WO2010146261A2 - Systeme microfluidique et procede correspondant pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements - Google Patents

Systeme microfluidique et procede correspondant pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements Download PDF

Info

Publication number
WO2010146261A2
WO2010146261A2 PCT/FR2010/000453 FR2010000453W WO2010146261A2 WO 2010146261 A2 WO2010146261 A2 WO 2010146261A2 FR 2010000453 W FR2010000453 W FR 2010000453W WO 2010146261 A2 WO2010146261 A2 WO 2010146261A2
Authority
WO
WIPO (PCT)
Prior art keywords
microchannel
phase
elements
downstream
depletion
Prior art date
Application number
PCT/FR2010/000453
Other languages
English (en)
Other versions
WO2010146261A3 (fr
Inventor
Jean Berthier
Sophie Le Vot
Florence Rivera
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP10743195.9A priority Critical patent/EP2442902B1/fr
Priority to JP2012515537A priority patent/JP5871795B2/ja
Priority to US13/378,875 priority patent/US20120125842A1/en
Publication of WO2010146261A2 publication Critical patent/WO2010146261A2/fr
Publication of WO2010146261A3 publication Critical patent/WO2010146261A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3011Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions

Definitions

  • the present invention relates to a microfluidic system comprising a unit for extracting elements of micrometric or millimeter size from a liquid phase to at least one other liquid phase, a use of this microfluidic system to carry out this extraction preferably to gel by crosslinking polymeric capsules coating such elements, and a corresponding method of extracting these elements.
  • the invention applies to small biological or non-biological elements, such as DNA strands, proteins, cells, clusters of cells or even auxiliary objects in biotechnological applications such as magnetic beads or fluorescent particles, without limitation.
  • the pillar network technique was developed for sorting by "Deterministic Lateral Displacement” or "DLD” (for deterministic lateral displacement).
  • DLD Deterministic Lateral Displacement
  • This technique relies on the use of a periodic network of obstacles that will disturb or not the trajectory of the particles to be sorted. Particles smaller than a critical size Dc (fixed by the geometry of the device) are not generally deflected by the pillars, while those larger than Dc are deflected in the same direction at each row of pads, allowing the particle size separation.
  • the purpose of encapsulating cells, for example such as islets of Langerhans, in microcapsules is to protect them against attacks by the immune system during a transplant.
  • the porosity of the capsule must be such that it allows the entry of low molecular weight molecules essential for the metabolism of encapsulated cells (nutrients, oxygen, etc.) while preventing the entry of higher molecular weight substances such as antibodies or cells of the immune system.
  • This selective permeability of the capsule ensures the absence of direct contact between the encapsulated cells of the donor and those of the immune system of the recipient of the transplant, which makes it possible to limit the doses of immunosuppressive treatment used during the transplantation (treatment with effects heavy secondary).
  • the capsules produced must be biocompatible, mechanically resistant, and sized to the cells to be encapsulated. Following the formation of capsules coating the cells, it is necessary to gel them to solidify the protective layer.
  • Gelation of alginate capsules containing cells is conventionally done by an external gelling process, where the alginate beads are crosslinked in a polycation bath (generally CaCl 2 ) by diffusion of the polycations into the capsule of alginate at a pH close to 7 to maximize cell viability.
  • a disadvantage of this technique is that it does not make it possible to obtain highly homogeneous (high polydispersity) and spherical capsules.
  • K. Liu, HJ Ding, Y. Chen, XZ Zhao Droplet-based synthetic method using microflow focusing and droplet fusion, Microfluid. Nanofluid, Vol. 3, pp.
  • the known techniques of encapsulation / gelation also have the following disadvantages: the size of the capsules is not adapted to the size of the cells or islands to be encapsulated,
  • the encapsulation which is most often followed by external gelation, whereby the capsules are gelled by falling into a polycation bath, is not automated but manual, which results in a heterogeneity of the curing time of a capsule to another, and
  • the dispersion in size of the gelled capsules increases as the size of the droplets decreases.
  • An object of the present invention is to provide a microfluidic system which makes it possible in particular to overcome the aforementioned drawbacks in relation to gelation of capsules, this system comprising a substrate in which is etched a microchannel network comprising a unit for extracting elements from micrometric or millimetric size and which is covered by a protective cover, the extraction unit comprising: a microchannel of depletion in which a first phase to deplete circulates,
  • At least one enrichment microchannel in which circulates a second phase to be enriched, these microchannels of depletion and enrichment joining two by two by two upstream and downstream junctions forming a transfer chamber between these junctions, each junction being such that the central axes of these microchannels are parallel or form an acute angle on either side of the junction, and transfer means disposed in said depletion microchannel and able to transfer said elements of this microchannel of depletion to said at least one enrichment microchannel.
  • a microfluidic system is such that said transfer means comprise studs extending transversely to the central axis of said microchannel of depletion, and that the extraction unit further comprises means for interface stabilizers which are arranged downstream of the transfer means between said junctions and which comprise pillars or a surface coating located on an area of the downstream junction turned towards at least one of the microchannels.
  • size of the elements to be extracted is meant in the present description the diameter or more generally the largest transverse dimension of each of these elements.
  • millimeter size is meant a size of the elements between some 100 microns and a few mm.
  • micron size is meant a size of the elements less than 100 microns.
  • axis of each microchannel is meant a central axis parallel to the flow direction of the liquid in the microchannel.
  • said interface stabilization means may be located close to said pads and are substantially aligned with said downstream junction, these interface stabilization means being able to further perform a function of anti-return elements. having been separated from said first phase by said pads or being associated with separate means exerting this non-return function.
  • these interface stabilizing means may comprise said pillars which preferably have projecting ridges and the last of which may be adjacent to said downstream junction, these pillars being able to be regularly spaced apart with the first pillar which is adjacent to the last stud of the means. transfer.
  • the fact that the edges of the pillars are prominent allows a good grip of the interface.
  • the interface stabilization and non-return means of such pillars are used, they are separated two by two from each other by a distance which is expected to be smaller than the size of the elements transferred.
  • said transfer chamber extends continuously between said or each upstream junction and the corresponding downstream junction, which is preferably also designed so that the flows remain substantially parallel along this chamber.
  • said or each upstream junction and said corresponding downstream junction may each have a top view:
  • V substantially a shape of V, said unit then preferably having a shape of junction with crow's feet, or else
  • both the or each upstream junction or the downstream junction are preferably such that the flows or flows of the two convergent and diverging phases are respectively centered on substantially parallel axes or between them an acute angle. Note that this parallelism or this acute angle of flux is not to be confused with the parallelism or acute angle characterizing the junction itself (ie the outer wall of this junction), but testifies to the internal geometry of the concerned, as will be explained in more detail below.
  • the or each upstream junction and the or each downstream junction may extend towards the opposite junction by an impermeable separating partition between phases extending over a distance designed to increase the parallelism of said flows in said chamber.
  • these upstream and downstream dividing partitions extending the inner faces of respective walls of the upstream and downstream junctions make it possible to provide adjacent flow directions joining each other. separating which are substantially parallel, even if these junctions each form a right angle or even obtuse at the outer face of their wall.
  • these partition walls can make it possible to correct a junction angle that is too high (notably equal to or greater than 90 °) between two inputs or two outputs so that the flows that meet or depart from them are substantially parallel.
  • these may comprise said surface coating which is located on at least one face of said partition wall.
  • this system is provided with external means for circulating the phases under pressure to circulate them by forced convection in said inlets and outlets, and said transfer means are of the hydrodynamic type to exclusively passive fluidic .
  • the extraction unit of the microfluidic system differs from those using purely diffusive transfer, as for example in the abovementioned document EP-B 1-787 029. Moreover, this unit does not implement active methods. - for example electrical - which can damage the elements that one handles, in particular in the case of biological objects, but only a passive method (the only source of energy used being the micropumps external to the system).
  • the fluids flowing respectively in the microchannel of depletion and in the microchannel of enrichment flow in the same direction. They are preferentially immiscible, which allows the presence of a well-defined interface between these two fluids.
  • well delimited is meant that it extends over a small thickness, less than a few nm.
  • said transfer pads preferably having a wall without projecting ridges such as cylindrical pads, are arranged on at least one row forming for the or each row an angle of 5 °. at 85 ° with the direction of this microchannel and preferably between 20 ° and 60 °, these pads being intended selectively deflecting all or part of said elements to force them to move toward said or each adjacent enrichment microchannel. It will be noted that the or each row of pads thus extends transversely to the direction of flow of the fluid flowing in this microchannel of depletion.
  • the transfer means according to this example may comprise several rows of pads which are arranged successively along the microchannel of depletion in the transfer chamber, and which comprise: an upstream row adjacent to said upstream junction, which further extends over at least a portion of the passage section of said adjacent depletion microchannel and whose obstacles are dimensioned and spaced so as to oppose the passage of at least one larger class of larger elements at the spacing between these upstream obstacles and diverting them towards a distal output of this enrichment microchannel which is thus coupled to this upstream row, and
  • At least one downstream row adjacent to said downstream junction which extends over a passage section smaller than that of the upstream row and whose obstacles are sized and spaced so as to oppose the passage of at least one other category of elements, smaller than the previous elements, greater than the spacing between these downstream obstacles which crossed the upstream row and divert them towards this microchannel of enrichment by channeling them towards a proximal exit of the latter which forms for example a crowbar with said distal output and with the microchannel of depletion and which is thus coupled to this downstream row.
  • these deflection transfer means may be arranged in the form of rows of pads which are arranged in the chamber transversely to the microchannel of depletion and, depending on the application, to the enrichment microchannel. , and which are designed to achieve a deterministic lateral shift (“DLD") passing the elements in deflecting them gradually with each passage from one row to the next row.
  • DLD deterministic lateral shift
  • these deflection transfer means may further comprise (ie in addition to said pads) at least one deflector which is constituted by an internal projection of the lateral wall of said depletion microchannel. formed opposite said transfer chamber and which has for example a triangular cross section.
  • interface stabilization means which are capable of stabilizing the interface between said streams in mutual contact, it will be noted that they make it possible to prevent liquid drops of a phase (and in particular of the phase to be depleted). be formed in another phase (especially in the phase to be enriched). Such stabilizing means are useful when the two phases flowing in adjacent microchannels are immiscible.
  • said transfer chamber may also include non-return means for providing a so-called anti-return function, that is to say that they oppose the return to the depleted phase said elements transferred to the enrichment phase.
  • This transfer chamber may comprise interface stabilization and non-return means, i.e. providing both interface stabilization and anti-return functions.
  • interface stabilization means and these antiretour means are arranged downstream of said transfer means in an interfacial zone between these flows located substantially in the extension of the downstream junction. Interface stabilization means may also be arranged upstream of this interfacial zone.
  • said microchannels of depletion and enrichment have their upstream and downstream junctions in the form of flanges, said transfer pads, for example of square section, being located downstream. upstream junction and adjacent to the downstream junction, these studs being evenly spaced in the extension of the side wall of the input of the depletion microchannel which is opposite to the input of the enrichment microchannel, and in the extension of the output of the enrichment microchannel, which output is substantially coaxial with the input of the microchannel depletion, so as to channel the elements without deviating their path from the input of the microchannel depletion at the output of the microchannel enrichment.
  • these transfer means which do not implement deviation of the elements to be extracted may consist exclusively of such a row of pads which extends transversely to the direction of flow of the fluid flowing in the depletion channel. The spacing between these pads is then smaller than the size of the elements to be separated.
  • a row of pads constitutes a means for transferring the elements of the microchannel of depletion to the microchannel of enrichment and, in a second part, this row of pads is in contact with the interface between the circulating fluids. respectively in the microchannels of depletion and enrichment.
  • the row of pads then constitutes a means of stabilizing the interface and the non-return of the separate elements.
  • said extraction unit can be coupled downstream to at least one pressure drop reduction means, such as a coil, which is also included in said microchannel network and which is intended to maintain a pressure of the second enrichment phase slightly higher than that of the first phase of depletion to prevent the droplets of the latter from entering this second enrichment phase and so as to have substantially equal flow velocities on both sides of the interface.
  • a pressure drop reduction means such as a coil
  • any means making it possible to reduce the pressure drops can be used, replacing this coil which is only an exemplary embodiment of the invention.
  • said extraction unit can be coupled upstream to an encapsulation unit of the elements, such as clusters of cells, also included in said microfluidic system, the extraction unit then being able to ensure gelation by crosslinking of each polymeric capsule obtained at the outlet of the encapsulation unit, a pre-gelling module optionally being interposed between these encapsulation and extraction units, and an additional encapsulation module, for example of microfluidic flow-focusing device ("MFDD") type, be provided downstream of the extraction unit.
  • MFDD microfluidic flow-focusing device
  • microfluidic systems according to the invention should preferably be sterilizable, since the gelled capsules obtained must be able to be transplanted into an individual, if appropriate.
  • a system according to the invention can be made of a plastic material (for example PDMS), glass or silicon, without limitation.
  • a microfluidic system according to the invention may be advantageously used to extract millimetric or micrometric size elements, such as clusters of cells such as islands of Langerhans, a first liquid phase to deplete to at least a second liquid phase to enrich miscible or not with this first phase or with an adjacent intermediate phase.
  • millimetric or micrometric size elements such as clusters of cells such as islands of Langerhans
  • this use consists in carrying out the gelation by crosslinking of polymeric coating capsules which are previously formed around these elements within said microfluidic system and which are for example based on a hydrogel of alginate, by transfer of these capsules respectively coating said elements of an oily organic phase to deplete the containers to an aqueous phase to be enriched which is immiscible with this oily phase and which contains a gelling agent preferably based on polyions, such as calcium ions.
  • these previously formed capsules may be monolayer or multilayer and are advantageously biocompatible, mechanically resistant and with selective permeability.
  • the polymer used for encapsulation may be, for example, an alginate hydrogel, the polymer most commonly used for encapsulation.
  • other encapsulation materials could be chosen, such as chitosan, carrageenans, agarose gels, polyethylene glycols (PEG), without limitation, provided that the encapsulation unit is adapted to type of gelation required by the chosen polymer.
  • this use consists in using first and second phases to be depleted and enriched miscible in pairs and to generate, downstream of said transfer chamber, a gradient transversal concentration.
  • An extraction method of millimetric or micrometric size elements, such as clusters of cells such as islets of Langerhans, a first liquid phase to deplete to at least a second liquid phase to enrich miscible or not with this first phase or with an adjacent intermediate phase, comprises contacting the respective flows of these phases, which is forced to flow by forced convection in a laminar regime (preferably "hyperlaminaire", ie with a Reynolds number less than 1) in a depletion microchannel and at least one enrichment microchannel etched into a substrate of a microfluidic system, such that these streams are, on the one hand, substantially parallel to each other or form an acute angle joining in two upstream and downstream junctions between these microchannels and, on the other hand, remain parallel throughout the duration of their mutual contact, to force the e transfer of these elements from one phase to another exclusively by passive fluidics.
  • a laminar regime preferably "hyperlaminaire", ie with a Reynolds number less than 1
  • these streams are, on the one hand, substantially
  • this method is such that it comprises a transfer of said elements of the microchannel of depletion to said at least one enrichment microchannel by means of studs extending transversely to the central axis of said depletion microchannel, and then an interface stabilization performed downstream of said pads and upstream of said downstream junction.
  • this interface stabilization can be achieved by an arrangement of pillars which are located near said pads and which are substantially aligned with said downstream junction, or by a surface treatment located on an area of said downstream junction turned towards the at least one of said microchannels, this surface treatment being for example of lipophilic or hydrophobic type.
  • this method may further comprise the exercise of a non-return function of the elements having been separated from said first phase by said pads, this anti-return function resulting from this stabilization or being exercised separately from it.
  • the size of the islets of Langerhans can vary from 20 to 400 microns against 1 to 10 microns on average for a cell, and these islets must be handled with even greater precaution than single cells because of their fragility and their low cohesion, which can ensure the microfluidic systems of the invention.
  • FIG. 1 is a diagrammatic cross-sectional view of a microfluidic system according to the invention in a first phase of its manufacturing process showing the oxidation of the substrate
  • FIG. 2 is a schematic cross-sectional view of the system of FIG. 1 in a second phase of its manufacturing process showing the spreading a photosensitive resin on this oxidized substrate
  • FIG. 3 is a schematic cross-sectional view of the system of FIG.
  • FIG. 4 is a schematic cross-sectional view of the system of Figure 3 in a fourth phase of its manufacturing process showing the result of Figure 5 is a schematic cross-sectional view of the system of Figure 4 in a fifth phase of its manufacturing process showing the result of a step of delaminating the resin and deoxidizing by wet etching
  • FIG. 6 is a schematic cross-sectional view of the system of FIG. 5 in a sixth phase of its manufacturing process showing the result of an oxidation step
  • FIG. 7 is a schematic cross-sectional view of the system of FIG. FIG.
  • FIG. 8 is a partial schematic view from above of a biphasic extraction unit of a microfluidic system according to an example of the first embodiment of the invention, showing the deflection of encapsulated elements for their transfer of a phase to be depleted to a phase to be enriched
  • FIG. 8a is a partial schematic view from above of a biphasic extraction unit of a microfluidic system according to another example of the first embodiment of the invention, alternatively FIG. 8, FIG. 8b is a partial schematic view from above of another variant of the biphasic extraction unit of FIG. 8, FIG.
  • FIG. 9 is a partial schematic view from above of a biphasic extraction unit. according to a variant of Figure 8 according to the first embodiment and also showing the deflection of these elements
  • Figure 10 is a partial schematic view from above of a two-phase extraction unit according to another variant of the FIG. 8 according to the first mode, showing the respective deviations of two size categories of these elements
  • FIG. 11 is a partial schematic view from above showing a dimensional example of an upstream two-inlet junction of an extraction unit according to FIGS. 8 to 10
  • FIG. 12 is a partial schematic view from above showing a dimensional example. of a downstream junction with two inputs of an extraction unit according to FIGS. 8 to 10
  • FIG. 13 is a partial schematic view from above of a two-phase extraction unit according to another variant of FIG.
  • FIG. 14 is a partial schematic view from above of a biphasic extraction unit according to another variant of FIG. 8 according to the first embodiment, showing a deflection by a deflector of these elements
  • FIG. 14a is a partial schematic view from above of a two-phase extraction unit according to a variant of FIG. 14, in which the deflector is coupled to the deflection means of FIGS. 8 to 12
  • FIG. 15 is a partial schematic view from above of a two-phase extraction unit according to an example of the second embodiment of the invention, showing a pipe without deviation of these elements for their transfer from a phase to be depleted.
  • FIG. 16 is a partial schematic view from above of a three-phase extraction unit according to an example of the first embodiment of the invention, showing the deflection of elements for their successive transfer to two respectively intermediate phase and to enrich in these elements
  • Figure 17 is a partial schematic view from above of a three-phase extraction unit according to a variant of Figure 16 according to the first embodiment, showing the respective deviations of two size categories of these elements in the other two phases
  • FIG. 18 is a partial schematic view from above of a microfluidic system according to the invention, the extraction unit of which is according to FIG. 8 and is coupled upstream to a capsule pre-gelling module and downstream to an additional encapsulation module for obtaining a double encapsulation of the extracted elements
  • FIG. 8 is a partial schematic view from above of a microfluidic system according to the invention, the extraction unit of which is according to FIG. 8 and is coupled upstream to a capsule pre-gelling module and downstream to an additional encapsulation module for obtaining a double encapsulation of the extracted elements
  • FIG. 19 is a partial schematic view from above of a microfluidic system according to a variant of FIG. 18 which differs only from the latter in that the extraction unit coupled to these modules uses four phases for the final obtaining of a three-layer capsule
  • FIG. 19a is a partial schematic view from above of a microfluidic system according to a variant of FIG. FIG. 19 implementing series extraction units according to the principle of FIG. 15,
  • FIG. 20 is a schematic view in diametral section of a gelled capsule obtained by a system according to FIGS. 18 or 19, showing centering. of each element obtained in this capsule
  • FIG. 21 is a photograph showing partially in plan view a biphasic extraction unit with deflector according to the first embodiment of the invention.
  • FIG. 22 is a schematic top view of an example of transfer means and stabilization and anti-return means used in a unit.
  • FIG. 23 is a schematic view from above of another example of transfer and stabilization / non-return means that can be used in a baffle extraction unit of the type of that of FIG.
  • FIG. 24 is a schematic view from above of another example of transfer and stabilization / non-return means that can be used in an extraction unit of the type of that of FIG. 21 but with a larger deflector.
  • FIG. 25 is a diagram showing partially in plan view a two-phase extraction unit according to the first embodiment of the invention according to a variant of FIG.
  • FIG. 26 is a view generally showing a top view of a microfluidic system according to the invention, the extraction unit for capsule gelation is coupled upstream to an encapsulation unit of the elements to be extracted, and downstream to a coil for adjusting the respective pressures and velocities of the two phases to be depleted and enriched,
  • FIG. 27 is a view showing locally in top view and on a larger scale the coil of FIG. 26 coupled to the extraction unit
  • FIG. 28 is a view showing locally in top view and on a larger scale the encapsulation unit of FIG. 26
  • FIG. 29 is a view showing locally in a view from above and on a larger scale the unit of FIG. Fig. 26 is coupled to the coil
  • Fig. 30 is a schematic showing locally in plan view and again on a larger scale the extraction unit of Fig. 29, which is of the type shown in Fig. 22.
  • a microfluidic system 1 according to the invention can for example be made as follows, with reference to FIGS. 1 to 7, which account for various steps based on known methods of microelectronics on silicon, ie particularly lithography, deep etching oxidation, stripping and sealing of a protective cover
  • microsystem 1 This technology on silicon has the advantage of being very accurate (of the order of a micrometer) and not limiting both in the etching depths as the width of the patterns. More specifically, the implementation protocol of microsystem 1 is as follows:
  • a silicon oxide deposition 4 (FIG. 1) is carried out on the silicon substrate. Then a photosensitive resin 5 is deposited by spreading on the front face (FIG. 2), after which the silicon oxide 4 is etched through the resin layer 5 by photolithography and dry etching of the silicon oxide 4 stopping on the silicon substrate 3 (FIG. 3). This substrate 3 is then etched at the desired depth of the microchannels by a deep etching 6 (FIG. 4), and then the resin is
  • the chips obtained are then cut and a protective cover 2 made of glass - or another transparent material to allow observation - is sealed, for example by anodic sealing or direct sealing (FIG. 7).
  • a hydrophobic silanization surface treatment can also be performed.
  • the protocol described above is one of several manufacturing protocols that can be followed.
  • a material other than silicon for example a PDMS (polydimethylsiloxane) or else another elastomer, by molding on a "master" (i.e. matrix) previously prepared by photolithography for example.
  • master i.e. matrix
  • the extraction unit 10 of FIG. 8 comprises two microchannels respectively of depletion 11 and of enrichment 12 which are juxtaposed in a substantially parallel manner on the substrate 3 and in which are intended to circulate only by forced convection two liquid phases to depleting A and enriching B elements E to extract which are preferably selected immiscible with each other (these phases A and B respectively being oily and aqueous in the preferred case of the use of the unit 10 to gel polymeric capsules coating the elements E).
  • the microchannel 11 has an inlet 11a and an outlet 11b
  • the microchannel 12 has an inlet 12a and an outlet 12b which form respectively with 11a and 11b an upstream junction Ja and a downstream junction Jb both in ground flanges (ie in forming a V with branches close together at a very low acute angle and slightly outwardly flared).
  • the microchannels 11 and 12 are joined between these junctions Ja and Jb forming a transfer chamber 13 which is designed to make contact between the phases A and B circulating in "hyperlaminaire" regime (Reynolds number less than 1) so as to transfer by means exclusively hydrodynamic 14 located in this chamber 13, E elements such as cell clusters encapsulated in this embodiment, via a deviation of these elements of the microchannel 11 to the microchannel 12.
  • phase flows A and B converge in contact with each other downstream of Ja and diverge from each other upstream of next Jb directions in each case substantially parallel, like the flows of these phases A and B in the transfer chamber 13 which are provided to remain parallel to each other during their circulation in contact with one another.
  • Phases A and B preferably flow in the same direction.
  • the partition 15 of the upstream junction Ja can be extended by a row of separation pillars 16 aligned along the axis of this partition 15. It will be noted that, as a variant, this upstream partition 15 could be replaced by such pillars 16 aligned along the axis of the bisector of this upstream junction Ja.
  • a zone Z2 which is situated in the chamber 13 and in which the deflection transfer means 14 formed in this chamber are located.
  • a row of regularly spaced pads preferably cylindrical so as not to alter the elements E
  • these pads 14 extending across the passage section of the microchannel 11 and almost to the interface between the phases A and B (ie up to the meeting zone of the microchannels 11 and 12) at an angle of approximately 45 ° with the direction of this microchannel 11, so as to oppose the passage of the elements E by deflecting them towards the microchannel 12 ;
  • a zone Z3 comprising a row of pillars 16 parallel to the flow of the phases A and B and preferably of polygonal section (for example square), these pillars 16 being designed to stabilize the interface between the phases A and B and for to prevent the elements having migrated in phase B from returning to phase A (the spacing between pillars 16 being chosen smaller than the diameter of elements E); and
  • zone Z4 which allows the evacuation of the phases A and B via the two independent outputs 11b and 12b allowing the separation of the phase A depleted or deprived of elements E and phase B enriched therein.
  • the single row of pads 14 allows the deflection of elements E "monodisperse” (ie substantially the same size) without hindering the flow of phase A, and that the spacing between pads 14 is less than the diameter elements E.
  • a row of pads 14 acts in a filter, that is to say, it blocks, in the flow direction of phase A, the passage of elements whose size exceeds the mesh of the filter, this mesh being here defined by the spacing between two consecutive pads 14.
  • the aforementioned angle of the row of pads 14 it is a function of the speed of the flow and can therefore vary to a large extent from 30 to 85 ° for example, being reduced for relatively high speeds to avoid or to minimize the impact of the elements E on these pads 14.
  • the pillars 16 constitute both a means of stabilizing the interface and a non-return means.
  • the interface stabilization means may consist of a surface treatment applied to the internal wall of a microchannel at the downstream junction Jb.
  • the surface treatment is applied to a portion of the separating wall 15 and makes this wettable part to the liquid phase contacting it.
  • phase A is organic
  • phase B is aqueous.
  • the means for stabilizing the interface is then a surface treatment, applied on a face 15a of this partition 15 delimiting (i.e. turned towards) the depletion microchannel 11 (which comprises deflection pads 14).
  • This treatment is here a treatment making this part 15a lipophilic, or hydrophobic, so that this part 15a is wettable by the organic phase A.
  • Such a treatment may for example consist in depositing a lipophilic or hydrophobic material, for example by a silanization, on the part 15a.
  • a treatment can be applied to the face 15b of the separating partition 15 delimiting (ie facing towards) the enrichment microchannel 12 at the junction Jb.
  • This last treatment rendering the surface of this portion 15b hydrophilic, may consist of fixing a hydrophilic material (eg SiO 2 , or hydrophilic silane) on this surface.
  • a partition made wettable to the liquid phase A or B flowing in the microchannel 11 or 12 delimited by said partition 15 may constitute an interface stabilization means. Placed adjacent to the pads 14 for transferring the particles, such a partition 15 also forms a non-return means vis-à-vis the elements E transferred.
  • an extraction unit 110 according to the invention can advantageously use a transverse concentration gradient (see arrow F1) in phase B, the row of studs 14 then extending transversely from the microchannel 11 to the microchannel 12 so that the elements E, once transferred to phase B, pass through this concentration gradient. In the case where the gelation carried out by this transfer is rapid, this process can limit the swelling of the polymeric capsules coating the elements E. Alternatively, a double concentration gradient may be used to achieve a sophisticated chemical coating of each capsule.
  • an extraction unit 210 may comprise at least two oblique rows of pads 214a. and 214b substantially parallel, the row of studs 214a of larger diameter being placed upstream and extending both in the microchannels of depletion 211 and enrichment 212 to deflect only the larger elements E to a distal zone ( ie upper in the figure) of the microchannel 212 and then be guided to a 212b1 opposite distal output thereof, while the other smaller E 'elements pass through this row 214a and are in turn deflected by the row 214b downstream of the preceding one and extending only through the microchannel 211.
  • the pads 214a and 214b may also have similar diameters. In this case, the spacing between two consecutive pads 214a is greater than that between two consecutive pads 214b.
  • Figures 11 and 12 identify, by way of indication and in no way limiting, dimensional values used to achieve an extraction unit 10 such as that . of Figure 8.
  • the respective transverse widths W 03 and W o rg of the microchannels 11 and 12 near each junction Ja, Jb can be identical or similar, it being specified that these widths can vary from 1, 2 ⁇ to about 10 ⁇ , where ⁇ is the average diameter of the elements E to be extracted and that the transverse width of the transfer chamber 13 is for example equal to the sum W ⁇ + W or g- in addition, the axial distance W win between the inner end of the upstream junction Ja (formed for example by one of the partition 15 which extends on) and the last deflection pads 14 in row corresponding (located substantially opposite this junction end Ja) may be between about 1.5 ⁇ and 50 ⁇ . As the axial distance W is p between the inner end of the downstream junction Jb (formed for example by one of the partition 15 extending it), even last pad 14, it may be between 1, 5 and ⁇ 20 ⁇ about
  • the spacing between studs can vary from approximately ⁇ / 5 to ⁇ / 2, the diameter of each stud can be between ⁇ / 10 and ⁇ / 5. It is the same for the spacing between the pillars 16 and their diameter.
  • the extraction unit 310 is essentially different from that of FIG. 8, in that the means for transferring the elements E which deviate them from the phase A to the phase B consist of rows obliques of studs 314 which are arranged transversely to the microchannels 11 and 12 and which are designed to obtain a deterministic lateral displacement ("DLD") allowing the elements E to pass by progressively deviating them at each passage from a row to the next row, because the spacing between these pads is greater than the diameter of the elements E.
  • the pads 314 are arranged so that the flow lines of the elements E to deviate are gradually moving towards the interface between the two phases A and B. Thus, the elements E to be separated follow their flow lines and progressively migrate towards the interface.
  • An arrangement of this type does not constitute a filter for the elements to be deflected, but rather a means of progressive deviation.
  • two immiscible phases A and B are preferably used.
  • means 16 for stabilizing the interface and anti-return are arranged downstream of the transfer means 314.
  • the transfer means deflecting the elements E from phase A to phase B within the chamber 413 of the extraction unit 410 consist of a deflector 414a.
  • the elements E are adsorbed in contact with this phase B, in the case where the capillary forces are sufficient.
  • the transfer is less efficient, since the adsorption of the elements E by the phase B towards which they are deflected may not take place satisfactorily.
  • Figure 14a which is a variant of the figure
  • the deflector 414a can be added, on the one hand, deflection pads 14 extending obliquely substantially to the interface between the phases A and B and, on the other hand, the pillars 16 of stabilization / check.
  • the deflection pads 14 are arranged so as to constitute a filter blocking the passage of the elements E to deflect in the flow direction of the depleted fluid (fluid flowing in the microchannel of depletion). Note that with these pillars 16, we obtain a more efficient transfer than that provided by the unit 410 of Figure 14 which is devoid of such pillars 16 and wherein the adsorbed elements in phase B can return to phase A .
  • the extraction unit 510 still has its microchannels of depletion and enrichment 511 and 512 which have their junction upstream Ja and downstream Jb in the form of crowbars, but the transfer of elements E from phase A to phase B is here achieved without the slightest deviation of these elements E.
  • an alignment of pillars 514 regularly spaced (for example of square section) of preferably over the entire length of the transfer chamber 513 downstream of the upstream junction Ja and which extends to the downstream junction Jb in the extension of the side walls of the inlet 511a of the microchannel 511 and the output 512b of the microchannel 512 (the input 511a and the output 512b being provided substantially coaxially), is designed to channel the elements E almost in a straight line of this input 511a of phase A to deplete at this output 512b of phase B to enrich.
  • This alignment of pillars 514 thus extends parallel to the direction followed by the elements E.
  • the shocks of the elements E on the pillars 514 are avoided, which is particularly important for the extraction of fragile elements such as clusters of weakly cohesive cells such as the islets of Langerhans. .
  • the interface between the phases A and B tends to "lean" on the last pillars 514 situated furthest downstream of the chamber 513, ie in the immediate vicinity of the junction Jb.
  • these pillars 514 constitute a means of stabilizing the interface.
  • the pillars 514 are also designed to prevent the passage of the elements E in the outlet 511b of the microchannel 511, their alignment along the entire length of the chamber 513 along the flow axis of the phase A is preferential in this case. goal.
  • the pillars 514 on which supports the interface between the phases A and B also constitute interface stabilization and non-return means.
  • the row of pillars 514 extends transversely to the flow direction of the phase A. It constitutes a filter for the elements E to be separated, in the sense that it blocks their passage in the direction of flow of phase A in the depletion microchannel 511. It will be understood that according to this embodiment, this row of pillars 514 constitutes both a transfer means and an interface stabilization and non-return means.
  • phase A from mixing with phase B 1
  • care is taken to maintain during extraction a pressure slightly higher than that in phase A, for example by means of coil 20 illustrated in Figures 26 and 27 (or other means adapted to reduce pressure losses, for example by reducing the section of the channel). It is thus avoided that droplets of phase A are found in phase B, it being specified that, on the contrary, it is possible to accept the formation of phase B droplets in phase A.
  • this means 20 for reducing losses charging not only allows to adjust the pressures of the phases A and B, but also to maintain their respective speeds substantially close to one another at the level of the transfer chamber, thus avoiding having excessive shear forces on the elements transferred from a phase to another. As illustrated in FIG.
  • an extraction unit 610 can use more than two different phases Ph1 to Ph3, which circulate in parallel microchannels 611, 612 and 613 defining three inputs 611a to 613a, three outputs 611b to 613b, two upstream junctions Ja and two downstream junctions Jb.
  • This passage in phase 2 may for example allow to modify chemically or biologically the surface of the capsules coating these elements E, before to completely gel these capsules by phase 3.
  • phase 1 which is immiscible with a phase 2, while the phases 2 and 3 may be miscible with each other depending on the intended application.
  • FIG. 17 when one is in the presence of two or more element size categories E, E ', it is possible to use in the extraction unit 710 several rows of pads 714a. and 714b as in Fig. 10, and three or more immiscible liquid phases Ph1 to Ph3.
  • the rows of pads 714a and 714b constitute filters respectively for the elements E and E '. Indeed, they block the passage of these elements E and E 'according to the flow direction of their respective microchannels. It can be seen in this FIG.
  • FIGS. 18 and 19 illustrate, in relation to the gelation of capsules coating the elements E to be extracted, such as clusters of cells, the two pre-gelation steps respectively carried out in an organic phase (phase A) and then gelation by transfer in an aqueous phase (phase B) as explained above with reference to FIGS. 8 to 15.
  • Pre-gelation can be obtained by contact with:
  • polyion nanocrystals for gelling the polymeric capsule which is typically alginate or the like
  • these nanocrystals being, for example, calcium acetate, calcium chloride, barium titanate, calcium phosphate or barium chloride, not necessarily miscible with the continuous organic phase (eg based on oil or perfluorinated solvents), or with
  • nanoemulsions containing polyions allowing gelling.
  • pre-gelation occurs and the outer shell of the capsules reticles on a very small thickness, sufficient to stiffen its surface and maintain the spherical shape of the capsule.
  • the advantages of pre-gelation are very numerous, especially since it makes it possible to preserve the spherical shape for the capsules, to maintain them under physiological conditions, to automate the encapsulation and gelling, to make multilayer encapsulations and finally eliminate the "satellite" droplets. The latter will in fact be eliminated downstream of the pre-gelation, because they will follow the flow in the depletion channel and pass into the interslot space 14 acting as a filter because of the reduced size of these droplets. Satellites ". As can be seen in FIGS.
  • the pregelling module PG is coupled upstream to the extraction unit 10 of FIG. 8, which is advantageously coupled downstream to an optional additional encapsulation module 30.
  • the pre-gelled capsules via the PG module in their carrier fluid (oily phase A), they enter the unit 10 and are transferred by the row of pads 14 in a second phase immiscible (aqueous) B.
  • interface stabilizing means and non-return means 16 may be provided.
  • these means are in the form of pillars 16 providing these two functions at a time.
  • liquid heart capsules which, although less currently used, have the advantage of leaving space to the cells which have been encapsulated and which are dividing.
  • microfluidic system makes it possible to carry out gelation at a neutral pH and thus to maximize the viability of the cells, whereas this is not possible for encapsulations in capsules with a liquid core by conventional methods in these capsules are initially gelled and then have their heart dissolved by citrate or EDTA agents.
  • the additional encapsulation module 30 shown in these Figures 18 and 19 is intended to provide optimum quality encapsulation via a double coating.
  • This module 30, for example of the type "MFFD"("Micro Flow Focusing Device” for microfluidic device focusing flow) is coupled to the aqueous phase B containing the capsules for example of alginate in solution.
  • a multilayer capsule C is thus obtained with two coatings C1 and C2 which may be different (alginates of different concentration for example, or else alginate / PLL where PLL is poly-L-Lysine), and with improved centering of each element in capsule C (eg cell clusters) as seen in Fig. 20 because the probability of having two offsets on the same side is low.
  • Such a configuration minimizes the probability of appearance of protrusions during gelling of the capsules, a protrusion designating a part of the encapsulated element not covered or very finely covered with the polymeric shell.
  • Gelling non-protruding gelled capsules is particularly important when the encapsulated element is intended to be implanted in a living body, to avoid any immune reaction, such a reaction may result in rejection of the graft.
  • Ph 1 organic phase + calcium nanocrystals
  • Ph.sub.2 aqueous phase + calcium
  • Ph.sub.3 aqueous phase + PLL
  • Ph.sub.4 aqueous phase + alginate
  • the aqueous phases Ph2 to Ph4 are miscible with each other, whereas the only organic phase Ph1 is immiscible with the other three.
  • Interface stabilization means constituted by pillars 16 are provided between the transfer pads 14 and the downstream junction of the microchannels in which the phases 1 and 2 circulate, these phases being immiscible.
  • multi-encapsulation is performed by serially arranging several non-deflection extraction units 510 'and 510 ", each of the type of that of FIG. 15.
  • the first extraction unit 510 ' is designed, via the pillars 514, to channel in a straight line the elements E in the form of droplets containing cells carried by the phase A to be depleted, towards the exit of the phase B to be enriched which gels these droplets
  • the second extraction unit 510 " is designed, via pillars 514 analogous, to channel the gelled droplets in the phase B to the outlet of a third phase C containing a new encapsulant
  • the extraction unit 810 of FIG. 21 (part of which is shown schematically in FIG. 23) is such that the upstream junction Ja and the downstream junction Jb each have a U-shape in view from above, the unit 810 presenting then a form of H whose widened transverse bar forms the transfer chamber and whose legs form the inputs 811a, 812a and 811b outputs, 812b.
  • the oblique row of cylindrical deflection studs 814 (of diameter equal to 40 ⁇ m) is combined with an internal deflector 814a of triangular section formed on the external side wall of the depletion microchannel 811 and whose ramp, which forms an angle ⁇ by example of 30 ° with this wall, is extended in the same direction by the pads 814.
  • the dimensions illustrated h, E and g in this example are respectively 800 microns, 80 microns and 40 microns.
  • the pillars 816 shaped lozenges for the stabilization of the interface and the non-return elements they have a diagonal of 40 microns. The values given by way of example have been calculated for a device of depth 200 ⁇ m.
  • FIGS. 22 and 24 respectively illustrate the row of deflection pads 814 devoid of an upstream deflector, and provided with a deflector 814b similar to that of FIGS. 21 and 23 but whose transverse height is much higher, being almost or as important as the width of the depletion microchannel 811.
  • the extraction unit 910 of FIG. 25 differs only from that of FIG. 21, in that it lacks the alignment of the stabilization pillars of the interface and the anti-return elements. Indeed, we see that the transfer means of the latter are exclusively constituted here of an oblique row of cylindrical studs extending from the wall external side of the depletion microchannel 911 at the downstream junction Jb, so as to deflect these elements towards the microchannel 912.
  • the angle ⁇ , and the distances h and E are for example the same as in FIG.
  • the microfluidic system illustrated in FIGS. 26 and following is adapted to a depth of the microchannels in the substrate 3 of 200 ⁇ m.
  • the coil 20 visible in FIGS. 26 and 27 is provided to maintain within the extraction unit 1010 (see FIG. 30) a liquid pressure in the enrichment phase greater than that of the depletion phase, to avoid droplets of the latter do not enter this phase of enrichment.
  • the hydrodynamic resistances of these phases are thus adjusted as a function of the viscosity of these phases. As shown in the figure
  • this H-shaped extraction unit 1010 is similar to that of FIG. 21 (same dimensions h, g, E and ⁇ ), while removing the deflector 814a to have as transfer means only the oblique row of cylindrical studs 1014 and the alignment of stabilization / nonreturn pillars 1016.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Micromachines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

L'invention concerne un système microfluidique comprenant une unité d'extraction d'éléments d'une phase liquide à au moins une autre phase liquide, une utilisation de ce système pour réaliser cette extraction de préférence pour gélifier par réticulation des capsules polymériques enrobant de tels éléments, et un procédé d'extraction de ces éléments. Ce système comporte un substrat dans lequel est gravé un réseau de microcanaux comprenant une unité d'extraction (10) d'éléments (E) comprenant : un microcanal d'appauvrissement (11) dans lequel circule une première phase (A) à appauvrir; au moins un microcanal d'enrichissement (12) dans lequel circule une deuxième phase (B) à enrichir, ces microcanaux se rejoignant par deux jonctions amont (Ja) et aval (Jb) et formant une chambre de transfert (13) entre ces jonctions, chaque jonction étant telle que les axes des microcanaux soient parallèles ou forment un angle aigu de part et d'autre de la jonction; et des moyens de transfert (14) disposés dans le microcanal d'appauvrissement pour y dévier les éléments vers le microcanal d'enrichissement. Selon l'invention, les moyens de transfert comprennent des plots (14) s'étendant transversalement à l'axe du microcanal d'appauvrissement, et l'unité d'extraction comprend des moyens de stabilisation d'interface (16) disposés en aval des moyens de transfert entre les jonctions et comprenant des piliers (16) ou un revêtement de surface localisé sur une zone de la jonction aval tournée vers l'un au moins des microcanaux.

Description

SYSTEME MICROFLUIDIQUE ET PROCEDE CORRESPONDANT POUR
LE TRANSFERT D'ELEMENTS ENTRE PHASES LIQUIDES ET UTILISATION DE CE SYSTEME POUR EXTRAIRE CES ELEMENTS.
La présente invention concerne un système microfluidique comprenant une unité d'extraction d'éléments de taille micrométrique ou millimétrique d'une phase liquide à au moins une autre phase liquide, une utilisation de ce système microfluidique pour réaliser cette extraction de préférence pour gélifier par réticulation des capsules polymériques enrobant de tels éléments, et un procédé correspondant d'extraction de ces éléments. L'invention s'applique à des éléments biologiques ou non de petite taille, tels que des brins d'ADN, des protéines, des cellules, des amas de cellules ou même des objets auxiliaires dans les applications biotechnologiques comme par exemple des billes magnétiques ou des particules fluorescentes, à titre non limitatif.
Le transfert d'éléments de petite taille d'une phase liquide dans une autre phase liquide immiscible est un problème d'une importance considérable. On peut par exemple citer le document EP-B1-787 029 pour un tel transfert réalisé exclusivement par diffusion. Quant au transfert par convection forcée, il est en général difficile car il faut contraindre les éléments par une force qui les dirige normalement à l'écoulement et, spécialement dans le cas d'un système diphasique, cette force doit être suffisante pour que ces éléments traversent l'interface entre les deux liquides. Or, ce passage est freiné par la tension de surface entre les deux liquides et par les forces capillaires. Pour effectuer ce transfert de façon passive, il est connu d'utiliser le principe du déflecteur qui peut se présenter sous plusieurs formes, comme par exemple un réseau de piliers ou une simple ligne orientée de piliers.
La technique des réseaux de piliers a été développée pour le tri par « Deterministic Latéral Displacement » ou « DLD » (pour déplacement latéral déterministe). Cette technique (voir en particulier l'article de D. W. Inglis, J. A. Davis, R. H. Austin and J. C. Sturm., Critical particle size for fractionation by deterministic latéral displacement, Lab Chip 6: 655-658, 2006) repose sur l'utilisation d'un réseau périodique d'obstacles qui vont perturber ou non la trajectoire des particules à trier. Les particules plus petites qu'une taille critique Dc (fixée par la géométrie du dispositif) ne sont globalement pas déviées par les piliers, tandis que celles plus grosses que Dc sont déviées dans la même direction à chaque rangée de plots, ce qui permet la séparation en taille des particules. Cependant, il apparaît que cette technique « DLD » a été à notre connaissance uniquement utilisée à ce jour pour le tri de particules en simple phase sans changement de fluide porteur, comme illustré par exemple dans les documents WO-A-2004/037374, US-A-2007059781 ou US- A-2007026381.
La gélification de gouttelettes polymériques est un exemple typique de la nécessité d'un changement de fluide porteur. En biotechnologie, l'utilisation de telles gouttelettes contenant des objets biologiques est de plus en plus prometteuse. Néanmoins, l'étape de gélification qui doit suivre celle de production des gouttelettes est un verrou technologique à l'heure actuelle. En effet, ces gouttelettes ou capsules qui sont typiquement à base d'un hydrogel (e.g. un hydrogel d'alginate) sont produites dans une phase organique (e.g. de l'huile de soja) et doivent être transférées dans une phase aqueuse contenant des polyions tels que des ions calcium à titre d'agent de réticulation, pour obtenir la gélification de l'hydrogel. Les techniques actuelles sont toutes déficientes, car elles provoquent une déformation très importante des capsules qu'il faut préserver le plus possible dans leur forme initiale sphérique. On ne peut donc pas effectuer de transfert de façon « brutale », où des forces d'intensité élevée s'exercent sur les capsules, et cela est d'autant sensible que les éléments à encapsuler sont de grande taille (entre 5 μm et 1 mm) et sont fragiles comme des cellules ou amas de cellules, par exemple.
Le but de l'encapsulation de cellules, par exemple telles que les îlots de Langerhans, dans des microcapsules est de les protéger contre les attaques du système immunitaire lors d'une transplantation. La porosité de la capsule doit être telle qu'elle permet l'entrée des molécules de poids moléculaire faible essentielles au métabolisme des cellules encapsulées (nutriments, oxygène, etc.) tout en empêchant l'entrée de substances de poids moléculaire plus élevé comme les anticorps ou les cellules du système immunitaire. Cette perméabilité sélective de la capsule assure l'absence de contact direct entre les cellules encapsulées du donneur et les celles du système immunitaire du receveur de la transplantation, ce qui permet de limiter les doses de traitement immunosuppresseur utilisées lors de la transplantation (traitement aux effets secondaires lourds). Outre leur perméabilité sélective, les capsules produites doivent être biocompatibles, résistantes mécaniquement, et de taille adaptée aux cellules à encapsuler. Suite à la formation des capsules enrobant les cellules, il est nécessaire de procéder à leur gélification pour solidifier la couche protectrice.
La gélification des capsules d'alginate contenant des cellules se fait classiquement par un procédé de gélification externe, où l'on réticule les billes d'alginate dans un bain de polycations (généralement de CaCI2) par diffusion des polycations dans la capsule d'alginate à un pH proche de 7 pour maximiser la viabilité des cellules. Un inconvénient de cette technique est qu'elle ne permet pas d'obtenir des capsules hautement homogènes (polydispersité élevée) et sphériques. On pourra notamment se reporter à l'article de K. Liu, H. J. Ding, Y. Chen, X.Z. Zhao, Droplet-based synthetic method using microflow focusing and droplet fusion, Microfluid. Nanofluid, Vol. 3, pp. 239-243, 2007, qui présente un système microfluidique mettant en oeuvre un contact dans une chambre circulaire de « ralentissement » et consistant à faire coalescer chaque capsule d'alginate avec une gouttelette aqueuse contenant du carbonate de calcium à titre d'agent de réticulation, avec des capsules gélifiées qui s'écartent nettement de la géométrie sphérique recherchée.
Il existe également un procédé de gélification interne, qui consiste à gélifier les capsules d'alginate par la mise en présence de cristaux de carbonate de calcium dans la phase d'alginate. Lorsque les gouttelettes d'alginate sont plongées dans une solution contenant de l'acide acétique, les ions calcium sont libérés et se fixent sur l'alginate, permettant ainsi la gélification. Ce procédé, bien que permettant d'obtenir des capsules plus homogènes et sensiblement sphériques, présente néanmoins l'inconvénient de devoir être mis en oeuvre à un pH acide proche de 6,4, pénalisant ainsi la viabilité des cellules. On pourra se reporter à l'article de V. L. Workman, S. B. Dunnett, P. KiIIe, and D. D. Palmer, On-chip alginate microencapsulation of functional cells, Macromolecular rapid communications, Vol. 29(2), pp. 165- 170, 2008 pour une description d'un système microfluidique mettant en œuvre ce procédé de gélification interne.
Les techniques connues d'encapsulation/ gélification présentent en outre les inconvénients suivants: - la taille des capsules n'est pas adaptée à la taille des cellules ou îlots à encapsuler,
- l'encapsulation qui est le plus souvent suivie d'une gélification externe, par laquelle les capsules sont gélifiées en tombant dans un bain de polycations, n'est pas automatisée mais manuelle ce qui entraîne une hétérogénéité du temps de réticulation d'une capsule à une autre, et
- la dispersion en taille des capsules gélifiées augmente lorsque la taille des gouttelettes diminue.
Un but de la présente invention est de proposer un système microfluidique permettant notamment de remédier aux inconvénients précités en relation avec la gélification de capsules, ce système comportant un substrat dans lequel est gravé un réseau de microcanaux comprenant une unité d'extraction d'éléments de taille micrométrique ou millimétrique et qui est recouvert d'un capot de protection, l'unité d'extraction comprenant : - un microcanal d'appauvrissement dans lequel circule une première phase à appauvrir,
- au moins un microcanal d'enrichissement dans lequel circule une deuxième phase à enrichir, ces microcanaux d'appauvrissement et d'enrichissement se rejoignant deux à deux par deux jonctions amont et aval en formant une chambre de transfert entre ces jonctions, chaque jonction étant telle que les axes centraux de ces microcanaux soient parallèles ou forment un angle aigu de part et d'autre de la jonction, et - des moyens de transfert disposés dans ledit microcanal d'appauvrissement et aptes à transférer lesdits éléments de ce microcanal d'appauvrissement vers ledit au moins un microcanal d'enrichissement.
A cet effet, un système microfluidique selon l'invention est tel que lesdits moyens de transfert comprennent des plots s'étendant transversalement à l'axe central dudit microcanal d'appauvrissement, et que l'unité d'extraction comprend en outre des moyens de stabilisation d'interface qui sont disposés en aval des moyens de transfert entre lesdites jonctions et qui comprennent des piliers ou bien un revêtement de surface localisé sur une zone de la jonction aval tournée vers l'un au moins des microcanaux.
Par « taille » des éléments à extraire, tels que des capsules enrobant des amas de cellules, par exemple, on entend dans la présente description le diamètre ou plus généralement la plus grande dimension transversale de chacun de ces éléments. Par taille millimétrique, on entend une taille des éléments comprise entre quelques 100 μm et quelques mm. Par taille micrométrique, on entend une taille des éléments inférieure à 100 μm.
Par axe de chaque microcanal, on entend un axe central parallèle à la direction d'écoulement du liquide dans le microcanal. Selon une autre caractéristique de l'invention, lesdits moyens de stabilisation d'interface peuvent être situés à proximité desdits plots et sont sensiblement alignés avec ladite jonction aval, ces moyens de stabilisation d'interface pouvant exercer en outre une fonction anti-retour des éléments ayant été séparés de ladite première phase par lesdits plots ou bien étant associés à des moyens séparés exerçant cette fonction anti-retour.
Avantageusement, ces moyens de stabilisation d'interface peuvent comprendre lesdits piliers qui présentent de préférence des arêtes saillantes et dont le dernier peut être adjacent à ladite jonction aval, ces piliers pouvant être régulièrement espacés avec le premier pilier qui est adjacent au dernier plot des moyens de transfert. Le fait que les arêtes des piliers soient saillantes permet une bonne accroche de l'interface. Dans le cas où l'on utilise à titre de moyens de stabilisation d'interface et anti-retour de tels piliers, ceux-ci sont séparés deux à deux entre eux d'une distance qui est prévue inférieure à la taille des éléments transférés. Selon une autre caractéristique de l'invention, ladite chambre de transfert s'étend continûment entre ladite ou chaque jonction amont et la jonction aval correspondante, laquelle est de préférence également conçue pour que les flux restent sensiblement parallèles le long de cette chambre.
Avantageusement, ladite ou chaque jonction amont et ladite jonction aval correspondante peuvent présenter chacune en vue de dessus :
- sensiblement une forme de V, ladite unité présentant alors de préférence une forme de carrefour à pattes-d'oie, ou bien
- sensiblement une forme de U, ladite unité présentant alors de préférence une forme d'un ou plusieurs H reliés entre eux dont la ou chaque barre transversale élargie forme ladite chambre et dont les jambages forment les entrées et sorties.
Ainsi, tant la ou chaque jonction amont que la ou chaque jonction aval sont de préférence telles que les flux ou écoulements des deux phases qui y convergent et qui en divergent sont respectivement centrés sur des axes sensiblement parallèles ou faisant entre eux un angle aigu. On notera que ce parallélisme ou cet angle aigu des flux n'est pas à confondre avec le parallélisme ou l'angle aigu caractérisant la jonction elle-même correspondante (i.e. la paroi externe de cette jonction), mais témoigne de la géométrie interne de la jonction concernée, comme cela sera expliqué plus en détails ci-après.
Egalement avantageusement, la ou chaque jonction amont et la ou chaque jonction aval peuvent se prolonger en direction de la jonction opposée par une cloison imperméable de séparation entre phases s'étendant sur une distance conçue pour accroître le parallélisme desdits flux dans ladite chambre. On notera que ces cloisons amont et aval de séparation prolongeant les faces internes de parois respectives des jonctions amont et aval permettent de procurer des directions de flux adjacents se rejoignant et se séparant qui sont sensiblement parallèles, même si ces jonctions forment chacune un angle droit ou même obtus au niveau de la face externe de leur paroi. En d'autres termes, ces cloisons de séparation peuvent permettre de corriger un angle de jonction trop élevé (notamment égal ou supérieur à 90°) entre deux entrées ou deux sorties pour que les flux qui s'y rejoignent ou s'en éloignent soient sensiblement parallèles.
Avantageusement en relation avec la variante précitée pour lesdits moyens de stabilisation d'interface, ceux-ci peuvent comprendre ledit revêtement de surface qui est localisé sur au moins une face de ladite cloison de séparation.
Selon une autre caractéristique de l'invention, ce système est pourvu de moyens externes de mise en circulation sous pression des phases pour les faire circuler par convection forcée dans lesdites entrées et sorties, et lesdits moyens de transfert sont de type hydrodynamiques à fluidique exclusivement passive.
On notera que l'unité d'extraction du système microfluidique se distingue de celles utilisant un transfert purement diffusif, comme par exemple dans le document précité EP-B 1-787 029. De plus, cette unité ne met pas en œuvre de méthodes actives - par exemple électriques - qui peuvent endommager les éléments que l'on manipule, notamment dans le cas d'objets biologiques, mais uniquement une méthode passive (la seule source d'énergie utilisée étant les micropompes externes au système).
Les fluides circulant respectivement dans le microcanal d'appauvrissement et dans le microcanal d'enrichissement s'écoulent dans le même sens. Ils sont préférentiellement immiscibles, ce qui permet la présence d'une interface bien délimitée entre ces deux fluides. Par « bien délimitée », on entend qu'elle s'étend sur une faible épaisseur, inférieure à quelques nm.
Selon un premier mode de réalisation de l'invention, lesdits plots de transfert, de préférence à paroi dépourvue d'arêtes saillantes tels que des plots cylindriques, sont disposés sur au moins une rangée en formant pour la ou chaque rangée un angle de 5° à 85° avec la direction de ce microcanal et de préférence compris entre 20° et 60° , ces plots étant destinés à dévier sélectivement tout ou partie desdits éléments pour les forcer à se diriger vers ledit ou chaque microcanal d'enrichissement adjacent. On notera que la ou chaque rangée de plots s'étend ainsi de façon transversale à la direction d'écoulement du fluide circulant dans ce microcanal d'appauvrissement.
Avantageusement, les moyens de transfert selon cet exemple peuvent comprendre plusieurs rangées de plots qui sont agencées de manière successive le long du microcanal d'appauvrissement dans la chambre de transfert, et qui comprennent : -une rangée amont adjacente à ladite jonction amont, qui s'étend en outre sur au moins une partie de la section de passage dudit microcanal d'appauvrissement adjacent et dont les obstacles sont dimensionnés et espacés de sorte à s'opposer au passage d'au moins une catégorie d'éléments de plus grande taille supérieure à l'espacement entre ces obstacles amont et les dévier vers une sortie distale de ce microcanal d'enrichissement qui est ainsi couplée à cette rangée amont, et
- au moins une rangée aval adjacente à ladite jonction aval, qui s'étend sur une section de passage inférieure à celle de la rangée amont et dont les obstacles sont dimensionnés et espacés de sorte à s'opposer au passage d'au moins une autre catégorie d'éléments, de plus petite taille que les éléments précédents, supérieure à l'espacement entre ces obstacles aval qui ont traversé la rangée amont et les dévier vers ce microcanal d'enrichissement en les canalisant vers une sortie proximale de ce dernier qui forme par exemple une patte-d'oie avec ladite sortie distale et avec le microcanal d'appauvrissement et qui est ainsi couplée à cette rangée aval.
Conformément à une variante de réalisation de ce premier mode, ces moyens de transfert par déviation peuvent être disposés sous forme de rangées de plots qui sont agencées dans la chambre transversalement au microcanal d'appauvrissement et, selon l'application, au microcanal d'enrichissement, et qui sont conçues pour l'obtention d'un déplacement latéral déterministe (« DLD ») laissant passer les éléments en les déviant progressivement à chaque passage d'une rangée à la rangée suivante.
Conformément à une autre variante de réalisation de ce premier mode, ces moyens de transfert par déviation peuvent comprendre en outre (i.e. en plus desdits plots) au moins un déflecteur qui est constitué d'une saillie interne de la paroi latérale dudit microcanal d'appauvrissement formée en regard de ladite chambre de transfert et qui présente par exemple une section transversale triangulaire.
Concernant lesdits moyens de stabilisation d'interface qui sont aptes à stabiliser l'interface entre lesdits flux en contact mutuel, on notera qu'ils permettent d'éviter que des gouttes de liquide d'une phase (et notamment de la phase à appauvrir) soit formées dans une autre phase (notamment dans la phase à enrichir). De tels moyens de stabilisation sont utiles lorsque les deux phases circulant dans des microcanaux adjacents sont immiscibles.
Comme indiqué ci-dessus, ladite chambre de transfert peut également comporter des moyens anti-retour permettant d'assurer une fonction dite d'anti-retour, c'est-à-dire qu'ils s'opposent au retour dans la phase appauvrie desdits éléments transférés vers la phase d'enrichissement. Cette chambre de transfert peut comporter des moyens de stabilisation d'interface et d'anti-retour, i.e. assurant à la fois les fonctions de stabilisation d'interface et d'anti-retour.
Ces moyens de stabilisation d'interface et ces moyens antiretour sont agencés en aval desdits moyens de transfert en une zone interfaciale entre ces flux située sensiblement dans le prolongement de la jonction aval. Des moyens de stabilisation d'interface peuvent également être disposés en amont de cette zone interfaciale.
Selon un second mode de réalisation de l'invention, lesdits microcanaux d'appauvrissement et d'enrichissement ont leurs jonctions amont et aval en forme de pattes-d'oie, lesdits plots de transfert, par exemple de section carrée, étant situés en aval de la jonction amont et de manière adjacente à la jonction aval, ces plots étant régulièrement espacés dans le prolongement de la paroi latérale de l'entrée du microcanal d'appauvrissement qui est opposée à l'entrée du microcanal d'enrichissement, et dans le prolongement de la sortie du microcanal d'enrichissement, laquelle sortie est sensiblement coaxiale à l'entrée du microcanal d'appauvrissement, de sorte à canaliser les éléments sans les dévier de leur trajectoire de l'entrée du microcanal d'appauvrissement à la sortie du microcanal d'enrichissement.
Avantageusement, ces moyens de transfert qui ne mettent pas en œuvre de déviation des éléments à extraire peuvent être exclusivement constitués d'une telle rangée de plots qui s'étend transversalement à la direction d'écoulement du fluide circulant dans le canal d'appauvrissement. L'espacement entre ces plots est alors inférieure à la taille des éléments à séparer. Sur une première partie, une telle rangée de plots constitue un moyen de transfert des éléments du microcanal d'appauvrissement vers le microcanal d'enrichissement et, sur une seconde partie, cette rangée de plots est au contact de l'interface entre les fluides circulant respectivement dans les microcanaux d'appauvrissement et d'enrichissement. Sur cette seconde partie, la rangée de plots constitue alors un moyen de stabilisation de l'interface et d'anti-retour des éléments séparés.
Selon une autre caractéristique de l'invention commune aux deux modes de réalisation précités, ladite unité d'extraction peut être couplée en aval à au moins un moyen de réduction des pertes de charge, tel qu'un serpentin, qui est également inclus dans ledit réseau de microcanaux et qui est destiné à maintenir une pression de la deuxième phase d'enrichissement légèrement supérieure à celle de la première phase d'appauvrissement pour éviter que des gouttelettes de cette dernière ne pénètrent dans cette deuxième phase d'enrichissement et de manière à avoir des vitesses d'écoulement sensiblement égales des deux côtés de l'interface. On notera que tout moyen permettant de réduire les pertes de charge peut être utilisé, en remplacement de ce serpentin qui n'est qu'un exemple de réalisation de l'invention.
Selon une autre caractéristique de l'invention également commune à ces deux modes de réalisation, ladite unité d'extraction peut être couplée en amont à une unité d'encapsulation des éléments, tels que des amas de cellules, également comprise dans ledit système microfluidique, l'unité d'extraction étant alors apte à assurer la gélification par réticulation de chaque capsule polymérique obtenue en sortie de l'unité d'encapsulation, un module de pré-gélification étant optionnellement intercalé entre ces unités d'encapsulation et d'extraction, et un module d'encapsulation supplémentaire par exemple de type dispositif microfluidique à focalisation d'écoulement (« MFDD ») pouvant être prévu en aval de l'unité d'extraction.
D'une manière générale, on notera que les systèmes microfluidiques selon l'invention doivent être de préférence stérilisables, car les capsules gélifiées obtenues doivent pouvoir être transplantées chez un individu, le cas échéant. Un système selon l'invention peut être réalisé en une matière plastique (par exemple en PDMS), en verre ou en silicium, à titre non limitatif.
Un système microfluidique selon l'invention, tel que défini par l'ensemble des caractéristiques précitées, peut être avantageusement utilisé pour extraire des éléments de taille millimétrique ou micrométrique, tels que des amas de cellules comme par exemple des îlots de Langerhans, d'une première phase liquide à appauvrir vers au moins une deuxième phase liquide à enrichir miscible ou non avec cette première phase ou avec une phase intermédiaire adjacente.
Selon un exemple préférentiel de réalisation de l'invention, cette utilisation consiste à réaliser la gélification par réticulation de capsules d'enrobage polymériques qui sont préalablement formées autour de ces éléments au sein dudit système microfluidique et qui sont par exemple à base d'un hydrogel d'alginate, par transfert de ces capsules enrobant respectivement lesdits éléments d'une phase organique huileuse à appauvrir les contenant vers une phase aqueuse à enrichir qui est immiscible avec cette phase huileuse et qui contient un agent gélifiant de préférence à base de polyions, tels que des ions calcium. On notera que ces capsules préalablement formées peuvent être monocouche ou multicouches et sont avantageusement biocompatibles, mécaniquement résistantes et à perméabilité sélective. Le polymère utilisé pour l'encapsulation peut être par exemple un hydrogel d'alginate, polymère le plus couramment utilisé pour l'encapsulation. Toutefois, d'autres matières d'encapsulation pourraient être choisie, comme le chitosan, les carraghénanes, les gels d'agarose, les polyéthylènes glycols (PEG), à titre non limitatif, à condition d'adapter l'unité d'encapsulation au type de gélification que requiert le polymère choisi. Selon un autre exemple de réalisation de l'invention, cette utilisation consiste à utiliser des première et deuxième(s) phases à appauvrir et à enrichir miscibles deux à deux entre elles et à y générer, en aval de ladite chambre de transfert, un gradient transversal de concentration.
Un procédé d'extraction selon l'invention d'éléments de taille millimétrique ou micrométrique, tels que des amas de cellules comme par exemple des îlots de Langerhans, d'une première phase liquide à appauvrir vers au moins une deuxième phase liquide à enrichir miscible ou non avec cette première phase ou avec une phase intermédiaire adjacente, comprend une mise en contact des flux respectifs de ces phases, que l'on force à s'écouler par convection forcée en régime laminaire (de préférence « hyperlaminaire », i.e. avec un nombre de Reynolds inférieur à 1) dans un microcanal d'appauvrissement et au moins un microcanal d'enrichissement gravés dans un substrat d'un système microfluidique, de telle manière que ces flux soient, d'une part, sensiblement parallèles entre eux ou forment un angle aigu en se rejoignant en deux jonctions amont et aval entre ces microcanaux et, d'autre part, demeurent parallèles pendant toute la durée de leur contact mutuel, pour forcer le transfert de ces éléments d'une phase à l'autre exclusivement par fluidique passive. Selon l'invention, ce procédé est tel qu'il comprend un transfert desdits éléments du microcanal d'appauvrissement vers ledit au moins un microcanal d'enrichissement au moyen de plots s'étendant transversalement à l'axe central dudit microcanal d'appauvrissement, puis une stabilisation d'interface réalisée en aval desdits plots et en amont de ladite jonction aval.
Avantageusement, cette stabilisation d'interface peut être réalisée par un arrangement de piliers qui sont situés à proximité desdits plots et qui sont sensiblement alignés avec ladite jonction aval, ou par un traitement de surface localisé sur une zone de ladite jonction aval tournée vers l'un au moins desdits microcanaux, ce traitement de surface étant par exemple de type lipophile ou hydrophobe. Selon une autre caractéristique de l'invention, ce procédé peut comprendre en outre l'exercice d'une fonction anti-retour des éléments ayant été séparés de ladite première phase par lesdits plots, cette fonction anti-retour résultant de cette stabilisation ou bien étant exercée séparément de celle-ci. De manière connue, la taille des îlots de Langerhans peut varier de 20 à 400 μm contre 1 à 10 μm en moyenne pour une cellule, et ces îlots doivent être manipulés avec encore plus de précaution que des cellules uniques à cause de leur fragilité et de leur faible cohésion, ce que permettent d'assurer les systèmes microfluidiques de l'invention.
D'autres avantages, caractéristiques et détails de l'invention ressortiront du complément de description qui va suivre en référence à des dessins annexés, donnés uniquement à titre d'exemples et dans lesquels : la figure 1 est une vue schématique en coupe transversale d'un système microfluidique selon l'invention dans une première phase de son procédé de fabrication montrant l'oxydation du substrat, la figure 2 est une vue schématique en coupe transversale du système de la figure 1 dans une seconde phase de son procédé de fabrication montrant l'étalement d'une résine photosensible sur ce substrat oxydé, la figure 3 est une vue schématique en coupe transversale du système de la figure 2 dans une troisième phase de son procédé de fabrication montrant le résultat d'étapes suivantes de photolithographie et de gravure sèche, permettant de créer les microcanaux, la figure 4 est une vue schématique en coupe transversale du système de la figure 3 dans une quatrième phase de son procédé de fabrication montrant le résultat d'étapes de gravure profonde, la figure 5 est une vue schématique en coupe transversale du système de la figure 4 dans une cinquième phase de son procédé de fabrication montrant le résultat d'une étape de délaquage de la résine et de désoxydation par gravure humide, la figure 6 est une vue schématique en coupe transversale du système de la figure 5 dans une sixième phase de son procédé de fabrication montrant le résultat d'une étape de d'oxydation, la figure 7 est une vue schématique en coupe transversale du système de la figure 6 dans une septième phase de son procédé de fabrication montrant le résultat d'une étape de scellement d'un capot de protection afin de délimiter la section des microcanaux, la figure 8 est une vue schématique partielle de dessus d'une unité d'extraction biphasique d'un système microfluidique selon un exemple du premier mode de l'invention, montrant la déviation d'éléments encapsulés pour leur transfert d'une phase à appauvrir à une phase à enrichir, la figure 8a est une vue schématique partielle de dessus d'une unité d'extraction biphasique d'un système microfluidique selon un autre exemple du premier mode de l'invention, en variante de la figure 8, la figure 8b est une vue schématique partielle de dessus d'une autre variante de l'unité d'extraction biphasique de la figure 8, la figure 9 est une vue schématique partielle de dessus d'une unité d'extraction biphasique selon une variante de la figure 8 conforme au premier mode et montrant également la déviation de ces éléments, la figure 10 est une vue schématique partielle de dessus d'une unité d'extraction biphasique selon une autre variante de la figure 8 conforme au premier mode, montrant les déviations respectives de deux catégories de taille de ces éléments, la figure 11 est une vue schématique partielle de dessus montrant un exemple dimensionnel d'une jonction amont à deux entrées d'une unité d'extraction selon les figures 8 à 10, la figure 12 est une vue schématique partielle de dessus montrant un exemple dimensionnel d'une jonction aval à deux entrées d'une unité d'extraction selon les figures 8 à 10, la figure 13 est une vue schématique partielle de dessus d'une unité d'extraction biphasique selon une autre variante de la figure 8 conforme au premier mode, montrant une déviation progressive de ces éléments, la figure 14 est une vue schématique partielle de dessus d'une unité d'extraction biphasique selon une autre variante de la figure 8 conforme au premier mode, montrant une déviation par un déflecteur de ces éléments, la figure 14a est une vue schématique partielle de dessus d'une unité d'extraction biphasique selon une variante de la figure 14 où le déflecteur est couplé aux moyens de déviation des figures 8 à 12, la figure 15 est une vue schématique partielle de dessus d'une unité d'extraction biphasique selon un exemple du second mode de l'invention, montrant une canalisation sans déviation de ces éléments pour leur transfert d'une phase à appauvrir à une phase à enrichir en ces éléments, la figure 16 est une vue schématique partielle de dessus d'une unité d'extraction triphasique selon un exemple du premier mode de l'invention, montrant la déviation d'éléments pour leur transfert successif à deux phases respectivement intermédiaire puis à enrichir en ces éléments, la figure 17 est une vue schématique partielle de dessus d'une unité d'extraction triphasique selon une variante de la figure 16 conforme au premier mode, montrant les déviations respectives de deux catégories de taille de ces éléments dans les deux autres phases, la figure 18 est une vue schématique partielle de dessus d'un système microfluidique selon l'invention dont l'unité d'extraction est selon la figure 8 et est couplée en amont à un module de pré-gélification de capsules et en aval à un module d'encapsulation supplémentaire pour l'obtention d'une double encapsulation des éléments extraits, la figure 19 est une vue schématique partielle de dessus d'un système microfluidique selon une variante de la figure 18 qui se différencie uniquement de cette dernière en ce que l'unité d'extraction couplée à ces modules utilise quatre phases pour l'obtention finale d'une capsule à trois couches, la figure 19a est une vue schématique partielle de dessus d'un système microfluidique selon une variante de la figure 19 mettant en œuvre des unités d'extraction en série selon le principe de la figure 15, la figure 20 est une vue schématique en coupe diamétrale d'une capsule gélifiée obtenue par un système selon les figures 18 ou 19, montrant le centrage de chaque élément obtenu dans cette capsule, la figure 21 est un cliché montrant partiellement en vue de dessus une unité d'extraction biphasique à déflecteur conforme au premier mode de l'invention selon une variante des figures 8 et 14 combinées, les éléments déviés n'étant pas visibles, la figure 22 est une vue schématique de dessus d'un exemple de moyens de transfert et de moyens de stabilisation et anti-retour utilisables dans une unité d'extraction du type de celle de la figure 8, la figure 23 est une vue schématique de dessus d'un autre exemple de moyens de transfert et de stabilisation/ anti-retour utilisables dans une unité d'extraction à déflecteur du type de celle de la figure 21 , la figure 24 est une vue schématique de dessus d'un autre exemple de moyens de transfert et de stabilisation/ anti-retour utilisables dans une unité d'extraction du type de celle de la figure 21 mais à déflecteur plus grand, la figure 25 est un cliché montrant partiellement en vue de dessus une unité d'extraction biphasique conforme au premier mode de l'invention selon une variante de la figure 21 mais sans déflecteur, les éléments déviés n'étant pas visibles, la figure 26 est un cliché montrant globalement en vue de dessus un système microfluidique selon l'invention dont l'unité d'extraction pour la gélification de capsules est couplée en amont à une unité d'encapsulation des éléments à extraire, et en aval à un serpentin pour régler les pressions et les vitesses respectives des deux phases à appauvrir et à enrichir, la figure 27 est un cliché montrant localement en vue de dessus et à plus grande échelle le serpentin de la figure 26 couplé à l'unité d'extraction, la figure 28 est un cliché montrant localement en vue de dessus et à plus grande échelle l'unité d'encapsulation de la figure 26, la figure 29 est un cliché montrant localement en vue de dessus et à plus grande échelle l'unité d'extraction de la figure 26 couplée au serpentin, et la figure 30 est un cliché montrant localement en vue de dessus et encore à une plus grande échelle l'unité d'extraction de la figure 29, laquelle est du type de la figure 22.
Un système microfluidique 1 selon l'invention peut par exemple être réalisé comme suit, en référence aux figures 1 à 7 qui rendent compte de diverses étapes se basant sur des procédés connus de microélectronique sur silicium, i.e. notamment la lithographie, la gravure profonde, l'oxydation, le « stripping » et le scellement d'un capot de protection
2 sur le substrat 3. Cette technologie sur silicium présente l'avantage d'être très précise (de l'ordre du micromètre) et non limitative tant dans les profondeurs de gravure qu'au niveau des largeurs des motifs. Plus précisément, le protocole de réalisation du microsystème 1 est le suivant :
Un dépôt d'oxyde de silicium 4 (figure 1) est effectué sur le substrat de silicium. Puis une résine photosensible 5 est déposée par étalement en face avant (figure 2), suite à quoi l'oxyde de silicium 4 est gravé à travers la couche de résine 5 par photolithographie et gravure sèche de l'oxyde de silicium 4 en s'arrêtant sur le substrat 3 de silicium (figure 3). Ce substrat 3 est ensuite gravé à la profondeur souhaitée des microcanaux par une gravure profonde 6 (figure 4), puis la résine est
« délaquée » (figure 5). L'oxyde de silicium 4 thermique restant est ensuite éliminé par désoxydation au moyen d'une gravure humide (figure 5), puis une nouvelle couche d'oxyde thermique 7 est déposée (figure 6).
Les puces obtenues sont ensuite découpées et un capot de protection 2 en verre - ou en un autre matériau transparent pour permettre l'observation - est scellé, par exemple par scellement anodique ou scellement direct (figure 7). Avant montage des microcanaux ou capillaires (non illustrés), un traitement de surface du type silanisation hydrophobe peut aussi être effectué.
Le protocole décrit ci-dessus est l'un des multiples protocoles de fabrication pouvant être suivis. Par ailleurs, on pourrait utiliser pour le substrat 3 un matériau autre que le silicium, par exemple un PDMS (polydiméthylsiloxane) ou bien un autre élastomère, par moulage sur un « master » (i.e. matrice) préalablement préparé par photolithographie par exemple.
L'unité d'extraction 10 de la figure 8 comporte deux microcanaux respectivement d'appauvrissement 11 et d'enrichissement 12 qui sont juxtaposés de manière sensiblement parallèles sur le substrat 3 et dans lesquels sont destinées à circuler uniquement par convection forcée deux phases liquides à appauvrir A et à enrichir B en éléments E à extraire qui sont, de préférence, choisies immiscibles entre elles (ces phases A et B étant respectivement huileuse et aqueuse dans le cas préférentiel de l'utilisation de l'unité 10 pour gélifier des capsules polymériques enrobant les éléments E). Le microcanal 11 présente une entrée 11a et une sortie 11b, et le microcanal 12 une entrée 12a et une sortie 12b qui forment respectivement avec 11a et 11b une jonction amont Ja et une jonction aval Jb toutes deux en pattes-d'oie (i.e. en formant un V aux branches rapprochées selon un angle aigu très faible et légèrement évasées vers l'extérieur). Les microcanaux 11 et 12 sont réunis entre eux entre ces jonctions Ja et Jb en formant une chambre de transfert 13 qui est conçue pour réaliser le contact entre les phases A et B circulant en régime « hyperlaminaire » (nombre de Reynolds inférieur à 1) de sorte à transférer par des moyens exclusivement hydrodynamiques 14 localisés dans cette chambre 13, des éléments E tels que des amas de cellules encapsulés dans cet exemple de réalisation, via une déviation de ces éléments du microcanal 11 au microcanal 12.
Il résulte de ces jonctions Ja et Jb en pattes-d'oie que les flux des phases A et B convergent au contact l'une de l'autre en aval de Ja et divergent l'une de l'autre en amont de Jb suivant des directions à chaque fois sensiblement parallèles, à l'instar des flux de ces phases A et B dans la chambre de transfert 13 qui sont prévus pour demeurer parallèles entre eux lors de leur circulation au contact l'un de l'autre. Les phases A et B circulent, de préférence, dans le même sens. Afin d'optimiser encore ce parallélisme des flux dans la chambre 13, on prévoit d'adjoindre une cloison séparatrice 15 imperméable aux phases A et B au point de raccordement interne de chaque jonction Ja, Jb, de telle manière que cette cloison 15 soit sensiblement centrée sur la bissectrice de cette jonction Ja, Jb du côté intérieur de cette dernière (i.e. sur la face interne de la paroi de celle-ci). En d'autres termes, ces deux cloisons 15 sont dirigées l'une vers l'autre en étant sensiblement alignées l'une avec l'autre et avec l'interface de contact entre phases A et B dans la chambre 13.
Comme visible à la figure 8a, la cloison 15 de la jonction amont Ja peut être prolongée par une rangée de piliers de séparation 16 alignés selon l'axe de cette cloison 15. On notera qu'en variante cette cloison amont 15 pourrait être remplacée par de tels piliers 16 alignés selon l'axe de la bissectrice de cette jonction amont Ja.
Comme visible à la figure 8, on peut distinguer essentiellement dans l'unité d'extraction 10 : - une zone Z1 initiant le contact entre les phases A et B ;
- une zone Z2 qui est située dans la chambre 13 et dans laquelle se trouvent les moyens de transfert par déviation 14 formés dans cet exemple d'une rangée de plots régulièrement espacés (de préférence cylindriques pour ne pas altérer les éléments E), ces plots 14 s'étendant en travers de la section de passage du microcanal 11 et quasiment jusqu'à l'interface entre les phases A et B (i.e. jusqu'à la zone de réunion des microcanaux 11 et 12) selon un angle de 45° environ avec la direction de ce microcanal 11 , de sorte à s'opposer au passage des éléments E en les déviant vers le microcanal 12 ;
- une zone Z3 comprenant une rangée de piliers 16 parallèle à l'écoulement des phases A et B et de préférence de section polygonale (par exemple carrée), ces piliers 16 étant conçus pour stabiliser l'interface entre les phases A et B et pour éviter que les éléments ayant migré dans la phase B ne retournent dans la phase A (l'espacement entre piliers 16 étant choisi inférieur au diamètre des éléments E); et
- une zone Z4 qui permet l'évacuation des phases A et B via les deux sorties indépendantes 11b et 12b permettant la séparation de la phase A appauvrie ou dépourvue d'éléments E et de la phase B enrichie en ces derniers.
On notera qu'il serait possible d'ajouter une troisième sortie positionnée à l'interface des deux phases A et B1 qui serait destinée à collecter un mélange de celles-ci exempt des éléments E.
On notera également que la rangée unique de plots 14 permet la déviation d'éléments E « monodispersés » (i.e. sensiblement de même taille) sans entraver l'écoulement de la phase A, et que l'espacement entre plots 14 est donc inférieur au diamètre des éléments E. Ainsi, une rangée de plots 14 agit selon un filtre, c'est-à-dire qu'elle bloque, dans la direction d'écoulement de la phase A, le passage des éléments dont la taille dépasse la maille du filtre, cette maille étant ici définie par l'espacement entre deux plots 14 consécutifs. Quant à l'angle précité de la rangée de plots 14, il est fonction de la vitesse de l'écoulement et peut donc varier dans une large mesure de 30 à 85° par exemple, étant réduit pour des vitesses relativement élevées afin d'éviter ou de minimiser l'impact des éléments E sur ces plots 14. On notera en outre que si l'espacement entre les piliers 16 assurant les fonctions anti-retour et de stabilisation de l'interface est choisi suffisamment faible, alors cette stabilisation peut se faire sur une distance non négligeable par rapport aux dimensions de l'unité 10. Selon ce mode de réalisation, les piliers 16 constituent à la fois un moyen de stabilisation de l'interface et un moyen anti-retour.
Comme illustré sur la figure 8b, les moyens de stabilisation d'interface peuvent consister en un traitement de surface appliqué à la paroi interne d'un microcanal, au niveau de la jonction aval Jb. Sur l'exemple représenté sur la figure 8b, le traitement de surface est appliqué sur une partie de la cloison séparatrice 15 et permet de rendre cette partie mouillable à la phase liquide la contactant. Sur l'exemple représenté, la phase A est organique, tandis que la phase B est aqueuse. Le moyen de stabilisation de l'interface est alors un traitement de surface, appliqué sur une face 15a de cette cloison 15 délimitant (i.e. tournée vers) le microcanal d'appauvrissement 11 (lequel comporte des plots de déviation 14). Ce traitement est ici un traitement permettant de rendre cette partie 15a lipophile, ou hydrophobe, de telle sorte que cette partie 15a soit mouillable par la phase organique A. Un tel traitement peut par exemple consister à déposer un matériau lipophile ou hydrophobe, par exemple par une silanisation, sur la partie 15a.
De façon alternative, ou simultanée, un traitement peut être appliqué à la face 15b de la cloison séparatrice 15 délimitant (i.e. tournée vers) le microcanal d'enrichissement 12 au niveau de la jonction Jb. Ce dernier traitement, rendant hydrophile la surface de cette partie 15b, peut consister à fixer un matériau hydrophile (e.g. Siθ2, ou silane hydrophile) sur cette surface.
Ainsi, une cloison 15 rendue mouillable à la phase liquide A ou B circulant dans le microcanal 11 ou 12 délimité par ladite cloison 15, peut constituer un moyen de stabilisation d'interface. Placée de façon adjacente aux plots 14 de transfert des particules, une telle cloison 15 forme également un moyen anti-retour vis-à-vis des éléments E transférés. Comme illustré à la figure 9, une unité d'extraction 110 selon l'invention peut avantageusement utiliser un gradient transverse de concentration (voir flèche F1) dans la phase B, la rangée de plots 14 s'étendant alors transversalement du microcanal 11 au microcanal 12 de manière à ce que les éléments E, une fois transférés dans la phase B, traversent ce gradient de concentration. Dans le cas où la gélification mise en œuvre par ce transfert est rapide, ce procédé peut limiter le gonflement des capsules polymériques enrobant les éléments E. On peut en variante utiliser un double gradient de concentration, pour réaliser un enrobage chimique sophistiqué de chaque capsule.
Comme illustré à la figure 10 qui concerne le cas d'une population d'éléments E « polydispersés » (i.e. présentant diverses catégories de tailles), une unité d'extraction 210 selon l'invention peut comporter au moins deux rangées obliques de plots 214a et 214b sensiblement parallèles, la rangée de plots 214a de plus grand diamètre étant placée en amont et s'étendant à la fois dans les microcanaux d'appauvrissement 211 et d'enrichissement 212 pour dévier uniquement les plus gros éléments E vers une zone distale (i.e. supérieure sur la figure) du microcanal 212 et être ensuite guidés vers une sortie distale en regard 212b1 de celui-ci, alors que les autres éléments E' plus petits passent à travers cette rangée 214a et sont déviées à leur tour par la rangée 214b en aval de la précédente et ne s'étendant qu'à travers le microcanal 211. Ces éléments E' rejoignent ensuite la phase B en aval des éléments E, dans une zone proximale du microcanal 212 (i.e. inférieure sur la figure) et sont canalisées vers une sortie proximale en regard 212b2 de celui-ci. Les plots 214a et 214b peuvent également avoir des diamètres similaires. Dans ce cas, l'espacement entre deux plots 214a consécutifs est plus grand que celui entre deux plots 214b consécutifs.
Les figures 11 et 12 recensent, à titre indicatif et nullement limitatif, des valeurs dimensionnelles utilisables pour réaliser une unité d'extraction 10 telle que celle.de la figure 8.
En premier lieu, les largeurs transversales respectives W03 et Worg des microcanaux 11 et 12 à proximité de chaque jonction Ja, Jb peuvent être identiques ou similaires, étant précisé que ces largeurs peuvent varier de 1 ,2 φ à 10 φ environ, où φ est le diamètre moyen des éléments E à extraire et que la largeur transversale de la chambre de transfert 13 est par exemple égale à la somme W∞ + Worg- De plus, la distance axiale Wwin entre l'extrémité interne de la jonction amont Ja (formée par exemple par celle de la cloison 15 la prolongeant) et le dernier des plots de déviation 14 dans la rangée correspondante (situé sensiblement en regard de cette extrémité de jonction Ja) peut être comprise entre 1,5 φ et 50 φ environ. Quant à la distance axiale Wsep entre l'extrémité interne de la jonction aval Jb (formée par exemple par celle de la cloison 15 la prolongeant) et ce même dernier plot 14, elle peut être comprise entre 1 ,5 φ et 20 φ environ
Concernant la ou chaque rangée de plots 14, 214a, 214b visible aux figures 8 à 10, l'espacement entre plots peut varier de φ / 5 à φ / 2 environ, le diamètre de chaque plot pouvant être compris entre φ / 10 et φ/ 5. Il en est de même pour l'espacement entre les piliers 16 et leur diamètre.
Dans la variante de la figure 13, l'unité d'extraction 310 se distingue essentiellement de celle de la figure 8, en ce que les moyens de transfert des éléments E qui les dévient de la phase A à la phase B sont constitués de rangées obliques de plots 314 qui sont disposées transversalement aux microcanaux 11 et 12 et qui sont conçues pour l'obtention d'un déplacement latéral déterministe (« DLD ») laissant passer les éléments E en les déviant progressivement à chaque passage d'une rangée à la rangée suivante, du fait que l'espacement entre ces plots est supérieur au diamètre des éléments E. Les plots 314 sont arrangés de telle sorte que les lignes d'écoulement des éléments E à dévier se dirigent peu à peu vers l'interface entre les deux phases A et B. Ainsi, les éléments E à séparer suivent leurs lignes d'écoulement et migrent progressivement vers l'interface. Un arrangement de ce type ne constitue pas un filtre pour les éléments à dévier, mais plutôt un moyen de déviation progressif. Selon cette variante, on utilise préférentiellement deux phases A et B immiscibles. Toujours selon cette variante, des moyens 16 de stabilisation de l'interface et d'anti-retour sont disposés en aval des moyens de transfert 314.
Dans la variante de la figure 14, les moyens de transfert déviant les éléments E de la phase A à la phase B au sein de la chambre 413 de l'unité d'extraction 410 sont constitués d'un déflecteur 414a. Les éléments E sont adsorbés au contact de cette phase B, dans le cas où les forces capillaires sont suffisantes. On remarque néanmoins que le transfert est moins efficace, car l'adsorption des éléments E par la phase B vers laquelle ils sont déviés peut ne pas avoir lieu de manière satisfaisante. Comme illustré à la figure 14a qui est une variante de la figure
14, on peut adjoindre au déflecteur 414a, d'une part, des plots de déviation 14 le prolongeant de manière oblique sensiblement jusqu'à l'interface entre les phases A et B et, d'autre part, des piliers 16 de stabilisation/ anti-retour. Les plots de déviation 14 sont arrangés de façon à constituer un filtre bloquant le passage des éléments E à dévier dans la direction d'écoulement du fluide appauvri (fluide s'écoulant dans le microcanal d'appauvrissement). On notera qu'avec ces piliers 16, on obtient un transfert plus efficace que celui procuré par l'unité 410 de la figure 14 qui est dépourvue de tels piliers 16 et dans laquelle les éléments adsorbés dans la phase B peuvent revenir dans la phase A.
Dans l'exemple de la figure 15, l'unité d'extraction 510 selon le second mode de l'invention a toujours ses microcanaux d'appauvrissement et d'enrichissement 511 et 512 qui ont leurs jonctions amont Ja et aval Jb en forme de pattes-d'oie, mais le transfert des éléments E de la phase A à la phase B est ici réalisé sans la moindre déviation de ces éléments E. En effet, un alignement de piliers 514 régulièrement espacés (par exemple de section carrée) de préférence sur toute la longueur la chambre de transfert 513 en aval de la jonction amont Ja et qui s'étend jusqu'à la jonction aval Jb dans le prolongement des parois latérales de l'entrée 511a du microcanal 511 et de la sortie 512b du microcanal 512 (l'entrée 511a et la sortie 512b étant prévues sensiblement coaxiales), est conçu pour canaliser les éléments E quasiment en ligne droite de cette entrée 511a de la phase A à appauvrir à cette sortie 512b de la phase B à enrichir. Cet alignement de piliers 514 s'étend ainsi parallèlement à la direction suivie par les éléments E.
On notera que dans ce second mode de l'invention, on évite les chocs des éléments E sur les piliers 514, ce qui est particulièrement important pour l'extraction d'éléments fragiles tels que des amas de cellules peu cohésifs comme les îlots de Langerhans.
Comme visible à cette figure 15, on notera également que l'interface entre les phases A et B a tendance à « s'appuyer » sur les derniers piliers 514 situés les plus en aval de la chambre 513, i.e. à proximité immédiate de la jonction Jb. Autrement dit, ces piliers 514 constituent un moyen de stabilisation de l'interface. Et comme les piliers 514 sont également conçus pour empêcher le passage des éléments E dans la sortie 511b du microcanal 511 , leur alignement sur toute la longueur de la chambre 513 le long de l'axe d'écoulement de la phase A est préférentiel dans ce but. Ainsi, les piliers 514 sur lesquels d'appuie l'interface entre les phases A et B constituent également des moyens de stabilisation d'interface et d'anti-retour.
Selon ce second mode de réalisation, la rangée de piliers 514 s'étend transversalement à la direction d'écoulement de la phase A. Elle constitue un filtre pour les éléments E à séparer, dans le sens où elle bloque leur passage selon la direction d'écoulement de la phase A dans le microcanal d'appauvrissement 511. On comprendra alors que selon ce mode de réalisation, cette rangée de piliers 514 constitue à la fois un moyen de transfert et un moyen de stabilisation d'interface et anti-retour.
Egalement à titre préférentiel, pour éviter que la phase A ne se mélange avec la phase B1 on fait en sorte de maintenir pendant l'extraction une pression dans celle-ci légèrement plus élevée que celle dans la phase A, par exemple au moyen du serpentin 20 illustré aux figures 26 et 27 (ou d'un autre moyen apte à réduite les pertes de charge, par exemple en réduisant la section du canal). On évite ainsi que des gouttelettes de phase A se retrouvent dans la phase B, étant précisé que l'on peut à l'inverse accepter la formation de gouttelettes de phase B dans la phase A. On notera que ce moyen 20 de réduction des pertes de charge permet non seulement d'ajuster les pressions des phases A et B, mais encore de maintenir leurs vitesses respectives sensiblement voisines l'une de l'autre au niveau de la chambre de transfert, évitant ainsi d'avoir des forces de cisaillement trop importantes sur les éléments transférés d'une phase à une autre. Comme illustré à la figure 16, une unité d'extraction 610 selon l'invention peut utiliser plus de deux phases différentes Ph1 à Ph3, qui circulent dans des microcanaux parallèles 611 , 612 et 613 définissant trois entrées 611a à 613a, trois sorties 611b à 613b, deux jonctions amont Ja et deux jonctions aval Jb. L'extension de la rangée oblique de plots de déviation 614, qui est formée en travers du microcanal d'appauvrissement 611 , du microcanal intermédiaire 612 et qui se termine à la réunion de 612 avec le microcanal d'enrichissement 613 (i.e. à l'interface entre les phases 2 et 3), force les éléments E à passer dans la phase 2 puis dans la phase 3. Ce passage dans la phase 2 peut par exemple permettre de modifier chimiquement ou biologiquement la surface des capsules enrobant ces éléments E, avant de gélifier complètement ces capsules par la phase 3. On utilise préférentiellement pour cette unité 610 une phase 1 qui est immiscible avec une phase 2, alors que les phases 2 et 3 peuvent être miscibles entre elles suivant l'application envisagée. Comme illustré à la figure 17, lorsque l'on est en présence de deux ou plus de deux catégories de taille d'éléments E, E', il est possible d'utiliser dans l'unité d'extraction 710 plusieurs rangées de plots 714a et 714b à l'instar de la figure 10, et trois ou plus de trois phases liquides immiscibles Ph1 à Ph3. Les rangées de plots 714a et 714b constituent des filtres respectivement pour les éléments E et E'. En effet, elles bloquent le passage de ces éléments E et E' selon la direction d'écoulement de leurs microcanaux respectifs. On voit sur cette figure 17 que les éléments E' de plus petite taille se retrouvent dans la phase 2 et en sortent (via la sortie 712b du microcanal intermédiaire 712) après avoir traversé la rangée amont 714a et avoir été déviés par la rangée aval 714b, alors que les éléments E de plus grosse taille sont déviés par la rangée amont 714a pour aboutir directement à la phase 3 et en sortir (via la sortie 713b du microcanal d'enrichissement 713). On remarquera, dans les modes de réalisation décrits dans les figures 16 et 17, que des piliers 16 constituent à la fois des moyens de stabilisation d'interface (notamment lorsque deux phases s'écoulant dans deux microcanaux adjacents sont immiscibles) et des moyens anti-retour.
Les figures 18 et 19 illustrent, en relation avec la gélification de capsules enrobant les éléments E à extraire, tels que des amas de cellules, les deux étapes de pré-gélification respectivement mises en œuvre dans une phase organique (phase A) puis de gélification par transfert dans une phase aqueuse (phase B) comme exposé ci-dessus en référence aux figures 8 à 15.
La pré-gélification peut être obtenue par contact avec :
- des nanocristaux de polyions permettant la gélification de la capsule polymérique (qui est typiquement en alginate ou similaire), ces nanocristaux pouvant être par exemple de l'acétate de calcium, du chlorure de calcium, du titanate de baryum, du phosphate de calcium ou du chlorure de baryum, pas forcément miscibles avec la phase organique continue (e.g. à base d'huile ou de solvants perfluorés), ou avec
- des nano-émulsions contenant des polyions permettant la gélification.
Au contact de ces polyions, la pré-gélification se produit et l'enveloppe externe des capsules réticule sur une très faible épaisseur, suffisante pour rigidifier sa surface et maintenir la forme sphérique de la capsule. Les avantages de la pré-gélification sont très nombreux, étant notamment précisé qu'elle permet de conserver la forme sphérique pour les capsules, de les maintenir dans des conditions physiologiques, d'automatiser l'encapsulation et la gélification, de faire des encapsulations multicouches et enfin d'éliminer les gouttelettes « satellites ». Ces dernières seront en fait éliminées en aval de la pré-gélification, car elles vont suivre le flux dans le canal d'appauvrissement et passer dans l'espace inter-plots 14 faisant office de filtre du fait de la taille réduite de ces gouttelettes « satellites ». Comme visible aux figures 18 et 19, le module de pré- gélification PG est couplé en amont à l'unité d'extraction 10 de la figure 8, laquelle est avantageusement couplée en aval à un module optionnel d'encapsulation supplémentaire 30. Une fois les capsules pré-gélifiées via le module PG dans leur fluide porteur (phase huileuse A), elles entrent dans l'unité 10 et sont transférés par la rangée de plots 14 dans une seconde phase B immiscible (aqueuse). Là encore, des moyens de stabilisation d'interface et des moyens anti-retour 16 peuvent être disposés. Dans cet exemple, ces moyens se présentent sous la forme de piliers 16 assurant ces deux fonctions à la fois. Lorsque des ions calcium (ou autre polyions permettant la gélification), sont ajoutés à cette phase B, une réticulation complète de l'enrobage d'alginate a lieu pour l'obtention d'une capsule stable?
On notera toutefois que dans le cas où la phase immiscible B ne contient pas de polyions gélifiants, il est alors possible de former des capsules à coeur liquide qui, bien que moins utilisées actuellement, présentent l'avantage de laisser de l'espace aux cellules qui ont été encapsulées et qui se divisent.
On notera en outre que le système microfluidique selon l'invention permet de réaliser la gélification à pH neutre et ainsi de maximiser la viabilité des cellules, alors que cela n'est possible pour des encapsulations dans des capsules au coeur liquide par les méthodes classiques dans lesquelles ces capsules sont dans un premier temps gélifiées puis ont leur coeur dissous par des agents de type citrate ou EDTA. Le module d'encapsulation supplémentaire 30 illustré à ces figures 18 et 19 est destiné à procurer une encapsulation de qualité optimale, via un double enrobage. Ce module 30, par exemple de type « MFFD » (« Micro Flow Focusing Device » en anglais pour dispositif microfluidique focalisant l'écoulement) est couplé à la phase aqueuse B contenant les capsules par exemple d'alginate en solution. On obtient ainsi une capsule multicouches C avec deux enrobages C1 et C2 qui peuvent être différents (alginates de concentration différente par exemple, ou bien alginate/PLL où PLL est la poly-L-Lysine), et avec un centrage amélioré de chaque élément dans la capsule C (e.g. amas de cellules) comme visible à la figure 20 du fait que la probabilité d'avoir deux décentrages d'un même côté est faible.
Une telle configuration minimise la probabilité d'apparition de protrusions lors de la gélification des capsules, une protrusion désignant une partie de l'élément encapsulé non recouverte ou très finement recouverte de la coque polymérique. L'obtention de capsules gélifiées ne présentant pas de protrusion est particulièrement importante lorsque l'élément encapsulé est destiné à être implanté dans un corps vivant, afin d'éviter toute réaction immunitaire, une telle réaction pouvant avoir pour conséquence un rejet de la greffe.
Comme visible à la figure 19, on peut également réaliser une multi-encapsulation en augmentant le nombre d'étages d'encapsulation et de gélification (mise en œuvre par une extraction à deux étages 10', 10"), comme par exemple une encapsulation alginate /PLL / alginate. On utilise à cet effet quatre phases Ph1 à Ph4, avec de préférence :
- Ph 1 : phase organique + nanocristaux de calcium,
- Ph2 : phase aqueuse + calcium,
- Ph3 : phase aqueuse + PLL, et - Ph4 : phase aqueuse + alginate.
Dans cet exemple, les phases aqueuses Ph2 à Ph4 sont miscibles entre elles, alors que la seule phase organique Ph1 n'est pas miscible avec les trois autres. Des moyens de stabilisation d'interface constitués de piliers 16 sont prévus entre les plots de transfert 14 et la jonction aval des microcanaux dans lesquels circulent les phases 1 et 2, ces phases étant immiscibles.
Dans la variante de la figure 19a, on réalise une multi- encapsulation en agençant en série plusieurs unités d'extraction sans déviation 510' et 510", qui sont chacune du type de celle de la figure 15. Comme visible sur cette figure, la première unité d'extraction 510' est conçue, via les piliers 514, pour canaliser en ligne droite les éléments E sous forme de gouttelettes contenant des cellules véhiculées par la phase A à appauvrir, vers la sortie de la phase B à enrichir qui réalise une gélification de ces gouttelettes, et la seconde unité d'extraction 510" est conçue, via des piliers 514 analogues, pour canaliser les gouttelettes gélifiées dans la phase B vers la sortie d'une troisième phase C contenant un nouvel encapsulant. Ces gouttelettes gélifiées et encapsulées sont ensuite en contact avec une quatrième phase D (nouvelle phase porteuse) pour l'obtention en sortie d'une double encapsulation des gouttelettes.
L'unité d'extraction 810 de la figure 21 (dont une partie est schématisée à la figure 23) est telle que la jonction amont Ja et la jonction aval Jb présentent chacune en vue de dessus une forme de U, l'unité 810 présentant alors une forme de H dont la barre transversale élargie forme la chambre de transfert et dont les jambages forment les entrées 811a, 812a et sorties 811b, 812b. La rangée oblique de plots cylindriques de déviation 814 (de diamètre égal à 40 μm) est combinée à un déflecteur interne 814a de section triangulaire formé sur la paroi latérale externe du microcanal d'appauvrissement 811 et dont la rampe, qui forme un angle α par exemple de 30° avec cette paroi, se prolonge dans la même direction par les plots 814. A titre indicatif, les dimensions illustrées h, E et g dans cet exemple sont respectivement de 800 μm, 80 μm et 40 μm. Quant aux piliers 816 en forme de losanges destinés à la stabilisation de l'interface et à l'anti-retour des éléments, ils présentent une diagonale de 40 μm. Les valeurs données à titre d'exemple ont été calculées pour un dispositif de profondeur 200 μm.
Les variantes des figures 22 et 24 illustrent respectivement la rangée de plots de déviation 814 dépourvue de déflecteur en amont, et pourvue d'un déflecteur 814b analogue à celui des figures 21 et 23 mais dont la hauteur transversale est bien plus élevée, étant presque ou aussi importante que la largeur du microcanal d'appauvrissement 811.
L'unité d'extraction 910 de la figure 25 se différencie uniquement de celle de la figure 21, en ce qu'il est dépourvu de l'alignement de piliers de stabilisation de l'interface et d'anti-retour des éléments. En effet, on voit que les moyens de transfert de ces derniers sont exclusivement constitués ici d'une rangée oblique de plots cylindriques s'étendant de la paroi latérale externe du microcanal d'appauvrissement 911 à la jonction aval Jb, de sorte à dévier ces éléments vers le microcanal 912. L'angle α, et les distances h et E sont par exemple les mêmes qu'à la figure 21.
Le système microfluidique illustré aux figures 26 et suivantes est adapté à une profondeur des microcanaux dans le substrat 3 de 200 μm.
Le serpentin 20 visible aux figures 26 et 27 est prévu pour maintenir au sein de l'unité d'extraction 1010 (voir figure 30) une pression de liquide dans la phase d'enrichissement supérieure à celle de la phase d'appauvrissement, pour éviter que des gouttelettes de cette dernière ne pénètrent dans cette phase d'enrichissement. On ajuste ainsi les résistances hydrodynamiques de ces phases en fonction de la viscosité de celles-ci. Comme illustré à la figure
27, on peut définir les caractéristiques du microcanal d'enrichissement 1012 par rapport à ses points de départ A' et d'arrivée B' dans l'unité 1010.
L'unité d'encapsulation 40 qui est illustrée à la figure 28 (correspondant au médaillon « zoom 1 » de la figure 26) est de type « MFFD », et ses dimensions visibles sont par exemple : a = 200 μm b = 1 ,2 mm c = 800 μm d = 300 μm e = 300 μm f = 650 μm α = 30°.
Comme illustré à la figure 29 (correspondant au médaillon « zoom 2 » de la figure 26), on peut définir les caractéristiques du microcanal d'appauvrissement 1011 par rapport à ses points de départ C hors de l'unité 1010 et d'arrivée D' en sortie du système microfluidique.
Comme illustré à la figure 30 (correspondant au médaillon « zoom 3 » de la figure 26), cette unité d'extraction 1010 en forme de H est analogue à celle de la figure 21 (mêmes dimensions h, g, E et α), en supprimant toutefois le déflecteur 814a pour n'avoir comme moyens de transfert que la rangée oblique de plots cylindriques 1014 et l'alignement de piliers de stabilisation/ anti-retour 1016.

Claims

REVENDICATIONS
1) Système microfluidique (1) comportant un substrat (3) dans lequel est gravé un réseau de microcanaux comprenant une unité d'extraction (10 à 1010) d'éléments (E, E') de taille micrométrique ou millimétrique et qui est recouvert d'un capot de protection (2), l'unité d'extraction comprenant :
- un microcanal d'appauvrissement (11, 211, 511 , 611 , 811, 911, 1011) dans lequel circule une première phase (A, Ph 1) à appauvrir,
- au moins un microcanal d'enrichissement (12, 212, 512, 613, 713, 912, 1012) dans lequel circule une deuxième phase (B, Ph2) à enrichir, ces microcanaux d'appauvrissement et d'enrichissement se rejoignant deux à deux par deux jonctions amont (Ja) et aval (Jb) en formant une chambre de transfert (13 à 513) entre ces jonctions, chaque jonction étant telle que les axes centraux de ces microcanaux soient parallèles ou forment un angle aigu de part et d'autre de la jonction, et
- des moyens de transfert (14, 214a, 214b, 314, 414a, 514, 614, 714a, 714b, 814, 814a, 814b, 1014) disposés dans ledit microcanal d'appauvrissement et aptes à transférer lesdits éléments de ce microcanal d'appauvrissement vers ledit au moins un microcanal d'enrichissement, caractérisé en ce que lesdits moyens de transfert comprennent des plots (14, 214a, 214b, 314, 514, 614, 714a, 714b, 814, 1014) s'étendant transversalement à l'axe central dudit microcanal d'appauvrissement, et en ce que l'unité d'extraction comprend en outre des moyens de stabilisation d'interface (16 à 1016, 15a, 15b) qui sont disposés en aval des moyens de transfert entre lesdites jonctions et qui comprennent des piliers (16 à 1016) ou bien un revêtement de surface (15a, 15b) localisé sur une zone de la jonction aval (Jb) tournée vers l'un au moins des microcanaux.
2) Système (1) selon la revendication 1 , caractérisé en ce que lesdits moyens de stabilisation d'interface (16 à 1016, 15a, 15b) sont situés à proximité desdits plots (14, 214a, 214b, 314, 514, 614, 714a, 714b, 814,
1014) et sont sensiblement alignés avec ladite jonction aval (Jb), ces moyens de stabilisation d'interface exerçant en outre une fonction anti-retour des éléments (E, E') ayant été séparés de ladite première phase (A, PM) par lesdits plots ou bien étant associés à des moyens séparés exerçant cette fonction anti-retour.
3) Système (1) selon la revendication 1 ou 2, caractérisé en ce que lesdits moyens de stabilisation d'interface (16 à 1016) comprennent lesdits piliers qui présentent des arêtes saillantes et dont le dernier est adjacent à ladite jonction aval (Jb), ces piliers étant de préférence régulièrement espacés avec le premier pilier qui est adjacent au dernier plot (14 à 1014).
4) Système (1) selon une des revendications 1 à 3, caractérisé en ce que ladite ou chaque jonction amont (Ja) et ladite ou chaque jonction aval (Jb) se prolongent en direction de la jonction opposée par une cloison imperméable de séparation (15) entre phases (A et B) s'étendant sur une distance conçue pour accroître le parallélisme des flux desdites première et deuxième phases dans ladite chambre (13 à 513).
5) Système (1) selon la revendication 4, caractérisé en ce que lesdits moyens de stabilisation d'interface (15a, 15b) comprennent ledit revêtement de surface qui est localisé sur au moins une face de ladite cloison de séparation (15).
6) Système (1) selon une des revendications 1 à 5, caractérisé en ce que lesdits plots de transfert (14 à 1014), de préférence à paroi dépourvue d'arêtes saillantes tels que des plots cylindriques, sont disposés sur au moins une rangée en formant pour la ou chaque rangée un angle de 5° à 85° avec la direction de ce microcanal et de préférence compris entre 20° et 60°, ces plots étant destinés à dévier sélectivement tout ou partie desdits éléments (E, E') pour les forcer à se diriger vers ledit ou chaque microcanal d'enrichissement. 7) Système (1) selon la revendication 6, caractérisé en ce que lesdits moyens de transfert comprennent plusieurs desdites rangées de plots (214a, 214b, 714a, 714b) qui sont agencées de manière successive le long dudit microcanal d'appauvrissement (211) dans ladite chambre (13), et qui comprennent :
-une rangée amont (214a, 714a) adjacente à ladite jonction amont (Ja), qui s'étend en outre sur au moins une partie de la section de passage dudit microcanal d'enrichissement adjacent (212) et qui est couplée à une sortie distale (212b1) de ce microcanal d'enrichissement, et
- au moins une rangée aval (214b, 714b) adjacente à ladite jonction aval (Jb), qui s'étend sur une section de passage inférieure à celle de la rangée amont et qui est couplée à une sortie proximale (212b2) de ce microcanal d'enrichissement formant par exemple une patte-d'oie avec ladite sortie distale et avec le microcanal d'appauvrissement.
8) Système (1) selon une des revendications 1 à 5, caractérisé en ce que lesdits moyens de transfert (314) comprennent des rangées desdits plots qui sont agencées dans ladite chambre (13) transversalement audit microcanal d'appauvrissement (11) et de préférence en outre à celui d'enrichissement (12) et qui sont de type générant un déplacement latéral déterministe (« DLD ») en laissant passer lesdits éléments (E) en les déviant progressivement à chaque passage d'une rangée à la rangée suivante.
9) Système (1) selon une des revendications précédentes, caractérisé en ce que lesdits moyens de transfert comprennent en outre au moins un déflecteur (414a, 814a, 814b) qui est constitué d'une saillie interne de la paroi latérale dudit microcanal d'appauvrissement (811) formée en regard de ladite chambre (413) et qui présente par exemple une section transversale triangulaire. 10) Système (1) selon une des revendications 1 à 5, caractérisé en ce que lesdits microcanaux d'appauvrissement (511) et d'enrichissement (512) ont leurs jonctions amont (Ja) et aval (Jb) en forme de pattes-d'oie, lesdits plots de transfert (514), par exemple de section carrée, étant situés en aval de ladite jonction amont et de manière adjacente à ladite jonction aval, ces plots étant régulièrement espacés dans le prolongement de la paroi latérale de l'entrée (511a) du microcanal d'appauvrissement (511) qui est opposée à l'entrée (512a) du microcanal d'enrichissement (512), et dans le prolongement de la sortie (512b) du microcanal d'enrichissement, laquelle sortie est sensiblement coaxiale à l'entrée (511a) du microcanal d'appauvrissement, de sorte à canaliser lesdits éléments (E) sans les dévier de leur trajectoire de l'entrée (511a) dudit microcanal d'appauvrissement à la sortie (512b) dudit microcanal d'enrichissement.
11) Système (1) selon une des revendications précédentes, caractérisé en ce que ladite unité d'extraction (1010) est couplée en aval à un moyen de réduction des pertes de charge, tel qu'au moins un serpentin (20), moyen qui est également inclus dans ledit réseau de microcanaux et qui est destiné à maintenir une pression de ladite deuxième phase (B) supérieure à celle de ladite première phase (A) pour éviter que des gouttelettes de cette dernière ne pénètrent dans cette deuxième phase, ce moyen de réduction des pertes de charge étant également destiné à l'obtention de vitesses voisines pour ces phases.
12) Système (1) selon une des revendications précédentes, caractérisé en ce qu'il comprend en outre une unité d'encapsulation (40) desdits éléments (E, E'), tels que des amas de cellules, à laquelle ladite unité d'extraction (1010) est couplée en amont, l'unité d'extraction étant apte à assurer la gélification par réticulation de chaque capsule polymérique obtenue en sortie de l'unité d'encapsulation, un module de pré-gélification (PG) étant optionnellement intercalé entre ces unités d'encapsulation et d'extraction, et un module d'encapsulation supplémentaire (30) par exemple de type dispositif microfluidique à focalisation d'écoulement (« MFDD ») pouvant être prévu en aval de l'unité d'extraction.
13) Utilisation d'un système microfluidique (1) selon une des revendications précédentes pour extraire des éléments (E, E') de taille micrométrique ou millimétrique, tels que des amas de cellules comme par exemple des îlots de Langerhans, d'une première phase liquide (A, Ph1) à appauvrir vers au moins une deuxième phase liquide à enrichir (B, Ph2 à Ph4) miscible ou non avec cette première phase ou avec une phase intermédiaire (Ph2, Ph3) adjacente.
14) Utilisation d'un système microfluidique (1) selon la revendication 13, caractérisé en ce qu'elle consiste à réaliser la gélification par réticulation de capsules d'enrobage polymériques qui sont préalablement formées autour de ces éléments (E, E') au sein de ce système et qui sont par exemple à base d'un hydrogel d'alginate, par transfert de ces capsules enrobant respectivement lesdits éléments d'une phase organique huileuse (A, Ph1) à appauvrir les contenant vers une phase aqueuse (B, Ph4) à enrichir qui est immiscible avec cette phase huileuse et qui contient un agent gélifiant de préférence à base de polyions, tels que des ions calcium.
15) Utilisation d'un système microfluidique (1) selon la revendication 13, caractérisé en ce qu'elle consiste à utiliser des première et deuxième(s) phases à appauvrir et à enrichir (A et B, Ph2 à Ph4) miscibles deux à deux entre elles et à y générer, en aval de ladite chambre de transfert (13), un gradient transversal de concentration (F1).
16) Procédé d'extraction d'éléments (E, E') de taille micrométrique ou millimétrique, tels que des amas de cellules comme par exemple des îlots de Langerhans, d'une première phase liquide à appauvrir (A, PM) vers au moins une deuxième phase liquide à enrichir (B, Ph2 à Ph4) miscible ou non avec cette première phase ou avec une phase intermédiaire (Ph2, Ph3) adjacente, ce procédé comprenant une mise en contact des flux respectifs de ces phases, que l'on force à s'écouler par convection forcée en régime laminaire dans un microcanal d'appauvrissement (11, 211 , 511, 611, 811 , 911 , 1011) et au moins un microcanal d'enrichissement (12, 212, 512, 613, 713, 912, 1012) gravés dans un substrat (3) d'un système microfluidique (1), de telle manière que ces flux soient, d'une part, sensiblement parallèles entre eux ou forment un angle aigu en se rejoignant en deux jonctions amont (Ja) et aval (Jb) entre ces microcanaux et, d'autre part, demeurent parallèles pendant toute la durée de leur contact mutuel, pour forcer le transfert de ces éléments d'une phase à l'autre exclusivement par fluidique passive, caractérisé en ce que ce procédé comprend un transfert desdits éléments du microcanal d'appauvrissement vers ledit au moins un microcanal d'enrichissement au moyen de plots (14, 214a, 214b, 314, 514, 614, 714a, 714b, 814, 1014) s'étendant transversalement à l'axe central dudit microcanal d'appauvrissement, puis une stabilisation d'interface réalisée en aval desdits plots et en amont de ladite jonction aval.
17) Procédé selon la revendication 16, caractérisé en ce que cette stabilisation d'interface est réalisée par un arrangement de piliers (16 à
1016) qui sont situés à proximité desdits plots (14, 214a, 214b, 314, 514, 614, 714a, 714b, 814, 1014) et qui sont sensiblement alignés avec ladite jonction aval (Jb), ou par un traitement de surface (15a, 15b) localisé sur une zone de ladite jonction aval (Jb) tournée vers l'un au moins desdits microcanaux, ce traitement de surface étant par exemple de type lipophile ou hydrophobe.
18) Procédé selon la revendication 17, caractérisé en ce qu'il comprend en outre l'exercice d'une fonction anti-retour des éléments (E1 E') ayant été séparés de ladite première phase (A, Ph1) par lesdits plots, cette fonction anti-retour résultant de ladite stabilisation ou bien étant exercée séparément de celle-ci.
PCT/FR2010/000453 2009-06-19 2010-06-18 Systeme microfluidique et procede correspondant pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements WO2010146261A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10743195.9A EP2442902B1 (fr) 2009-06-19 2010-06-18 Systeme microfluidique et procede pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements
JP2012515537A JP5871795B2 (ja) 2009-06-19 2010-06-18 液相間で成分を移動させるマイクロ流体システム及び対応する方法、並びに上記成分を抽出するための上記システムの使用
US13/378,875 US20120125842A1 (en) 2009-06-19 2010-06-18 Microfluidic System And Corresponding Method For Transferring Elements Between Liquid Phases And Use Of Said System For Extracting Said Elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR09/02988 2009-06-19
FR0902988A FR2946895A1 (fr) 2009-06-19 2009-06-19 Systeme microfluidique et procede correspondant pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements

Publications (2)

Publication Number Publication Date
WO2010146261A2 true WO2010146261A2 (fr) 2010-12-23
WO2010146261A3 WO2010146261A3 (fr) 2011-06-03

Family

ID=41606606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/000453 WO2010146261A2 (fr) 2009-06-19 2010-06-18 Systeme microfluidique et procede correspondant pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements

Country Status (5)

Country Link
US (1) US20120125842A1 (fr)
EP (1) EP2442902B1 (fr)
JP (1) JP5871795B2 (fr)
FR (1) FR2946895A1 (fr)
WO (1) WO2010146261A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528829A (ja) * 2011-09-30 2014-10-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 配列された微小構造を用いて流体流れをプログラムするデバイスおよび方法
WO2015160919A1 (fr) * 2014-04-16 2015-10-22 President And Fellows Of Harvard College Systèmes et procédés de production d'émulsions de gouttelettes ayant des coques relativement minces
CN106268563A (zh) * 2016-08-19 2017-01-04 清华大学 梯度基底诱导液滴生长的方法
TWI645121B (zh) * 2017-12-12 2018-12-21 國立中興大學 Liquid-liquid extraction device
CN109631618A (zh) * 2018-11-06 2019-04-16 北京交通大学 一种基于磁性液体液滴的泵送换热装置
US10874997B2 (en) 2009-09-02 2020-12-29 President And Fellows Of Harvard College Multiple emulsions created using jetting and other techniques
EP3782729A1 (fr) 2019-08-23 2021-02-24 Commissariat à l'Energie Atomique et aux Energies Alternatives Appareil pour mise en oeuvre d'un procédé de traitement de fluide dans des conditions stériles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060876A1 (fr) * 2015-10-09 2017-04-13 King Abdullah University Of Science And Technology Générateur de gouttelettes microfluidiques avec mécanisme de rupture commandé
JP6933212B2 (ja) * 2016-06-20 2021-09-08 凸版印刷株式会社 液体媒体の置換方法及び該方法のための流路デバイス
JP2020037060A (ja) * 2018-09-03 2020-03-12 国立大学法人東京工業大学 粒子処理装置、及び粒子処理方法
BE1026910B1 (nl) 2018-12-21 2020-07-22 Pharmafluidics N V Chemische reactoren
WO2020222798A1 (fr) * 2019-04-30 2020-11-05 Hewlett-Packard Development Company, L.P. Dispositifs microfluidiques
CN115138402A (zh) * 2021-03-31 2022-10-04 中国科学院深圳先进技术研究院 一种能够设置化学浓度梯度的微流控芯片及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787029B1 (fr) 1994-10-22 1999-01-07 Central Research Laboratories Limited Procede et appareil destines au transfert diffusible entre des fluides non miscibles
WO2004037374A2 (fr) 2002-10-23 2004-05-06 The Trustees Of Princeton University Procede de separation continue de particules faisant appel a des reseaux d'obstacles alignes de maniere asymetrique par rapport a des champs
US20070026381A1 (en) 2005-04-05 2007-02-01 Huang Lotien R Devices and methods for enrichment and alteration of cells and other particles
US20070059781A1 (en) 2005-09-15 2007-03-15 Ravi Kapur System for size based separation and analysis

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368871B1 (en) * 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
US6994826B1 (en) * 2000-09-26 2006-02-07 Sandia National Laboratories Method and apparatus for controlling cross contamination of microfluid channels
WO2003066191A1 (fr) * 2002-02-04 2003-08-14 Colorado School Of Mines Separations de particules cellulaires et colloidales par ecoulements laminaires
WO2003103836A1 (fr) * 2002-06-11 2003-12-18 Kionix, Inc. Procedes et dispositifs d'extraction de microfluides
EP1380337B1 (fr) * 2002-07-12 2012-11-14 Tosoh Corporation Dispositif à canaux minces et procédé chimique permettant son utilisation du dispositif avec des fluides
JP4470402B2 (ja) * 2002-07-12 2010-06-02 東ソー株式会社 微小流路構造体及びそれを用いた流体の化学操作方法
JP2004354364A (ja) * 2002-12-02 2004-12-16 Nec Corp 微粒子操作ユニット、それを搭載したチップと検出装置、ならびにタンパク質の分離、捕獲、および検出方法
EP2594631A1 (fr) * 2005-04-05 2013-05-22 Cellpoint Diagnostics Dispositifs et procédés détection de cellules tumorales circulantes et d'autres particules
US20070059719A1 (en) * 2005-09-15 2007-03-15 Michael Grisham Business methods for prenatal Diagnosis
WO2008017031A2 (fr) * 2006-08-02 2008-02-07 The Regents Of The University Of California production microfluidique d'une Émulsion infÉrieure au micron monodispersÉe par le biais d'un filtrage et d'un tri de gouttes satellites
US20080290037A1 (en) * 2007-05-23 2008-11-27 Applera Corporation Methods and Apparatuses for Separating Biological Particles
FR2931141B1 (fr) * 2008-05-13 2011-07-01 Commissariat Energie Atomique Systeme microfluidique et procede pour le tri d'amas de cellules et de preference pour leur encapsulation en continu suite a leur tri

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787029B1 (fr) 1994-10-22 1999-01-07 Central Research Laboratories Limited Procede et appareil destines au transfert diffusible entre des fluides non miscibles
WO2004037374A2 (fr) 2002-10-23 2004-05-06 The Trustees Of Princeton University Procede de separation continue de particules faisant appel a des reseaux d'obstacles alignes de maniere asymetrique par rapport a des champs
US20070026381A1 (en) 2005-04-05 2007-02-01 Huang Lotien R Devices and methods for enrichment and alteration of cells and other particles
US20070059781A1 (en) 2005-09-15 2007-03-15 Ravi Kapur System for size based separation and analysis

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. W. INGLIS; J. A. DAVIS; R. H. AUSTIN; J. C. STURM: "Critical particle size for fractionation by deterministic lateral displacement", LAB CHIP, vol. 6, 2006, pages 655 - 658
K. LIU; H. J. DING; Y. CHEN; X.Z. ZHAO: "Droplet-based synthetic method using microflow focusing and droplet fusion", MICROFLUID. NANOFLUID, vol. 3, 2007, pages 239 - 243
V. L. WORKMAN; S. B. DUNNETT; P. KILLE; D. D. PALMER: "On-chip alginate microencapsulation of functional cells", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 29, no. 2, 2008, pages 165 - 170

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10874997B2 (en) 2009-09-02 2020-12-29 President And Fellows Of Harvard College Multiple emulsions created using jetting and other techniques
JP2014528829A (ja) * 2011-09-30 2014-10-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 配列された微小構造を用いて流体流れをプログラムするデバイスおよび方法
EP2761191A4 (fr) * 2011-09-30 2015-08-26 Univ California Dispositifs et procédés de programmation d'écoulement de fluide utilisant des microstructures séquencées
AU2012315950B2 (en) * 2011-09-30 2017-01-19 The Regents Of The University Of California Devices and methods for programming fluid flow using sequenced microstructures
WO2015160919A1 (fr) * 2014-04-16 2015-10-22 President And Fellows Of Harvard College Systèmes et procédés de production d'émulsions de gouttelettes ayant des coques relativement minces
CN106268563A (zh) * 2016-08-19 2017-01-04 清华大学 梯度基底诱导液滴生长的方法
TWI645121B (zh) * 2017-12-12 2018-12-21 國立中興大學 Liquid-liquid extraction device
CN109631618A (zh) * 2018-11-06 2019-04-16 北京交通大学 一种基于磁性液体液滴的泵送换热装置
EP3782729A1 (fr) 2019-08-23 2021-02-24 Commissariat à l'Energie Atomique et aux Energies Alternatives Appareil pour mise en oeuvre d'un procédé de traitement de fluide dans des conditions stériles
FR3100033A1 (fr) 2019-08-23 2021-02-26 Commissariat à l'Energie Atomique et aux Energies Alternatives Appareil pour mise en œuvre d'un procédé de traitement de fluide dans des conditions stériles

Also Published As

Publication number Publication date
EP2442902A2 (fr) 2012-04-25
EP2442902B1 (fr) 2019-09-18
WO2010146261A3 (fr) 2011-06-03
JP5871795B2 (ja) 2016-03-01
JP2012529983A (ja) 2012-11-29
US20120125842A1 (en) 2012-05-24
FR2946895A1 (fr) 2010-12-24

Similar Documents

Publication Publication Date Title
EP2442902B1 (fr) Systeme microfluidique et procede pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements
EP2119503B1 (fr) Système microfluidique et procédé pour le tri d'amas de cellules et pour leur encapsulation en continu suite à leur tri
EP2609993B1 (fr) Dispositif nano et micro fluidique pour la séparation et concentration de particules présentes dans un fluide
EP2127748B1 (fr) Procédé de tri de particules ou d'amas de particules dans un fluide circulant dans un canal
EP2282827B1 (fr) Dispositif de séparation de biomolécules d'un fluide
EP2119488B1 (fr) Procédé et dispositif d'extraction d'une phase liquide d'une suspension
EP3318328B1 (fr) Equipement de tri de particules présentes dans un échantillon fluidique
WO2009024678A2 (fr) Dispositif et procede pour la separation des composantes d'une suspension et en particulier du sang
WO2007031615A1 (fr) Dispositif d ' ecoulement microfluidique ayant au moins un canal de liaison reliant deux canaux et procede de mise en oeuvre correspondant
EP2699353A1 (fr) Système microfluidique pour contrôler la concentration de molécules de stimulation d'une cible.
WO2006131679A2 (fr) Dispositif planaire avec adressage de puits automatise par electromouillage dynamique
Cho et al. Microfluidic platforms with monolithically integrated hierarchical apertures for the facile and rapid formation of cargo-carrying vesicles
EP3365426B1 (fr) Dimensionnement d'un dispositif microfluidique pour confiner un échantillon
EP2119775A1 (fr) Dispositif, sytème et procédé microfluidique pour l'encapsulation contrôlée de particules ou amas de particules
Lu et al. Removal of excess interfacial material from surface-modified emulsions using a microfluidic device with triangular post geometry
EP2678106A1 (fr) Dispositif microfluidique d'extraction a interface liquide-liquide stabilisee
FR2900763A1 (fr) Structure a aimants permanents pour le piegeage et/ou le guidage de particules diamagnetiques
WO2024200751A1 (fr) Puce microfluidique et procédé pour générer et trier des microgouttes monodispersées à haute fréquence
Wood et al. Nanoparticles Binding to Lipid Membranes: from Vesicle-Based Gels to Vesicle Inversion and Destruction
WO2021234310A1 (fr) Puce microfluidique tridimensionnelle, procede de fabrication d'une telle puce et utilisation pour la separation de particules dans des solutions colloïdales
Jones Particle clustering and coating across scales: microfluidic and macrofluidic experiments
EP3377204A1 (fr) Procede et dispositif de fabrication d'emulsions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743195

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012515537

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010743195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13378875

Country of ref document: US