WO2010137717A1 - タンパク質間相互作用の高感度検出方法 - Google Patents

タンパク質間相互作用の高感度検出方法 Download PDF

Info

Publication number
WO2010137717A1
WO2010137717A1 PCT/JP2010/059160 JP2010059160W WO2010137717A1 WO 2010137717 A1 WO2010137717 A1 WO 2010137717A1 JP 2010059160 W JP2010059160 W JP 2010059160W WO 2010137717 A1 WO2010137717 A1 WO 2010137717A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
fusion protein
protein
complex
Prior art date
Application number
PCT/JP2010/059160
Other languages
English (en)
French (fr)
Inventor
小澤 岳昌
直美 三澤
研二 三浦
岡本 将
重明 西井
兼治 増田
Original Assignee
国立大学法人東京大学
株式会社ProbeX
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 株式会社ProbeX, 東洋紡績株式会社 filed Critical 国立大学法人東京大学
Priority to US13/375,142 priority Critical patent/US8470974B2/en
Priority to EP10780671.3A priority patent/EP2436764B1/en
Priority to CN201080023492.6A priority patent/CN102449147B/zh
Publication of WO2010137717A1 publication Critical patent/WO2010137717A1/ja
Priority to US13/906,475 priority patent/US20130323814A1/en
Priority to US14/169,750 priority patent/US9540678B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6804Nucleic acid analysis using immunogens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching

Definitions

  • the present invention relates to a method for detecting protein-protein interaction.
  • Such a complementarity method has been used for various reporter proteins including dihydrofolate reductase and ⁇ -lactamase green fluorescent protein.
  • luciferases have also been used, such as Renilla luciferase, firefly luciferase, red luminescent click luciferase, and green luminescent click luciferase.
  • An object of the present invention is to provide an assay system using split luciferase with extremely high detection sensitivity.
  • the present inventors have used a luciferase derived from a Brazilian red beetle (Pyrearinus termitilluminans) and used any one of C-terminal fragment having SEQ ID NO: 1 and SEQ ID NO: 2-6. It is found that when the N-terminal fragment having such is fused to two proteins that bind to each other and the two fusion proteins are bound, light having an intensity of about 30 times or more is emitted.
  • the present invention has been completed.
  • one embodiment of the present invention is a fusion protein having the amino acid sequence of amino acid sequence number 1.
  • Another embodiment is a fusion protein having an amino acid sequence selected from the group consisting of amino acid sequence numbers 2 to 6.
  • a protein has an amino acid sequence means that the protein includes the amino acid sequence, and may include an amino acid sequence other than the amino acid sequence.
  • the “fusion protein” refers to a peptide derived from Hikari-komushi luciferase (in the present invention, specifically, a peptide consisting of an amino acid sequence selected from the group consisting of amino acid sequence numbers 1 to 6), A protein fused with a peptide not derived from luciferase.
  • Another embodiment is a complex of a fusion protein having a peptide consisting of the amino acid sequence of amino acid sequence number 1 and a fusion protein having a peptide consisting of the amino acid sequence selected from the group consisting of amino acid sequence numbers 2 to 6 .
  • DNA encoding a peptide consisting of an amino acid sequence selected from the group consisting of amino acid sequence numbers 1 to 6.
  • it may be an expression vector that can express a fusion protein containing this DNA and fused to a peptide consisting of an amino acid sequence selected from the group consisting of amino acid sequence numbers 1 to 6.
  • an expression vector for expressing a protein having a peptide consisting of the amino acid sequence of amino acid sequence number 1 and a protein having a peptide consisting of an amino acid sequence selected from the group consisting of amino acid sequence numbers 2 to 6 are used.
  • another embodiment is a method for detecting a fusion protein having the amino acid sequence of amino acid sequence number 1, wherein the fusion protein has an amino acid sequence selected from the group consisting of amino acid sequences number 2 to 6 And a step of interacting with a binding fusion protein that binds to the fusion protein to form a complex and a step of detecting light emitted from the complex.
  • Another embodiment is a method for detecting a fusion protein having an amino acid sequence selected from the group consisting of amino acid sequences Nos. 2 to 6, wherein the fusion protein has the amino acid sequence of amino acid sequence No. 1. And a step of interacting with a binding fusion protein that binds to the protein to form a complex, and a step of detecting light emitted from the complex.
  • Another embodiment has a first fusion protein having the amino acid sequence of amino acid sequence number 1 and an amino acid sequence selected from the group consisting of amino acid sequence numbers 2 to 6, and binds to the first protein
  • a method for detecting a complex with a binding fusion protein, the method comprising a step of detecting light emitted from the complex.
  • Another embodiment is a method for detecting the binding between a first fusion protein and a second fusion protein having binding ability to each other, wherein the first fusion protein has the amino acid sequence of amino acid SEQ ID NO: 1.
  • the second fusion protein has an amino acid sequence selected from the group consisting of amino acid sequence numbers 2 to 6, and the first fusion protein and the second fusion protein interact to form a complex.
  • a step of detecting light emitted from the complex also comprises a step of fusing the amino acid sequence of amino acid sequence number 1 to the first protein to produce the first fusion protein, and an amino acid sequence selected from the group consisting of amino acid sequence numbers 2 to 6 A step of fusing to a second protein to produce a second fusion protein.
  • another embodiment is a method of screening a binding fusion protein that binds to a first fusion protein from a fusion protein library, wherein the first fusion protein has the amino acid sequence of amino acid SEQ ID NO: 1,
  • the plurality of second fusion proteins contained in the protein library have an amino acid sequence selected from the group consisting of amino acid sequence numbers 2 to 6, and the step of causing the first fusion protein and the second fusion protein to interact with each other And identifying a binding fusion protein that forms a complex with the first fusion protein by detecting the emitted light.
  • Another embodiment is a method for screening a binding fusion protein that binds to a first fusion protein, wherein the first fusion protein has an amino acid sequence selected from the group consisting of amino acid sequence numbers 2 to 6.
  • FIG. 1A is a base sequence of cDNA of the click beetle luciferase.
  • FIG. 1B is a list of PCR primers used to make plucN and plucC in one example of the present invention.
  • FIG. 1C is the base sequence of DNA inserted into the multiple cloning site of pcDNA3.1 in pcDNA3.1 / myc-His (B).
  • FIG. 1D shows the nucleotide sequence of DNA inserted into the multiple cloning site of pcDNA4 in pcDNA4 / V5-His (B).
  • Example of this invention it is a graph showing the result of having investigated the luminescence intensity in the luciferase split assay using the combination of pFRB-lucC389-pFRB-lucC391 and plucN404-FKBP- plucN417-FKBP.
  • the left bar of the bar graph is the result in the medium containing rapamycin
  • the right bar is the result in the medium containing DMSO.
  • it is a graph showing the result of having investigated the luminescence intensity in the luciferase split assay using the combination of pFRB-lucC392-pFRB-lucC394 and plucN404-FKBP- plucN417-FKBP.
  • the left bar of the bar graph is the result in the medium containing rapamycin
  • the right bar is the result in the medium containing DMSO.
  • it is a graph showing the result of having investigated the luminescence intensity in the luciferase split assay using the combination of pFRB-lucC394-pFRB-lucC399 and plucN404-FKBP-plucN417-FKBP.
  • the left bar of the bar graph is the result in the medium containing rapamycin
  • the right bar is the result in the medium containing DMSO.
  • Example of this invention it is a graph showing the result of having investigated the luminescence intensity in the luciferase split assay using the combination of pFRB-lucC400-pFRB-lucC403 and plucN404-FKBP-plucN417-FKBP.
  • the left bar of the bar graph is the result in the medium containing rapamycin
  • the right bar is the result in the medium containing DMSO.
  • it is a graph showing the result of having investigated the luminescence intensity in the luciferase split assay using the combination of pFRB-lucC404-pFRB-lucC407 and plucN404-FKBP-plucN417-FKBP.
  • the left bar of the bar graph is the result in the medium containing rapamycin
  • the right bar is the result in the medium containing DMSO.
  • Rap + is luminescence intensity when binding is induced
  • DMSO is luminescence intensity when binding is not induced (ie, background)
  • STDEV-R is standard deviation when binding is induced by Rap +
  • STDEV-D Represents the standard deviation when binding is not induced in DMSO.
  • the left bar of the bar graph is the result in the medium containing rapamycin
  • the right bar is the result in the medium containing DMSO.
  • it is a table
  • the symbols have the same meaning as in FIG.
  • HEK293 cells in which pSSTR2-lucC394 and plucN415-arrestin were introduced to transiently express SSTR2-lucC394 and lucN415-arrestin, respectively, when somatostatin was added or not It is a graph which shows the result of having compared luminescence intensity.
  • the x axis represents the presence (+) and absence ( ⁇ ) of somatostatin, and the y axis represents the number of photons (x10 4 ).
  • Example of this invention it is a graph which shows a dose-response curve when light emission is measured after stimulating HEK293-ARRB2-SSTR2 cell line with various concentrations of somatostatin or its analog (RIM23052 or BIM23056).
  • the x-axis is the concentration of each reagent (log [molar]), y-axis represents the number of photons (x10 4 pieces).
  • after stimulating HEK293-ARRB2-SSTR2 cell line with 1x10-6 M somatostatin it is a graph which shows a time-response curve when light emission is measured over time.
  • x axis represents time (minutes)
  • y-axis represents the number of photons (x10 4 pieces).
  • concentration EC50
  • T time after irritation
  • the present invention provides a luciferase split assay system with high detection sensitivity.
  • an amino acid sequence consisting of amino acid sequence No. 1 and an amino acid sequence selected from the group consisting of amino acid sequence Nos. 2 to 6 are used, which are derived from the click beetle luciferase (sequence shown in FIG. 1A).
  • the method for carrying out the present assay system will be described in detail, but the luciferase split assay is already a well-known technique, and those skilled in the art can perform parts not described in the present specification according to common general technical knowledge.
  • a second protein referred to as the second fusion protein having (this partial peptide is referred to as lucNmax) is synthesized.
  • the first protein and the second protein are proteins that can bind under specific conditions.
  • Each fusion protein may be chemically synthesized and introduced into the assay system, but as described later, an expression vector encoding the fusion protein may be constructed and the fusion protein expressed in the assay system. In that case, transient expression or constant expression may be used.
  • the former is preferable when the assay system is an in-vitro system, and the latter is preferable when the assay system is an in-vivo system such as a cell.
  • lucCmax or lucNmax and each protein may be directly bonded or may be bonded via a linker.
  • the linker is preferably a partial peptide having an appropriate length.
  • luciferase activity when the assay system is a cell, luciferin may be administered to the cell culture medium, a cell extract may be prepared, and luciferase activity may be measured there, but commercially available Emerald Luc Luciferase Assay Reagent The activity can be easily measured by using / Lysis Solution (TOYOBO).
  • the amino acid sequence of lucC is amino acid sequence number 1 and the amino acid sequence of lucN is an amino acid sequence selected from the group consisting of amino acid sequence numbers 2 to 6, which is about 30 times or more than the conventional one.
  • the intensity of light emission can be obtained.
  • This vector may have the following configuration, for example.
  • a DNA encoding the target protein By inserting a DNA encoding the target protein into the multicloning site in a frame, a fusion protein of lucNmax and the protein can be easily expressed.
  • ATG which is the initiation codon, is downstream of the expression promoter functioning in the assay system, and DNA encoding the multicloning site and lucCmax is inserted in this order, followed by a transcription termination signal. It is a configuration that there is.
  • a fusion protein of lucCmax and the protein can be easily expressed by inserting a DNA encoding the target protein into the multicloning site in a frame.
  • the vector contains an amino acid sequence of amino acid sequence number 1, ie, a vector containing DNA encoding lucCmax, and an amino acid sequence selected from the group consisting of amino acid sequence numbers 2 to 6, ie, a vector containing DNA encoding lucNmax. If it is a kit, the expression vector of the fusion protein which has lucCmax or lucNmax can be constructed
  • a fusion protein having lucCmax can be detected.
  • the second fusion protein in which lucNmax is fused to the binding protein that binds to the protein to be detected is prepared as a probe. Introduce into the assay system. Then, the binding protein in the second fusion protein binds to the protein to be detected in the first fusion protein, and lucCmax and lucNmax interact to have luciferase activity. By detecting the luciferase activity, a fusion protein to be detected having lucCmax can be detected.
  • an expression vector that expresses the first fusion protein is prepared and introduced into a cell. After preparing an expression vector that expresses the second fusion protein and introducing it into the cell that expresses the first fusion protein, the fusion protein having lucCmax can be detected by measuring the luciferase activity of the cell as described above. It becomes like this.
  • a fusion protein having lucNmax can be detected.
  • the first fusion protein in which lucNmax is fused to the protein to be detected is in the assay system
  • the second fusion protein in which lucCmax is fused to the binding peptide that binds to the protein to be detected is prepared as a probe. And introduced into the assay system. Then, the binding peptide in the second fusion protein binds to the detection target peptide in the first fusion protein, and lucNmax and lucCmax interact to have luciferase activity. By detecting the luciferase activity, the fusion protein to be detected having lucNmax can be detected.
  • an expression vector that expresses the first fusion protein is prepared and introduced into a cell. After preparing an expression vector that expresses the second fusion protein and introducing it into a cell that expresses the first fusion protein, the fusion protein having lucNmax can be detected by measuring the luciferase activity as described above. Become.
  • a complex of a fusion protein having lucNmax and a fusion protein having lucCmax can be detected. This is because, when these fusion proteins form a complex, lucNmax and lucCmax interact to have luciferase activity, and the complex can be detected by detecting the luciferase activity.
  • the assay system in which the complex is present may be placed under conditions where luciferase activity can be detected. When the assay system is a cell, the luciferase activity may be measured as described above.
  • the first protein and the second protein having binding ability to each other. That is, if the lucNmax is fused to the first protein to synthesize the first fusion protein, and the lucCmax is fused to the second protein to synthesize the second fusion protein, the first fusion protein This is because the luciferase activity is detected when the first and second fusion proteins are bound.
  • this method for example, it can be examined whether or not the first protein and the second protein bind to each other.
  • the first protein and the second protein bind to each other, the luciferase activity is detected. If the first protein and the second protein do not bind, the luciferase activity is not detected.
  • expression vectors that express the first fusion protein and the second fusion protein are respectively prepared and introduced into the same cell. Thereafter, by measuring the luciferase activity as described above, if the reconstituted luciferase emits light, it can be determined that the first protein and the second protein are bound. It can be determined that the protein and the second protein do not bind.
  • a binding protein that binds to the first protein can be screened from the protein library. That is, lucNmax or lucCmax is fused to the first protein to produce a first fusion protein, and lucCmax or lucNmax is fused to the second protein in the protein library, respectively, to produce a second fusion protein.
  • the first fusion protein and the second fusion protein are allowed to interact, only the fusion protein having a binding protein that binds to the first protein in the second fusion protein is complexed with the first fusion protein. Form the body. Therefore, the second protein that forms a complex with the first protein can be identified by detecting the light emitted from the complex and identifying the fusion protein.
  • cells transformed with an expression vector that expresses the first fusion protein in which lucNmax is fused to the first protein are prepared.
  • a cDNA library constructed so that the protein is expressed in a form fused with lucCmax is introduced into the cells, and then luciferin is added to the medium to identify and clone the luminescent cells. From each clone, DNA derived from the library is collected to identify the expressed gene. In this way, cDNA of the second protein that forms a complex with the first protein can be obtained.
  • FKBP NM_054014
  • FRB NM_019906
  • LucNmax SEQ ID NOs: 2 to 6; amino acids 1 to 412 to 416
  • lucCmax SEQ ID NOs: 1; amino acid sequence at positions 394 to 542
  • PCR was carried out using the light beetle luciferase cDNA (sequence shown in FIG. 1A) as a template and the primers shown in FIG. 1B, and 14 types of amino acids 404 to 417 from the N-terminal amino acid were obtained.
  • 14 types of DNA fragments encoding peptides using N-PtGR-F001 and N-PtGR-R404 to R417 pairs
  • 389th to 413th amino acid sequences from the C-terminal amino acid
  • 25 types of DNA fragments C-PtGR-R542 and C-PtGR-F389 to F413 pairs were used
  • the DNA coding for the N-terminal region is cleaved with HindIII and BamHI, pFKBP with BamHI and XhoI, pcDNA3.1 / myc-His (B) with HindIII and XhoI, ligated in 3 molecules, and 14 types of plucN-FKBP Was made.
  • the DNA encoding the C-terminal region was cleaved with XhoI and IISacII, pFRB with BamHI and XhoI, pcDNA4 / V5-His (B) with BamHI and SacII, and ligation was carried out for 3 molecules. 25 types of pFRB-lucC Was made.
  • FIG. 1C shows the base sequence of DNA inserted into the multiple cloning site of pcDNA3.1
  • FIG. 1D shows pcDNA4 Are the plasmid vectors having the insertion sequences of SEQ ID NOs: 7 and 8, respectively.
  • each combination of expression vectors is transferred to COS7 cells using TtansIT Transfection Reagents (TAKARA) in a 96-well plastic culture dish. Transfected. About 16 hours after the transfection, the medium was replaced with a medium containing 1 ⁇ M rapamycin. After further incubation for 24 hours, ELA (TOYOBO) was added, and luminescence measurement was performed with TriStar LB941 (Berthold Technologies).
  • PTlucN-FKBP is a vector constructed by amplifying an N-terminal fragment by PCR using the following primer with the cDNA of red luminescent click luciferase and constructed similarly to plucN-FKBP.
  • PFRB-GlucC is a cDNA of green luminescent click luciferase Is a vector constructed by amplifying a C-terminal fragment by PCR using the following primers and constructing in the same manner as pFRB-lucC.
  • SSTR2 somatostatin receptor
  • NM_000794 somatostatin type 2 receptor
  • NM_004313 GPCR (G-protein coupled receptor)
  • GPCR G-protein coupled receptor
  • the C-terminus of SSTR2 is bound to the C-terminus of Eluc
  • the N-terminus of ⁇ -arrestin is bound to the N-terminus of Eluc
  • the fusion proteins are expressed in cultured cells
  • somatostatin is administered to the cultured cells. The luminescence from the cells was examined.
  • ARRB2-nestF2 AAAGGATCCATGGGGGAGAAACCCGGGACCAGGGTCT (SEQ ID NO: 54)
  • ARRB2-nestR-Eco AAGAATTCCAGCAGAGTTGATCATCATAGT (SEQ ID NO: 55)
  • SSTR2_start_Bam TTGGATCCATGGACATGGCGGATGAGCCAC (SEQ ID NO: 56)
  • SSTR2_R1107end_XhoI TTTCTCGAGCCGATACTGGTTTGGAGGTCTCCATTG (SEQ ID NO: 57)
  • the DNA encoding arrestin was cleaved with BamHI and EcoRI and ligated with plucN415 cleaved with BamHI and EcoRI to obtain plucN415-arrestin.
  • PlucN415 used here was obtained by excising DNA encoding lucN415 from plucN415-FKBP prepared in Example 1 with HindIII and BamHI and ligating with pcDNA3.1 / myc-His (B) cleaved with HindIII and BamHI. It was.
  • the DNA fragment encoding SSTR2 was cleaved with BamHI and XhoI, and inserted into the multiple cloning site of pcDNA4 / V5-His (B) to obtain pSSTR2. Furthermore, the DNA encoding lucC394 having a linker length extended to 22 amino acids was cleaved with XhoI and SacII and inserted into the XhoI-SacII site of pSSTR2 to obtain pSSTR2-lucC394.
  • linker length of lucC394 was obtained by PCR amplification using pFRB-lucC394 as a template and using linkerC12-F-XhoI (SEQ ID NO: 58) and PtGR-R542-SacII (SEQ ID NO: 61) primers as XhoI and SacII.
  • linkerC12-F-XhoI AGGCTCGAGTGGCGGTGGAGGTAGTGGAGGCGGCGGAACAAA
  • linkerC17-F-XhoI AGGCTCGAGTGGTGGTGGGGGCAGTGGCGGTGGAGGTAGTGG
  • linkerC22-F-XhoI AGGCTCGAGTGGAGGTGGCGGTTCTGGTGGTGGGGGCAGTGGCGGT (SEQ ID NO: 60)
  • PtGR-R542-SacII TTTCCGCGGCAGCTTAGAAGCCTTCTC (SEQ ID NO: 61)
  • PSSTR2-lucC394 and plucN415-arrestin thus prepared were transfected into HEK293 cells cultured in a 96-well plastic culture dish using TtansIT Transfection Reagents (TAKARA). About 40 hours after transfection, the cells were cultured for 12 minutes in a medium containing 1 ⁇ M somatostatin, ELA (TOYOBO) was added, and luminescence measurement was performed with TriStar LB941 (Berthold Technologies). As a control, luminescence was measured in the same manner using cells to which no somatostatin was added, and the results were compared. As shown in FIG. 6, by adding somatostatin, the luminescence was significantly enhanced and its intensity was increased. Increased 8 times.
  • TtansIT Transfection Reagents TtansIT Transfection Reagents
  • HEK293 cells similarly transfected with plucN415-arrestin using a 6 cm plastic culture dish are cultured in a medium containing 0.8 mg / mL G418 for 20 days, thereby constitutively expressing lucN415-arrestin.
  • HEK293 cell line HEK293-ARRB2 was generated.
  • This cell line was further transfected with pSSTR2-lucC394 in the same manner, and cultured for 20 days in a medium containing 0.8 mg / mL G418 and 0.04 mg / mL Zeocin, so that lucN415-arrestin and SSTR2-lucC394 were
  • the HEK293 cell line HEK293-ARRB2-SSTR2 that expresses constitutively was produced.
  • the cells were cultured in 96-well plastic culture dishes and stimulated with various concentrations of somatostatin or analogs thereof (RIM23052 or BIM23056) for 12 minutes, and luminescence measurements were similarly performed. Based on the obtained results, a dose-response curve representing the relationship between the ligand concentration and the luminescence intensity was created.
  • the luciferase split assay of the present invention is a GPCR other than SSTR2, that is, ADRB2 (adrenergic beta2 receptor, surface) (NM_000024), AGTRL1 (apelin receptor) (NM_00516), EDNRB (endothelin receptor type B) (NM_000115), CCKBR This is applicable to (cholecystokinin B receptor) (NM_17685), and in the same experimental system, results as shown in FIG. 9 were obtained.
  • an assay system using split luciferase with extremely high detection sensitivity can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明は、著しく検出感度の高いスプリットルシフェラーゼによるアッセイ系を提供することを目的とする。一実施態様として、相互に結合能を有する第1のタンパク質と第2のタンパク質との結合を検出する際、第1のタンパク質をアミノ酸配列番号1のアミノ酸配列からなるペプチドに融合させた第1の融合タンパク質を作製し、第2のタンパク質をアミノ酸配列番号2~6からなる群より選択されるアミノ酸配列からなるペプチドに融合させた第2の融合タンパク質を作製し、第1の融合タンパク質と第2の融合タンパク質とを相互作用させ、複合体を形成させたあとで、その複合体の発光活性を調べる。

Description

タンパク質間相互作用の高感度検出方法
 本発明は、タンパク質間相互作用を検出する方法に関する。
 最近、スプリットルシフェラーゼのフラグメントの相補性を利用して、目的とする2つのタンパク質の相互作用を検出する系が開発された(Kim, S. B., Ozawa, T., Watanabe, S., Umezawa, Y., 2004.Proc. Natl. Acad. Sci. USA. 101, 11542-11547)。タンパク質間相互作用を検出するため、相補性を利用する方法としては、一般に、スプリットしたリポータータンパク質の各フラグメントを、目的とするタンパク質と融合するが、その際、そのどちらのフラグメントも自らは有意な活性を保持しないようにしておく。目的とするタンパク質同士が相互作用すると、2つの不活性なリポータータンパク質フラグメントは、活性を復活するように互いに相補し、そのタンパク質間相互作用を間接的に追跡するための読み出しシグナルを出す。
 ジヒドロ葉酸還元酵素、β‐ラクタマーゼ緑色蛍光タンパク質をはじめとする様々なレポータータンパク質に関して、このような相補性を利用する方法が用いられてきた。また、ウミシイタケルシフェラーゼ、ホタルルシフェラーゼ、赤色発光コメツキムシルシフェラーゼ、緑色発光コメツキムシルシフェラーゼなど、数種類のルシフェラーゼも用いられてきた。
 本発明は、著しく検出感度の高いスプリットルシフェラーゼによるアッセイ系を提供することを目的とする。
 本発明者らは、上記課題を解決すべく、鋭意努力したところ、ブラジル産ヒカリコメツキムシ(Pyrearinus termitilluminans)に由来するルシフェラーゼを用い、配列番号1を有するC端側断片と配列番号2~6のいずれかを有するN端断片を、それぞれ、相互に結合する2つのタンパク質に融合させ、その2つの融合タンパク質を結合させたときに、従来より約30倍以上の強度の光が放出されることを見出し、本発明を完成させた。
 すなわち、本発明の1つの実施形態はアミノ酸配列番号1のアミノ酸配列を有する融合タンパク質である。また、別の実施形態は、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有する融合タンパク質である。
 なお、本明細書で、「タンパク質がアミノ酸配列を有する」とは、当該タンパク質が当該アミノ酸配列を含んでいることを意味し、当該アミノ酸配列以外のアミノ酸配列を含んでもよいものとする。また、「融合タンパク質」とは、ヒカリコメツキムシ・ルシフェラーゼに由来するペプチド(本発明において、具体的には、アミノ酸配列番号1~6からなる群より選択されるアミノ酸配列からなるペプチド)とヒカリコメツキムシ・ルシフェラーゼに由来しないペプチドとが融合したタンパク質のことをいう。
 また、別の実施形態は、アミノ酸配列番号1のアミノ酸配列からなるペプチドを有する融合タンパク質とアミノ酸配列番号2~6からなる群より選択されるアミノ酸配列からなるペプチドを有する融合タンパク質の複合体である。
 また、別の実施形態は、アミノ酸配列番号1~6からなる群より選択されるアミノ酸配列からなるペプチドをコードするDNAである。また、このDNAを含み、アミノ酸配列番号1~6からなる群より選択されるアミノ酸配列からなるペプチドに融合させた融合タンパク質を発現することができる発現ベクターであってもよい。
 さらに、別の実施形態は、アミノ酸配列番号1のアミノ酸配列からなるペプチドを有するタンパク質を発現する発現ベクターと、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列からなるペプチドを有するタンパク質を発現する発現ベクターを含有するタンパク質相互作用検出キットである。
 さらに、別の実施形態は、アミノ酸配列番号1のアミノ酸配列を有する融合タンパク質を検出する方法であって、当該融合タンパク質を、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有し、当該融合タンパク質に結合する結合融合タンパク質と相互作用させ、複合体を形成させる工程と前記複合体から放出される光を検出する工程と、を含むことを特徴とする方法である。
 また、別の実施形態は、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有する融合タンパク質を検出する方法であって、当該融合タンパク質を、アミノ酸配列番号1のアミノ酸配列を有し、当該タンパク質に結合する結合融合タンパク質と相互作用させ、複合体を形成させる工程と前記複合体から放出される光を検出する工程と、を含むことを特徴とする方法である。
 また、別の実施形態は、アミノ酸配列番号1のアミノ酸配列を有する第1の融合タンパク質と、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有し、第1のタンパク質に結合する結合融合タンパク質との複合体の検出方法であって、前記複合体から放出される光を検出する工程を含むことを特徴とする方法である。
 また、別の実施形態は、相互に結合能を有する第1の融合タンパク質と第2の融合タンパク質との結合を検出する方法であって、第1の融合タンパク質はアミノ酸配列番号1のアミノ酸配列を有し、第2の融合タンパク質はアミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有し、第1の融合タンパク質と第2の融合タンパク質とを相互作用させ、複合体を形成させる工程と、前記複合体から放出される光を検出する工程と、を含むことを特徴とする方法である。また、この検出方法は、アミノ酸配列番号1のアミノ酸配列を第1のタンパク質に融合させて、第1の融合タンパク質を製造する工程と、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を第2のタンパク質に融合させて、第2の融合タンパク質を製造する工程と、をさらに含んでもよい。
 さらに、別の実施形態は、第1の融合タンパク質に結合する結合融合タンパク質を融合タンパク質ライブラリーからスクリーニングする方法であって、第1の融合タンパク質はアミノ酸配列番号1のアミノ酸配列を有し、融合タンパク質ライブラリーに含まれる複数の第2の融合タンパク質はアミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有し、第1の融合タンパク質と第2の融合タンパク質とを相互作用させる工程と、放出される光を検出することにより、第1の融合タンパク質と複合体を形成する結合融合タンパク質を同定する工程と、を含むことを特徴とする方法である。
 また、別の実施形態は、第1の融合タンパク質に結合する結合融合タンパク質をスクリーニングする方法であって、第1の融合タンパク質はアミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有し、複数の第2の融合タンパク質はアミノ酸配列番号1のアミノ酸配列を有し、第1の融合タンパク質と第2の融合タンパク質とを相互作用させる工程と、放出される光を検出することにより、第1の融合タンパク質と複合体を形成する結合融合タンパク質を同定する工程と、を含むことを特徴とする方法である。
〈 関連文献とのクロスリファレンス 〉
 なお、本出願は、2009年5月29日出願の日本国出願番号特願2009-131481及び2010年2月23日出願の日本国出願番号特願2010-37921の優先権の利益を主張し、これを引用することにより本明細書に含めるものとする。
図1Aはヒカリコメツキムシ・ルシフェラーゼのcDNAの塩基配列である。 図1Bは、本発明の一実施例において、plucNおよびplucCを作製するのに用いたPCRプライマーのリストである。 図1Cは、pcDNA3.1/myc-His(B)において、pcDNA3.1のマルチクローニングサイトに挿入されたDNAの塩基配列である。 図1Dは、pcDNA4/V5-His(B) において、pcDNA4のマルチクローニングサイトに挿入されたDNAの塩基配列である。 本発明の一実施例において、pFRB-lucC389~pFRB-lucC391とplucN404-FKBP~ plucN417-FKBPとの組み合わせを用い、ルシフェラーゼスプリットアッセイにおける発光強度を調べた結果を表すグラフである。各サンプルにつき、棒グラフの左棒がラパマイシン含有培地での結果であり、右棒がDMSO含有培地での結果である。 本発明の一実施例において、pFRB-lucC392~pFRB-lucC394とplucN404-FKBP~ plucN417-FKBPとの組み合わせを用い、ルシフェラーゼスプリットアッセイにおける発光強度を調べた結果を表すグラフである。各サンプルにつき、棒グラフの左棒がラパマイシン含有培地での結果であり、右棒がDMSO含有培地での結果である。 本発明の一実施例において、pFRB-lucC394~pFRB-lucC399とplucN404-FKBP~plucN417-FKBPとの組み合わせを用い、ルシフェラーゼスプリットアッセイにおける発光強度を調べた結果を表すグラフである。各サンプルにつき、棒グラフの左棒がラパマイシン含有培地での結果であり、右棒がDMSO含有培地での結果である。 本発明の一実施例において、pFRB-lucC400~pFRB-lucC403とplucN404-FKBP~plucN417-FKBPとの組み合わせを用い、ルシフェラーゼスプリットアッセイにおける発光強度を調べた結果を表すグラフである。各サンプルにつき、棒グラフの左棒がラパマイシン含有培地での結果であり、右棒がDMSO含有培地での結果である。 本発明の一実施例において、pFRB-lucC404~pFRB-lucC407とplucN404-FKBP~plucN417-FKBPとの組み合わせを用い、ルシフェラーゼスプリットアッセイにおける発光強度を調べた結果を表すグラフである。各サンプルにつき、棒グラフの左棒がラパマイシン含有培地での結果であり、右棒がDMSO含有培地での結果である。 本発明の一実施例において、pFRB-lucC394とplucN412-FKBP~plucN416-FKBPとの組み合わせを用い、ルシフェラーゼスプリットアッセイにおける発光強度を調べた結果を表すグラフ及び表である。表においては、Rap+は結合を誘導した時の発光強度、DMSOは結合を誘導しない時の発光強度(すなわち、バックグラウンド)、STDEV-RはRap+で結合を誘導した時の標準偏差、STDEV-DはDMSOで結合を誘導しない時の標準偏差を表す。グラフにおいては、各サンプルにつき、棒グラフの左棒がラパマイシン含有培地での結果であり、右棒がDMSO含有培地での結果である。 本発明の一実施例において、plucN415-FKBP とpFRB-lucC394の組み合わせと、従来のpTlucN-FKBPとpFRB-GlucCの組み合わせとを用い、ルシフェラーゼスプリットアッセイにおける発光強度を比較した結果を表す表である。記号は図4と同じ意味を表す。 本発明の一実施例において、pSSTR2-lucC394とplucN415-arrestinを導入してSSTR2-lucC394とlucN415-arrestinをそれぞれ一過的に発現させたHEK293細胞に対し、ソマトスタチンを添加した場合としない場合において、発光強度を比較した結果を示すグラフである。x軸はソマトスタチンの有り(+)と無し(-)を、y軸は光子数(x104個)を表す。 本発明の一実施例において、HEK293-ARRB2-SSTR2細胞株を、様々な濃度のソマトスタチンまたはそのアナログ(RIM23052またはBIM23056)で刺激した後に発光を測定したときのdose-responseカーブを示すグラフである。x軸は各試薬の濃度(log[モル濃度])を、y軸は光子数(x104個)を表す。 本発明の一実施例において、HEK293-ARRB2-SSTR2細胞株を1x10-6Mのソマトスタチンで刺激した後、時間経過を追って発光を測定したときのtime-responseカーブを示すグラフである。x軸は時間(分)を、y軸は光子数(x104個)を表す。 GPCRに対して行った実験において、用いたGPCRの名前、融合タンパク質を発現する発現ベクターを作製する際に用いたPCR用鋳型とプライマー配列、刺激するために用いたリガンド、発光が検出されたリガンド濃度(EC50)(単位はモル濃度)、最大発光が観察される刺激後の時間(T)を記載した表である。
 以下、上記知見に基づき完成した本発明の実施の形態を、実施例を挙げながら詳細に説明する。実施の形態及び実施例に特に説明がない場合には、J. Sambrook, E. F. Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.などの標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬キットや測定装置を用いている場合には、特に説明が無い場合、それらに添付のプロトコルを用いる。
 なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
==原理==
 本発明は、検出感度の高いルシフェラーゼスプリットアッセイ系を提供する。本アッセイ系では、ヒカリコメツキムシ・ルシフェラーゼ(図1Aに配列を記載)に由来する、アミノ酸配列番号1からなるアミノ酸配列と、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列とを利用する。以下、本アッセイ系を行う方法について詳細に述べるが、ルシフェラーゼスプリットアッセイはすでに周知の技術であり、本明細書に記載されていない部分については、当業者は技術常識によって実行可能である。
 まず、アミノ酸配列番号1のアミノ酸配列(この部分ペプチドをlucCmaxと称する)を有する第1のタンパク質(第1の融合タンパク質と称する)と、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列(この部分ペプチドをlucNmaxと称する)を有する第2のタンパク質(第2の融合タンパク質と称する)を合成する。ここで、第1のタンパク質と第2のタンパク質は、特定の条件で結合しうるタンパク質とする。
 各融合タンパク質は、化学合成しアッセイ系に導入してもよいが、後述するように、融合タンパク質をコードする発現ベクターを構築し、アッセイ系内で融合タンパク質を発現させてもよい。その場合、一過性発現でも恒常的発現でも構わない。なお、アッセイ系がin vitroの系の場合は前者が好ましく、細胞などのin vivoの系の場合は後者が好ましい。なお、各融合タンパク質において、lucCmaxまたはlucNmaxと、各タンパク質は、それぞれ、直接結合させてもよく、リンカーを介して結合させても良い。リンカーは、適当な長さを有する部分ペプチドであることが好ましい。
 アッセイ系に、両方の融合タンパク質を導入すると、第1のタンパク質と第2のタンパク質が結合する。それによってlucCmaxとlucNmaxが相互作用するような位置に来て、lucCmaxとlucNmaxがルシフェラーゼを再構築してルシフェラーゼ活性を回復し、適当な発光条件が与えられた時に光るようになる。ルシフェラーゼ活性の測定には、アッセイ系が細胞の場合、細胞培地にルシフェリンを投与してもよく、細胞抽出物を調製し、そこでルシフェラーゼ活性を測定してもよいが、市販のEmerald Luc Luciferase Assay Reagent/Lysis Solution(TOYOBO社)等を用いると容易に活性を測定できる。
 このアッセイ系では、lucCのアミノ酸配列を、アミノ酸配列番号1とし、lucNのアミノ酸配列を、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列とすることによって、従来の約30倍以上の発光の強度が得られる。
==発現ベクターの構築==
 上述したように、アッセイ系内に融合タンパク質を導入するには、各融合タンパク質をコードする発現ベクターを構築し、アッセイ系内で融合タンパク質を発現させてもよい。
 ここで、アミノ酸配列番号1~6からなる群より選択されるアミノ酸配列をコードするDNAを含むベクターを予め作製することにより、各融合タンパク質をコードする発現ベクターを容易に構築できるようになる。
 このベクターは、例えば、以下のような構成を有してもよい。アッセイ系内で機能する発現プロモーターの下流に、開始コドンであるATGを付加したlucNmaxをコードするDNAが挿入され、その直後にマルチクローニングサイトが設けられ、その後に転写終結シグナルがあるというような構成である。このマルチクローニングサイトに、目的のタンパク質をコードするDNAを、フレームを合わせて挿入することにより、lucNmaxとそのタンパク質との融合タンパク質を容易に発現させることができる。
 同様に、アッセイ系内で機能する発現プロモーターの下流に、開始コドンであるATGがあり、その下流に、マルチクローニングサイト及びlucCmaxをコードするDNAが、この順で挿入され、その後に転写終結シグナルがあるというような構成である。このマルチクローニングサイトに、目的のタンパク質をコードするDNAを、フレームを合わせて挿入することにより、lucCmaxとそのタンパク質との融合タンパク質を容易に発現させることができる。
 さらに、アミノ酸配列番号1のアミノ酸配列、すなわちlucCmaxをコードするDNAを含むベクターと、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列、すなわちlucNmaxをコードするDNAを含むベクターとを含有するキットとすれば、タンパク質相互作用の検出等の目的で、容易に、lucCmaxまたはlucNmaxを有する融合タンパク質の発現ベクターを構築することができる。
==アッセイ系の利用==
 本発明系のアッセイ系を用いて、例えば、以下のような利用方法が考えられる。
 まず、lucCmaxを有する融合タンパク質を検出することができる。例えば、検出対象のタンパク質にlucCmaxを融合させた第1の融合タンパク質がアッセイ系内にある時、その検出対象タンパク質に結合する結合タンパク質にlucNmaxを融合させた第2の融合タンパク質をプローブとして準備し、アッセイ系内に導入する。すると、第2の融合タンパク質内の結合タンパク質は、第1の融合タンパク質内の検出対象のタンパク質に結合し、lucCmaxとlucNmaxが相互作用して、ルシフェラーゼ活性を有するようになる。そのルシフェラーゼ活性を検出することにより、lucCmaxを有する検出対象の融合タンパク質を検出することができる。具体的な一例としては、第1の融合タンパク質を発現する発現ベクターを作製し、細胞に導入する。第2の融合タンパク質を発現する発現ベクターを作製して第1の融合タンパク質を発現する細胞に導入した後、上述のように細胞のルシフェラーゼ活性を測定することにより、lucCmaxを有する融合タンパク質を検出できるようになる。
 次に、lucNmaxを有する融合タンパク質を検出することができる。例えば、検出対象となるタンパク質にlucNmaxを融合させた第1の融合タンパク質がアッセイ系内にある時、その検出対象タンパク質に結合する結合ペプチドにlucCmaxを融合させた第2の融合タンパク質をプローブとして準備し、アッセイ系内に導入する。すると、第2の融合タンパク質内の結合ペプチドは、第1の融合タンパク質内の検出対象ペプチドに結合し、lucNmaxとlucCmaxが相互作用して、ルシフェラーゼ活性を有するようになる。そのルシフェラーゼ活性を検出することにより、lucNmaxを有する検出対象の融合タンパク質を検出することができる。具体的な一例としては、第1の融合タンパク質を発現する発現ベクターを作製し、細胞に導入する。第2の融合タンパク質を発現する発現ベクターを作製して第1の融合タンパク質を発現する細胞に導入した後、上述のようにルシフェラーゼ活性を測定することにより、lucNmaxを有する融合タンパク質を検出できるようになる。
 さらに、lucNmaxを有する融合タンパク質とlucCmaxを有する融合タンパク質の複合体を検出することができる。これらの融合タンパク質が複合体を形成すると、lucNmaxとlucCmaxが相互作用して、ルシフェラーゼ活性を有するようになり、そのルシフェラーゼ活性を検出することにより、その複合体を検出することができるからである。検出方法としては、複合体が存在するアッセイ系をルシフェラーゼ活性が検出できる条件におけばよい。アッセイ系が細胞の場合、上述のようにルシフェラーゼ活性を測定すればよい。
 さらに、相互に結合能を有する第1のタンパク質と第2のタンパク質との結合を検出することができる。つまり、予め、第1のタンパク質にlucNmaxを融合させて第1の融合タンパク質を合成し、第2のタンパク質にlucCmaxを融合させて第2の融合タンパク質を合成しておけば、第1の融合タンパク質と第2の融合タンパク質とが結合した場合にルシフェラーゼ活性が検出されるようになるからである。この方法を用いれば、例えば、第1のタンパク質と第2のタンパク質が結合するかどうか調べることができる。つまり、第1のタンパク質にlucNmaxを融合させた第1の融合タンパク質と第2のペプチドにlucCmaxを融合させた第2の融合タンパク質を同一のアッセイ系に導入することにより、もし、第1のタンパク質と第2のタンパク質が結合すれば、ルシフェラーゼ活性が検出され、第1のタンパク質と第2のタンパク質が結合しなければ、ルシフェラーゼ活性は検出されない。具体的な一例としては、第1の融合タンパク質と第2の融合タンパク質を発現する発現ベクターをそれぞれ作製し、同一の細胞に導入する。その後、上述のようにルシフェラーゼ活性を測定することにより、細胞内で再構成されたルシフェラーゼが発光すれば、第1のタンパク質と第2のタンパク質が結合すると判断でき、発光しなければ、第1のタンパク質と第2のタンパク質が結合しないと判断できる。
 さらに、第1のタンパク質に結合する結合タンパク質をタンパク質ライブラリーからスクリーニングすることができる。すなわち、第1のタンパク質にlucNmaxまたはlucCmaxを融合させて第1の融合タンパク質を作製し、タンパク質ライブラリー中の第2のタンパク質に、それぞれlucCmaxまたはlucNmaxを融合させて第2の融合タンパク質を作製する。第1の融合タンパク質と第2の融合タンパク質とを相互作用させると、第2の融合タンパク質の中で、第1のタンパク質に結合する結合タンパク質を持つ融合タンパク質だけが、第1の融合タンパク質と複合体を形成する。従って、複合体から放出される光を検出し、その融合タンパク質を同定することにより、第1のタンパク質と複合体を形成する第2のタンパク質を同定することができる。具体的には、例えば、第1のタンパク質にlucNmaxを融合させた第1の融合タンパク質を発現する発現ベクターで形質転換した細胞を準備する。この細胞に、タンパク質がlucCmaxと融合した形態で発現するように構築されたcDNAライブラリーを導入した後、培地にルシフェリンを添加して発光した細胞を同定し、クローン化する。それぞれのクローンから、ライブラリー由来のDNAを回収して、発現している遺伝子を特定する。このようにして、第1のタンパク質と複合体を形成する第2のタンパク質のcDNAを得ることができる。
<実施例1>
 本実施例では、ラパマイシンの存在下で結合能をもつ相互作用タンパク質であるFKBP(NM_054014)およびFRB(NM_019906)を、それぞれヒカリコメツキムシ・ルシフェラーゼのN端側配列を有するペプチドlucNおよびC端側配列を有するペプチドlucCと融合させ、これらの融合タンパク質の組み合わせによって、発光能力が変化すること、また、その中でも、lucNmax(配列番号2~6;1-412~416番目のアミノ酸配列)およびlucCmax(配列番号1;394-542番目のアミノ酸配列)を用いた時、著しく発光活性が増強されることを示す。 
 まず、ヒカリコメツキムシ・ルシフェラーゼのcDNA(図1Aに配列を示す)を鋳型とし図1Bに示すプライマーを用いてPCRを行って、N末端のアミノ酸から404番目~417番目のアミノ酸配列を有する14種類のペプチドをコードするDNA断片14種類(これには、N-PtGR-F001とN-PtGR-R404~R417の各ペアを用いた)、およびC末端のアミノ酸から389番目~413番目のアミノ酸配列をコードするDNA断片25種類(これには、C-PtGR-R542とC-PtGR-F389~F413の各ペアを用いた)を得た。N端領域をコードするDNAをHindIIIおよび BamHIで、pFKBPをBamHIおよびXhoIで、pcDNA3.1/myc-His(B)をHindIIIおよびXhoIで切断し、3分子ライゲーションを行い、14種類のplucN-FKBPを作製した。また、C端領域をコードするDNAをXhoIおよび SacIIで、pFRBをBamHIおよびXhoIで、pcDNA4/V5-His(B)をBamHIおよびSacIIで切断し、3分子ライゲーションを行い、25種類のpFRB-lucCを作製した。なお、pcDNA3.1/myc-His(B)(図1Cに、pcDNA3.1のマルチクローニングサイトに挿入されたDNAの塩基配列を示す)及びpcDNA4/V5-His(B) (図1Dに、pcDNA4のマルチクローニングサイトに挿入されたDNAの塩基配列を示す)は、それぞれ、配列番号7及び8の挿入配列を有するプラスミドベクターである。

 14種類のplucN-FKBPと25種類のpFRB-lucCの組み合わせのうち、元のルシフェラーゼのアミノ酸配列と比較して、元通りに再構築されるか(アミノ酸の重なりが0)、部分的に重なりを持って再構築されるか(アミノ酸の重なりが1以上)の場合である339通りにおいて、各発現ベクターの組み合わせを、96ウエルのプラスティック培養皿で、TtansIT Transfection Reagents (TAKARA社)を用いてCOS7細胞にトランスフェクトした。トランスフェクションから約16時間後にラパマイシン1μMを含む培地に交換し、さらに24時間培養後にELA(TOYOBO社)を添加して、TriStar LB941(Berthold Technologies社)にて発光測定を実施した。

 図2及び図3に示されているように、pFRB-lucC394で高いシグナルが得られ、中でもplucN412-FKBP~ plucN416-FKBPで最も高いシグナルが得られた。(pFRB-lucC408~pFRB-lucC413を用いた場合は、シグナルがほとんど得られなかったので、図に示していない。また、図3において、plucN415-FKBPを用いた場合は、実験の不具合のためシグナルが得られなかった。)

 そこで、plucN412-FKBP~ plucN416-FKBPで、再度実験を行ったところ、図4に示すように、plucN412-FKBP~ plucN416-FKBPでほぼ同じ程度で最も高いシグナルが得られた。

 このようにして最適であることが示された、plucN415-FKBP とpFRB-lucC394の組み合わせによる発光強度を、従来最適と考えられていたpTlucN-FKBPとpFRB-GlucCの組み合わせによる発光強度と比較した。なお、pTlucN-FKBPは、赤色発光コメツキムシルシフェラーゼのcDNAを用いて下記プライマーによってPCRでN末端断片を増幅させ、plucN-FKBP同様に構築したベクターであり、pFRB-GlucCは、緑色発光コメツキムシルシフェラーゼのcDNAを用いて下記プライマーによってPCRでC末端断片を増幅させ、pFRB-lucC同様に構築したベクターである。

(TlucN-1) 5’AAGCTTGCCATGGTAAAGCGTGAGAAAAATGTC 3’(配列番号9)
(TlucN-2) 5’GGATCCTCCGCCTCCTCCGCCGTCGTCGATGGCCTC 3’(配列番号10)
(GlucC-1) 5’aggCTCGAGTGGAGGCGGCGGAGGCTGGCTGCACTCTGGCGACTTC 3'(配列番号11)
(GlucC-2) 5’cgcGGGCCCAGCTTAGAAGCCTTCTCCATCAGGGC 3'(配列番号12)

 図5に示すように、plucN415-FKBP とpFRB-lucC394の組み合わせで、従来のpTlucN-FKBPとpFRB-GlucCの組み合わせに対し、約30倍の発光強度が得られた。このように、ヒカリコメツキムシ・ルシフェラーゼを用い、lucC394 のC末端断片およびlucN412~ lucN416のN末端断片を用いてルシフェラーゼスプリットアッセイを行うことにより、従来の約30倍以上の発光強度を得ることが可能になった。



<実施例2>


 本実施例では、FKBPおよびFRBの代わりに、GPCR(G-protein coupled receptor)であるソマトスタチン受容体(SSTR2;somatostatin type2 receptor)(NM_000794)とβ-アレスチン(arrestin, beta 2)(NM_004313)を用いた。SSTR2は、細胞膜上に存在する膜タンパク質で、ソマトスタチンがGPCRの細胞外ドメインに結合すると、SSTR2の細胞内ドメインが、細胞質に存在するアダプター分子であるβ-アレスチンに結合し、シグナルが下流に送られる。そこで、SSTR2のC端をElucのC端に結合させ、β-アレスチンのN端をElucのN端に結合させ、それら融合タンパク質を培養細胞内で発現させて、ソマトスタチンを培養細胞に投与し、細胞からの発光を調べた。



 まず、ヒト脳cDNAライブラリ(TAKARA)を鋳型として、以下に示すプライマーを用いてPCRを行い、arrestin、SSTR2をコードするDNA断片を得た。


ARRB2-nestF2:AAAGGATCCATGGGGGAGAAACCCGGGACCAGGGTCT(配列番号54)


ARRB2-nestR-Eco:AAGAATTCCAGCAGAGTTGATCATCATAGT(配列番号55)


SSTR2_start_Bam:TTGGATCCATGGACATGGCGGATGAGCCAC(配列番号56)


SSTR2_R1107end_XhoI:TTTCTCGAGCCGATACTGGTTTGGAGGTCTCCATTG(配列番号57)


 arrestinをコードするDNAはBamHIとEcoRIで切断し、BamHIとEcoRIで切断したplucN415とライゲーションし、plucN415-arrestinを得た。ここで用いたplucN415は実施例1で作製したplucN415-FKBPよりlucN415をコードするDNAをHindIIIとBamHIで切り出し、HindIIIとBamHIで切断したpcDNA3.1/myc-His(B) とライゲーションを行って得た。
 また、SSTR2をコードするDNA断片はBamHIとXhoIで切断し、pcDNA4/V5-His(B)のマルチクローニングサイトに挿入しpSSTR2を得た。さらにlinker長を22アミノ酸まで伸ばしたlucC394をコードするDNAをXhoIとSacIIで切断してpSSTR2のXhoI-SacII部位に挿入し、pSSTR2-lucC394を得た。なお、lucC394のリンカー長は、まずpFRB-lucC394を鋳型にlinkerC12-F-XhoI(配列番号58)とPtGR-R542-SacII(配列番号61)のprimerを用いてPCR増幅したものをXhoIとSacIIで切断し、pSSTR2のXhoI-SacII部位に挿入し、さらにこれを鋳型にlinkerC17-F-XhoI(配列番号59)とPtGR-R542-SacII(配列番号61)でPCR増幅したものをXhoIとSacIIで切断し、pSSTR2のXhoI-SacII部位に挿入し、最後に、これを鋳型にlinkerC22-F-XhoI(配列番号60)とPtGR-R542-SacII(配列番号61)でPCR増幅したものをXhoIとSacIIで切断し、pSSTR2のXhoI-SacII部位に挿入する、という様にして22アミノ酸まで順次伸ばした。
linkerC12-F-XhoI:AGGCTCGAGTGGCGGTGGAGGTAGTGGAGGCGGCGGAACAAA(配列番号58)
linkerC17-F-XhoI:AGGCTCGAGTGGTGGTGGGGGCAGTGGCGGTGGAGGTAGTGG(配列番号59)
linkerC22-F-XhoI:AGGCTCGAGTGGAGGTGGCGGTTCTGGTGGTGGGGGCAGTGGCGGT(配列番号60)
PtGR-R542-SacII:TTTCCGCGGCAGCTTAGAAGCCTTCTC(配列番号61)


 このようにして作製したpSSTR2-lucC394とplucN415-arrestinを、96ウエルのプラスティック培養皿で培養したHEK293細胞に、TtansIT Transfection Reagents (TAKARA社)を用いてトランスフェクトした。トランスフェクションから約40時間後にソマトスタチン1μMを含む培地で12分間培養し、ELA(TOYOBO社)を添加して、TriStar LB941(Berthold Technologies社)にて発光測定を実施した。なお、コントロールとして、ソマトスタチンを添加しない細胞を用いて同様に発光を測定し、結果を比較したところ、図6に示すように、ソマトスタチンを添加することにより、発光は有意に増強し、その強さは8倍になった。



 次に、6cmプラスティック培養皿を用いてplucN415-arrestinを同様にトランスフェクトしたHEK293細胞を、20日間0.8mg/mLのG418を含有した培地で培養することにより、lucN415-arrestinを恒常的に発現するHEK293細胞株HEK293-ARRB2を作製した。この細胞株に、さらに、pSSTR2-lucC394を同様にトランスフェクトし、20日間0.8mg/mLのG418と0.04mg/mLのZeocinを含有した培地で培養することにより、lucN415-arrestin とSSTR2-lucC394を恒常的に発現するHEK293細胞株HEK293-ARRB2-SSTR2を作製した。



 この細胞を96ウエルのプラスティック培養皿で培養し、12分間、様々な濃度のソマトスタチンまたはそのアナログ(RIM23052またはBIM23056)で刺激した後に、同様に発光測定を実施した。得られた結果で、リガンド濃度と発光強度の関係を表すdose-responseカーブを作成した。



 図7に示すように、ソマトスタチンを用いた場合、3x10-9から3x10-7Mの濃度で発光が増強し、それ以上ソマトスタチンを増やしても、発光は増強しなかった。ソマトスタチンのアナログを用いた場合、同じ濃度では、発光の増強は検出されなかった。このように、本発明のルシフェラーゼスプリットアッセイを受容体と細胞内結合因子に適用したアッセイ系を用いることによって、受容体に対するリガンドの活性を定量的に検定することが可能になる。



 さらに、HEK293-ARRB2-SSTR2を1x10-6Mのソマトスタチンで刺激した後、3分、6分、12分、15分、30分、40分、50分、90分と、時間経過を追って発光を測定したところ、図8に示すように、5分で最大発光レベルの90%になり、12分で最大発光レベルに達した。その後は、徐々に発光が低下したが、90分後でも、最大発光レベルの80%を維持していた。このように、本発明のルシフェラーゼスプリットアッセイを適用したアッセイ系においては、これまでのタンパク質相互作用を検出する系より、速やかに結合の検出が可能になる。



 なお、本発明のルシフェラーゼスプリットアッセイは、SSTR2以外のGPCR、すなわち、ADRB2(adrenergic beta2 receptor, surface)(NM_000024)、AGTRL1(apelin receptor)(NM_00516)、EDNRB(endothelin receptor type B)(NM_000115)、CCKBR(cholecystokinin B receptor)(NM_17685)にも適用可能であり、同様の実験系において、図9に示すような結果が得られた。

 本発明によって、著しく検出感度の高いスプリットルシフェラーゼによるアッセイ系を提供することができるようになった。

Claims (13)

  1.  アミノ酸配列番号1のアミノ酸配列を有する融合タンパク質。
  2.  アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有する融合タンパク質。
  3.  アミノ酸配列番号1のアミノ酸配列を有する融合タンパク質とアミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有する融合タンパク質の複合体。
  4.  アミノ酸配列番号1~6からなる群より選択されるアミノ酸配列をコードするDNA。
  5.  アミノ酸配列番号1~6からなる群より選択されるアミノ酸配列をコードするDNAを含むベクター。
  6.  アミノ酸配列番号1のアミノ酸配列をコードするDNAを含むベクターと、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列をコードするDNAを含むベクターとを含有するキット。
  7.  アミノ酸配列番号1のアミノ酸配列を有する融合タンパク質を検出する方法であって、
     当該融合タンパク質を、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有し、当該融合タンパク質に結合する結合融合タンパク質と相互作用させ、複合体を形成させる工程と
     前記複合体から放出される光を検出する工程と、を含むことを特徴とする方法。
  8.  アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有する融合タンパク質を検出する方法であって、
     当該融合タンパク質を、アミノ酸配列番号1のアミノ酸配列を有し、当該タンパク質に結合する結合融合タンパク質と相互作用させ、複合体を形成させる工程と
     前記複合体から放出される光を検出する工程と、を含むことを特徴とする方法。
  9.  アミノ酸配列番号1のアミノ酸配列を有する第1の融合タンパク質と、アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有し、第1のタンパク質に結合する結合融合タンパク質との複合体の検出方法であって、
     前記複合体から放出される光を検出する工程を含むことを特徴とする方法。
  10.  相互に結合能を有する第1の融合タンパク質と第2の融合タンパク質との結合を検出する方法であって、
     第1の融合タンパク質はアミノ酸配列番号1のアミノ酸配列を有し、第2の融合タンパク質はアミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有し、
     第1の融合タンパク質と第2の融合タンパク質とを相互作用させ、複合体を形成させる工程と、
     前記複合体から放出される光を検出する工程と、
     を含むことを特徴とする方法。
  11.  請求項10に記載の検出方法であって、
     アミノ酸配列番号1のアミノ酸配列を第1のタンパク質に融合させて、第1の融合タンパク質を製造する工程と、
     アミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を第2のタンパク質に融合させて、第2の融合タンパク質を製造する工程と、
     をさらに含むことを特徴とする方法。
  12.  第1の融合タンパク質に結合する結合融合タンパク質を融合タンパク質ライブラリーからスクリーニングする方法であって、
     第1の融合タンパク質はアミノ酸配列番号1のアミノ酸配列を有し、融合タンパク質ライブラリーに含まれる複数の第2の融合タンパク質はアミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有し、
     第1の融合タンパク質と第2の融合タンパク質とを相互作用させる工程と、
     放出される光を検出することにより、第1の融合タンパク質と複合体を形成する結合融合タンパク質を同定する工程と、
     を含むことを特徴とする方法。
  13.  第1の融合タンパク質に結合する結合融合タンパク質をスクリーニングする方法であって、
     第1の融合タンパク質はアミノ酸配列番号2~6からなる群より選択されるアミノ酸配列を有し、複数の第2の融合タンパク質はアミノ酸配列番号1のアミノ酸配列を有し、
     第1の融合タンパク質と第2の融合タンパク質とを相互作用させる工程と、
     放出される光を検出することにより、第1の融合タンパク質と複合体を形成する結合融合タンパク質を同定する工程と、

     を含むことを特徴とする方法。
PCT/JP2010/059160 2009-05-29 2010-05-28 タンパク質間相互作用の高感度検出方法 WO2010137717A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/375,142 US8470974B2 (en) 2009-05-29 2010-05-28 Method for highly sensitive detection of protein-protein interaction
EP10780671.3A EP2436764B1 (en) 2009-05-29 2010-05-28 Method for highly sensitive detection of protein-protein interaction
CN201080023492.6A CN102449147B (zh) 2009-05-29 2010-05-28 蛋白质间相互作用的高灵敏度检测方法
US13/906,475 US20130323814A1 (en) 2009-05-29 2013-05-31 Method for highly sensitive detection of protein-protein interaction
US14/169,750 US9540678B2 (en) 2009-05-29 2014-01-31 Method for highly sensitive detection of protein-protein interaction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009131481 2009-05-29
JP2009-131481 2009-05-29
JP2010037921A JP4849698B2 (ja) 2009-05-29 2010-02-23 タンパク質間相互作用の高感度検出方法
JP2010-037921 2010-02-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/375,142 A-371-Of-International US8470974B2 (en) 2009-05-29 2010-05-28 Method for highly sensitive detection of protein-protein interaction
US13/906,475 Continuation US20130323814A1 (en) 2009-05-29 2013-05-31 Method for highly sensitive detection of protein-protein interaction

Publications (1)

Publication Number Publication Date
WO2010137717A1 true WO2010137717A1 (ja) 2010-12-02

Family

ID=43222819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059160 WO2010137717A1 (ja) 2009-05-29 2010-05-28 タンパク質間相互作用の高感度検出方法

Country Status (5)

Country Link
US (3) US8470974B2 (ja)
EP (1) EP2436764B1 (ja)
JP (1) JP4849698B2 (ja)
CN (1) CN102449147B (ja)
WO (1) WO2010137717A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016038750A1 (ja) * 2014-09-10 2017-06-22 オリンパス株式会社 分割型組換えルシフェラーゼ及びそれを用いた解析方法
US10857228B2 (en) * 2015-06-10 2020-12-08 The University Of Tokyo Adjuvant for vaccines, vaccine, and immunity induction method
CN104991072B (zh) * 2015-06-16 2017-03-29 西北农林科技大学 一种昆虫体外蛋白质相互作用检测系统的制备方法及应用
CN106916795B (zh) * 2015-12-24 2021-12-10 中国科学院深圳先进技术研究院 一种可调节的荧光素酶分段融合蛋白、其制备方法及应用
CN108780089B (zh) * 2016-03-15 2020-09-08 美国控股实验室公司 评估细胞间的蛋白质相互作用的方法
CN106928370B (zh) * 2016-09-26 2021-02-02 华东师范大学 一种REGγ-20S蛋白酶体抑制剂的筛选系统及其应用
CN116068198B (zh) * 2022-11-30 2024-01-09 深圳湾实验室 Ppi原位检测方法及其载体、诊断试剂、试剂盒和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027919A2 (en) * 2005-09-01 2007-03-08 Washington University In St. Louis Complementation assays utilizing complexes of heteroproteins
JP2007159567A (ja) * 2005-11-16 2007-06-28 National Institute Of Advanced Industrial & Technology 細胞内発光イメージングのために最適化されたルシフェラーゼ遺伝子
JP2008289475A (ja) * 2007-04-27 2008-12-04 National Institute Of Advanced Industrial & Technology 最大発光波長がシフトした変異型ルシフェラーゼ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879540B1 (en) 2000-08-24 2011-02-01 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
WO2007058140A1 (ja) * 2005-11-16 2007-05-24 Toyo Boseki Kabushiki Kaisha 細胞内発光イメージングのために最適化されたルシフェラーゼ遺伝子
JP4648253B2 (ja) 2006-06-22 2011-03-09 住友重機械テクノフォート株式会社 鍛造プレス
JP2009131481A (ja) 2007-11-30 2009-06-18 Ge Medical Systems Global Technology Co Llc 外部操作パネルおよび超音波診断装置
JP5258084B2 (ja) * 2008-01-07 2013-08-07 株式会社ProbeX タンパク質間相互作用の検出方法
JP2010004758A (ja) * 2008-06-24 2010-01-14 Probex Inc cyclicGMP検出方法
JP2010037921A (ja) 2008-08-04 2010-02-18 Kadonaka Kogyo:Kk 引戸の開閉装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027919A2 (en) * 2005-09-01 2007-03-08 Washington University In St. Louis Complementation assays utilizing complexes of heteroproteins
JP2007159567A (ja) * 2005-11-16 2007-06-28 National Institute Of Advanced Industrial & Technology 細胞内発光イメージングのために最適化されたルシフェラーゼ遺伝子
JP2008289475A (ja) * 2007-04-27 2008-12-04 National Institute Of Advanced Industrial & Technology 最大発光波長がシフトした変異型ルシフェラーゼ

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", JOHN WILEY & SONS LTD.
"Molecular cloning, a laboratory manual", 2001, COLD SPRING HARBOR PRESS
KIM SB. ET AL.: "High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase", PROC. NATL. ACAD. SCI. U.S.A., vol. 101, no. 32, 2004, pages 11542 - 11547, XP002479375 *
KIM, S.B.; OZAWA, T.; WATANABE, S.; UMEZAWA, Y., PROC. NATL. ACAD. SCI. USA., vol. 101, 2004, pages 11542 - 11547
LUKER KE. ET AL.: "Imaging CXCR4 signaling with firefly luciferase complementation", ANAL. CHEM., vol. 80, no. 14, 2008, pages 5565 - 5573, XP008148448 *
See also references of EP2436764A4

Also Published As

Publication number Publication date
CN102449147B (zh) 2014-11-12
US20120190824A1 (en) 2012-07-26
US20130323814A1 (en) 2013-12-05
US8470974B2 (en) 2013-06-25
JP2011004734A (ja) 2011-01-13
US20140141416A1 (en) 2014-05-22
EP2436764A1 (en) 2012-04-04
EP2436764A4 (en) 2012-11-28
CN102449147A (zh) 2012-05-09
EP2436764B1 (en) 2015-04-22
JP4849698B2 (ja) 2012-01-11
US9540678B2 (en) 2017-01-10

Similar Documents

Publication Publication Date Title
US11493504B2 (en) Activation of bioluminescene by structural complementation
JP4849698B2 (ja) タンパク質間相互作用の高感度検出方法
US11360096B2 (en) Complex BRET technique for measuring biological interactions
Humpert et al. Complementary methods provide evidence for the expression of CXCR 7 on human B cells
Rebois et al. Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells
JP5099560B2 (ja) 一分子型生物発光可視化プローブ
Dimri et al. Dynamic monitoring of STAT3 activation in live cells using a novel STAT3 Phospho-BRET sensor
WO2022245922A1 (en) Poly-adp ribose (par) tracker optimized split-protein reassembly par detection reagents
JP6525199B2 (ja) インスリンの検出方法、および、インスリンの検出キット
US20220404337A1 (en) Real-time g-protein coupled receptor (gpcr) linked bioluminescent sensing of biological targets and processes
JP4628355B2 (ja) 蛋白質核内移行検出用プローブとそれを用いた蛋白質核内移行の検出・定量方法
WO2009087967A1 (en) Method for detecting a protein-protein interaction
CA3198508A1 (en) Monitoring membrane protein trafficking for drug discovery and drug development
Kim et al. Circular Permutation Probes for Illuminating Phosphorylation of Estrogen Receptor
WO2011027554A1 (ja) 脂質二重膜の表側から裏側にカリウムイオンを輸送する方法
WO2011027552A1 (ja) 脂質二重膜の表側から裏側にカリウムイオンを輸送する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023492.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010780671

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13375142

Country of ref document: US