mo)を洗浄除去し、その後にさらに高濃度アルカリ溶液による99mTcの脱着処理を行うことを特徴とする99mTcの高濃縮および溶出精製回収する方法を提供する。
本発明は、また、前記活性炭を0.05M以上のNaOH溶液で100°C以上で、5気圧以上にして99mTc溶出回収することを特徴とする99mTcの高濃縮および溶出精製回収方法を提供する。
本発明は、また、前記99mTcの脱着処理を行って、99mTcを回収するに際して、99mTcが吸着した活性炭を陰極(カソード)として電気化学処理することを特徴とする99mTcの高濃縮および溶出精製回収方法を提供する。
本発明は、また、前記99mTcの脱着処理を行って、99mTcを回収するに際して、99mTcが吸着した活性炭を還元剤による還元処理することを特徴とする99mTcの高濃縮および溶出回収方法を提供する。
以上の高濃度アルカリ、電気化学的方法、還元剤を用いる方法において、それらを組み合わせたことを特徴とする99mTcの高濃縮および溶出精製回収方法を提供する。そして、この場合に、回収した99mTcの中に僅かに残留するMo(99Mo)をアルミナカラム法で除去する二次精製を組み合わせることができる。
本発明は、放射性医薬品およびその標識化合物原料としての99mTcの親核種である99Moを含む高濃度Mo溶液を形成するpH中性の高濃度Mo溶液形成手段、
この高濃度Mo(99Mo)溶液について放射平衡状態まで99mTcを生成して99mTcを含む高濃度Mo(99Mo)溶液を生成する高濃度Mo(99Mo)溶液形成手段、
生成した当該高濃度Mo(99Mo)溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に当該高濃度Mo(99Mo)溶液中の微量の99mTcを選択的に吸着させ、99mTcを吸着した活性炭中に残留するMo(99Mo)をMo脱離剤で洗浄除去する手段、
99mTcを吸着した活性炭中に残留するMo(99Mo)をMo脱離剤で洗浄除去した活性炭から99mTc脱着剤による99mTcの脱着処理を行って、99mTcを回収する99mTc吸着、脱着および回収精製手段、
回収した99mTcの中に僅かに残留するMo(99Mo)をアルミナカラム法で除去による99mTc二次精製手段、
99mTc吸着処理後の高濃度Mo(99Mo)溶液を再利用するため循環回収し、放射平衡状態まで99mTcを生成して、99Moおよび99mTcを含む高濃度Mo(99Mo)溶液を再び形成する高濃度Mo(99Mo)溶液再循環回収手段、
とを備えることを特徴とする放射性医薬品原料としての99mTcの高濃縮および溶出回収システムを提供する。
本発明は、放射性医薬品およびその標識化合物原料としての99mTcの親核種の99Moを含む高濃度Mo溶液の形成方法として、原子炉で中性子照射された99Moを含むMoO3をアルカリ溶液で溶解することで形成されるようにしたpH中性の高濃度Mo溶液形成手段、
この高濃度Mo(99Mo)溶液について99Moの娘核種である99mTcを放射平衡状態まで生成して99Moおよび99mTcを含む高濃度Mo(99Mo)溶液を生成する高濃度Mo(99Mo)溶液の形成手段、
99mTcを放射平衡状態まで生成し含む当該高濃度Mo(99Mo)溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に99mTcを選択的に吸着させる99mTc吸着手段、該活性炭に残留するMo(99Mo)をMo脱着剤によって脱着するMo(99Mo)脱着手段、
Mo(99Mo)脱着処理を行った後の99mTcを吸着した活性炭から99mTc脱着剤による99mTcの脱着処理を行って、99mTcを回収する99mTc脱着および回収精製手段、
99mTc脱着回収処理後の高濃度Mo(99Mo)溶液を再利用するため循環回収し、放射平衡状態まで99mTcを生成して、99Moおよび99mTcを含む高濃度Mo溶液を再び形成する高濃度Mo(99Mo)溶液循環回収手段、
回収した99mTcの中に僅かに残留するMo(99Mo)をアルミナカラム法で除去による99mTc二次精製手段、
とを備えることを特徴とする放射性医薬品原料としての99mTcの高濃縮および溶出精製回収システムを提供する。
本発明は、放射性医薬品およびその標識化合物原料としての99mTcの親核種である放射性モリブデン(99Mo)を含む高濃度Mo溶液を形成し、99Moから娘核種である99mTcが生成するが、その放射性核種99Moおよび99mTcを含む高濃度Mo溶液から、
当該Mo(99Mo)溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に当該Mo(99Mo)溶液中の99mTcを選択的に吸着させ、次に活性炭の孔に残留するMo(99Mo)を脱着剤によってMo(99Mo)の脱着を行い、活性炭に吸着残留した微量の99mTcを活性炭から99mTcの脱着剤・脱着操作による99mTcの脱着処理を行って、99mTcを回収し、
回収した99mTcについてその中に僅かに残留するMo(99Mo)をアルミナカラム法で除去する二次精製を行い、
99mTc吸着処理後の高濃度Na2Mo(99Mo)O4溶液を99mTcが再生成する24時間後に再度99mTcを回収するため再循環回収すること、
を特徴とする放射性医薬品原料としての99mTcの高濃縮および溶出精製回収方法を提供する。
本発明は、また、放射性核種99Moを含む高濃度Na2MoO4溶液を、Mo(99Mo)O3をアルカリ溶液で溶解することで形成されるpH中性の高濃度Na2Mo(99Mo)O4溶液から直接的に99mTcを高濃縮および溶出精製回収する方法を提供する。
本発明は、また、前記99mTcが吸着した活性炭から脱着処理を行って99mTcを回収するに際して、99mTcが吸着した活性炭を希アルカリ溶液で洗浄して活性炭に残留するMo(99Mo)を洗浄除去し、その後にさらに高濃度アルカリ溶液による99mTcの脱着処理を行うことを特徴とする99mTcの高濃縮および溶出精製回収する方法を提供する。
本発明は、また、前記活性炭を0.05M以上のNaOH溶液で100°C以上で、5気圧以上にして99mTc溶出回収することを特徴とする99mTcの高濃縮および溶出精製回収方法を提供する。
本発明は、また、前記99mTcの脱着処理を行って、99mTcを回収するに際して、99mTcが吸着した活性炭を陰極(カソード)として電気化学処理することを特徴とする99mTcの高濃縮および溶出精製回収方法を提供する。
本発明は、また、前記99mTcの脱着処理を行って、99mTcを回収するに際して、99mTcが吸着した活性炭を還元剤による還元処理することを特徴とする99mTcの高濃縮および溶出回収方法を提供する。
以上の高濃度アルカリ、電気化学的方法、還元剤を用いる方法において、それらを組み合わせたことを特徴とする99mTcの高濃縮および溶出精製回収方法を提供する。そして、この場合に、回収した99mTcの中に僅かに残留するMo(99Mo)をアルミナカラム法で除去する二次精製を組み合わせることができる。
本発明は、放射性医薬品およびその標識化合物原料としての99mTcの親核種である99Moを含む高濃度Mo溶液を形成するpH中性の高濃度Mo溶液形成手段、
この高濃度Mo(99Mo)溶液について放射平衡状態まで99mTcを生成して99mTcを含む高濃度Mo(99Mo)溶液を生成する高濃度Mo(99Mo)溶液形成手段、
生成した当該高濃度Mo(99Mo)溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に当該高濃度Mo(99Mo)溶液中の微量の99mTcを選択的に吸着させ、99mTcを吸着した活性炭中に残留するMo(99Mo)をMo脱離剤で洗浄除去する手段、
99mTcを吸着した活性炭中に残留するMo(99Mo)をMo脱離剤で洗浄除去した活性炭から99mTc脱着剤による99mTcの脱着処理を行って、99mTcを回収する99mTc吸着、脱着および回収精製手段、
回収した99mTcの中に僅かに残留するMo(99Mo)をアルミナカラム法で除去による99mTc二次精製手段、
99mTc吸着処理後の高濃度Mo(99Mo)溶液を再利用するため循環回収し、放射平衡状態まで99mTcを生成して、99Moおよび99mTcを含む高濃度Mo(99Mo)溶液を再び形成する高濃度Mo(99Mo)溶液再循環回収手段、
とを備えることを特徴とする放射性医薬品原料としての99mTcの高濃縮および溶出回収システムを提供する。
本発明は、放射性医薬品およびその標識化合物原料としての99mTcの親核種の99Moを含む高濃度Mo溶液の形成方法として、原子炉で中性子照射された99Moを含むMoO3をアルカリ溶液で溶解することで形成されるようにしたpH中性の高濃度Mo溶液形成手段、
この高濃度Mo(99Mo)溶液について99Moの娘核種である99mTcを放射平衡状態まで生成して99Moおよび99mTcを含む高濃度Mo(99Mo)溶液を生成する高濃度Mo(99Mo)溶液の形成手段、
99mTcを放射平衡状態まで生成し含む当該高濃度Mo(99Mo)溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に99mTcを選択的に吸着させる99mTc吸着手段、該活性炭に残留するMo(99Mo)をMo脱着剤によって脱着するMo(99Mo)脱着手段、
Mo(99Mo)脱着処理を行った後の99mTcを吸着した活性炭から99mTc脱着剤による99mTcの脱着処理を行って、99mTcを回収する99mTc脱着および回収精製手段、
99mTc脱着回収処理後の高濃度Mo(99Mo)溶液を再利用するため循環回収し、放射平衡状態まで99mTcを生成して、99Moおよび99mTcを含む高濃度Mo溶液を再び形成する高濃度Mo(99Mo)溶液循環回収手段、
回収した99mTcの中に僅かに残留するMo(99Mo)をアルミナカラム法で除去による99mTc二次精製手段、
とを備えることを特徴とする放射性医薬品原料としての99mTcの高濃縮および溶出精製回収システムを提供する。
本発明は、上述のように高濃度Mo(放射性99Mo含む)溶液を形成し、24時間程度放置することで99Moから放射平衡状態の99mTcが生成し混在するNa2Mo(99Mo)O4溶液状態とし、このようにして形成した99mTcを含むNa2Mo(99Mo)O4溶液を活性炭に通液する。これによれば高濃度Mo(99Mo)溶液中の微量の99mTcのみを活性炭に選択的に吸着させ、活性炭に残存したMo(99Mo)を除去した後99mTcを脱着するので、99mTc回収のために活性炭性能が充分に発揮され、高濃度Mo溶液中の微量の99mTcを高収率(95%以上)で精製回収することができる。また、本発明は、活性炭中に僅かに残留するMo(99Mo)は99mTc脱着処理の際99mTcと同時に溶脱してくるが、該99mTc回収液をアルミナカラムに通液することで、高純度の99mTcを99Moの混入無く精製回収することができる。
図1は本発明の実施例のシステム構成を示す図である。
図2は本発明の実施例の処理手段、処理方法の具体例を示す図である。
図3は本発明の実施例のプロセスフローを示す図である。
図4はAC(活性炭)吸着カラムのTc動的吸着性能を示す図である。
図5はTc吸着カラム:Mo washout効率を示す図である。
図6はTc吸着カラムからのTc回収:alk−PLE効率を示す図である。
図7はアルミナカラム性能評価:99mTc精製回収時の99Mo動的吸着性能を示す図である。
図8はアルミナカラム分離における99mTc収率を示す図である。
図9は99Mo 500Ci規模99mTc取得プロセス(99mTcマスターミルカープロセス)によるプロセス所要時間、物質収支、発生廃棄物量を示す図である。
図2は本発明の実施例の処理手段、処理方法の具体例を示す図である。
図3は本発明の実施例のプロセスフローを示す図である。
図4はAC(活性炭)吸着カラムのTc動的吸着性能を示す図である。
図5はTc吸着カラム:Mo washout効率を示す図である。
図6はTc吸着カラムからのTc回収:alk−PLE効率を示す図である。
図7はアルミナカラム性能評価:99mTc精製回収時の99Mo動的吸着性能を示す図である。
図8はアルミナカラム分離における99mTc収率を示す図である。
図9は99Mo 500Ci規模99mTc取得プロセス(99mTcマスターミルカープロセス)によるプロセス所要時間、物質収支、発生廃棄物量を示す図である。
以下、本発明の実施例を図面に基づいて説明する。以下、ここでは、99mTcをテクネシウムあるいは単にTcと、放射性核種99Moを単に99Moと記載する場合がある。
図1は、本発明の実施例である99mTcの高濃縮および溶出回収システム(以下、本システムといい、このシステムによって実施される方法を本システム方法という)の概念を示す。99mTcの高濃縮および溶出回収システムは精製分離手段を備えることができる。
図1において、本システム100は99Mo及び99mTcから放出される放射線を遮蔽するホットセル1内に設置される。本システム100は、Mo容器(1)2、Mo容器(2)3および制御タンク4を備える。複数のMo容器を備えるようにしてもよい。Mo容器(1)2およびMo容器(2)3には前もって原子炉で中性子照射されて99Moが生成し含まれるMoO3をアルカリ(NaOH)溶液で溶解して生成されるNa2 99MoO4溶液が供給される。すなわち、放射性医薬品原料としての放射性核種99Moを含んだMo溶液がMo容器(1)2およびMo容器(2)3に供給される。99MoO3がアルカリ溶液で溶解されると、図に示すようにpH中性のNa2 99MoO4溶液が形成される。
この例は、後述する図3に対応する。生成に際して、放射性99Moを含むMo溶液は例えば2L中に500gのMoを含む高い濃度のMo溶液とされる。以下、この溶液を高濃度Mo溶液という。ここで、高濃度とは、例えば1回500Ci程度の必要量の99mTcを得るために、前述の2L中に500gのMoを含む高濃度Mo溶液が必要となるための濃度ということである。
Mo容器(1)2およびMo容器(2)3の底部には、それぞれ三方弁5、6を備えた配管7、8が設けてあり、Mo容器(1)2およびMo容器(2)3は3方弁5、6および配管7、8更に他の配管9、10を介して制御タンク4の底部に接続されている。配管7、8の終端に3方弁13が備えられる。制御タンク4は液面調整機構としての機能を備える。制御タンク4の底部は、さらに配管14、配管14に設けた3方弁15を介してTc濃縮精製回収系16の一端(図では上面)に接続される。このTc濃縮精製回収系16は後述するように、活性炭を内蔵した吸着カラムを備える。
Tc濃縮精製回収系16の他端(図では下端)には、配管17およびこれに設けられた3方弁18が設けられ、配管7および配管8の終端に設けた3方弁13に接続される。Mo容器(1)2およびMo容器(2)3で、高濃度Mo溶液中で99Moの娘核種である99mTcが生成されて、放射性核種99Moおよび99mTcを含む高濃度Mo溶液が形成される。99Moを含む新しい高濃度Mo溶液は交互に、例えば隔週毎にいずれかのMo容器(1)2およびMo容器(2)3に入れ替え供給される。
弱いエネルギーのγ線(放射線)を放出するテクネチウム99(99mTc)はSPECTのような医学診断に使用されるが、半減期が6時間であるため1日で16分の1にまでその放射能量は減少してしまう。これを補うために99mTcの親核種である99Moを保有して、そのベータ・マイナス崩壊を起こして生まれる99mTcを分離・利用する。このように親核種と娘核種の放射平衡関係を利用して娘核種を得る方法がミルキングと呼ばれる。
ここでは、このように親核種と娘核種の放射平衡関係を利用して娘核種を得る方法をミルキングと称する。また、このミルキングを行うことをミルキング処理と称し、娘核種を含む溶液をミルキング溶液と称する。従って、ここで99Moを含む高濃度Mo溶液とは、上述のように、放射平衡関係を利用して必要量の99mTcを得るための99Moを含む溶液ということである。
高濃度Mo(99Mo)溶液は、配管7ならびに配管8、三方弁13、配管17を介してTc濃縮精製回収系16の下部から活性炭カラムを内蔵するTc濃縮精製回収系16へ導入される。Tc濃縮精製回収系16は、吸着カラムを備え、吸着カラムに活性炭が内蔵されているので、この活性炭に必要量の99mTcを含む高濃度Mo(99Mo)溶液を通液することによって、99mTcを選択的に吸着させることができる。この工程で99mTcの精製、濃縮がなされる。ここで、高濃度Mo溶液中のMo量(ここでは、500g)に対する99Mo量と99mTc量との関係を示せば次のようである。
99Moの半減期:65.94h,99mTcの半減期:6.01h
500Ci99Mo量=1.04mg(500gMoに対し1/50万)
500Ci99mTc量=0.095mg(500gMoに対し1/500万)
99Mo 5×104Bq以下の場合、500gMoに対し6×10−15以下
99mTc 6×104Bq以下の場合、500gMoに対し6×10−16以下
このように、高濃度Mo溶液の極くわずかに99mTcが存在する場合にあっても活性炭によって吸着させることができる。
Tc濃縮精製回収系16で吸着されない99Moを含む大量のMoは、三方弁15および配管14を介して、制御タンク4に、更にはMo容器(1)2あるいはMo容器(2)3のいずれかに戻される。このようにして、片方のMo溶液が例えば延べ2週間程、24時間おきに毎日99mTc吸着工程が実施され、99mTcが回収されたMo溶液は元のMo容器(2あるいは3のいずれか)に戻される。この工程の後、Tc濃縮精製回収系16に吸着回収された99mTcは脱着工程へと移行される。
このように、放射性核種99Moを含む高濃度Mo溶液を、原子炉で中性子照射したMo化合物(MoO3)を直接的にアルカリ溶液で溶解することで99Moを含む高濃度Mo溶液を形成し、複数のMo容器に供給し、これらの複数のMo容器に貯められた高濃度Mo(99Mo)溶液を交互に前記活性炭を収納する吸着カラムに通液してTcを吸着濃縮し、しかる後に溶出精製回収することを行う。
三方弁18には配管20、三方弁21を介して外部の供給系22が接続され、この供給系22からはTc濃縮精製回収系16(活性炭カラム)に残存するMo(99Mo)の脱着のための洗浄液およびTc溶出液他が供給され、これらの溶液はTc濃縮精製回収系16に導入される。
まず、脱着工程において99Mo脱着剤が供給系22から導入され、Mo(99Mo)が脱着され、この溶液は洗浄廃液32に導入される。次いで、Mo(99Mo)脱着工程が止められ、Tc脱着剤が供給系22から導入され、活性炭に吸着されたTcが脱着されるTc脱着工程へと移行する。
Tc濃縮精製回収系16は、三方弁15を介して、配管23、これに設けた3方弁24を介して液性調整系25に接続されている。脱着したTcは脱着剤と共に液性調整系25に導入される。この液性調整系で液性調整用試薬34が加えられ、液性調整され、更に配管26を介して2次精製系27に、更に配管28を介してTc回収装置29に接続され、99mTc溶出液として回収される。
このシステム100には、図1に示すように、99Mo使用後廃液系30、31および洗浄廃液系32が設けられ、各系統は制御系33によって適宜制御されるようになっている。
図2は、図1に示される本法システムを用いた処理によってTcを精製回収する方法および手段を示す。図2において、本実施例の99mTcの高濃縮、精製分離および溶出回収システムは、(n,γ)99Mo形成手段41、高濃度Mo(99Mo)溶液形成手段42,Tc生成処理手段43,44,99mTcの吸着,溶出精製回収手段49,99mTcの液性調整二次精製手段50、99mTcの取得手段51および高濃度Mo溶液の再循環手段52から構成される。
99mTcを利用するためには99Moが必要で、これを大量に製造するために、Moペレット形成手段41を用い、天然のMoを原子炉で照射する(n,γ)法によって(n,γ)99Moを形成する。本実施例では(n,γ)法によって形成された、例えばペレットが用いられる。粉末であってもよい。高濃度Mo溶液形成手段42によって、アルカリ溶液を投入し、このように形成した99Moが生成したMoペレットを直接的にアルカリ溶液で溶解する。アルカリはNaOHを使用することができる。Tc生成処理手段43,44を用いてTcの生成を行う。このTcの生成に当っては、システム1(43)およびシステム2(44)を用いる。これらのシステム(1)、システム(2)は図1におけるMo容器(1)2、Mo容器(2)3に対応する。
原子炉で中性子照射されたMoペレットをNaOH溶液で溶解すると高濃度のNa2Mo(99Mo)O4溶液が形成される。高濃度Mo(99Mo)溶液を用いて、99Moの娘核種である99mTcが生成され、放射性核種99Moおよび99mTcを含む高濃度Mo(99Mo)溶液を形成する。このように、この方式によれば、原子炉で照射したMoO3ターゲットをアルカリ(NaOH溶液)で溶解してできるNa2Mo(99Mo)O4溶液を、毎週1回システム1とシステム2(それぞれ前週分および今週分)に交互に入れ、その両方のMo(99Mo)溶液を交互にTc濃縮生成回収系16(図1)を構成する99mTcの吸着、溶出精製回収手段49に導入し、Tc吸着カラム53へ通液する。
吸着カラム53は活性炭54を内蔵する。活性炭54を内蔵するTc吸着カラム53によって99mTc吸着手段が構成される。このようにして活性炭54に高濃度Na2Mo(99Mo)O4溶液を通液し、両方のシステム1,2のいずれかのあるいは両方の高濃度Na2Mo(99Mo)O4溶液中の99mTcを吸着させる。活性炭54は、99mTcを選択的に吸着する。このように、微量の99mTcが交互に吸着され、これに伴って、吸着される99mTcの量は増加する。この活性炭吸着法を用いることによって、後段の脱着法と組み合わせて、99mTc濃度を高濃度Na2Mo(99Mo)O4溶液中の99mTc濃度に比べて、例えば40倍以上濃縮することができ、放射性医薬品原料として適切な濃度の99mTc濃縮がなされる。なお、本発明によれば、任意の濃縮率で99mTcを濃縮することが可能である。
活性炭54に吸着したTcをTc脱着剤を用いて脱着するTc脱着剤としては本例の場合、高濃度アルカリ溶液が使用される。次に99mTc回収手段によって99mTcを吸着した活性炭から脱着剤による99mTcの脱着処理を行って、99mTcを回収する。これらの手段によって99mTc吸着、溶出による脱着および精製回収が構成されることになる。
99mTcが吸着回収された高濃度Na2Mo(99Mo)O4溶液は、高濃度Mo(99Mo)溶液の循環手段52によって、システム1あるいはシステムに戻され、高濃度Na2Mo(99Mo)O4溶液として回収され、再使用される。
活性炭に吸着された一部のMo(99Mo)は、Mo(99Mo)洗浄工程によってMo(99Mo)が活性炭から除去される。
回収されたTcは99mTcの液性調整二次精製手段50によって液性が調整された後、アルミナカラム法によって残留99Moが除去されることによって、二次精製され、99mTc取得手段51によって取得、回収される。
前述のように、高濃度Mo溶液循環手段52によって、99mTc吸着後の高濃度Mo(99Mo)溶液を再利用するためシステム1,2に循環する。すなわち、高濃度Mo(99Mo)溶液はシステム1あるいはシステム2に戻されて再使用され、これらのシステムで99mTc生成処理がなされ、新たに99mTcを生成させることになる。このように、高濃度Mo(99Mo)溶液は循環、再使用される。
このようにして、高濃度Mo(99Mo)溶液を用いる99Mo溶液型Tcマスターミルカーとしての99mTcの高濃縮、精製分離および溶出回収システムおよび回収方法が構成され、生理食塩水ベースの濃縮99mTc溶液を得る。この液は放射性医薬品原料として医療診断に用いられる。
図3は、99mTcの高濃縮、精製分離および溶出回収プロセスを示す。
図3において、このプロセスは、Mo(99Mo)O3の形成S1,Mo(99Mo)溶解工程S2、99mTc生成処理工程S3、99mTcの活性炭への吸着精製工程S4、水ならびにNaOH0.01Mの弱アルカリによるMo除去工程S5、99mTc溶出回収工程S6、99mTc液性調整工程S7、アルミナカラム法を用い、残留Mo(99Mo)を洗浄除去して99mTcを回収精製する99mTcの精製工程S8および高濃度、高純度99mTcの取得工程S9から構成される。
全体の操作としては、(1)照射済Mo(99Mo)O3ペレットの溶解→(2)Na2Mo(99Mo)O2溶液形成→(3)Tc吸着回収(99Mo原液としての高濃度Mo溶液は全量回収(元のタンクに戻し24時間後再使用)→(4)活性炭に付着して残留するMo(99Mo)の洗浄除去→(5)Tc溶出精製回収→(6)Tc回収液のpHとNaCl濃度調整→(7)アルミナカラム法によるTcの二次精製(最終精製)→(8)Tc回収溶液の取得(Tc≧1Ci/mL、生理食塩水ベース、pH中性、99Mo含まず)となる。
以上の8段階のプロセスから構成される。
活性炭を用いて高濃度Mo(99Mo)溶液中の99mTcを高濃縮吸着した後、活性炭に吸着した99mTcの溶出回収方法として、その活性炭を希アルカリ溶液で洗浄することで残留するMo(99Mo)を洗浄除去し、さらに高濃度アルカリ溶液で処理して99mTcを効率良く溶出精製回収することで、高濃度Mo(99Mo)溶液中の99mTcの高濃縮・精製分離・溶出回収を行うことができる。
活性炭を用いて高濃度Mo(99Mo)溶液中の99mTcを高濃縮吸着した後、活性炭に吸着した99mTcの溶出回収方法として、その活性炭を希アルカリ溶液で洗浄することで残留するMo(99Mo)を洗浄除去し、さらに高濃度アルカリ溶液で処理して99mTcを効率良く溶出回収する方法として、該活性炭を0.05M以上のNaOH溶液で100℃以上で10気圧以上にして99mTcの溶出回収率を向上することで、高濃度Mo(99Mo)溶液中の99mTcの高濃縮・精製分離・溶出回収を行うことができる。
活性炭を用いて高濃度Mo(99Mo)溶液中の99mTcを高濃縮吸着した後、活性炭に吸着した99mTcの溶出回収方法として、活性炭を陰極(カソード)として電気化学的に99mTcの溶出回収を行うことで、高濃度Mo(99Mo)溶液中の99mTcを選択的に高濃縮・精製分離・溶出回収することができる。
活性炭を用いて高濃度Mo(99Mo)溶液中の99mTcを高濃縮吸着した後の99mTcの溶出回収方法として、99mTcの溶出液である還元剤であるヒドラジンやチオシアン酸溶液などの還元剤によれば、前記した加熱や加圧することなく99mTcの溶出回収が可能で、活性炭に吸着した99mTcを溶出回収することができる。
なお、Tcミルキング時間としては、全工程で4h/バッチで、Tc濃度1Ci/mL以上で100~150mL程度の生理食塩水中に回収可能である。
図4~図9に実験結果を示す。
図4は、AC(活性炭)吸着カラムのTc動的吸着性能を示す。図に示すように、SV(空筒速度:114~273h−1)が変動してもTc吸着ゾーンが同等である。AC(5g)カラム層中の99Mo溶液の通過時間は4.4~11秒(流速:0.5~1.3cm/s)で高濃度Mo溶液中の99mTcが98%以上の効率で吸着回収される。
図5は、Tc濃縮精製回収系16のMo washout効率を示す。この図からMo washout処理してもTc吸着ゾーンの移動がないことが判る。活性炭に残留したMo(99Mo)を洗浄除去処理しても一旦吸着した99mTcはそのまま残留する。
図6は、Tc吸着カラムからのTc回収操作であるアルカリ性加圧溶液抽出処理(alk−PLE)した場合の99Tc溶出効率を示す。この図から、alk−PLE処理によって活性炭カラムに吸着した99mTcの吸着ゾーンが移動することが判る。このalk−PLE処理によるAC吸着Tc回収率は98~99%である。
図7は、アルミナカラム性能評価としての99mTc精製回収時の99Mo動的吸着性能を示す。この図から、SV(30~60h−1)が変動しても99Mo吸着ゾーンは変化しないためアルミナカラム中に99Moが捕捉された状態で、99Tcを100%溶出精製回収でき、高純度の99mTcを得る。
図8は、アルミナカラム分離における99Tc収率を示す。アルミナカラムによるTc精製回収率は100%である。
図9は、99Mo500Ci規模でのプロセスにおける物質収支を示す。
99Mo溶液型Tcマスターミルカーとしての本システムは、固体状やゲル状の99Mo吸着保持体を用いないため、99Mo吸着保持体の放射線ダメージによる吸着材構成元素(例えば、Zr)の溶脱混入がなく、しかも99mTcが99Mo溶液中に溶解している状態のため99Mo吸着保持体からの99mTcミルキング効率に対する懸念が不要である。本システムで使用する活性炭は、前工程で生成した高濃度Mo溶液中の99Moを吸着すること無く、しかも選択的に99mTcを高効率で吸着することができる。さらに、活性炭に吸着したTcを溶出させ、生理食塩水ベースの99mTc溶液とするため、放射性医薬品原料として最適な状態で使用可能となる。また、本発明の高濃度Mo(99Mo)溶液からの微量99mTcの選択的高濃縮・精製分離・溶出回収のプロセスでは、99mTcが吸着した活性炭から高濃度アルカリを用いて99mTcを回収する場合は、全プロセスにおいて99mTcは過テクネチウム酸(99mTcO4 −)の形態を維持する。なお、MoO3の98Mo(n,γ)反応の際、99Mo製造のための中性子照射ターゲットMoO3に含まれるMo同位体の92Mo、95Mo、96Moそれぞれの(n,p)反応によって放射性ニオブである92mNb、95Nb、96Nbが生成し、Mo(99Mo)中に放射化生成不純物として混在し高濃度Mo(99Mo)溶液中に混入してくるが、高濃度Mo(99Mo)溶液中の99mTcを活性炭カラムで吸着回収する際、これらの放射性ニオブは活性炭に吸着しない。そのため、目的とする99mTc回収液中には混入しない。
99Mo溶液型99mTcマスターミルカーとしての本システムは、99Mo吸着保持体を用いないために薬事申請上も有利で低コストであり、また99mTc回収に伴う放射性の廃液や固体廃棄物の発生量が少ない利点がある。しかも高濃度Mo(99Mo)溶液中の微量の99mTcを99Moの混入無く高効率(95%以上)で精製回収することが可能である。
本実施例の99Mo溶液法によれば、現行のFission−99Moアルミナカラム法での99mTc溶出回収と同等の99mTc製品(99mTc濃度・液量)を(n,γ)99Mo溶液から安定的に得ることが可能になり、99mTcマスターミルカーとして製造ラインで使用できる技術が確立される。
図1は、本発明の実施例である99mTcの高濃縮および溶出回収システム(以下、本システムといい、このシステムによって実施される方法を本システム方法という)の概念を示す。99mTcの高濃縮および溶出回収システムは精製分離手段を備えることができる。
図1において、本システム100は99Mo及び99mTcから放出される放射線を遮蔽するホットセル1内に設置される。本システム100は、Mo容器(1)2、Mo容器(2)3および制御タンク4を備える。複数のMo容器を備えるようにしてもよい。Mo容器(1)2およびMo容器(2)3には前もって原子炉で中性子照射されて99Moが生成し含まれるMoO3をアルカリ(NaOH)溶液で溶解して生成されるNa2 99MoO4溶液が供給される。すなわち、放射性医薬品原料としての放射性核種99Moを含んだMo溶液がMo容器(1)2およびMo容器(2)3に供給される。99MoO3がアルカリ溶液で溶解されると、図に示すようにpH中性のNa2 99MoO4溶液が形成される。
この例は、後述する図3に対応する。生成に際して、放射性99Moを含むMo溶液は例えば2L中に500gのMoを含む高い濃度のMo溶液とされる。以下、この溶液を高濃度Mo溶液という。ここで、高濃度とは、例えば1回500Ci程度の必要量の99mTcを得るために、前述の2L中に500gのMoを含む高濃度Mo溶液が必要となるための濃度ということである。
Mo容器(1)2およびMo容器(2)3の底部には、それぞれ三方弁5、6を備えた配管7、8が設けてあり、Mo容器(1)2およびMo容器(2)3は3方弁5、6および配管7、8更に他の配管9、10を介して制御タンク4の底部に接続されている。配管7、8の終端に3方弁13が備えられる。制御タンク4は液面調整機構としての機能を備える。制御タンク4の底部は、さらに配管14、配管14に設けた3方弁15を介してTc濃縮精製回収系16の一端(図では上面)に接続される。このTc濃縮精製回収系16は後述するように、活性炭を内蔵した吸着カラムを備える。
Tc濃縮精製回収系16の他端(図では下端)には、配管17およびこれに設けられた3方弁18が設けられ、配管7および配管8の終端に設けた3方弁13に接続される。Mo容器(1)2およびMo容器(2)3で、高濃度Mo溶液中で99Moの娘核種である99mTcが生成されて、放射性核種99Moおよび99mTcを含む高濃度Mo溶液が形成される。99Moを含む新しい高濃度Mo溶液は交互に、例えば隔週毎にいずれかのMo容器(1)2およびMo容器(2)3に入れ替え供給される。
弱いエネルギーのγ線(放射線)を放出するテクネチウム99(99mTc)はSPECTのような医学診断に使用されるが、半減期が6時間であるため1日で16分の1にまでその放射能量は減少してしまう。これを補うために99mTcの親核種である99Moを保有して、そのベータ・マイナス崩壊を起こして生まれる99mTcを分離・利用する。このように親核種と娘核種の放射平衡関係を利用して娘核種を得る方法がミルキングと呼ばれる。
ここでは、このように親核種と娘核種の放射平衡関係を利用して娘核種を得る方法をミルキングと称する。また、このミルキングを行うことをミルキング処理と称し、娘核種を含む溶液をミルキング溶液と称する。従って、ここで99Moを含む高濃度Mo溶液とは、上述のように、放射平衡関係を利用して必要量の99mTcを得るための99Moを含む溶液ということである。
高濃度Mo(99Mo)溶液は、配管7ならびに配管8、三方弁13、配管17を介してTc濃縮精製回収系16の下部から活性炭カラムを内蔵するTc濃縮精製回収系16へ導入される。Tc濃縮精製回収系16は、吸着カラムを備え、吸着カラムに活性炭が内蔵されているので、この活性炭に必要量の99mTcを含む高濃度Mo(99Mo)溶液を通液することによって、99mTcを選択的に吸着させることができる。この工程で99mTcの精製、濃縮がなされる。ここで、高濃度Mo溶液中のMo量(ここでは、500g)に対する99Mo量と99mTc量との関係を示せば次のようである。
99Moの半減期:65.94h,99mTcの半減期:6.01h
500Ci99Mo量=1.04mg(500gMoに対し1/50万)
500Ci99mTc量=0.095mg(500gMoに対し1/500万)
99Mo 5×104Bq以下の場合、500gMoに対し6×10−15以下
99mTc 6×104Bq以下の場合、500gMoに対し6×10−16以下
このように、高濃度Mo溶液の極くわずかに99mTcが存在する場合にあっても活性炭によって吸着させることができる。
Tc濃縮精製回収系16で吸着されない99Moを含む大量のMoは、三方弁15および配管14を介して、制御タンク4に、更にはMo容器(1)2あるいはMo容器(2)3のいずれかに戻される。このようにして、片方のMo溶液が例えば延べ2週間程、24時間おきに毎日99mTc吸着工程が実施され、99mTcが回収されたMo溶液は元のMo容器(2あるいは3のいずれか)に戻される。この工程の後、Tc濃縮精製回収系16に吸着回収された99mTcは脱着工程へと移行される。
このように、放射性核種99Moを含む高濃度Mo溶液を、原子炉で中性子照射したMo化合物(MoO3)を直接的にアルカリ溶液で溶解することで99Moを含む高濃度Mo溶液を形成し、複数のMo容器に供給し、これらの複数のMo容器に貯められた高濃度Mo(99Mo)溶液を交互に前記活性炭を収納する吸着カラムに通液してTcを吸着濃縮し、しかる後に溶出精製回収することを行う。
三方弁18には配管20、三方弁21を介して外部の供給系22が接続され、この供給系22からはTc濃縮精製回収系16(活性炭カラム)に残存するMo(99Mo)の脱着のための洗浄液およびTc溶出液他が供給され、これらの溶液はTc濃縮精製回収系16に導入される。
まず、脱着工程において99Mo脱着剤が供給系22から導入され、Mo(99Mo)が脱着され、この溶液は洗浄廃液32に導入される。次いで、Mo(99Mo)脱着工程が止められ、Tc脱着剤が供給系22から導入され、活性炭に吸着されたTcが脱着されるTc脱着工程へと移行する。
Tc濃縮精製回収系16は、三方弁15を介して、配管23、これに設けた3方弁24を介して液性調整系25に接続されている。脱着したTcは脱着剤と共に液性調整系25に導入される。この液性調整系で液性調整用試薬34が加えられ、液性調整され、更に配管26を介して2次精製系27に、更に配管28を介してTc回収装置29に接続され、99mTc溶出液として回収される。
このシステム100には、図1に示すように、99Mo使用後廃液系30、31および洗浄廃液系32が設けられ、各系統は制御系33によって適宜制御されるようになっている。
図2は、図1に示される本法システムを用いた処理によってTcを精製回収する方法および手段を示す。図2において、本実施例の99mTcの高濃縮、精製分離および溶出回収システムは、(n,γ)99Mo形成手段41、高濃度Mo(99Mo)溶液形成手段42,Tc生成処理手段43,44,99mTcの吸着,溶出精製回収手段49,99mTcの液性調整二次精製手段50、99mTcの取得手段51および高濃度Mo溶液の再循環手段52から構成される。
99mTcを利用するためには99Moが必要で、これを大量に製造するために、Moペレット形成手段41を用い、天然のMoを原子炉で照射する(n,γ)法によって(n,γ)99Moを形成する。本実施例では(n,γ)法によって形成された、例えばペレットが用いられる。粉末であってもよい。高濃度Mo溶液形成手段42によって、アルカリ溶液を投入し、このように形成した99Moが生成したMoペレットを直接的にアルカリ溶液で溶解する。アルカリはNaOHを使用することができる。Tc生成処理手段43,44を用いてTcの生成を行う。このTcの生成に当っては、システム1(43)およびシステム2(44)を用いる。これらのシステム(1)、システム(2)は図1におけるMo容器(1)2、Mo容器(2)3に対応する。
原子炉で中性子照射されたMoペレットをNaOH溶液で溶解すると高濃度のNa2Mo(99Mo)O4溶液が形成される。高濃度Mo(99Mo)溶液を用いて、99Moの娘核種である99mTcが生成され、放射性核種99Moおよび99mTcを含む高濃度Mo(99Mo)溶液を形成する。このように、この方式によれば、原子炉で照射したMoO3ターゲットをアルカリ(NaOH溶液)で溶解してできるNa2Mo(99Mo)O4溶液を、毎週1回システム1とシステム2(それぞれ前週分および今週分)に交互に入れ、その両方のMo(99Mo)溶液を交互にTc濃縮生成回収系16(図1)を構成する99mTcの吸着、溶出精製回収手段49に導入し、Tc吸着カラム53へ通液する。
吸着カラム53は活性炭54を内蔵する。活性炭54を内蔵するTc吸着カラム53によって99mTc吸着手段が構成される。このようにして活性炭54に高濃度Na2Mo(99Mo)O4溶液を通液し、両方のシステム1,2のいずれかのあるいは両方の高濃度Na2Mo(99Mo)O4溶液中の99mTcを吸着させる。活性炭54は、99mTcを選択的に吸着する。このように、微量の99mTcが交互に吸着され、これに伴って、吸着される99mTcの量は増加する。この活性炭吸着法を用いることによって、後段の脱着法と組み合わせて、99mTc濃度を高濃度Na2Mo(99Mo)O4溶液中の99mTc濃度に比べて、例えば40倍以上濃縮することができ、放射性医薬品原料として適切な濃度の99mTc濃縮がなされる。なお、本発明によれば、任意の濃縮率で99mTcを濃縮することが可能である。
活性炭54に吸着したTcをTc脱着剤を用いて脱着するTc脱着剤としては本例の場合、高濃度アルカリ溶液が使用される。次に99mTc回収手段によって99mTcを吸着した活性炭から脱着剤による99mTcの脱着処理を行って、99mTcを回収する。これらの手段によって99mTc吸着、溶出による脱着および精製回収が構成されることになる。
99mTcが吸着回収された高濃度Na2Mo(99Mo)O4溶液は、高濃度Mo(99Mo)溶液の循環手段52によって、システム1あるいはシステムに戻され、高濃度Na2Mo(99Mo)O4溶液として回収され、再使用される。
活性炭に吸着された一部のMo(99Mo)は、Mo(99Mo)洗浄工程によってMo(99Mo)が活性炭から除去される。
回収されたTcは99mTcの液性調整二次精製手段50によって液性が調整された後、アルミナカラム法によって残留99Moが除去されることによって、二次精製され、99mTc取得手段51によって取得、回収される。
前述のように、高濃度Mo溶液循環手段52によって、99mTc吸着後の高濃度Mo(99Mo)溶液を再利用するためシステム1,2に循環する。すなわち、高濃度Mo(99Mo)溶液はシステム1あるいはシステム2に戻されて再使用され、これらのシステムで99mTc生成処理がなされ、新たに99mTcを生成させることになる。このように、高濃度Mo(99Mo)溶液は循環、再使用される。
このようにして、高濃度Mo(99Mo)溶液を用いる99Mo溶液型Tcマスターミルカーとしての99mTcの高濃縮、精製分離および溶出回収システムおよび回収方法が構成され、生理食塩水ベースの濃縮99mTc溶液を得る。この液は放射性医薬品原料として医療診断に用いられる。
図3は、99mTcの高濃縮、精製分離および溶出回収プロセスを示す。
図3において、このプロセスは、Mo(99Mo)O3の形成S1,Mo(99Mo)溶解工程S2、99mTc生成処理工程S3、99mTcの活性炭への吸着精製工程S4、水ならびにNaOH0.01Mの弱アルカリによるMo除去工程S5、99mTc溶出回収工程S6、99mTc液性調整工程S7、アルミナカラム法を用い、残留Mo(99Mo)を洗浄除去して99mTcを回収精製する99mTcの精製工程S8および高濃度、高純度99mTcの取得工程S9から構成される。
全体の操作としては、(1)照射済Mo(99Mo)O3ペレットの溶解→(2)Na2Mo(99Mo)O2溶液形成→(3)Tc吸着回収(99Mo原液としての高濃度Mo溶液は全量回収(元のタンクに戻し24時間後再使用)→(4)活性炭に付着して残留するMo(99Mo)の洗浄除去→(5)Tc溶出精製回収→(6)Tc回収液のpHとNaCl濃度調整→(7)アルミナカラム法によるTcの二次精製(最終精製)→(8)Tc回収溶液の取得(Tc≧1Ci/mL、生理食塩水ベース、pH中性、99Mo含まず)となる。
以上の8段階のプロセスから構成される。
活性炭を用いて高濃度Mo(99Mo)溶液中の99mTcを高濃縮吸着した後、活性炭に吸着した99mTcの溶出回収方法として、その活性炭を希アルカリ溶液で洗浄することで残留するMo(99Mo)を洗浄除去し、さらに高濃度アルカリ溶液で処理して99mTcを効率良く溶出精製回収することで、高濃度Mo(99Mo)溶液中の99mTcの高濃縮・精製分離・溶出回収を行うことができる。
活性炭を用いて高濃度Mo(99Mo)溶液中の99mTcを高濃縮吸着した後、活性炭に吸着した99mTcの溶出回収方法として、その活性炭を希アルカリ溶液で洗浄することで残留するMo(99Mo)を洗浄除去し、さらに高濃度アルカリ溶液で処理して99mTcを効率良く溶出回収する方法として、該活性炭を0.05M以上のNaOH溶液で100℃以上で10気圧以上にして99mTcの溶出回収率を向上することで、高濃度Mo(99Mo)溶液中の99mTcの高濃縮・精製分離・溶出回収を行うことができる。
活性炭を用いて高濃度Mo(99Mo)溶液中の99mTcを高濃縮吸着した後、活性炭に吸着した99mTcの溶出回収方法として、活性炭を陰極(カソード)として電気化学的に99mTcの溶出回収を行うことで、高濃度Mo(99Mo)溶液中の99mTcを選択的に高濃縮・精製分離・溶出回収することができる。
活性炭を用いて高濃度Mo(99Mo)溶液中の99mTcを高濃縮吸着した後の99mTcの溶出回収方法として、99mTcの溶出液である還元剤であるヒドラジンやチオシアン酸溶液などの還元剤によれば、前記した加熱や加圧することなく99mTcの溶出回収が可能で、活性炭に吸着した99mTcを溶出回収することができる。
なお、Tcミルキング時間としては、全工程で4h/バッチで、Tc濃度1Ci/mL以上で100~150mL程度の生理食塩水中に回収可能である。
図4~図9に実験結果を示す。
図4は、AC(活性炭)吸着カラムのTc動的吸着性能を示す。図に示すように、SV(空筒速度:114~273h−1)が変動してもTc吸着ゾーンが同等である。AC(5g)カラム層中の99Mo溶液の通過時間は4.4~11秒(流速:0.5~1.3cm/s)で高濃度Mo溶液中の99mTcが98%以上の効率で吸着回収される。
図5は、Tc濃縮精製回収系16のMo washout効率を示す。この図からMo washout処理してもTc吸着ゾーンの移動がないことが判る。活性炭に残留したMo(99Mo)を洗浄除去処理しても一旦吸着した99mTcはそのまま残留する。
図6は、Tc吸着カラムからのTc回収操作であるアルカリ性加圧溶液抽出処理(alk−PLE)した場合の99Tc溶出効率を示す。この図から、alk−PLE処理によって活性炭カラムに吸着した99mTcの吸着ゾーンが移動することが判る。このalk−PLE処理によるAC吸着Tc回収率は98~99%である。
図7は、アルミナカラム性能評価としての99mTc精製回収時の99Mo動的吸着性能を示す。この図から、SV(30~60h−1)が変動しても99Mo吸着ゾーンは変化しないためアルミナカラム中に99Moが捕捉された状態で、99Tcを100%溶出精製回収でき、高純度の99mTcを得る。
図8は、アルミナカラム分離における99Tc収率を示す。アルミナカラムによるTc精製回収率は100%である。
図9は、99Mo500Ci規模でのプロセスにおける物質収支を示す。
99Mo溶液型Tcマスターミルカーとしての本システムは、固体状やゲル状の99Mo吸着保持体を用いないため、99Mo吸着保持体の放射線ダメージによる吸着材構成元素(例えば、Zr)の溶脱混入がなく、しかも99mTcが99Mo溶液中に溶解している状態のため99Mo吸着保持体からの99mTcミルキング効率に対する懸念が不要である。本システムで使用する活性炭は、前工程で生成した高濃度Mo溶液中の99Moを吸着すること無く、しかも選択的に99mTcを高効率で吸着することができる。さらに、活性炭に吸着したTcを溶出させ、生理食塩水ベースの99mTc溶液とするため、放射性医薬品原料として最適な状態で使用可能となる。また、本発明の高濃度Mo(99Mo)溶液からの微量99mTcの選択的高濃縮・精製分離・溶出回収のプロセスでは、99mTcが吸着した活性炭から高濃度アルカリを用いて99mTcを回収する場合は、全プロセスにおいて99mTcは過テクネチウム酸(99mTcO4 −)の形態を維持する。なお、MoO3の98Mo(n,γ)反応の際、99Mo製造のための中性子照射ターゲットMoO3に含まれるMo同位体の92Mo、95Mo、96Moそれぞれの(n,p)反応によって放射性ニオブである92mNb、95Nb、96Nbが生成し、Mo(99Mo)中に放射化生成不純物として混在し高濃度Mo(99Mo)溶液中に混入してくるが、高濃度Mo(99Mo)溶液中の99mTcを活性炭カラムで吸着回収する際、これらの放射性ニオブは活性炭に吸着しない。そのため、目的とする99mTc回収液中には混入しない。
99Mo溶液型99mTcマスターミルカーとしての本システムは、99Mo吸着保持体を用いないために薬事申請上も有利で低コストであり、また99mTc回収に伴う放射性の廃液や固体廃棄物の発生量が少ない利点がある。しかも高濃度Mo(99Mo)溶液中の微量の99mTcを99Moの混入無く高効率(95%以上)で精製回収することが可能である。
本実施例の99Mo溶液法によれば、現行のFission−99Moアルミナカラム法での99mTc溶出回収と同等の99mTc製品(99mTc濃度・液量)を(n,γ)99Mo溶液から安定的に得ることが可能になり、99mTcマスターミルカーとして製造ラインで使用できる技術が確立される。
1…、ホットセル、2…Mo容器(1)、3…Mo容器(2)、4…制御タンク、16…Tc濃縮精製回収系、22…洗浄液およびTc溶出液の供給系、27…2次精製系、29…Tc回収装置、33…制御系、41…(n,γ)99Mo形成手段、42…高濃度Mo溶液形成手段、43…システム(1)によるTc生成処理手段、44…システム(2)によるTc生成処理手段、49…99mTcの吸着および溶出精製回収手段、50…99mTc液性調整・二次精製手段、51…99mTcの取得手段、52…高濃度Mo溶液の再循環手段、53…吸着カラム、54…活性炭、100…99mTcの高濃度,精製分離および溶出回収システム(99mTcの高濃度および溶出回収システム)。
Claims (9)
- 放射性医薬品原料としての放射性核種99Moを含む高濃度Mo溶液を形成し、99Moの娘核種である99mTcを生成して放射性核種99Moおよび99mTcを含む高濃度Mo(99Mo)溶液を形成し、
形成した当該高濃度Mo(99Mo)溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に当該高濃度Mo(99Mo)溶液中の99mTcを選択的に吸着させ、活性炭に残留するMo(99Mo)をMo脱着剤によって脱着除去を行い、活性炭に残留した微量の99mTcを活性炭から脱着剤による99mTcの脱着処理を行って、99mTcを回収し、
回収した99mTc中に僅かに残留するMo(99Mo)をアルミナカラム法によって除去する二次精製を行い、
脱着処理後の高濃度Mo(99Mo)溶液を再循環回収し、再び放射平衡状態まで99mTcを生成して、放射性核種99Moおよび99mTcを含む高濃度Mo(99Mo)溶液を再び形成すること
を特徴とする放射性医薬品原料としての99mTcの高濃縮および溶出精製回収方法。 - 請求の範囲第1項において、放射性核種99Moを含む高濃度Mo溶液を、原子炉で中性子照射したMo化合物を直接的にアルカリ溶液で溶解することで99Moを含む高濃度Mo溶液を形成し、複数のMo容器に供給し、これらの複数のMo容器に貯められた高濃度Mo溶液を交互に前記活性炭を収納する吸着カラムに通液して99mTcを吸着濃縮し、しかる後に溶出精製することを特徴とする99mTcの高濃縮および溶出精製回収方法。
- 請求の範囲第1項において、前記脱着処理を行って99mTcを回収するに際して、99mTcを吸着する活性炭を希アルカリ溶液で洗浄して活性炭に付着残留するMo(99Mo)を洗浄除去し、その後にさらに高濃度アルカリ溶液による脱着処理を行うことを特徴とする99mTcの高濃縮および溶出精製回収方法。
- 請求の範囲第3項において、前記活性炭を0.05M以上のNaOH溶液で100°C以上で、5気圧以上にして99mTc溶出回収することを特徴とする99mTcの高濃縮および溶出精製回収方法。
- 請求の範囲第1項において、前記脱着処理を行って、99mTcを回収するに際して、99mTcを脱着する活性炭を陰極(カソード)として電気化学処理することを特徴とする99mTcの高濃縮および溶出精製回収方法。
- 請求の範囲第1項において、前記脱着処理を行って、99mTcを回収するに際して、99mTcを吸着する活性炭を還元剤による還元処理することを特徴とする99mTcの高濃縮および溶出精製回収方法。
- 請求の範囲第4項から6項において、99mTcを回収するに際して、高濃度アルカリ溶液による処理、活性炭を陰極(カソード)とする電気化学処理、還元剤による還元処理、これらを組み合わせて処理を行うことを特徴とする99mTcの高濃縮および溶出精製回収方法。
- 放射性医薬品原料としての放射性核種99Moを含む高濃度Mo溶液を形成する高濃度Mo溶液形成手段、
この高濃度Mo溶液中に99Moの娘核種である99mTcを生成して放射性核種99Moおよび99mTcを含む高濃度Mo溶液の形成手段、
生成した当該高濃度Mo溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に当該高濃度Mo溶液中の99mTcを吸着させ、99mTcを吸着した活性炭に残留するMo(99Mo)をMo脱着剤で洗浄し脱離除去する手段、
99mTcを吸着した活性炭に残留するMo(99Mo)をMo脱着剤で洗浄し脱離除去した後99mTc脱着剤による99mTcの脱着処理を行って、99mTcを回収精製する99mTc吸着、脱着および回収精製手段、
99mTc脱着処理後の高濃度Mo(99Mo)溶液を再利用するため循環回収し、再び放射平衡状態まで99mTcを生成して、放射性核種99Moおよび99mTcを含む高濃度Mo溶液を再び形成する高濃度Mo(99Mo)溶液循環回収手段、
とを備えることを特徴とする放射性医薬品原料としての99mTcの高濃縮および溶出精製回収システム。 - 放射性医薬品原料としての放射性核種99Moを含む高濃度Mo溶液が、大量のMoを直接的にアルカリ溶液で溶解することで形成されるようにした高濃度Mo溶液形成手段、
この高濃度Mo溶液について99Moの娘核種である99mTcを放射平衡状態まで生成して放射性核種99Moおよび99mTcを含む高濃度Mo(99Mo)溶液をする手段、
生成した当該高濃度Mo(99Mo)溶液を活性炭を内蔵する吸着カラムへ通液して該活性炭に99mTcを選択的に吸着させる99mTc吸着手段、活性炭に残留したMo(99Mo)をMo脱着剤によって洗浄し脱着するMo(99Mo)脱着手段、
99mTcを吸着した活性炭から99mTc脱着剤による99mTcの脱着処理を行って、99mTcを精製回収する99mTc脱着および精製回収手段、
活性炭への99mTc吸着回収処理後の高濃度Mo(99Mo)溶液を再利用のため循環回収し、放射平衡状態まで99mTcを生成して、放射性核種99Moおよび99mTcを含む高濃度Mo溶液を再び形成する高濃度Mo(99Mo)溶液循環回収手段、
とを備えることを特徴とする放射性医薬品およびその標識化合物原料としての99mTcの高濃縮および溶出精製回収システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/378,819 US9236153B2 (en) | 2009-06-19 | 2009-07-03 | Method of recovering enriched radioactive technetium and system therefor |
EP09846215.3A EP2444106A4 (en) | 2009-06-19 | 2009-07-03 | METHOD AND SYSTEM FOR CONCENTRATING RADIOACTIVE TECHNETIUM AS A RAW MATERIAL FOR RADIOACTIVE MEDICAMENTS AND A MARKING COMPOUND THEREFOR, AND THEIR DETERMINATION THROUGH THE ELUTION |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-146555 | 2009-06-19 | ||
JP2009146555A JP5427483B2 (ja) | 2009-06-19 | 2009-06-19 | 放射性医薬品およびその標識化合物原料としての放射性テクネチウムの濃縮および溶出回収方法、およびシステム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010146722A1 true WO2010146722A1 (ja) | 2010-12-23 |
Family
ID=43356060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/062570 WO2010146722A1 (ja) | 2009-06-19 | 2009-07-03 | 放射性医薬品およびその標識化合物原料としての放射性テクネチウムの濃縮および溶出回収方法、およびシステム |
Country Status (4)
Country | Link |
---|---|
US (1) | US9236153B2 (ja) |
EP (1) | EP2444106A4 (ja) |
JP (1) | JP5427483B2 (ja) |
WO (1) | WO2010146722A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016017935A (ja) * | 2014-07-11 | 2016-02-01 | 株式会社化研 | 医療診断用99mTc回収装置 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2976831B1 (fr) * | 2011-06-23 | 2013-07-26 | Commissariat Energie Atomique | Poudre d'un alliage a base d'uranium et de molybdene en phase gamma-metastable, composition de poudres comprenant cette poudre, et utilisations desdites poudre et composition |
JP5817977B2 (ja) * | 2011-08-08 | 2015-11-18 | 国立研究開発法人日本原子力研究開発機構 | 高濃度かつ高放射能をもつテクネチウム−99m溶液の製造方法 |
JP5888781B2 (ja) * | 2011-11-14 | 2016-03-22 | 国立研究開発法人日本原子力研究開発機構 | 放射性モリブデンの作製方法 |
JP5916084B2 (ja) * | 2011-12-23 | 2016-05-11 | 株式会社化研 | 製剤用の精製Mo溶液作製方法及び製剤用の精製Mo溶液作製装置 |
JP5916083B2 (ja) * | 2011-12-23 | 2016-05-11 | 株式会社化研 | 99mTc回収装置 |
JP5916082B2 (ja) * | 2011-12-23 | 2016-05-11 | 株式会社化研 | 99mTcの回収方法及び99mTcの回収装置 |
JP6000600B2 (ja) * | 2012-03-30 | 2016-09-28 | 住友重機械工業株式会社 | 99mTcの精製方法 |
JP6467574B2 (ja) * | 2014-12-26 | 2019-02-13 | 国立研究開発法人量子科学技術研究開発機構 | MoO3から99mTcを熱分離精製する方法及びその装置 |
JP6211639B2 (ja) * | 2016-02-08 | 2017-10-11 | 株式会社化研 | ウランを原料としないMoを原料とする低比放射能99Moからの99mTC製剤及び99mTCジェネレータ製造方法及び99mTC製剤及び99mTCジェネレータ製造装置、並びに99mTCジェネレータカラム |
CN106995882A (zh) * | 2017-01-16 | 2017-08-01 | 原子高科股份有限公司 | 一种使用活性炭材料从钼溶液中提取锝的方法 |
US20180209921A1 (en) * | 2017-01-20 | 2018-07-26 | Mallinckrodt Nuclear Medicine Llc | Systems and methods for assaying an eluate of a radionuclide generator |
CN111500861B (zh) * | 2020-04-01 | 2021-11-05 | 原子高科股份有限公司 | 一种使用活性炭纤维从中性钼溶液中提取锝的方法 |
JP7515815B1 (ja) | 2024-05-07 | 2024-07-16 | Chemical Design Labo.合同会社 | 低比放射能モリブデン99からのテクネチウム99mの抽出方法、その方法を用いたテクネチウム99mを含む生理的食塩水溶液の生成方法、及び天然モリブデンからのテクネチウム99mの回収システム |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57118031A (en) * | 1981-01-12 | 1982-07-22 | Johoku Kagaku Kogyo Kk | Separating, concentrating and recovering method for molybdenum from aqueous solution containing molybdenum |
JPS6423199U (ja) * | 1987-07-31 | 1989-02-07 | ||
JPH01215727A (ja) * | 1988-02-22 | 1989-08-29 | Japan Atom Energy Res Inst | テクネチウムの吸着分離法 |
JPH0254732A (ja) | 1988-08-18 | 1990-02-23 | Japan Atom Energy Res Inst | 活性炭からのテクネチウムの溶出方法 |
JPH07508994A (ja) * | 1992-07-17 | 1995-10-05 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | テトラフルオロエタン異性体の分離 |
JPH08309182A (ja) | 1995-05-22 | 1996-11-26 | Japan Atom Energy Res Inst | 99Mo−99mTcジェネレータ用Mo吸着剤およびその製造方法 |
JPH09122636A (ja) * | 1995-11-01 | 1997-05-13 | Sekisui Chem Co Ltd | 浄水装置 |
JPH09328495A (ja) * | 1988-04-11 | 1997-12-22 | Amersham Internatl Plc | テクネチウム−99mの陽イオン錯体 |
JP2001112624A (ja) * | 1993-10-07 | 2001-04-24 | Matsushita Electric Ind Co Ltd | 給水給湯装置 |
JP2004150977A (ja) * | 2002-10-31 | 2004-05-27 | Kaken:Kk | ジルコニウム系無機高分子を使用した選択的モリブデン吸着剤を利用する中性子照射天然モリブデン型テクネチウム99mジェネレータシステム及びその製造装置 |
JP2004283163A (ja) * | 2003-03-03 | 2004-10-14 | Toyobo Co Ltd | アミノヒドロキシ芳香族カルボン酸の生産に関与する遺伝子およびアミノヒドロキシ安息香酸類の製造方法 |
JP2008102078A (ja) | 2006-10-20 | 2008-05-01 | Japan Atomic Energy Agency | 放射性モリブデンの製造方法と装置及びその方法と装置で製造された放射性モリブデン |
JP2008193964A (ja) * | 2007-02-14 | 2008-08-28 | Kao Corp | 容器詰コーヒー飲料の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3745119A (en) * | 1970-08-17 | 1973-07-10 | Union Carbide Corp | Production of high purity molybdenum using silver coated carbon as adsorbent |
US4683123A (en) * | 1985-08-26 | 1987-07-28 | The United States Of America As Represented By The United States Department Of Energy | Osmium-191/iridium-191m radionuclide |
JP2557396B2 (ja) * | 1987-07-20 | 1996-11-27 | 三菱化学株式会社 | テクネチウムを含有する気体の処理方法 |
US5583259A (en) | 1991-02-08 | 1996-12-10 | Les Laboratoires Beecham S.A. | 2-(RO)-1-(R) ethylamines |
US5774782A (en) * | 1996-05-22 | 1998-06-30 | Lockheed Martin Energy Systems, Inc. | Technetium-99m generator system |
-
2009
- 2009-06-19 JP JP2009146555A patent/JP5427483B2/ja active Active
- 2009-07-03 US US13/378,819 patent/US9236153B2/en not_active Expired - Fee Related
- 2009-07-03 WO PCT/JP2009/062570 patent/WO2010146722A1/ja active Application Filing
- 2009-07-03 EP EP09846215.3A patent/EP2444106A4/en not_active Withdrawn
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57118031A (en) * | 1981-01-12 | 1982-07-22 | Johoku Kagaku Kogyo Kk | Separating, concentrating and recovering method for molybdenum from aqueous solution containing molybdenum |
JPS6423199U (ja) * | 1987-07-31 | 1989-02-07 | ||
JPH01215727A (ja) * | 1988-02-22 | 1989-08-29 | Japan Atom Energy Res Inst | テクネチウムの吸着分離法 |
JPH09328495A (ja) * | 1988-04-11 | 1997-12-22 | Amersham Internatl Plc | テクネチウム−99mの陽イオン錯体 |
JPH0254732A (ja) | 1988-08-18 | 1990-02-23 | Japan Atom Energy Res Inst | 活性炭からのテクネチウムの溶出方法 |
JPH07508994A (ja) * | 1992-07-17 | 1995-10-05 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | テトラフルオロエタン異性体の分離 |
JP2001112624A (ja) * | 1993-10-07 | 2001-04-24 | Matsushita Electric Ind Co Ltd | 給水給湯装置 |
JPH08309182A (ja) | 1995-05-22 | 1996-11-26 | Japan Atom Energy Res Inst | 99Mo−99mTcジェネレータ用Mo吸着剤およびその製造方法 |
JPH09122636A (ja) * | 1995-11-01 | 1997-05-13 | Sekisui Chem Co Ltd | 浄水装置 |
JP2004150977A (ja) * | 2002-10-31 | 2004-05-27 | Kaken:Kk | ジルコニウム系無機高分子を使用した選択的モリブデン吸着剤を利用する中性子照射天然モリブデン型テクネチウム99mジェネレータシステム及びその製造装置 |
JP2004283163A (ja) * | 2003-03-03 | 2004-10-14 | Toyobo Co Ltd | アミノヒドロキシ芳香族カルボン酸の生産に関与する遺伝子およびアミノヒドロキシ安息香酸類の製造方法 |
JP2008102078A (ja) | 2006-10-20 | 2008-05-01 | Japan Atomic Energy Agency | 放射性モリブデンの製造方法と装置及びその方法と装置で製造された放射性モリブデン |
JP2008193964A (ja) * | 2007-02-14 | 2008-08-28 | Kao Corp | 容器詰コーヒー飲料の製造方法 |
Non-Patent Citations (2)
Title |
---|
MASARU KIMURA ET AL.: "Kasseitan o Mochiiru Suichu no Molybdenum (VI) no Bunri Noshukuho", BUNSEKI KAGAKU, vol. 38, 1989, pages 529 - 534, XP008148488 * |
See also references of EP2444106A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016017935A (ja) * | 2014-07-11 | 2016-02-01 | 株式会社化研 | 医療診断用99mTc回収装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2444106A1 (en) | 2012-04-25 |
US20120090431A1 (en) | 2012-04-19 |
US9236153B2 (en) | 2016-01-12 |
JP5427483B2 (ja) | 2014-02-26 |
JP2011002370A (ja) | 2011-01-06 |
EP2444106A4 (en) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5427483B2 (ja) | 放射性医薬品およびその標識化合物原料としての放射性テクネチウムの濃縮および溶出回収方法、およびシステム | |
CA2797901C (en) | Isotope preparation method | |
Lee et al. | Development of industrial-scale fission 99Mo production process using low enriched uranium target | |
US6337055B1 (en) | Inorganic sorbent for molybdenum-99 extraction from irradiated uranium solutions and its method of use | |
Richards | A survey of the production at Brookhaven National Laboratory of radioisotopes for medical research | |
AU2011247362A1 (en) | Isotope production method | |
Mushtaq | Inorganic ion-exchangers: their role in chromatographic radionuclide generators for the decade 1993–2002 | |
Grundler et al. | The metamorphosis of radionuclide production and development at paul scherrer institute | |
WO2017135196A1 (ja) | ミュオン照射による放射性物質の製造方法およびその製造物質 | |
Guseva | Radioisotope generators of short-lived α-emitting radionuclides promising for use in nuclear medicine | |
Tatenuma et al. | A mass-production process of a highly pure medical use 99mTc from natural isotopic Mo (n, γ) 99Mo without using uranium | |
Van Der Walt et al. | The isolation of 99Mo from fission material for use in the 99Mo/99mTc generator for medical use | |
WO2012039038A1 (ja) | Mo-99を利用するTc-99mの製造・抽出方法、及び、Mo-99/Tc-99m液体ジェネレータ | |
Shikata et al. | Production of 99 Mo and its application in nuclear medicine | |
US9991012B2 (en) | Extraction process | |
JP7515815B1 (ja) | 低比放射能モリブデン99からのテクネチウム99mの抽出方法、その方法を用いたテクネチウム99mを含む生理的食塩水溶液の生成方法、及び天然モリブデンからのテクネチウム99mの回収システム | |
Damasceno et al. | Study of new routes for purification of fission 99Mo | |
CN111500861B (zh) | 一种使用活性炭纤维从中性钼溶液中提取锝的方法 | |
Tatenuma et al. | Generator of Highly Concentrated Pure 99mTc from Low Specific Activity 99Mo Produced by Reactor and/or Electron Linear Accelerator | |
Kochnov et al. | Production of fission 99Mo at the VVR-Ts nuclear reactor in a closed-loop process with respect to U | |
IL34751A (en) | Production of fission product technetium 99-m generator | |
Mushtaq et al. | Separation of fission Iodine-131 | |
JP5916084B2 (ja) | 製剤用の精製Mo溶液作製方法及び製剤用の精製Mo溶液作製装置 | |
JP2966521B2 (ja) | 可溶照射ターゲット及び放射性レニウムの製法 | |
JP2001074891A (ja) | 放射線同位体製造装置および方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09846215 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13378819 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009846215 Country of ref document: EP |