WO2010137713A1 - リフレクトアレイ - Google Patents

リフレクトアレイ Download PDF

Info

Publication number
WO2010137713A1
WO2010137713A1 PCT/JP2010/059153 JP2010059153W WO2010137713A1 WO 2010137713 A1 WO2010137713 A1 WO 2010137713A1 JP 2010059153 W JP2010059153 W JP 2010059153W WO 2010137713 A1 WO2010137713 A1 WO 2010137713A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
gap
reflect array
present
value
Prior art date
Application number
PCT/JP2010/059153
Other languages
English (en)
French (fr)
Inventor
珠美 丸山
辰男 古野
智之 大矢
真司 上林
宏治 一色
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to CN201080023819XA priority Critical patent/CN102449847A/zh
Priority to EP20100780667 priority patent/EP2437351A4/en
Priority to US13/375,043 priority patent/US20120105305A1/en
Priority to JP2011516081A priority patent/JP5463354B2/ja
Publication of WO2010137713A1 publication Critical patent/WO2010137713A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0018Space- fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates to a reflect array. Specifically, the present invention relates to “design of a reflect array using a left-handed transmission line model, metamaterial or EBG (electric bandgap) structure”, “propagation environment improvement technology applying a reflect array”, “reflect The present invention relates to a reflection wave direction control technology using an array and an increase in MIMO transmission capacity using a reflect array.
  • EBG electric bandgap
  • Non-Patent Document 1 a technique for controlling the radiation direction by adding a phase difference to a reflected wave by tapering the mushroom structure has been studied.
  • FIG. 1 shows a reflect array 1 having a conventional tapered mushroom structure described in Non-Patent Document 1.
  • the reflect array 1 includes a plurality of patches 10, via holes 20 formed in each patch 10, a ground plane 30, and a substrate 40.
  • Such a conventional tapered mushroom structure is composed of 11 patches 10 having different lengths from L1 to L11.
  • FIG. 2 shows the detailed dimensions of the structure of FIG.
  • FIGS. 1 and 2 are conventional design methods for controlling the reflected wave of a polarized wave whose electric field is parallel to the Y direction and perpendicular to the X direction in the X direction. Can be considered.
  • FIG. 3 shows a reflect array using a conventional mushroom structure that controls the reflected wave of the same polarized wave, that is, a polarized wave whose electric field is parallel to the Y direction and perpendicular to the X direction in the Y direction.
  • the structure of No. 1 is shown (refer to JP 2010-62689 A).
  • “T” indicates an interval between adjacent via holes 20
  • “PT” indicates an interval between adjacent patches 10
  • T PT” is established.
  • the length of each patch in the Y direction is “2 ⁇ W yi ”.
  • the conventional reflect array 1 using the mushroom structure shown in FIGS. 1 and 3 is similar to the reflect array design using the conventional microstrip patch (see Non-Patent Document 2). Was used to determine the length of the patch.
  • FIG. 4 shows an example of calculation showing the relationship between the reflection phase of the mushroom structure and the patch size.
  • FIG. 4 shows the relationship between the reflection phase of the mushroom structure and the patch size when square mushroom structures of the same size are periodically arranged at intervals of 2.4 mm. If the difference in reflection phase between adjacent mushrooms is 24 degrees, the patch size difference between these mushrooms is indicated by the triangles in FIG.
  • FIG. 5 shows a reflect array 1 having a periodically arranged mushroom structure.
  • Table in the mushroom structure are periodically arranged in a "2 ⁇ W y" of the gap corresponding to the length size of the patch of "g y" is "T- (2 ⁇ W y)" Is done.
  • the conventional method for designing a reflect array using a mushroom structure is similar to the method for designing a reflect array using a microstrip patch, and the length of the patch is determined using the value of the reflection phase of the mushroom structure. It was decided.
  • the size of the patch is about a half wavelength, and the reflection phase becomes zero at the frequency at which the patch resonates. For this reason, it may be considered that the reflection phase is determined by the size of the patch.
  • the reflection phase can be considered based on a left-handed transmission line model.
  • FIGS. 6A and 6B are conventional right-handed transmission line models.
  • FIG. 7 if the positions of the inductor “L” and the capacitance “C” can be interchanged, a left-handed transmission line model with a negative phase constant can be created.
  • the mushroom structure shown in FIGS. 8A and 8B has been devised to realize this (see Non-Patent Document 3), and the capacitance “C” between the transmission lines is changed to the mushroom structure. (Equation 1) using the gap “g y ” between patches.
  • the same reference numerals as those in FIG. 3 are used.
  • the inductance “L” is expressed by (Equation 2), where the thickness of the substrate is “t” and the magnetic permeability of the substrate is “ ⁇ ”.
  • the capacitance value of the left-handed transmission line model is determined by the gap size, so the reflection phase is the length of the patch. Rather, the gap interval is dominant.
  • the resonance frequency is determined by the length of the patch, so the reflection phase is longer than the gap between the patches. Is more dominant.
  • Non-Patent Document 2 a conventional reflect array design method as shown in Non-Patent Document 2 is used.
  • the gap value becomes “(g yi + g yi + 1 ) / 2” as shown in FIG. 3 and cannot be made “g yi ”. there were.
  • FIG. 9 is a graph with the horizontal axis as the gap and the vertical axis as the reflection phase.
  • the triangular symbol is a plot of the phase value corresponding to the size of each gap “(g yi + g yi + 1 ) / 2” when the patch length is determined as shown in FIG. 4. .
  • the round symbol indicates that the gap value is selected so that the difference in reflection phase is 24 degrees, and it can be seen that both values are different.
  • FIG. 10 shows a value based on the above-described theoretical formulas (Formula 1) to (Formula 5) as a curve A. It can be seen that the trends of theoretical values and analytical values are in good agreement. That is, the analysis value of the reflection phase of the reflect array agrees well with the theoretical value based on the left-handed transmission line model.
  • FIG. 11 shows a phase difference (triangular symbol) when using a conventional reflect array design method for determining the length of a patch, and a phase difference (rounded) when using a design method for determining the size of a gap. Symbol).
  • the phase difference is not constant, and there is a limit to the performance improvement of the reflect array.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a reflect array having improved performance compared to the conventional method when using a metamaterial based on a left-handed transmission line model.
  • a first feature of the present invention is a reflect array (reflect array 1) formed by arranging a plurality of mushroom structures on a ground plate (ground plate 30), each of the mushroom structures having one four sides. And a via (for example, via hole 20) that short-circuits the patch and the ground plane, and the interval between adjacent vias is at least the vertical direction of the ground plane (the direction of the electric field). The gap between adjacent patches is adjusted so that the value of the reflection phase of the reflected wave from the patch becomes a desired value. And in addition, the interval between the vias may be arranged to be equal in each of the horizontal direction and the vertical direction.
  • a second feature of the present invention is a reflect array formed by arranging a plurality of mushroom structures on a ground plane, wherein each of the mushroom structures includes one quadrilateral patch, the patch, and the patch.
  • the gap “PT” from the edge of the i-th patch to the edge of the (i + 1) -th patch is set to an equal value for all i, and the adjacent i If the size of the gap between the i- th patch “P i ” and the (i + 1) -th patch “P i + 1 ” is “g yi ”, the length of the i-th patch is “2 ⁇ W yi ”.
  • the gist is that the interval “IVh i ” between the i th via “Vh i ” and the (i + 1) th via “Vh i + 1 ” is “W yi + g yi + W yi + 1 ”.
  • a third feature of the present invention is a reflect array formed by arranging a plurality of mushroom structures on a ground plane, each of the mushroom structures being constituted by one quadrilateral patch, The distance between the center that bisects the gap between adjacent patches and the center that bisects the adjacent gap adjacent to the gap is arranged to be equal at least in the vertical direction of the ground plane (the same direction as the direction of the electric field). The size of the gap is adjusted so that the value of the reflection phase of the reflected wave from the patch becomes a desired value.
  • interval may be arrange
  • a fourth feature of the present invention is a reflect array (reflect array 1) formed by arranging a plurality of mushroom structures on a ground plane (ground plane 30), each of the mushroom structures having one four sides.
  • a patch (patch 10) having a shape and a mushroom structure without vias constituted by the base plate, and the centers of the gaps between the patches constituting the mushroom are arranged at equal intervals and adjacent to each other.
  • the size of the gap between the patches is adjusted so that the value of the reflection phase of the reflected wave from the patch becomes a desired value.
  • the mushroom structure when there is no gap “ ⁇ g” value corresponding to the reflection phase “ ⁇ ”, the mushroom structure is not arranged on the surface of the reflect array, and the reflect array is provided.
  • the ground plate is not installed on the back surface of the substrate, and there is a gap “ ⁇ g” value corresponding to the reflection phase “ ⁇ ”
  • the mushroom structure is arranged on the surface of the reflect array, and the back surface of the reflect array is formed. May be provided with the base plate.
  • the interval between the vias is “T”, and the size of the gap between the adjacent i-th patch “P i ” and the (i + 1) -th patch “P i + 1 ” is set.
  • the gap is arranged between the adjacent i-th via “Vh i ” and the (i + 1) th via “Vh i + 1 ”, and the gap size “g yi ”. ”Is determined based on the phase value of the reflected wave from each patch with respect to the incident wave, and the difference obtained by subtracting the gap size“ g yi ”from the via interval“ T ”is“ 2 ⁇ W yi ”.
  • a fifth feature of the present invention is a reflect array configured by the mushroom structure, wherein the size of the gap generated between the mushrooms is determined so that the equiphase surface of the reflection phase faces the desired reflection direction.
  • the gap gyi is arranged at an equal interval PT, half of the length of the patch constituted by the difference between the interval PT and the gap gyi is arranged at both ends of the gap, and the length of the patch is set to gyi + Gy i + 1
  • the gist is to stipulate.
  • a sixth feature of the present invention is a reflect array formed by arranging a plurality of mushroom structures on a ground plane, each of the mushroom structures being constituted by one quadrilateral patch.
  • the gist is to determine the value of each gap so that the equiphase surface of the reflected wave is orthogonal to the desired direction based on the relationship between the gap value and the reflection phase. .
  • the length of the patch i in the electric field direction is (( Tg i-1, i ) + (Tg i, i + 1 )) / 2.
  • the end points of the gap may be arranged at equal intervals PT, and the length of the patch i in the electric field direction may be (Tg i, i + 1 ) / 2.
  • vias that short-circuit the ground plate and the patch may be provided in each mushroom, and the vias may be arranged at equal intervals T / 2 from the center of each gap.
  • a via that short-circuits the ground plate and the patch may be provided in each mushroom, and the via may be arranged in the center of each patch.
  • the via may not be a structure, but may be a mark for determining the position on the patch, and the mushroom may be configured by the ground plate and the patch.
  • FIG. 1 is a diagram showing the structure of a conventional reflect array.
  • FIG. 2 is a table showing the detailed dimensions of the structure of the conventional reflect array.
  • FIG. 3 is a diagram showing the structure of a conventional reflect array.
  • FIG. 4 is a graph showing an example of the relationship between the reflection phase and the patch size in the structure of the conventional reflect array.
  • FIG. 5 is a diagram showing the structure of a conventional reflect array.
  • FIG. 6 is a diagram for explaining a right-handed transmission line model.
  • FIG. 7 is a diagram for explaining a left-handed transmission line model.
  • FIG. 8 is a diagram for explaining the “2D LH Muscular Structure”.
  • FIG. 9 is a graph showing an example of the relationship of the reflection phase with respect to the gap in the structure of the conventional reflect array.
  • FIG. 9 is a graph showing an example of the relationship of the reflection phase with respect to the gap in the structure of the conventional reflect array.
  • FIG. 10 is a graph showing an example of the relationship of the reflection phase with respect to the gap in the structure of the conventional reflect array.
  • FIG. 11 is a graph showing an example of a phase difference between adjacent elements in a conventional reflect array structure.
  • FIG. 12 is a diagram showing the structure of the reflect array according to the first embodiment of the present invention.
  • FIG. 13 is a diagram showing a detailed structure of the reflect array according to the first embodiment of the present invention.
  • FIG. 14 is a table showing detailed dimensions of the structure of the reflect array according to the first embodiment of the present invention.
  • FIG. 15 is a diagram for explaining the effect of the structure of the reflect array according to the first embodiment of the present invention.
  • FIG. 16 is a diagram showing the structure of a reflect array according to the second embodiment of the present invention.
  • FIG. 17 is a diagram for explaining the effect of the structure of the reflect array according to the second embodiment of the present invention.
  • FIG. 18 is a diagram showing a detailed structure of the reflect array according to the third embodiment of the present invention.
  • FIG. 19 is a table showing detailed dimensions of the structure of the reflect array according to the third embodiment of the present invention.
  • FIG. 20 is a diagram for explaining the effect of the structure of the reflect array according to the third embodiment of the present invention.
  • FIG. 21 is a diagram showing the structure of a reflect array according to the fourth embodiment of the present invention.
  • FIG. 22 is a contour diagram of the phase of the reflected wave in the reflect array according to the fourth embodiment of the present invention.
  • FIG. 23 is a contour diagram of the phase of the reflected wave for comparison with the reflect array according to the fourth embodiment of the present invention.
  • FIG. 24 is a diagram for explaining the effect of the structure of the reflect array according to the fourth embodiment of the present invention.
  • FIG. 25 is a diagram for explaining the effect of the structure of the reflect array according to the fourth embodiment of the present invention.
  • FIG. 26 is a graph showing an example of the relationship between the reflection phase and the gap in the structure of the reflect array according to the fourth embodiment of the present invention.
  • FIG. 27 is a diagram showing a detailed structure of the reflect array according to the fourth embodiment of the present invention.
  • FIG. 28 is a diagram showing a reflect array structure according to the fifth embodiment of the present invention.
  • FIG. 29 is a diagram showing an overall structure of a reflect array according to the fifth embodiment of the present invention.
  • FIG. 12 shows the reflect array 1 using the metamaterial according to the first embodiment of the present invention. As shown in FIG. 12, the reflect array 1 is formed by arranging a plurality of mushroom structures on the ground plane 30.
  • Each of the mushroom structures is composed of one quadrangular patch 10 and via holes 20 that short-circuit the patch 10 and the ground plane 30.
  • interval of the adjacent via hole 20 is arrange
  • the size of the gap between adjacent patches 10 is adjusted so that the value of the reflection phase of the reflected wave by the reflect array 1 becomes a desired value. More specific description will be given below.
  • is “24 degrees”
  • PT is “2.4 mm”
  • the frequency is “8.8 GHz”
  • in (Expression 5) is “70 degrees”.
  • the interval between via holes is “T”
  • the gap between the adjacent i-th patch “P i ” and the (i + 1) -th patch “P i + 1 ” is “g yi ”.
  • Each gap is disposed between the adjacent i-th via hole “Vh i ” and the (i + 1) -th via hole “Vh i + 1 ”.
  • the value of the gap size “g yi ” is the value of the phase of the reflected wave from each patch with respect to the incident wave, and is determined from FIG.
  • the length of each patch is the distance from the via hole “Vh i ” to the gap “g yi ” when the difference obtained by subtracting the gap size “g yi ” from the via hole interval “T” is “2 ⁇ W yi ”.
  • the patch length is “W yi ” and the patch length from the via hole “Vh i + 1 ” to the gap “g yi ” is “W yi ” and is determined as shown in FIG.
  • the length of the i-th patch is “W y (i ⁇ 1) + W yi ”.
  • the gap can be set to a desired value with the pitch being equal.
  • FIG. 13 shows the detailed structure of the reflect array according to the first embodiment of the present invention
  • FIG. 14 shows the detailed dimensions of the reflect array according to the first embodiment of the present invention.
  • FIG. 15 shows the effect of the reflect array according to the first embodiment of the present invention.
  • FIG. 15 shows the calculated value of the far scattered field in the ZY plane.
  • the solid line B shows the result in the reflect array using the metamaterial designed with the gap value of the present invention
  • the solid line A shows the reflect array using the metamaterial designed with the conventional patch value. Shows the results of.
  • the desired radiation in the -70 degree direction has a high level of the reflect array according to the present embodiment, whereas the radiation in the normal reflection direction (0 degree direction), which is an unnecessary direction, relates to the present embodiment.
  • the level of the reflect array is low, and the effect of the reflect array according to the present embodiment can be confirmed.
  • the reflection phase easily matches the theoretical value of the left-handed transmission line model, and the patch length is determined based on the conventional reflect array design method. Therefore, it is possible to suppress a state where the phase difference is not constant. That is, the performance of the reflect array can be greatly improved.
  • the via hole 20 is used.
  • a via conductor pillar
  • a short-circuit line may be used instead of the via hole 20.
  • FIG. 16 shows the reflect array 1 using the metamaterial according to the second embodiment of the present invention.
  • different parts from the above-described first embodiment of the present invention will be mainly described, and description of the same parts will be omitted as appropriate.
  • the interval “PT” from the edge of the i-th patch to the edge of the (i + 1) -th patch is set equal to all i, and the adjacent i-th patch “P i ” ( The gap between the (i + 1) th patch “P i + 1 ” is “g yi ”.
  • the spacing of each via hole is a value calculated by "W yi + g yi + W yi + 1 " for each patch not constant.
  • FIG. 17 shows the calculated value of the far scattered field in the ZY plane.
  • the solid line A shows the result in the reflect array using the metamaterial designed with the gap value of the present invention
  • the solid line B shows the result in the reflect array using the metamaterial designed with the conventional patch value. Is shown.
  • the desired radiation in the -70 degree direction has a high level of the reflect array according to the present embodiment, whereas the radiation in the normal reflection direction (0 degree direction), which is an unnecessary direction, relates to the present embodiment.
  • the level of the reflect array is low, and the effect of the reflect array according to this embodiment can be confirmed.
  • FIG. 18 shows a reflect array using a metamaterial according to the third embodiment of the present invention.
  • FIG. 18 shows the detailed structure of the reflect array according to the third embodiment of the present invention for directing the reflected wave in the direction of ⁇ 45 degrees
  • FIG. 19 shows the reflect array according to the third embodiment of the present invention. The detailed dimensions are shown.
  • FIG. 20 shows the far scattered field of the present embodiment in comparison with the conventional results. According to FIG. 20, in the reflect array according to the present embodiment, it can be confirmed that the radiation level in the desired ⁇ 45 degree direction is slightly high and the radiation level in the 0 degree direction, which is an unnecessary direction, is lowered.
  • FIG. 21 shows a reflect array using a metamaterial according to the fourth embodiment of the present invention.
  • the reflect array according to the fourth embodiment of the present invention aims at radiation in the ⁇ 45 degree direction, like the reflect array according to the third embodiment of the present invention. Are periodically arranged in the X direction and the Y direction.
  • Fig. 26 shows the relationship between the gap and reflection phase (reflection phase) used in this design.
  • the values indicated by triangles are design values, and the phase is selected every 18 degrees.
  • the range that can be selected at this time is from ⁇ 126 degrees to 72 degrees, and there is no structure that can be selected for phases in other ranges.
  • the part where the patch is not arranged is a place where there is no gap for obtaining a desired reflection phase.
  • the metal on the back surface of the portion where the patch is not arranged is peeled off.
  • FIG. 27 shows a structure in which the metal on the back surface of the portion where the patch is not arranged is stripped.
  • FIG. 22 shows the phase of the reflected wave from the reflector at this time.
  • FIG. 22 is a contour diagram of the phase of the reflected wave in the reflect array according to this embodiment. According to FIG. 22, it can be seen that the equiphase surfaces are aligned in the direction of 45 degrees from the Z axis.
  • FIG. 23 is a contour diagram of the phase of the reflected wave when the back surface shown in FIG. 22 is all made of metal.
  • FIG. 24 is similar to the first embodiment of the present invention.
  • the far radiated field in the YZ plane and the patch are arranged in the case where the entire back surface is made of metal.
  • the comparison result with the far radiation field in YZ plane at the time of making it into a metal only when it exists is shown.
  • the arrangement of the elements on the surface is the same as in the first embodiment, and the beam control angle in the design is -70 degrees.
  • a solid line A is a case where the back surface is a front metal
  • a solid line B is a case where only the back surface of the patch is a metal. In both cases, the beam is directed in the desired -70 degree direction.
  • the radiation level in the 0 degree direction which is specular reflection
  • the radiation level in the -70 degree direction is higher than the radiation level in the -70 degree direction. That is, as in the fourth embodiment of the present invention, it can be seen that the characteristics of the model in which only the back surface of the patch is a metal ground plane and the metal on the inner surface of the patch is stripped are better.
  • FIG. 25 shows a case where the far-field in the YZ plane and the patch are arranged in the model for the element arrangement in which the gap interval is regarded as important as in the second embodiment of the present invention.
  • the comparison result with the far radiation field in the YZ plane when only metal is used is shown.
  • the arrangement of elements on the surface is the same as in the first embodiment, and the control angle of the beam in the design is -70 degrees.
  • a solid line A is a case where the back surface is a front metal
  • a solid line B is a case where only the back surface of the patch is a metal. In both cases, the beam is directed in the desired -70 degree direction.
  • the radiation level in the 0 degree direction which is specular reflection
  • the radiation level in the -70 degree direction is higher than the radiation level in the -70 degree direction. That is, as in the fourth embodiment of the present invention, it can be seen that the characteristics of the model in which only the back surface of the patch is a metal ground plane and the metal on the inner surface of the patch is stripped are better.
  • FIG. 28 shows a reflect array 1 using a metamaterial according to the fifth embodiment of the present invention.
  • FIG. 29 shows the overall structure of the reflect array 1 according to the fifth embodiment of the present invention.
  • each of the mushroom structures is configured by one quadrangular patch 10 and is not provided with the via hole 20 as in the above-described embodiment. . That is, the reflect array 1 according to the present embodiment has a so-called “vialess mushroom structure” (also referred to as EBG or HIS) in which the patch 10 and the ground plane 30 are not connected.
  • EBG or HIS vialess mushroom structure
  • the plurality of patches 10 are arranged in the horizontal direction (X direction) and the vertical direction (Y direction) of the ground plane 30.
  • the distance between the center that bisects the gap between adjacent patches and the center that bisects the adjacent gap adjacent to the gap is the horizontal direction of the ground plane (X direction). ) And the vertical direction (Y direction).
  • the size of the gap is adjusted so that the value of the reflection phase of the reflected wave from the patch becomes a desired value.
  • the gap between the adjacent i-th patch “P i ” and the (i + 1) -th patch “P i + 1 ” is “g yi ”.
  • the value of the gap size “g yi ” is determined by the value of the phase of the reflected wave from each patch with respect to the incident wave, as in the first embodiment of the present invention described above (see FIG. 9).
  • the gap “g y1 ” between the patch having the length “W y1 ” and the patch adjacent to the patch and having the length “W y2 ” is bisected.
  • a center CT2 is obtained by dividing a gap “g y2 ” between a patch having a length of “W y2 ” and a patch having a length of “W y3 ”.
  • the length of the center CT3 that bisects the gap "g y3" between the patch and the patch is "W y3", a length of "W y4".
  • the interval T between the center CT1 and the center CT2 and the interval T between the center CT2 and the center CT3 are arranged to be equal.
  • the reflection phase easily matches the theoretical value of the left-handed transmission line model.
  • the performance of the reflect array can be greatly improved.
  • a reflect array with improved performance compared to the conventional method can be provided, which is useful in wireless communication and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

 本発明に係るリフレクトアレイは、地板上に、複数のマッシュルーム構造を配列することによって形成され、マッシュルーム構造の各々は、1つの四辺形のパッチと、パッチと地板とを短絡するビアとによって構成されている。隣接するビアの間隔は、地板の水平方向及び垂直方向のそれぞれに対して等間隔となるように配置されている。隣接するパッチ間のギャップの大きさは、パッチからの反射波の反射位相の値が所望値となるように調整される。

Description

リフレクトアレイ
 本発明は、リフレクトアレイに関する。具体的には、本発明は、「左手系伝送線路モデル、メタマテリアル或いはEBG(電気的バンドギャップ)構造を用いたリフレクトアレイの設計」、「リフレクトアレイを応用する伝搬環境改善技術」、「リフレクトアレイを応用する反射波の方向制御技術」及び「リフレクトアレイを応用するMIMO伝送容量増加」等に関する。
 近年、メタマテリアルの研究が盛んであり、非特許文献1に示すように、マッシュルーム構造にテーパを付けて反射波に位相差を与えることによって放射方向を制御する技術が検討されている。
 図1は、非特許文献1に記載の従来のテーパ付きマッシュルーム構造を有するリフレクトアレイ1を示している。図1に示すように、リフレクトアレイ1は、複数のパッチ10、それぞれのパッチ10に形成されるビアホール20、地板30及び基板40を備える。このような従来のテーパ付きマッシュルーム構造は、L1からL11まで11個の長さの異なるパッチ10で構成されている。図2に、図1の構造の詳細寸法について示す。
 図1及び図2から分かるように、従来のマッシュルーム構造を用いたリフレクトアレイ1は、パッチの長さと、位相とを関連付けて設計していた。特開2010-62689号によれば、図1及び図2は、電界がY方向に平行でX方向に垂直となる偏波を持つ波の反射波をX方向に制御する従来の設計法であると考えることができる。
 次に、図3に、同様の偏波、すなわち、電界がY方向に平行でX方向に垂直となる偏波を持つ波の反射波をY方向に制御する従来のマッシュルーム構造を用いたリフレクトアレイ1の構造について示す(特開2010-62689号参照)。図3において、「T」は、隣接するビアホール20間の間隔を示し、「PT」は、隣接するパッチ10の間隔を示しており、「T=PT」が成立している。各パッチのY方向の長さは「2×Wyi」である。
 「gyi=T-(2×Wyi)」とおくと、隣接するi番目のパッチと(i+1)番目のパッチとの間のギャップは「(gyi+gyi+1)/2」で表される。
 図1及び図3に示したマッシュルーム構造を用いた従来のリフレクトアレイ1は、従来のマイクロストリップパッチを用いたリフレクトアレイの設計(非特許文献2参照)と同様に、マッシュルーム構造の反射位相の値を用いてパッチの長さを決定していた。
 図4に、マッシュルーム構造の反射位相及びパッチサイズの関係を示す計算例について示す。図4は、同じ大きさの方形マッシュルーム構造を、2.4mm間隔で周期配列したときにおける当該マッシュルーム構造の反射位相及びパッチサイズの関係を示している。隣接するマッシュルーム間の反射位相の差が、24度である場合は、これらのマッシュルーム間のパッチサイズ差は、図4の三角によって示される。
 図5に、周期配列したマッシュルーム構造を有するリフレクトアレイ1を示す。図5から分かるように、周期配列したマッシュルーム構造では、「2×W」のパッチの長さに対応するギャップの大きさ「g」は、「T-(2×W)」で表される。
K.Chang、J.Ahn及びY.J.Yoon著、「High-impedance Surface with Nonidentical Lattices」、iWAT2008、p.315頁pp.474~477 David M.Pozar、Stephen D.Targonski及びH.D.Syrigos著、「Design of Millimeter Wave Microstrip Reflectarrays」、IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION、VOL.45,No.2、1997年2月、pp.287~296 D.Sievenpiper著、「High-impedance Electromagnetic Surface」、Ph.D.dissertation、Department of Electrical Enginnering,Univ.California、Los Angeles、CA、1999年
 以上示したように、従来のマッシュルーム構造を用いたリフレクトアレイの設計法は、マイクロストリップパッチを用いたリフレクトアレイの設計法と同様に、マッシュルーム構造の反射位相の値を用いてパッチの長さを決定していた。
 非特許文献2に示すマイクロストリップパッチの場合は、パッチの大きさが約半波長となり、パッチが共振する周波数で反射位相がゼロとなる。このため、反射位相はパッチの大きさで決まると考えてよい。
 一方、EBG構造や左手系材料の場合、反射位相は、左手系伝送線路モデルに基づいて考えることができる。ここで、図6乃至図8を用いて簡単に原理を述べる。図6(a)及び図6(b)は、従来の右手系伝送線路モデルである。ここで、図7のように、インダクタ「L」及びキャパシタンス「C」の位置を入れ替えることができれば、位相定数をマイナスとする左手系伝送線路モデルを作ることができる。これを実現するために考案されたのが、図8(a)及び図8(b)に示すマッシュルーム構造であり(非特許文献3参照)、伝送線路の間のキャパシタンス「C」を、マッシュルーム構造のパッチ間のギャップ「g」を用いて、(式1)のように構成している。ここで、符号は、図3と同じ符号を用いている。
Figure JPOXMLDOC01-appb-M000001
 また、インダクタンス「L」は、基板の厚みを「t」とし、基板の透磁率を「μ」として、(式2)で示される。
 L=μ・t … (式2)
なお、基板に強磁性体を用いない場合は、一般に基板の透磁率を「μ」自由空間の透磁率μ0で近似しても差し支えない。
 また、表面インピーダンス「Z」は、「L」及び「C」を用いて、(式3)で示される。
 Z=jωL/(1-ωLC) … (式3)
 マッシュルーム構造の反射波の位相は、上述の式及び左手系伝送線路モデルを用いて、(式4)から求めることができる。すなわち、図3のように、マッシュルーム構造を配置して反射板を構成し、Z軸方向から平面波を入射する場合の反射係数「Γ」の位相を「φ」とすると、反射係数「Γ」は、自由空間インピーダンス「η」及び表面インピーダンス「Z」を用いて、(式4)のように表せる。
 Γ=(Z-η)/ (Z+η)=|Γ| exp(jΦ) … (式4)
 隣接するマッシュルーム構造に対する反射係数の位相の差を「Δφ」とすると、反射波の所望方向「α」は、(式5)で表すことができる。
 α=sin-1((λ・Δφ)/(2π・PT))  … (式5) 
 以上示したように、マッシュルーム構造を用いた左手系伝送線路モデルの場合、反射位相は、パッチ間のギャップで決まるキャパシタンスの値が支配的である。
 すなわち、波長に比べてはるかに小さいパッチを用いるマッシュルーム構造でリフレクトアレイを構成した場合は、ギャップの大きさによって左手系伝送線路モデルのキャパシタンスの値が決定されるため、反射位相は、パッチの長さよりもギャップの間隔が支配的となる。一方、半波長程度のパッチを用いる従来のマイクロストリップアレイを用いたリフレクトアレイの場合は、パッチの長さによって共振周波数が決定されるため、反射位相は、パッチ間のギャップよりもパッチの長さの方が支配的となる。
 このように左手系伝送線路モデルの場合、ギャップの大きさによってキャパシタンスの値が決定されるにも拘わらず、非特許文献2に示したような従来のリフレクトアレイの設計法を用いて、図4の位相から、それぞれのパッチの長さを決定すると、ギャップの値は、図3に示すように、「(gyi+gyi+1)/2」となり、「gyi」にすることができないという欠点があった。
 図9は、横軸をギャップとし、縦軸を反射位相としたグラフである。図9において、三角の記号は、図4のようにパッチの長さを決定したときの各ギャップの大きさ「(gyi+gyi+1)/2」に対応する位相の値をプロットしたものである。
 丸い記号は、反射位相の差が24度となるようにギャップの値を選んだものであり、両者が異なる値となっていることが分かる。
 図10に、上述の(式1)乃至(式5)の理論式に基づく値を、曲線Aで示す。理論値及び解析値の傾向は良く一致していることが分かる。すなわち、リフレクトアレイのリフレクションフェーズの解析値は、左手系伝送線路モデルに基づく理論値に良く一致する。
 図11に、パッチの長さを決定する従来のリフレクトアレイの設計法を用いた場合の位相差(三角の記号)、及びギャップの大きさを決定する設計法を用いた場合の位相差(丸い記号)を示す。図11に示すように、従来のリフレクトアレイの設計法に基づいてパッチの長さを決定した場合は、位相差が一定にならず、リフレクトアレイの性能向上に限界がある。
 そこで、本発明は、上述の課題に鑑みてなされたものであり、左手系伝送線路モデルに基づいてメタマテリアルを用いる場合において、従来の手法と比較して性能が向上したリフレクトアレイの提供を目的とする。
 本発明の第1の特徴は、地板(地板30)上に、複数のマッシュルーム構造を配列することによって形成されるリフレクトアレイ(リフレクトアレイ1)であって、前記マッシュルーム構造の各々は、1つの四辺形のパッチ(パッチ10)と、前記パッチと前記地板とを短絡するビア(例えば、ビアホール20)とによって構成されており、隣接する前記ビアの間隔は、少なくとも前記地板の垂直方向(電界の向きと同じ方向)において等しくなるように配置されており、隣接する前記パッチ間のギャップの大きさは、前記パッチからの反射波の反射位相の値が所望値となるように調整されることを要旨とする。なお、前記ビアの間隔は、水平方向及び垂直方向のそれぞれにおいても等しくなるように配置されてもよい。
 本発明の第2の特徴は、地板上に、複数のマッシュルーム構造を配列することによって形成されるリフレクトアレイであって、前記マッシュルーム構造の各々は、1つの四辺形のパッチと、前記パッチと前記地板とを短絡するビアとによって構成されており、i番目のパッチの端辺から(i+1)番目のパッチの端辺までの間隔「PT」を全てのiに対して等しい値とし、隣接するi番目のパッチ「P」と、(i+1)番目のパッチ「Pi+1」との間のギャップの大きさを「gyi」とすると、i番目のパッチの長さは「2×Wyi」であり、i番目のビア「Vh」と、(i+1)番目のビア「Vhi+1」との間の間隔「IVh」は、「Wyi+gyi+Wyi+1」であることを要旨とする。
 本発明の第3の特徴は、地板上に、複数のマッシュルーム構造を配列することによって形成されるリフレクトアレイであって、前記マッシュルーム構造の各々は、1つの四辺形のパッチによって構成されており、隣接する前記パッチ間のギャップを二分した中心と、前記ギャップに隣接する隣接ギャップを二分した中心との間隔は、少なくとも前記地板の垂直方向(電界の向きと同じ方向)において等しくなるように配置されており、前記ギャップの大きさは、前記パッチからの反射波の反射位相の値が所望値となるように調整されることを要旨とする。なお、前記間隔は、水平方向及び垂直方向のそれぞれにおいても等しくなるように配置されてもよい。
本発明の第4の特徴は、地板(地板30)上に、複数のマッシュルーム構造を配列することによって形成されるリフレクトアレイ(リフレクトアレイ1)であって、前記マッシュルーム構造の各々は、1つの四辺形のパッチ(パッチ10)と、前記地板よって構成されるビアなしマッシュルーム構造で構成されており、前記マッシュルームを構成するパッチとパッチの間のギャップの中心が、等間隔で配置されており、隣接する前記パッチ間のギャップの大きさは、前記パッチからの反射波の反射位相の値が所望値となるように調整されることを要旨とする。
 本発明の第1乃至第4に特徴において、前記反射位相「φ」に相当するギャップ「Δg」の値が存在しない場合、前記リフレクトアレイの表面には前記マッシュルーム構造を配列せず、前記リフレクトアレイの裏面には前記地板を設置しないと共に、前記反射位相「φ」に相当するギャップ「Δg」の値が存在する場合、前記リフレクトアレイの表面に前記マッシュルーム構造を配列し、前記リフレクトアレイの裏面には前記地板を設置してもよい。
 本発明の第1の特徴において、前記ビアの間隔を「T」とし、隣接するi番目のパッチ「P」と、(i+1)番目のパッチ「Pi+1」との間のギャップの大きさを「gyi」とすると、前記ギャップは、隣接するi番目のビア「Vh」と、(i+1)番目のビア「Vhi+1」との間に配置されており、前記ギャップの大きさ「gyi」は、入射波に対する各パッチからの反射波の位相の値に基づいて決定され、前記ビアの間隔「T」から前記ギャップの大きさ「gyi」を引いた差分を「2×Wyi」とし、前記ビア「Vh」及び「Vhi+1」から前記ギャップまでのパッチの長さをそれぞれ「Wyi」とすると、i番目のパッチの長さは「Wy(i-1)+Wyi」であってもよい。
 本発明の第5の特徴は、前記マッシュルーム構造によって構成される、リフレクトアレイであって、前述のマッシュルーム間に生じるギャップの大きさを、反射位相の等位相面が所望反射方向を向くように決定するとともに、該ギャップgyiを、等しい間隔PTで配置し、間隔PTとギャップgyiの差分で構成されるパッチの長さの半分を、ギャップの両端に配置し、パッチの長さをgyi+Gyi+1で規定することを要旨とする。
 また、本発明の第6の特徴は、地板上に、複数のマッシュルーム構造を配列することによって形成されるリフレクトアレイであって、前記マッシュルーム構造の各々は、1つの四辺形のパッチによって構成されており、隣接するパッチの間隔をギャップとし、該ギャップの値と反射位相の関係をもとに反射波の等位相面が所望方向に直交するように各ギャップの値を決定することを要旨とする。
 上述した特徴において、該ギャップの中心が等間隔Tになるように配列し、隣接するパッチiとパッチi+1の間のギャップをgijとするとき、パッチiの電界方向の長さを((T-gi-1,i) +(T-gi,i+1))/2としてもよい。
 上述した特徴において、該ギャップの端点が等間隔PTになるように配列し、パッチiの電界方向の長さを (T-gi,i+1) /2としてもよい。
 上述した特徴において、地板とパッチを短絡するビアを各マッシュルームに設け、該ビアを、各ギャップの中心から、等間隔T/2となるように配置してもよい。
 上述した特徴において、地板とパッチを短絡するビアを各マッシュルームに設け、該ビアを、各パッチの中央に配置してもよい。
 上述した特徴において、前述のビアを構造とせず、パッチ上の位置を決定するための印とし、マッシュルームを前述の地板と前述パッチで構成してもよい。
図1は、従来のリフレクトアレイの構造について示す図である。 図2は、従来のリフレクトアレイの構造の詳細寸法について示す表である。 図3は、従来のリフレクトアレイの構造について示す図である。 図4は、従来のリフレクトアレイの構造における反射位相とパッチサイズとの関係の一例について示すグラフである。 図5は、従来のリフレクトアレイの構造について示す図である。 図6は、右手系伝送線路モデルについて説明するための図である。 図7は、左手系伝送線路モデルについて説明するための図である。 図8は、「2D LH Mushroom Structure」について説明するための図である。 図9は、従来のリフレクトアレイの構造におけるギャップに対する反射位相の関係の一例について示すグラフである。 図10は、従来のリフレクトアレイの構造におけるギャップに対する反射位相の関係の一例について示すグラフである。 図11は、従来のリフレクトアレイの構造における隣接する素子間の位相差の一例について示すグラフである。 図12は、本発明の第1の実施形態に係るリフレクトアレイの構造について示す図である。 図13は、本発明の第1の実施形態に係るリフレクトアレイの詳細構造について示す図である。 図14は、本発明の第1の実施形態に係るリフレクトアレイの構造の詳細寸法について示す表である。 図15は、本発明の第1の実施形態に係るリフレクトアレイの構造による効果について説明するための図である。 図16は、本発明の第2の実施形態に係るリフレクトアレイの構造について示す図である。 図17は、本発明の第2の実施形態に係るリフレクトアレイの構造による効果について説明するための図である。 図18は、本発明の第3の実施形態に係るリフレクトアレイの詳細構造について示す図である。 図19は、本発明の第3の実施形態に係るリフレクトアレイの構造の詳細寸法について示す表である。 図20は、本発明の第3の実施形態に係るリフレクトアレイの構造による効果について説明するための図である。 図21は、本発明の第4の実施形態に係るリフレクトアレイの構造について示す図である。 図22は、本発明の第4の実施形態に係るリフレクトアレイにおける反射波の位相のコンター図である。 図23は、本発明の第4の実施形態に係るリフレクトアレイと比較するための反射波の位相のコンター図である。 図24は、本発明の第4の実施形態に係るリフレクトアレイの構造による効果について説明するための図である。 図25は、本発明の第4の実施形態に係るリフレクトアレイの構造による効果について説明するための図である。 図26は、本発明の第4の実施形態に係るリフレクトアレイの構造におけるギャップに対する反射位相の関係の一例について示すグラフである。 図27は、本発明の第4の実施形態に係るリフレクトアレイの詳細構造について示す図である。 図28は、本発明の第5の実施形態に係るリフレクトアレイ構造について示す図である。 図29は、本発明の第5の実施形態に係るリフレクトアレイの全体構造について示す図である。
 以下、図面を参照しつつ本発明の実施形態について詳しく説明する。
 (本発明の第1の実施形態)
 図12に、本発明の第1の実施形態に係るメタマテリアルを用いたリフレクトアレイ1について示す。図12に示すように、リフレクトアレイ1は、地板30上に、複数のマッシュルーム構造を配列することによって形成される。
 マッシュルーム構造の各々は、1つの四辺形のパッチ10と、パッチ10と地板30とを短絡するビアホール20とによって構成されている。隣接するビアホール20の間隔は、地板30の水平方向(X方向)及び垂直方向(Y方向)のそれぞれにおいて等しくなるように配置されている。なお、水平方向における間隔と、垂直方向における間隔とは、必ずしも同一でなく、異なる間隔でもよい。
 隣接するパッチ10間のギャップの大きさは、リフレクトアレイ1による反射波の反射位相の値が所望値となるように調整される。以下、さらに具体的に説明する。
 本実施形態では、「Δφ」を「24度」とし、「PT」を「2.4mm」とし、周波数を「8.8GHz」とし、(式5)における「α」を「70度」としている。
 図12において、ビアホールの間隔を「T」とし、隣接するi番目のパッチ「P」と(i+1)番目のパッチ「Pi+1」との間のギャップを「gyi」としている。
 各ギャップは、隣接するi番目のビアホール「Vh」と(i+1)番目のビアホール「Vhi+1」との間に配置されている。ギャップの大きさ「gyi」の値は、入射波に対する各パッチからの反射波の位相の値で、図9から決定する。
 各パッチの長さは、ビアホールの間隔「T」からギャップの大きさ「gyi」を引いた差分を「2×Wyi」とするとき、ビアホール「Vh」からギャップ「gyi」までのパッチの長さを「Wyi」とし、ビアホール「Vhi+1」からギャップ「gyi」までのパッチの長さを「Wyi」として、図11に示すように決定される。
 このとき、i番目のパッチの長さは「Wy(i-1)+Wyi」となる。図11のように設計することによって、等間隔のピッチのままギャップを所望の値にすることができる。
 図13に、本発明の第1の実施形態に係るリフレクトアレイの詳細構造について示し、図14に、本発明の第1の実施形態に係るリフレクトアレイの詳細寸法を示す。
 図15に、本発明の第1の実施形態に係るリフレクトアレイの効果について示す。図15は、Z-Y平面における遠方散乱界の計算値を示している。
 図15において、実線Bは、本発明のギャップの値で設計したメタマテリアルを用いたリフレクトアレイにおける結果について示しており、実線Aは、従来のパッチの値で設計したメタマテリアルを用いたリフレクトアレイにおける結果について示している。
 所望の-70度方向の放射は、本実施形態に係るリフレクトアレイのレベルが高くなっているのに対して、不要方向である正規反射方向(0度方向)の放射は、本実施形態に係るリフレクトアレイのレベルが低くなっており、本実施形態に係るリフレクトアレイの効果が確認できる。
 すなわち、本実施形態に係るリフレクトアレイによれば、リフレクションフェーズは、左手系伝送線路モデルの理論値に一致し易く、従来のリフレクトアレイの設計法に基づいてパッチの長さを決定した場合のように位相差が一定にならない状態を抑制できる。つまり、リフレクトアレイの性能を大きく向上させることができる。
 なお、本実施形態では、ビアホール20が用いられていたが、ビアホール20に代えて短絡線路によるビア(導体柱)を用いても構わない。
 (本発明の第2の実施形態)
 図16に、本発明の第2の実施形態に係るメタマテリアルを用いたリフレクトアレイ1について示す。以下、上述した本発明の第1の実施形態と異なる部分について主に説明し、同一の部分については、その説明を適宜省略する。
 図16において、i番目のパッチの端辺から(i+1)番目のパッチの端辺までの間隔「PT」を全てのiに対して等しい値とし、隣接するi番目のパッチ「P」と(i+1)番目のパッチ「Pi+1」との間のギャップを「gyi」とする。
 このとき、i番目のパッチの長さを「2×Wyi」とすると、i番目のビアホール「Vh」と(i+1)番目のビアホール「Vhi+1」との間隔「IVh」は「Wyi+gyi+Wyi+1」となる。
 これにより、全てのパッチを図9の位相で設計したギャップ間隔とすることができる。ただし、第2の実施形態に係るリフレクトアレイの場合は、各ビアホールの間隔は、一定ではなくパッチごとに「Wyi+gyi+Wyi+1」で計算される値となる。
 図17を参照して、本発明の第2の実施形態に係るリフレクトアレイの効果について説明する。図17は、Z-Y平面における遠方散乱界の計算値を示している。
 図17において、実線Aは、本発明のギャップの値で設計したメタマテリアルを用いたリフレクトアレイにおける結果を示し、実線Bは、従来のパッチの値で設計したメタマテリアルを用いたリフレクトアレイにおける結果を示している。
 所望の-70度方向の放射は、本実施形態に係るリフレクトアレイのレベルが高くなっているのに対して、不要方向である正規反射方向(0度方向)の放射は、本実施形態に係るリフレクトアレイのレベルが低くなっており、本実施形態に係るリフレクトアレイの効果が確認できる。
 (本発明の第3の実施形態)
 図18に、本発明の第3の実施形態に係るメタマテリアルを用いたリフレクトアレイについて示す。
 図18は、-45度の方向に反射波を向けるための本発明の第3の実施形態に係るリフレクトアレイの詳細構造について示し、図19は、本発明の第3の実施形態に係るリフレクトアレイの詳細寸法について示している。
 図20に、本実施形態の遠方散乱界について、従来の結果と比較して示す。図20によれば、本実施形態に係るリフレクトアレイでは、所望の-45度方向の放射のレベルが若干高く、不要方向である0度方向の放射のレベルが下がっていることが確認できる。
 (本発明の第4の実施形態)
 図21に、本発明の第4の実施形態に係るメタマテリアルを用いたリフレクトアレイについて示す。
 図21に示すように、本発明の第4の実施形態に係るリフレクトアレイは、本発明の第3の実施形態に係るリフレクトアレイと同様に、-45度方向の放射を目的としており、図18に示す構造を、X方向及びY方向に周期的に配列することによって構成されている。
 図26に、本設計に用いられたギャップ及びリフレクションフェーズ(反射位相)の関係について示す。図26において、三角形で示した値が設計値であり、位相が18度ごとに選択されている。このときに選択できる範囲は、-126度から72度までであり、他の範囲の位相に対しては選択できる構造が存在しない。
 ここで、パッチを配列していない部分は、所望の反射位相を得られるギャップが存在しない場所である。
 本実施形態に係るリフレクトアレイでは、パッチを配列しない部分の裏面の金属を剥いでいる。図27に、パッチを配列しない部分の裏面の金属を剥いだ構造を示す。
 図22に、このときの反射板からの反射波の位相について示す。図22は、本実施形態に係るリフレクトアレイにおける反射波の位相のコンター図である。図22によれば、Z軸から45度の方向に等位相面が揃っていることが分かる。
 図23は、図22との比較のために示した裏面を全て金属とした場合における反射波の位相のコンター図である。
 図23に示すように、表面にパッチがあるところでは、位相が所望方向に揃うが、表面にパッチがないところでは、正規反射の方向に放射しようとするため、反射波の位相は、所望方向に等位相を作ることができていないことが確認できる。
 図24は、本発明の第1の実施形態と同様に、ギャップ間隔を重視した素子配列に対するモデルにおいて、裏面を全面金属とした場合のY-Z面における遠方放射界と、パッチを配列している場合のみ金属とした場合のY-Z面における遠方放射界との比較結果を示している。
 図24において、表面の素子の配列は、第1の実施形態と同様であり、設計におけるビームの制御角は-70度としている。
 図24において、実線Aは、裏面を前面金属とした場合であり、実線Bは、パッチの裏面のみを金属とした場合である。どちらも、所望の-70度方向にビームが向いている。
 しかし、裏面を全て金属とした場合は、鏡面反射となる0度方向の放射のレベルが-70度方向の放射のレベルよりも高くなっている。すなわち、本発明の第4の実施形態のように、パッチの裏面のみを金属地板とし、パッチの内面の金属を剥いだモデルの特性は、より良いことが分かる。
 図25は、本発明の第2の実施形態と同様に、ギャップ間隔を重視した素子配列に対するモデルにおいて、裏面を全面金属とした場合のYZ面における遠方放射界と、パッチを配列している場合のみ金属とした場合のYZ面における遠方放射界との比較結果について示している。
 図25において、表面の素子の配列は、第1の実施形態と同様であり、設計におけるビームの制御角は-70度としている。
 図25において、実線Aは、裏面を前面金属とした場合であり、実線Bは、パッチの裏面のみを金属とした場合である。どちらも、所望の-70度方向にビームが向いている。
 しかし、裏面を全て金属とした場合は、鏡面反射となる0度方向の放射のレベルが-70度方向の放射のレベルよりも高くなっている。すなわち、本発明の第4の実施形態のように、パッチの裏面のみを金属地板とし、パッチの内面の金属を剥いだモデルの特性は、より良いことが分かる。
 (本発明の第5実施形態)
 図28に、本発明の第5の実施形態に係るメタマテリアルを用いたリフレクトアレイ1について示す。また、図29に、本発明の第5の実施形態に係るリフレクトアレイ1の全体構造について示す。図28に示すように、本実施形態に係るリフレクトアレイ1では、マッシュルーム構造の各々は、1つの四辺形のパッチ10によって構成されており、上述した実施形態のようなビアホール20が設けられていない。すなわち、本実施形態に係るリフレクトアレイ1は、パッチ10と地板30とが接続されていない、いわゆる「ビアなしマッシュルーム構造」(EBG、HISともいう)を有する。また、図29に示すように、複数のパッチ10が地板30の水平方向(X方向)及び垂直方向(Y方向)において配置されている。
 具体的には、本実施形態に係るリフレクトアレイ1では、隣接するパッチ間のギャップを二分した中心と、当該ギャップに隣接する隣接ギャップを二分した中心との間隔は、地板の水平方向(X方向)及び垂直方向(Y方向)のそれぞれにおいて等しくなるように配置されている。当該ギャップの大きさは、パッチからの反射波の反射位相の値が所望値となるように調整される。
 図28において、隣接するi番目のパッチ「P」と、(i+1)番目のパッチ「Pi+1」との間のギャップを「gyi」としている。ギャップの大きさ「gyi」の値は、上述した本発明の第1実施形態と同様に、入射波に対する各パッチからの反射波の位相の値で決定する(図9参照)。
 本実施形態に係るリフレクトアレイ1では、長さが「Wy1」であるパッチと、当該パッチに隣接し、長さが「Wy2」であるパッチとの間のギャップ「gy1」を二分した中心CT1とする。同様に、長さが「Wy2」であるパッチと、長さが「Wy3」であるパッチとの間のギャップ「gy2」を二分した中心CT2とする。さらに、長さが「Wy3」であるパッチと、長さが「Wy4」であるパッチとの間のギャップ「gy3」を二分した中心CT3とする。
 本実施形態に係るリフレクトアレイ1では、中心CT1と中心CT2との間隔T、中心CT2と中心CT3との間隔Tは、等しくなるように配置される。
 このようなリフレクトアレイ1によれば、本発明の第1実施形態に係るリフレクトアレイ1と同様に、リフレクションフェーズは、左手系伝送線路モデルの理論値に一致し易く、従来のリフレクトアレイの設計法に基づいてパッチの長さを決定した場合のように位相差が一定にならない状態を抑制できる。つまり、リフレクトアレイの性能を大きく向上させることができる。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 なお、日本国特許出願第2009-131585号(2009年5月29日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明によれば、左手系伝送線路モデルに基づいてメタマテリアルを用いる場合において、従来の手法と比較して性能が向上したリフレクトアレイを提供できるため、無線通信などにおいて有用である。
 1…リフレクトアレイ
 10…パッチ
 20…ビアホール
 30…地板
 40…基板

Claims (5)

  1.  地板上に、複数のマッシュルーム構造を配列することによって形成されるリフレクトアレイであって、
     前記マッシュルーム構造の各々は、
     1つの四辺形のパッチと、
     前記パッチと前記地板とを短絡するビアと
    によって構成されており、
     隣接する前記ビアの間隔は、前記地板の垂直方向において等しくなるように配置されており、
     隣接する前記パッチ間のギャップの大きさは、前記パッチからの反射波の反射位相の値が所望値となるように調整されることを特徴とするリフレクトアレイ。
  2.  地板上に、複数のマッシュルーム構造を配列することによって形成されるリフレクトアレイであって、
     前記マッシュルーム構造の各々は、
     1つの四辺形のパッチと、
     前記パッチと前記地板とを短絡するビアと
    によって構成されており、
     i番目のパッチの端辺から(i+1)番目のパッチの端辺までの間隔「PT」を全てのiに対して等しい値とし、隣接するi番目のパッチ「P」と、(i+1)番目のパッチ「Pi+1」との間のギャップの大きさを「gyi」とすると、i番目のパッチの長さは「2×Wyi」であり、
     i番目のビア「Vh」と、(i+1)番目のビア「Vhi+1」との間の間隔「IVh」は、「Wyi+gyi+Wyi+1」であることを特徴とするリフレクトアレイ。
  3.  1つの地板上に、複数のマッシュルーム構造を配列することによって形成されるリフレクトアレイであって、
     前記マッシュルーム構造の各々は、1つの四辺形のパッチによって構成されており、
     隣接する前記パッチ間のギャップを二分した中心と、前記ギャップに隣接する隣接ギャップを二分した中心との間隔は、前記地板の垂直方向において等しくなるように配置されており、
     前記ギャップの大きさは、前記パッチからの反射波の反射位相の値が所望値となるように調整されることを特徴とするリフレクトアレイ。
  4.  前記反射位相「φ」に相当するギャップ「Δg」の値が存在しない場合、前記リフレクトアレイの表面には前記マッシュルーム構造を配列せず、前記リフレクトアレイの裏面には前記地板を設置しないと共に、
     前記反射位相「φ」に相当するギャップ「Δg」の値が存在する場合、前記リフレクトアレイの表面に前記マッシュルーム構造を配列し、前記リフレクトアレイの裏面には前記地板を設置することを特徴とする請求項1乃至3の何れかに記載のリフレクトアレイ。
  5.  前記ビアの間隔を「T」とし、隣接するi番目のパッチ「P」と、(i+1)番目のパッチ「Pi+1」との間のギャップの大きさを「gyi」とすると、前記ギャップは、隣接するi番目のビア「Vh」と、(i+1)番目のビア「Vhi+1」との間に配置されており、
     前記ギャップの大きさ「gyi」は、入射波に対する各パッチからの反射波の位相の値に基づいて決定され、
     前記ビアの間隔「T」から前記ギャップの大きさ「gyi」を引いた差分を「2×Wyi」とし、前記ビア「Vh」及び「Vhi+1」から前記ギャップまでのパッチの長さをそれぞれ「Wyi」とすると、i番目のパッチの長さは「Wy(i-1)+Wyi」であることを特徴とする請求項1に記載のリフレクトアレイ。
PCT/JP2010/059153 2009-05-29 2010-05-28 リフレクトアレイ WO2010137713A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080023819XA CN102449847A (zh) 2009-05-29 2010-05-28 反射阵列
EP20100780667 EP2437351A4 (en) 2009-05-29 2010-05-28 reflectarray
US13/375,043 US20120105305A1 (en) 2009-05-29 2010-05-28 Reflectarray
JP2011516081A JP5463354B2 (ja) 2009-05-29 2010-05-28 リフレクトアレイ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009131585 2009-05-29
JP2009-131585 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137713A1 true WO2010137713A1 (ja) 2010-12-02

Family

ID=43222816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059153 WO2010137713A1 (ja) 2009-05-29 2010-05-28 リフレクトアレイ

Country Status (5)

Country Link
US (1) US20120105305A1 (ja)
EP (1) EP2437351A4 (ja)
JP (1) JP5463354B2 (ja)
CN (1) CN102449847A (ja)
WO (1) WO2010137713A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048344A (ja) * 2011-08-29 2013-03-07 Ntt Docomo Inc マルチビームリフレクトアレイ
JP2013048343A (ja) * 2011-08-29 2013-03-07 Ntt Docomo Inc マルチビームリフレクトアレイ
JP2013115756A (ja) * 2011-11-30 2013-06-10 Ntt Docomo Inc リフレクトアレー
WO2014020969A1 (ja) * 2012-07-31 2014-02-06 株式会社 エヌ・ティ・ティ・ドコモ リフレクトアレー
JP2014150463A (ja) * 2013-02-01 2014-08-21 Ntt Docomo Inc リフレクトアレー及び素子
EP2822099A4 (en) * 2012-02-29 2015-10-07 Ntt Docomo Inc REFLECTION ARRANGEMENT AND DESIGN PROCESS
EP2822097A4 (en) * 2012-02-29 2015-10-14 Ntt Docomo Inc REFLECTION ARRANGEMENT, DESIGN PROCESS FOR IT AND SYSTEM THEREFOR
EP2822098A4 (en) * 2012-02-29 2015-10-21 Ntt Docomo Inc REFLECTIVE NETWORK AND DESIGN METHOD
US9537221B2 (en) 2012-10-01 2017-01-03 Ntt Docomo, Inc. Reflectarray

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102175681B1 (ko) 2014-11-20 2020-11-06 삼성전자주식회사 재방사 중계기
US10320070B2 (en) * 2016-09-01 2019-06-11 Wafer Llc Variable dielectric constant antenna having split ground electrode
US10326205B2 (en) * 2016-09-01 2019-06-18 Wafer Llc Multi-layered software defined antenna and method of manufacture
US11476587B2 (en) * 2019-06-14 2022-10-18 City University Of Hong Kong Dielectric reflectarray antenna and method for making the same
JP6926174B2 (ja) * 2019-11-26 2021-08-25 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
US11876298B2 (en) 2020-11-19 2024-01-16 Metawave Corporation Active redirection devices for wireless applications
CN112864634B (zh) * 2021-01-08 2022-11-15 宁波大学 一种完美吸收入射角可调的电磁吸波结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091836A (ja) * 1998-08-27 2000-03-31 Lucent Technol Inc 周波数選択面を用いた高周波数遅延デバイス
WO2001067552A1 (en) * 2000-03-08 2001-09-13 Hrl Laboratories, Llc. A polarization converting radio frequency reflecting surface
JP2002510886A (ja) * 1998-03-30 2002-04-09 ザ リージェンツ オブ ザ ユニバーシテイ オブ カリフォルニア 金属の表面電流を除去する回路および方法
JP2009131585A (ja) 2007-11-01 2009-06-18 Gen Kawamura 水回り設備の人体支持装置
JP2010062689A (ja) 2008-09-01 2010-03-18 Ntt Docomo Inc 無線通信システム、周期構造反射板及びテーパ付きマッシュルーム構造

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483481B1 (en) * 2000-11-14 2002-11-19 Hrl Laboratories, Llc Textured surface having high electromagnetic impedance in multiple frequency bands
CN100384016C (zh) * 2004-12-30 2008-04-23 东南大学 变极化微带反射阵天线
US8289214B2 (en) * 2007-05-17 2012-10-16 Omron Corporation Array antenna
US8217847B2 (en) * 2007-09-26 2012-07-10 Raytheon Company Low loss, variable phase reflect array
US8743000B2 (en) * 2009-07-31 2014-06-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Phase element comprising a stack of alternating conductive patterns and dielectric layers providing phase shift through capacitive and inductive couplings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510886A (ja) * 1998-03-30 2002-04-09 ザ リージェンツ オブ ザ ユニバーシテイ オブ カリフォルニア 金属の表面電流を除去する回路および方法
JP2000091836A (ja) * 1998-08-27 2000-03-31 Lucent Technol Inc 周波数選択面を用いた高周波数遅延デバイス
WO2001067552A1 (en) * 2000-03-08 2001-09-13 Hrl Laboratories, Llc. A polarization converting radio frequency reflecting surface
JP2009131585A (ja) 2007-11-01 2009-06-18 Gen Kawamura 水回り設備の人体支持装置
JP2010062689A (ja) 2008-09-01 2010-03-18 Ntt Docomo Inc 無線通信システム、周期構造反射板及びテーパ付きマッシュルーム構造

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. SIEVENPIPER: "Ph. D. dissertation", 1999, DEPARTMENT OF ELECTRICAL ENGINEERING, article "High-impedance Electromagnetic Surface"
DAVID M. POZAR; STEPHEN D. TARGONSKI; H. D. SYRIGOS: "Design of Millimeter Wave Microstrip Reflectarrays", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 45, no. 2, February 1997 (1997-02-01), pages 287 - 296, XP011002907
K. CHANG; J. AHN; Y. J. YOON: "High- impedance Surface with Nonidentical Lattices", IWAT2008, pages 315,474 - 477
See also references of EP2437351A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048344A (ja) * 2011-08-29 2013-03-07 Ntt Docomo Inc マルチビームリフレクトアレイ
WO2013031539A1 (ja) * 2011-08-29 2013-03-07 株式会社 エヌ・ティ・ティ・ドコモ マルチビームリフレクトアレイ
JP2013048343A (ja) * 2011-08-29 2013-03-07 Ntt Docomo Inc マルチビームリフレクトアレイ
JP2013115756A (ja) * 2011-11-30 2013-06-10 Ntt Docomo Inc リフレクトアレー
EP2822099A4 (en) * 2012-02-29 2015-10-07 Ntt Docomo Inc REFLECTION ARRANGEMENT AND DESIGN PROCESS
EP2822097A4 (en) * 2012-02-29 2015-10-14 Ntt Docomo Inc REFLECTION ARRANGEMENT, DESIGN PROCESS FOR IT AND SYSTEM THEREFOR
EP2822098A4 (en) * 2012-02-29 2015-10-21 Ntt Docomo Inc REFLECTIVE NETWORK AND DESIGN METHOD
US9425512B2 (en) 2012-02-29 2016-08-23 Ntt Docomo, Inc. Reflectarray and design method
US9531079B2 (en) 2012-02-29 2016-12-27 Ntt Docomo, Inc. Reflectarray and design method
US9620864B2 (en) 2012-02-29 2017-04-11 Ntt Docomo, Inc. Reflectarray and design method
WO2014020969A1 (ja) * 2012-07-31 2014-02-06 株式会社 エヌ・ティ・ティ・ドコモ リフレクトアレー
US9620862B2 (en) 2012-07-31 2017-04-11 Ntt Docomo, Inc. Reflectarray
US9537221B2 (en) 2012-10-01 2017-01-03 Ntt Docomo, Inc. Reflectarray
JP2014150463A (ja) * 2013-02-01 2014-08-21 Ntt Docomo Inc リフレクトアレー及び素子

Also Published As

Publication number Publication date
JP5463354B2 (ja) 2014-04-09
JPWO2010137713A1 (ja) 2012-11-15
EP2437351A1 (en) 2012-04-04
US20120105305A1 (en) 2012-05-03
CN102449847A (zh) 2012-05-09
EP2437351A4 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5463354B2 (ja) リフレクトアレイ
US8451189B1 (en) Ultra-wide band (UWB) artificial magnetic conductor (AMC) metamaterials for electrically thin antennas and arrays
Sun et al. Subwavelength substrate-integrated Fabry-Pérot cavity antennas using artificial magnetic conductor
US7830310B1 (en) Artificial impedance structure
EP2161780B1 (en) Radio communication system, perodic structure reflector plate, and tapered mushroom structure
KR101378477B1 (ko) 기판 집적형 도파관 안테나
Sarrazin et al. Circular high-impedance surfaces characterization
McMichael et al. A method for determining optimal EBG reflection phase for low profile dipole antennas
JP2015231111A (ja) 人工磁気導体及びアンテナ用反射器
Tierney et al. Controlling leaky waves with 1-D cascaded metasurfaces
Guclu et al. Direct use of the high impedance surface as an antenna without dipole on top
JP5372118B2 (ja) リフレクトアレー
JP2011193345A (ja) 電磁波反射面
JP2010252172A (ja) アンテナ装置
Liberal et al. Reconfigurable artificial surfaces based on impedance loaded wires close to a ground plane
Sarin et al. A metamaterial inspired low-scattering electric quadrupole antenna
Luukkonen et al. A high-impedance surface based antenna—Lose the antenna
Sharma et al. Towards efficient EM wave manipulation using a discrete dielectric Huygens’ metasurface
Vovchuk et al. Properties of antennas modified by wire media
Gnanagurunathan et al. Artificial magnetic conductors on wideband patch antenna
JP5635567B2 (ja) リフレクトアレー
Kianinejad et al. Spoof surface plasmon-based leaky wave antennas
Mahmoudian et al. Reduction of EMI and mutual coupling in array antennas by using DGS and AMC structures
JP5536836B2 (ja) 設計方法及びリフレクトアレー
Kwon et al. Two-dimensional metamaterial designs for line-source radiation from a virtual location

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023819.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011516081

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010780667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13375043

Country of ref document: US