EP3377204A1 - Procede et dispositif de fabrication d'emulsions - Google Patents

Procede et dispositif de fabrication d'emulsions

Info

Publication number
EP3377204A1
EP3377204A1 EP16806262.8A EP16806262A EP3377204A1 EP 3377204 A1 EP3377204 A1 EP 3377204A1 EP 16806262 A EP16806262 A EP 16806262A EP 3377204 A1 EP3377204 A1 EP 3377204A1
Authority
EP
European Patent Office
Prior art keywords
main channel
pressure
fluid
external solution
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16806262.8A
Other languages
German (de)
English (en)
Other versions
EP3377204B1 (fr
Inventor
Olivier Couture
Mickael Tanter
Claudia ERRICO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut National de la Sante et de la Recherche Medicale INSERM
Ecole Superieure de Physique et Chimie Industrielles de Ville Paris
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut National de la Sante et de la Recherche Medicale INSERM
Ecole Superieure de Physique et Chimie Industrielles de Ville Paris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut National de la Sante et de la Recherche Medicale INSERM, Ecole Superieure de Physique et Chimie Industrielles de Ville Paris filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3377204A1 publication Critical patent/EP3377204A1/fr
Application granted granted Critical
Publication of EP3377204B1 publication Critical patent/EP3377204B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/414Emulsifying characterised by the internal structure of the emulsion
    • B01F23/4143Microemulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3021Micromixers the materials to be mixed flowing in the form of droplets the components to be mixed being combined in a single independent droplet, e.g. these droplets being divided by a non-miscible fluid or consisting of independent droplets

Definitions

  • the present invention relates to methods and devices for manufacturing emulsions.
  • Emulsions are widely used, for example micro or nanoemulsions, especially in medical applications.
  • ultrasonically activatable emulsions are used which are intended to transport, for example, a drug or a marker in the human body to activate it locally in a target zone.
  • WO2011007082A1 gives an example of such an emulsion which is particularly effective.
  • EP1197262A2 disclose microfluidic devices subject to the same difficulties.
  • the present invention therefore aims to provide a method of manufacturing emulsions which both allows to produce larger amounts of emulsion and is reliable.
  • the invention proposes a microfluidic process for manufacturing an emulsion comprising drops in emulsion in an external solution, the drops containing a fluid, the process in which:
  • the fluid is circulated along a first main channel
  • a portion of the fluid flowing in the first main channel is taken off by a plurality of microchannels disposed along the first main channel, which each communicate individually with said first main channel and each open individually into a space filled with external solution, the first main channel being maintained at a pressure greater than said outer solution filled space, the first main channel having a passage section at least 5 times greater than each microchannel,
  • the drops are formed when the fluid passes from each microchannel into said space filled with external solution
  • the fluid is circulated along the first main channel between a first reservoir and a second reservoir maintained at an overpressure respectively at a first pressure and at a second pressure different from the first pressure, the first and second pressures being greater than the first pressure; atmospheric pressure, and alternately flowing the fluid in opposite directions along the first main channel, by varying the first and second pressures so that the first pressure is alternately higher and lower than the second pressure.
  • the first main channel is a microfluidic river, which permanently cleans the mouth of the microchannels in the first main channel, thus avoiding the blocking microchannels by any debris or the like.
  • said space filled with external solution is a second main channel and the external solution is circulated along said second main channel, the second main channel having a passage section at least 5 times greater than each microchannel: this arrangement also makes it possible to clean permanently the outlet of microchannels in the second main channel;
  • the external solution is circulated along the second main channel between a third tank and a fourth tank maintained in overpressure respectively at a third pressure and at a fourth pressure different from the third pressure, the third and fourth pressures being greater than the atmospheric pressure and alternately flowing the outer solution in opposite directions along the second main channel, varying the third and fourth pressures so that the third pressure is alternately greater than and less than the fourth pressure:
  • the drops have a diameter less than 20 ⁇ and the fluid contains nanodroplets having a diameter less than 5 ⁇ ;
  • the external solution contains a surfactant.
  • the subject of the invention is also a microfluidic device for manufacturing an emulsion comprising emulsion drops in an external solution, the drops containing a fluid,
  • the device comprising:
  • a first main channel filled with fluid and interconnecting a first reservoir and a second tank ,
  • microchannels disposed along the first main channel, which each communicate individually with said first main channel and each open individually into said space filled with external solution (2), said microchannels being adapted to form the drops in the filled space of external solution, the first main channel having a passage section at least 5 times greater than each microchannel,
  • pressurizing means for maintaining the first main channel at a pressure greater than said space filled with external solution
  • the pressurizing means being adapted to maintain the first reservoir and the second reservoir under excess pressure, respectively at a first pressure and at a second pressure different from the first pressure, the first and second pressures being greater than atmospheric pressure, and pressurizing means being provided for alternately flowing the fluid in opposite directions along the first main channel, varying the first and second pressures so that the first pressure is alternately greater and less than the second pressure.
  • said outer solution filled space is a second main channel and the microfluidic device comprises means for circulating the external solution along said second main channel, the second main channel having a passage section at least 10 times greater than each microchannel;
  • the second main channel interconnects a third reservoir and a fourth reservoir
  • the microfluidic device comprises pressurizing means for maintaining the third reservoir and the fourth reservoir in overpressure, respectively at a third pressure and at a fourth pressure different from the third pressure, the third and fourth pressures being greater than the atmospheric pressure, and the pressurizing means are provided for alternately circulating the external solution in opposite directions along the second main channel, by varying the third and fourth pressures; so that the third pressure is alternately greater and less than the fourth pressure.
  • FIG. 1 is a schematic view of an emulsion microparticle in an aqueous solution, obtainable by a method according to one embodiment of the invention
  • FIG. 2 is a block diagram of an exemplary microfluidic device according to one embodiment of the invention.
  • FIG. 3 is a detail view of FIG. 2, and
  • FIG. 4 shows emulsion nanoparticles in the starting fluid used in the device of FIGS. 2 and 3.
  • the present invention provides a method and apparatus for making emulsions.
  • the method and the device of the invention are particularly suitable for producing double emulsions such as that shown diagrammatically in FIG. 1, but the method and the device of the invention can also be used to manufacture other types of emulsions, including simple emulsions.
  • this double emulsion which is described in more detail in the document WO2011007082A1, contains a secondary emulsion of microdroplets 1 in an aqueous solution 2, these microparticles 1 having a diameter D less than 20 ⁇ . Only one of the microparticles 1 is shown in FIG. 1 for the sake of simplicity.
  • the microdrops 1 comprise a substantially spherical outer wall 4, made by a first emulsifier, in particular a surfactant such as for example the "Pluronic F68" ®.
  • This outer wall 4 encapsulates a gaseous precursor liquid 3 vaporizable by ultrasound (or more generally an ultrasonically activatable compound) containing a primary emulsion of nanodroplets 5 having a diameter of less than 5 ⁇ , preferably of 0.3 to 1 ⁇ .
  • the gaseous precursor may be a fluorinated oil, especially a perfluorocarbon, for example perfluorohexane or perfluoropentane.
  • nanoparticles 5 each have a substantially spherical outer wall 7 which is formed by a second emulsifier, for example a fluorinated surfactant such as poly (perfluoropropylene glycol) carboxylate (marketed by Du Pont under the trademark “Krytox 157 FSH” ®).
  • a fluorinated surfactant such as poly (perfluoropropylene glycol) carboxylate (marketed by Du Pont under the trademark "Krytox 157 FSH” ®).
  • the outer wall 7 encapsulates an internal liquid 6, for example water or more generally an aqueous solution, which contains an active agent, in particular a marker or a drug.
  • an active agent for example a marker or a drug.
  • the active agent can be:
  • a marker chosen in particular from optical dyes (for example fluorescein) and medical imaging contrast agents (especially contrast agents for MRI, X-rays, ultrasound or other);
  • optical dyes for example fluorescein
  • medical imaging contrast agents especially contrast agents for MRI, X-rays, ultrasound or other
  • a therapeutic agent chosen in particular from cancer chemotherapeutic agents, antivascular drugs, toxins and messenger RNA, DNA, etc.
  • This double emulsion can be manufactured using the microfluidic device 10 of FIGS. 2 to 4, which can also be used to produce other types of emulsions, in particular any emulsion comprising emulsion drops 1 in an external solution 2, drops containing a fluid 3 (liquid or gaseous).
  • the microfluidic device 10 comprises:
  • first main channel 11 also called “river” in microfluidic language
  • the first main channel 11 and the microchannels 13 may for example be etched in a glass plate, polydimethylsiloxane or other, covered by a glass closure plate, polydimethylsiloxane or other.
  • the fluid 3 of the first main channel 11 is added nanodes 5 in the case where the double emulsion mentioned above is formed.
  • the external solution 2 can be added with surfactant, so that the fluid 3 forms drops 1 at the microchannel outlet, on arrival in the space 12 filled with external solution.
  • the microchannels 13 are of much smaller section than the first main channel 11, for example less than 20% of the section of the first main channel 11.
  • the microchannels generally have a width of less than 10 ⁇ and a depth of less than 10 ⁇ .
  • microchannels 13 are in large numbers, for example more than 100 or even hundreds (only a portion of these microchannels is shown in Figures 2 and 3).
  • said space filled with external solution 2 can be a second main channel 12 (also called “river” in microfluidic language) and the microfluidic device comprises means 22, 25, 26 for circulating the external solution 2 along said second main channel 12, which also helps to prevent clogging of the microchannels 13.
  • second main channel 12 also called “river” in microfluidic language
  • the microfluidic device comprises means 22, 25, 26 for circulating the external solution 2 along said second main channel 12, which also helps to prevent clogging of the microchannels 13.
  • the second main channel 12 may for example be engraved in the above-mentioned glass plate, covered by a closing glass plate.
  • the second main channel 12 may also have a passage section at least 5 times greater than the section of each microchannel 13.
  • the first main channel 11 interconnects first and second closed tanks 16, 17 and the pressurizing means 22-26 are adapted to maintain the first and second tanks 16, 17 in overpressure, respectively to first and second PI pressures, P2 different, above atmospheric pressure.
  • the pressures in question are provided for alternately flowing the fluid 3 in opposite directions along the first main channel 11, by varying the first and second pressures so that the first pressure PI is alternately greater and less than the second pressure P2.
  • the second main channel 12 can connect third and fourth tanks 20, 21 together, and the microfluidic device comprises pressurizing means 22-26 for holding the third and fourth closed tanks 20, 21 in overpressure, respectively to third and fourth pressures P3, P4 different, greater than the atmospheric pressure but lower than the first and second pressures PI, P2 mentioned above, and the pressurizing means 22-26 are provided to circulate alternately the external solution 2 in opposite directions the along the second main channel 12, varying the third and fourth pressures so that the third pressure P3 is alternately higher and lower than the fourth pressure P4.
  • the aforementioned pressures in the tanks can be generated in particular by a multi-channel pressure generation system 22-26, for example of the MFCS®-EZ type marketed by Fluigent®.
  • a multi-channel pressure generation system 22-26 for example of the MFCS®-EZ type marketed by Fluigent®.
  • Such a system comprises several independent pressure sources 23-26, respectively connected to the reservoirs 16, 17, 20, 21 and respectively producing the pressures P1-P4. These sources of pressure are controlled by a central unit 22, for example a computer or other.
  • the operation of the device is as follows.
  • the first reservoir 16 is filled with the fluid 3, for example containing the nanodroplets 5, and the third reservoir 20 is filled with the external solution 2 supplemented with surfactant.
  • the central unit 22 controls the pressure sources 23-26 so that P1> P2> P3> P4, so that the first main channel 11 is traversed by the fluid 3 in the direction of the arrow 11a ( Figure 2) and that the second main channel 12 is traversed by the external solution 2 in the direction of the arrow 12a.
  • the second and fourth reservoirs 17, 21 gradually fill up, and part of the fluid 3 passes into the external solution 2 in the form of microdrops.
  • the drops 1 may be denser than the external solution 2, in which case they accumulate in the bottom of the third and fourth reservoirs 20, 21.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Procédé de fabrication d'une émulsion comprenant des gouttes (1) dans une solution externe (2), les gouttes contenant un fluide (3). On fait circuler le fluide le long d'un premier canal principal (11), on prélève une partie du fluide circulant dans le premier canal principal, par une pluralité de microcanaux (13) disposés en parallèle entre le premier canal principal et un deuxième canal principal (12) rempli de solution externe, on forme les gouttes par focalisation hydrodynamique lorsque le fluide passe de chaque microcanal dans le deuxième canal principal.

Description

Procédé et dispositif de fabrication d' émulsions .
DOMAINE DE L'INVENTION
La présente invention est relative aux procédés et dispositifs de fabrication d'émulsions.
ARRIERE PLAN DE L'INVENTION
On utilise largement les émulsions, par exemple des micro ou nano-émulsions , notamment dans les applications médicales. A titre d'exemple, on utilise des émulsions activables par ultrasons qui sont destinées à transporter par exemple un médicament ou un marqueur dans le corps humain pour l'activer localement dans une zone cible. Le document WO2011007082A1 donne un exemple d'une telle émulsion qui est particulièrement efficace.
Malheureusement, les procédés de fabrication d'émulsion utilisés jusqu'ici ne donnent pas entièrement satisfaction. Les procédés utilisés sont généralement lents, par exemple lorsqu'on utilise un microcanal unique fonctionnant par focalisation hydrodynamique.
Des tentatives ont été effectuées pour augmenter la production (voir par exemple Cohen et al., "Parallelised production of fine and calibrated emulsions by coupling flow-focusing technique and partial wetting phenomenon." Microfluidics and Nanofluidics 17, no. 5 (2014): 959-966), mais ces tentatives ont abouti à des dispositifs microfluidiques peu fiables, sujets au blocage.
Les documents WO2006/039568 et
EP1197262A2 présentent des dispositifs microfluidiques sujets aux mêmes difficultés.
OBJETS ET RESUME DE L'INVENTION
La présente invention a donc pour objet de proposer un procédé de fabrication d'émulsions qui à la fois permette de produire de plus grandes quantités d'émulsion et soit fiable.
A cet effet, l'invention propose un procédé microfluidique de fabrication d'une émulsion comprenant des gouttes en émulsion dans une solution externe, les gouttes contenant un fluide, procédé dans lequel:
on fait circuler le fluide le long d'un premier canal principal,
- on prélève une partie du fluide circulant dans le premier canal principal, par une pluralité de microcanaux disposés le long du premier canal principal, qui communiquent chacun individuellement avec ledit premier canal principal et débouchent chacun individuellement dans un espace rempli de solution externe, le premier canal principal étant maintenu à une pression supérieure audit espace rempli de solution externe, le premier canal principal ayant une section de passage au moins 5 fois supérieure à chaque microcanal,
- on forme les gouttes lorsque le fluide passe de chaque microcanal dans ledit espace rempli de solution externe,
procédé dans lequel on fait circuler le fluide le long du premier canal principal entre un premier réservoir et un deuxième réservoir maintenus en surpression respectivement à une première pression et à une deuxième pression différente de la première pression, les première et deuxième pressions étant supérieures à la pression atmosphérique, et on fait circuler alternativement le fluide en sens opposés le long du premier canal principal, en faisant varier les première et deuxième pressions de façon que la première pression soit alternativement supérieure et inférieure à la deuxième pression.
Grâce à ces dispositions, le premier canal principal constitue une rivière au sens microfluidique, qui nettoie en permanence l'embouchure des microcanaux dans le premier canal principal, évitant ainsi les le blocage des microcanaux par d'éventuels débris ou similaires.
Dans divers modes de réalisation du procédé selon l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :
- ledit espace rempli de solution externe est un deuxième canal principal et on fait circuler la solution externe le long dudit deuxième canal principal, le deuxième canal principal ayant une section de passage au moins 5 fois supérieure à chaque microcanal : cette disposition permet également de nettoyer en permanence le débouché des microcanaux dans le deuxième canal principal ;
on fait circuler la solution externe le long du deuxième canal principal entre un troisième réservoir et un quatrième réservoir maintenus en surpression respectivement à une troisième pression et à une quatrième pression différente de la troisième pression, les troisième et quatrième pressions étant supérieures à la pression atmosphérique, et on fait circuler alternativement la solution externe en sens opposés le long du deuxième canal principal, en faisant varier les troisième et quatrième pressions de façon que la troisième pression soit alternativement supérieure et inférieure à la quatrième pression : cette disposition permet de garantir l'absence de pollution de l'émulsion réalisée, puisque la fabrication a lieu en surpression sans ouverture des troisième et quatrième réservoirs ;
les gouttes ont un diamètre inférieur à 20 μιη et le fluide contient des nanogouttes ayant un diamètre inférieur à 5 μιη ;
la solution externe contient un agent tensioactif .
Par ailleurs, l'invention a également pour objet un dispositif microfluidique de fabrication d'une émulsion comprenant des gouttes en émulsion dans une solution externe, les gouttes contenant un fluide,
le dispositif comprenant:
- un premier canal principal rempli de fluide et reliant entre eux un premier réservoir et un deuxième réservoir ,
- des moyens pour faire circuler le fluide le long du premier canal principal,
- un espace rempli de solution externe,
- une pluralité de microcanaux disposés le long du premier canal principal, qui communiquent chacun individuellement avec ledit premier canal principal et débouchent chacun individuellement dans ledit espace rempli de solution externe (2), lesdits microcanaux étant adaptés pour former les gouttes dans l'espace rempli de solution externe, le premier canal principal ayant une section de passage au moins 5fois supérieure à chaque microcanal,
des moyens de mise en pression pour maintenir le premier canal principal à une pression supérieure audit espace rempli de solution externe,
les moyens de mise en pression étant adaptés pour maintenir le premier réservoir et le deuxième réservoir en surpression, respectivement à une première pression et à une deuxième pression différente de la première pression, les première et deuxième pressions étant supérieures à la pression atmosphérique, et les moyens de mise en pression étant prévus pour faire circuler alternativement le fluide en sens opposés le long du premier canal principal, en faisant varier les première et deuxième pressions de façon que la première pression soit alternativement supérieure et inférieure à la deuxième pression.
Dans divers modes de réalisation du dispositif microfluidique selon l'invention, on peut éventuellement avoir recours en outre à l'une et /ou à l'autre des dispositions suivantes :
- ledit espace rempli de solution externe est un deuxième canal principal et le dispositif microfluidique comporte des moyens pour faire circuler la solution externe le long dudit deuxième canal principal, le deuxième canal principal ayant une section de passage au moins 10 fois supérieure à chaque microcanal ;
- le deuxième canal principal relie entre eux un troisième réservoir et un quatrième réservoir et le dispositif microfluidique comporte des moyens de mise en pression pour maintenir le troisième réservoir et le quatrième réservoir en surpression, respectivement à une troisième pression et à une quatrième pression différente de la troisième pression, les troisième et quatrième pressions étant supérieures à la pression atmosphérique, et les moyens de mise en pression sont prévus pour faire circuler alternativement la solution externe en sens opposés le long du deuxième canal principal, en faisant varier les troisième et quatrième pressions de façon que la troisième pression soit alternativement supérieure et inférieure à la quatrième pression.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante d'un de ses modes de réalisation, donné à titre d'exemple non limitatif, en regard des dessins joints.
Sur les dessins :
la figure 1 est une vue schématique d'une microparticule en émulsion dans une solution aqueuse, pouvant être obtenue par un procédé selon une forme de réalisation de l'invention,
la figure 2 est un schéma de principe d'un exemple de dispositif microfluidique selon une forme de réalisation de l'invention,
la figure 3 est une vue de détail de la figure 2, et
la figure 4 montre des nanoparticules en émulsion dans le fluide de départ utilisé dans le dispositif des figures 2 et 3.
DESCRIPTION PLUS DETAILLEE
Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires.
La présente invention propose un procédé et un dispositif pour réaliser des émulsions.
A titre d'exemple, le procédé et le dispositif de l'invention sont particulièrement adaptés pour réaliser des émulsions doubles telle que celle schématisée sur la figure 1, mais le procédé et le dispositif de l'invention sont également utilisables pour fabriquer d'autres types d'émulsions, notamment des émulsions simples.
Comme représenté schématiquement sur la figure 1, cette émulsion double, qui est décrite plus en détail dans le document WO2011007082A1, contient une émulsion secondaire de microgouttes 1 dans une solution aqueuse 2, ces microparticules 1 ayant un diamètre D inférieur à 20 μιη. Une seule des microparticules 1 est représentée sur la figure 1 par mesure de simplicité.
Les microgouttes 1 comprennent une paroi externe 4 sensiblement sphérique, réalisée par un premier émulsifiant, notamment un surfactant tel que par exemple le « Pluronic F68 » ®.
Cette paroi externe 4 encapsule un liquide précurseur gazeux 3 vaporisable par ultrasons (ou plus généralement un composé activable par ultrasons) contenant une émulsion primaire de nanogouttes 5 ayant un diamètre inférieur à 5 μιτι, de préférence de 0,3 à 1 μιη. Le précurseur gazeux peut être une huile fluorée, notamment un perfluorocarbone , par exemple du perfluorohexane ou le perfluoropentane .
Ces nanoparticules 5 présentent chacune une paroi externe 7 sensiblement sphérique qui est formée par un deuxième émulsifiant, par exemple un surfactant fluoré tel que du poly (perfluoropropylène glycol) carboxylate (commercialisé par la société Du Pont sous la marque « Krytox 157 FSH » ®) .
La paroi externe 7 encapsule un liquide interne 6, par exemple de l'eau ou plus généralement une solution aqueuse, qui contient un agent actif, notamment un marqueur ou un médicament.
Plus précisément, l'agent actif peut être :
un marqueur choisi notamment parmi les colorants optiques (par exemple la fluorescéine) et les agents de contraste pour imagerie médicale (notamment agents de contraste pour IRM, rayons X, ultrasons ou autres);
- un marqueur destiné à servir de cible pour un agent thérapeutique ;
un agent thérapeutique choisi notamment parmi les agents de chimiothérapie anticancéreuse, des médicaments antivasculaires , des toxines et 1 'ARN messager, 1 ' ADN, etc.
Cette émulsion double peut être fabriquée à l'aide du dispositif microfluidique 10 des figures 2 à 4, qui est également utilisable pour réaliser d'autres types d'émulsions, en particulier toute émulsion comprenant des gouttes 1 en émulsion dans une solution externe 2, les gouttes contenant un fluide 3 (liquide ou gazeux) .
Le dispositif microfluidique 10 comprend:
- un premier canal principal 11 (aussi appelé « rivière » en langage de microfluidique) rempli de fluide
3,
des moyens 22-24 pour on faire circuler le fluide 3 le long du premier canal principal 11 en créant des différences de pression,
- un espace 12 rempli de solution externe 2,
une pluralité de microcanaux 13 disposés le long du premier canal principal 11, qui communiquent chacun individuellement avec ledit premier canal principal 11 et débouchent chacun individuellement dans ledit espace 12 rempli de solution externe 2, des moyens de mise en pression 22-26 pour maintenir le premier canal principal 11 une pression supérieure audit espace 12 rempli de solution externe.
Le premier canal principal 11 et les microcanaux 13 peuvent par exemple être gravés dans une plaque de verre, polydimethylsiloxane ou autre, recouverte par une plaque de fermeture en verre, polydimethylsiloxane ou autre.
Le fluide 3 du premier canal principal 11 est additionné des nanogouttes 5 dans le cas où on forme l'émulsion double susmentionnée.
La solution externe 2 peut être additionnée de tensioactif, de façon le fluide 3 forme des gouttes 1 en sortie des microcanaux, à son arrivée dans l'espace 12 rempli de solution externe.
Les microcanaux 13 sont de section bien plus faible que le premier canal principal 11, par exemple moins de 20% de la section du premier canal principal 11. Les microcanaux ont généralement une largeur inférieure à 10 μηι et une profondeur inférieure à 10 μιη.
Les microcanaux 13 sont en grand nombre, par exemple plus de 100 voire plusieurs centaines (seule une partie de ces microcanaux est représentée sur les figures 2 et 3) .
Grâce à la circulation de fluide dans le premier canal principal 11, on limite ou évite le bouchage des microcanaux 13 notamment par des nanogouttes.
Avantageusement, ledit espace rempli de solution externe 2 peut être un deuxième canal principal 12 (aussi appelé « rivière » en langage de microfluidique) et le dispositif microfluidique comporte des moyens 22, 25, 26 pour faire circuler la solution externe 2 le long dudit deuxième canal principal 12, ce qui contribue également à éviter le bouchage des microcanaux 13.
Le deuxième canal principal 12 peut per exemple être gravé dans la plaque de verre susmentionnée, recouverte par une plaque de verre de fermeture.
Le deuxième canal principal 12 peut également avoir une section de passage au moins 5 fois supérieure à la section de chaque microcanal 13.
Avantageusement, le premier canal principal 11 relie entre eux des premier et deuxième réservoirs fermés 16, 17 et les moyens de mise en pression 22-26 sont adaptés pour maintenir les premier et deuxième réservoirs 16, 17 en surpression, respectivement à des première et deuxième pressions PI, P2 différentes, supérieures à la pression atmosphérique. Les pressions en question sont prévues pour faire circuler alternativement le fluide 3 en sens opposés le long du premier canal principal 11, en faisant varier les première et deuxième pressions de façon que la première pression PI soit alternativement supérieure et inférieure à la deuxième pression P2.
Avantageusement, le deuxième canal principal 12 peut relier entre eux des troisième et quatrième réservoirs 20, 21 et le dispositif microfluidique comporte des moyens de mise en pression 22-26 pour maintenir les troisième et quatrième réservoirs fermés 20, 21 en surpression, respectivement à des troisième et quatrième pressions P3, P4 différentes, supérieures à la pression atmosphérique mais inférieures aux première et deuxième pressions PI, P2 susmentionnées, et les moyens de mise en pression 22-26 sont prévus pour faire circuler alternativement la solution externe 2 en sens opposés le long du deuxième canal principal 12, en faisant varier les troisième et quatrième pressions de façon que la troisième pression P3 soit alternativement supérieure et inférieure à la quatrième pression P4.
Les pressions susmentionnées dans les réservoirs peuvent être générées notamment par un système générateur de pression 22-26 multivoies, par exemple de type MFCS®-EZ commercialisé par la société Fluigent®. Un tel système comporte plusieurs sources de pression indépendantes 23-26, connectées respectivement aux réservoirs 16, 17, 20, 21 et produisant respectivement les pressions P1-P4. Ces sources de pressions sont commandées par une unité centrale 22, par exemple un ordinateur ou autre.
Le fonctionnement du dispositif est le suivant.
Au début du processus de fabrication de l'émulsion, on remplit par exemple le premier réservoir 16 avec le fluide 3, contenant par exemple les nanogouttes 5, et on remplit par exemple le troisième réservoir 20 avec la solution externe 2 additionnée de tensioactif . L'unité centrale 22 commande alors les sources de pression 23-26 pour que P1>P2>P3>P4, de sorte que le premier canal principal 11 est parcouru par le fluide 3 dans le sens de la flèche lia (figure 2) et que le deuxième canal principal 12 est parcourus par la solution externe 2 dans le sens de la flèche 12a. Pendant ce temps, les deuxième et quatrième réservoirs 17, 21 se remplissent progressivement, et une partie du fluide 3 passe dans la solution externe 2 sous forme de microgouttes.
Lorsque le premier réservoir 16 est vide, on modifie les pressions PI, P2 pour que P2>P1, et l'écoulement s'établit dans le sens opposé à la flèche lia. PI et P2 restent supérieures à la pression en tout point dans le deuxième canal principal 12.
De même, lorsque le troisième réservoir 20 est vide, on modifie les pressions P3, P4 pour que P4>P3, et l'écoulement s'établit dans le sens opposé à la flèche 12a. P3 et P4 restent inférieures à la pression en tout point dans le premier canal principal 11.
Au fur et à mesure de ces mouvements alternatifs, on fait passer dans la solution externe 2, sous forme de microgouttes en émulsion, tout le fluide 3 initialement contenu dans le premier réservoir 16, et ce de façon rapide et fiable, sans risquer de polluer l'émulsion réalisée avec des impuretés externes puisqu'il n'y a pas d'ouverture des réservoirs pendant tout le processus.
Eventuellement, les gouttes 1 peuvent être plus denses que la solution externe 2, auquel cas elles s'accumulent dans le fond des troisième et quatrième réservoirs 20, 21.

Claims

REVENDICATIONS
1. Procédé microfluidique pour fabriquer une émulsion comprenant des gouttes (1) en émulsion dans une solution externe (2), les gouttes contenant un fluide (3), procédé dans lequel:
on fait circuler le fluide (3) le long d'un premier canal principal (11),
- on prélève une partie du fluide (3) circulant dans le premier canal principal ( 11 ) , par une pluralité de microcanaux (13) disposés le long du premier canal principal (11), qui communiquent chacun individuellement avec ledit premier canal principal (11) et débouchent chacun individuellement dans un espace (12) rempli de solution externe (2), le premier canal principal (11) étant maintenu à une pression supérieure audit espace (12) rempli de solution externe, le premier canal principal (11) ayant une section de passage au moins 5 fois supérieure à chaque microcanal (13),
on forme les gouttes lorsque le fluide passe de chaque microcanal (13) dans ledit espace (12) rempli de solution externe (2),
procédé dans lequel on fait circuler le fluide (3) le long du premier canal principal (11) entre un premier réservoir (16) et un deuxième réservoir (17) maintenus en surpression respectivement à une première pression et à une deuxième pression différente de la première pression, les première et deuxième pressions étant supérieures à la pression atmosphérique, et on fait circuler alternativement le fluide (3) en sens opposés le long du premier canal principal (11), en faisant varier les première et deuxième pressions de façon que la première pression soit alternativement supérieure et inférieure à la deuxième pression.
2. Procédé microfluidique selon la revendication 1, dans lequel ledit espace rempli de solution externe (2) est un deuxième canal principal (12) et on fait circuler la solution externe (2) le long dudit deuxième canal principal (12), le deuxième canal principal (12) ayant une section de passage au moins 5 fois supérieure à chaque microcanal (13) .
3. Procédé microfluidique selon la revendication 2, dans lequel on fait circuler la solution externe (2) le long du deuxième canal principal (12) entre un troisième réservoir (20) et un quatrième réservoir (21) maintenus en surpression respectivement à une troisième pression et à une quatrième pression différente de la troisième pression, les troisième et quatrième pressions étant supérieures à la pression atmosphérique, et on fait circuler alternativement la solution externe (2) en sens opposés le long du deuxième canal principal (12), en faisant varier les troisième et quatrième pressions de façon que la troisième pression soit alternativement supérieure et inférieure à la quatrième pression.
4. Procédé microfluidique selon l'une quelconque des revendications précédentes, dans lequel les gouttes (1) ont un diamètre (D) inférieur à 20 μιη et le fluide (3) contient des nanogouttes ayant un diamètre inférieur à 5 μιη.
5. Procédé microfluidique selon l'une quelconque des revendications précédentes, dans lequel la solution externe (2) contient un agent tensioactif .
6. Dispositif microfluidique pour fabriquer une émulsion comprenant des gouttes (1) en émulsion dans une solution externe (2), les gouttes contenant un fluide (3), le dispositif comprenant:
un premier canal principal (11) rempli de fluide (3) et reliant entre eux un premier réservoir (16) et un deuxième réservoir (17), des moyens pour on faire circuler le fluide (3) le long du premier canal principal (11),
un espace (12) rempli de solution externe (2), une pluralité de microcanaux (13) disposés le long du premier canal principal (11), qui communiquent chacun individuellement avec ledit premier canal principal (11) et débouchent chacun individuellement dans ledit espace (12) rempli de solution externe (2), lesdits microcanaux étant adaptés pour former les gouttes (1) dans l'espace (12) rempli de solution externe, le premier canal principal (11) ayant une section de passage au moins 5 fois supérieure à chaque microcanal (13),
des moyens de mise en pression (22-26) pour maintenir le premier canal principal (11) à une pression supérieure audit espace (12) rempli de solution externe, les moyens de mise en pression (22-26) étant adaptés pour maintenir le premier réservoir (16) et le deuxième réservoir (17) en surpression, respectivement à une première pression et à une deuxième pression différente de la première pression, les première et deuxième pressions étant supérieures à la pression atmosphérique, et les moyens de mise en pression (22-26) étant prévus pour faire circuler alternativement le fluide (3) en sens opposés le long du premier canal principal (11), en faisant varier les première et deuxième pressions de façon que la première pression soit alternativement supérieure et inférieure à la deuxième pression.
7. Dispositif microfluidique selon la revendication 6, dans lequel ledit espace rempli de solution externe (2) est un deuxième canal principal (12) et le dispositif microfluidique comporte des moyens (22, 25, 26) pour faire circuler la solution externe (2) le long dudit deuxième canal principal (12), le deuxième canal principal (12) ayant une section de passage au moins 5 fois supérieure à chaque microcanal (13) .
8. Dispositif microfluidique selon la revendication 7, dans lequel le deuxième canal principal (12) relie entre eux un troisième réservoir (20) et un quatrième réservoir (21) et le dispositif microfluidique comporte des moyens de mise en pression (22-26) pour maintenir le troisième réservoir (20) et le quatrième réservoir (21) en surpression, respectivement à une troisième pression et à une quatrième pression différente de la troisième pression, les troisième et quatrième pressions étant supérieures à la pression atmosphérique, et les moyens de mise en pression (22-26) sont prévus pour faire circuler alternativement la solution externe (2) en sens opposés le long du deuxième canal principal (12), en faisant varier les troisième et quatrième pressions de façon que la troisième pression soit alternativement supérieure et inférieure à la quatrième pression .
EP16806262.8A 2015-11-18 2016-11-08 Procede et dispositif de fabrication d'emulsions Active EP3377204B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1561082A FR3043571A1 (fr) 2015-11-18 2015-11-18 Procede et dispositif de fabrication d'emulsions
PCT/FR2016/052890 WO2017085373A1 (fr) 2015-11-18 2016-11-08 Procede et dispositif de fabrication d'emulsions

Publications (2)

Publication Number Publication Date
EP3377204A1 true EP3377204A1 (fr) 2018-09-26
EP3377204B1 EP3377204B1 (fr) 2019-12-25

Family

ID=55022594

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16806262.8A Active EP3377204B1 (fr) 2015-11-18 2016-11-08 Procede et dispositif de fabrication d'emulsions

Country Status (6)

Country Link
US (1) US20180326370A1 (fr)
EP (1) EP3377204B1 (fr)
JP (1) JP2019501012A (fr)
BR (1) BR112018009943A2 (fr)
FR (1) FR3043571A1 (fr)
WO (1) WO2017085373A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511238B2 (ja) * 2000-10-13 2004-03-29 独立行政法人食品総合研究所 マイクロスフィアの製造方法および製造装置
JP4611989B2 (ja) * 2003-05-16 2011-01-12 ヴェロシス,インク. マイクロチャネルプロセス技術を用いてエマルジョンを作製するプロセス
CN1188209C (zh) * 2003-05-27 2005-02-09 清华大学 一种低能耗连续制备微乳液的方法
US7622509B2 (en) * 2004-10-01 2009-11-24 Velocys, Inc. Multiphase mixing process using microchannel process technology
FR2948024B1 (fr) 2009-07-17 2020-01-10 Centre National De La Recherche Scientifique - Cnrs - Emulsion activable par ultrasons et son procede de fabrication.

Also Published As

Publication number Publication date
FR3043571A1 (fr) 2017-05-19
BR112018009943A2 (pt) 2018-11-13
JP2019501012A (ja) 2019-01-17
EP3377204B1 (fr) 2019-12-25
WO2017085373A1 (fr) 2017-05-26
US20180326370A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
EP2119503B1 (fr) Système microfluidique et procédé pour le tri d'amas de cellules et pour leur encapsulation en continu suite à leur tri
Bangalore Rajeeva et al. High-resolution bubble printing of quantum dots
EP2442902B1 (fr) Systeme microfluidique et procede pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements
EP2482983B1 (fr) Circuit microfluidique
EP2609993A1 (fr) Dispositif nano et micro fluidique pour la séparation et concentration de particules présentes dans un fluide
CA2981540C (fr) Limiteur de debit
FR2948024A1 (fr) Emulsion activable par ultrasons et son procede de fabrication.
Lee et al. Enhanced Liquid Transport on a Highly Scalable, Cost‐Effective, and Flexible 3D Topological Liquid Capillary Diode
EP3377204B1 (fr) Procede et dispositif de fabrication d'emulsions
EP3180417B1 (fr) Dispostif et procede de selection de cellules eucaryotes dans un canal de transport par alteration des cellules eucaryotes au moyen d'un rayonnemement electromagnetique
EP3162441A1 (fr) Dispositif microfluidique couplant deux zones d'écoulement
KR20190120820A (ko) 외부 압력 대비 방향성 유체 이송을 위한 표면
Vorobyev et al. Optical and wetting properties of femtosecond laser nanostructured materials
FR2957999A1 (fr) Piston avec un conduit sous joint
WO2017068296A1 (fr) Dimensionnement d'un dispositif microfluidique pour confiner un échantillon
CN106573244B (zh) 具有所规定的取出结构的试剂预存放装置
BE1029778B1 (fr) Cassette destinée à contenir une puce microfluidique
CA2362733A1 (fr) Dispositif et procede de positionnement d'un liquide
EP3436701B1 (fr) Ensemble de pompage pour une pompe pour le prélèvement d'un échantillon sanguin
EP4116429A1 (fr) Procédé d'analyse d'un échantillon pour y détecter la présence d'une forme active d'une espèce biologique
EP1156878A1 (fr) Carte d'analyse dont le remplissage est associe a au moins un volume tampon
Liu et al. All-optical microfluidic circuit for biochemical and cellular analysis powered by photoactive nanoparticles
EP3691797A1 (fr) Procede d'assemblage de particules gravitationnel
Kim Self-assembled heterogeneous fluorescence detection systems
FR2853565A1 (fr) Microdispositif de transfert collectif d'une pluralite de liquide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190724

RIN1 Information on inventor provided before grant (corrected)

Inventor name: COUTURE, OLIVIER

Inventor name: TANTER, MICKAEL

Inventor name: ERRICO, CLAUDIA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1216552

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016027023

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016027023

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1216552

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

26N No opposition filed

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016027023

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201108

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130