WO2010137482A1 - 画像処理装置、x線撮影装置及び画像処理方法 - Google Patents
画像処理装置、x線撮影装置及び画像処理方法 Download PDFInfo
- Publication number
- WO2010137482A1 WO2010137482A1 PCT/JP2010/058264 JP2010058264W WO2010137482A1 WO 2010137482 A1 WO2010137482 A1 WO 2010137482A1 JP 2010058264 W JP2010058264 W JP 2010058264W WO 2010137482 A1 WO2010137482 A1 WO 2010137482A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- ray
- ray images
- contrast
- long
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 67
- 238000003672 processing method Methods 0.000 title claims description 4
- 238000006243 chemical reaction Methods 0.000 claims abstract description 58
- 238000012937 correction Methods 0.000 claims description 27
- 238000003384 imaging method Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 15
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 238000000265 homogenisation Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5229—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
- A61B6/5235—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
- A61B6/5241—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/92—Dynamic range modification of images or parts thereof based on global image properties
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
Definitions
- the present invention relates to an image processing apparatus, an X-ray imaging apparatus, and an image processing method.
- the conventional method is a technique for adjusting the density of each image before joining to a predetermined value in order to make the display density of the whole joined image to be acquired uniform, and pay attention to the contrast of the whole joined image. I have not been told.
- the contrast of an X-ray image obtained by X-ray imaging depends on the quality (energy magnitude) of the X-ray used at the time of imaging. Therefore, when shooting multiple images with partial overlap, when using X-rays with different radiation quality for each shot, the density of each image before joining can be adjusted by the conventional method, Contrast may differ between images after density adjustment. When the contrast is different between the images, a certain bone portion can be clearly confirmed in a certain image, but inconvenient such that it cannot be confirmed in another image.
- the problem to be solved by the invention is to provide an image processing apparatus capable of suppressing at least a contrast variation of a long image which is a joined image obtained by joining a plurality of X-ray images, and an X-ray imaging apparatus including the apparatus. Is to provide.
- the image processing apparatus (6) joins a plurality of X-ray images with storage means (62) for storing data of a plurality of partially overlapping X-ray images (20, 21, 22).
- Long image acquisition means (65) for acquiring a long X-ray image corresponding to the long imaging region of the specimen (M).
- the correction means (64) for processing to align the contrast (preferably density and contrast) of a plurality of X-ray images (20, 21, 22), and the long image acquisition means (65)
- the X-ray images (20, 21 ′, 22 ′′) having the same contrast (preferably density and contrast) are joined by the means (64) to obtain a long X-ray image.
- the correction means (64) includes a plurality of correction means (64).
- table acquisition means for acquiring a gradation conversion table (AB, BC) capable of aligning the contrast (preferably density and contrast), and the gradation conversion table (AB, BC)
- a uniformizing means for executing processing for aligning the contrast (preferably density and contrast) of a plurality of X-ray images (20 to 22) based on .
- An X-ray imaging apparatus (100) includes image imaging means (1, 4) for acquiring data of a plurality of partially overlapping X-ray images (20 to 22) and a plurality of X-ray images.
- Image processing means (6) for displaying, and display means (7) for displaying the processing results of the image processing means (6).
- the image processing means (6) includes the image processing device (6) according to the above invention.
- the display means (7) displays the long X-ray image acquired by the long image acquisition means (65).
- FIG. 1 is a block diagram showing the overall configuration of an X-ray imaging apparatus according to an embodiment of the present invention.
- FIGS. 2 (a) to 2 (c) are diagrams showing examples of X-ray images to be joined that are the basis of a long X-ray image
- FIG. 3 is a flowchart showing an operation procedure by the image processing unit of FIG. 4 (a) is a histogram in the overlapping region 20a of the image 20 shown in FIG. 2 (a), and
- FIG. 4 (b) is a histogram in the overlapping region 21a of the image 21 shown in FIG. 2 (b).
- Fig. 5 (a) shows the ratio of the cumulative histogram obtained by accumulating the histogram of Fig. 4 (a), and Fig.
- FIG. 5 (b) shows the ratio of the cumulative histogram obtained by accumulating the histogram of Fig. 4 (b).
- 6 (a) and 6 (b) are diagrams illustrating an example of the gradation conversion table between two images generated in step 323 of FIG.
- FIG. 7 is a diagram showing an example of the standardized gradation conversion table generated in step 332 of FIG.
- FIG. 8 is a view showing an example of the standardized gradation conversion table generated in step 332 of FIG.
- FIG. 9 is a diagram showing an example of density contrast equalization processing in step 34 of FIG.
- An X-ray imaging apparatus 100 of the present embodiment shown in FIG. 1 is an apparatus used for diagnosis in, for example, a hospital, etc., for X-ray irradiation X-ray tube 1 (image imaging means), and transmission X-ray image detection And a flat panel type X-ray detector 4 which is a two-dimensional X-ray detector.
- the X-ray tube 1 and the detector 4 are configured to be synchronized with each other and movable along the body axis direction Z of the subject M.
- the detector 4 detects a transmitted X-ray image irradiated from the X-ray tube 1 and passed through the subject M every time an image is captured, and converts the detection result into an electrical signal (X-ray detection signal). Output to the image processing unit 6.
- the image processing unit 6 (image processing device) is composed of a CPU, ROM, RAM, etc., for display based on a plurality of X-ray images acquired one after another according to the X-ray detection signal output from the detector 4. Image processing (gradation conversion, joining) is performed, and one long X-ray image corresponding to the long imaging region (for example, the region from the abdomen to the lower limb) of the subject M is generated.
- the display unit 7 receives the output from the image processing unit 6 and displays a long X-ray image.
- the long X-ray image generated by the image processing unit 6 is stored in a recording device such as a magneto-optical disk device in the form of digital image data, and is transferred to an external device via a network. You can also
- S1 a step (hereinafter abbreviated as “S”) 1 shown in FIG. 3, data of a plurality of X-ray images to be joined is supplied from the X-ray detector 4 to the image processing unit 6 (joining target). Supply of image data).
- the image data supplied to the image processing unit 6 is obtained by converting the X-ray detection signal output from the X-ray detector 4 into digital image data via an A / D converter (not shown).
- three continuous and partially overlapping X-ray images 20 to 22 along the body axis of the subject M are supplied. Shall be. Also, a part of the image 20 and the image 21 overlap, and a part of the image 21 and the image 22 overlap.
- the number of images supplied is not limited to three, but may be two or four or more.
- the number of X-ray images to be joined is N, and an identification number from 1 to N is assigned to each of them in the order of imaging.
- identification numbers 1 to 3 are assigned in order of photographing.
- the identification number is 1 for the image 20 shown in FIG. 2 (a), 2 for the image 21 shown in FIG. 2 (b), and 3 for the image 22 shown in FIG. 2 (c).
- the images 20 to 22 supplied to the image processing unit 6 are acquired by the image acquisition unit 61 and temporarily stored in the image memory 62 (storage means).
- the joint position between the image 20 as the upper image and the image 21 as the middle image is set, and the joint position between the image 21 and the image 22 as the lower image is set.
- the setting of the joining position may be determined based on an input from the user, or may be determined by a known process (for example, a joint determination process disclosed in JP 2008-67916 A).
- reference numerals 20a and 21a in FIGS. 2 (a) and 2 (b) mean overlapping regions of the images 20 and 21 when the images 20 and 21 are joined at the joining position set by the position setting unit 63. Shall.
- reference numerals 21b and 22a in FIGS. 2 (b) and 2 (c) mean overlapping regions of the images 21 and 22 when the images 21 and 22 are joined at the joining position set by the position setting unit 63. It shall be.
- the long X-ray image obtained by the processing of the image processing unit 6 is required to smoothly connect the joining portions so that the entire image can be seen as one image.
- a density contrast correction unit 64 is provided in the image processing unit 6, and here, Therefore, a process (density contrast correction process) for suppressing variation in density contrast between images in which the joining positions are set in S2 is performed (S3).
- concentration and contrast demonstrated below by this embodiment is positioned as one aspect
- the density contrast correction process of the present embodiment basically performs a process of aligning the display density and contrast of an image adjacent to the selected reference image as that of the reference image. Thereafter, the images having the same density and contrast are joined at the joining position set in S2, and a long X-ray image is generated.
- the transmitted X-ray dose (the dose incident on the X-ray detector) in the X-ray photon energy band used for imaging the human body decreases logarithmically with respect to the thickness and attenuation coefficient of the transmitted material. Has characteristics. Therefore, by performing the logarithmic conversion process, it is possible to cancel the logarithmic decreasing tendency of the information from the X-ray detector and simply replace it with the integrated information of the thickness of the transmitted substance and the attenuation coefficient. This is the reason for performing logarithmic conversion.
- the two-image gradation conversion table AB (gradation) for matching one of the adjacent X-ray images 20 and 21 with the other image density and contrast in the first table creation unit 642 (table acquisition means).
- a gradation conversion table BC (gradation conversion table) between two images of adjacent X-ray images 21 and 22 is also created.
- the region 21a of the image 21 has a higher image density than the region 20a of the image 20.
- the density range of histogram B the range from the waveform start position (minimum value) to the end position (maximum value)
- the region 20a of the image 20 has a higher contrast than the region 21a of the image 21.
- the width W1 of the density range of the histogram A is wider than that W2 of the histogram B.
- the feature quantity extraction unit 642b extracts the feature quantities A ′ and B ′ from the histograms A and B derived by the acquisition unit 642a.
- any one of the minimum value, the average value of the area, the maximum value, the median value, and the mode value of the histogram, or a combination thereof can be cited.
- a cumulative histogram obtained by accumulating each histogram is obtained, and the cumulative histogram is converted into a ratio (see, for example, FIGS. You can also Here, the ratio of the cumulative histogram is the density value (the density of the image 20 is A1, A2... An, the density of the image 21 is B1, B2... Bn),
- FIG. 5 is a diagram in which a ratio of values (according to R1, R2,..., Rn for images 20 and 21) obtained by accumulating appearance rates (frequency) of densities equal to or less than a density value is represented on the vertical axis.
- a combination of a plurality of the above-described feature amounts (for example, minimum value and maximum value) and extracting the combined feature amount may be performed.
- a combination of a plurality of the above-described feature amounts (for example, minimum value and maximum value) and extracting the combined feature amount may be performed.
- the table AB when the table AB is created from the above feature quantities, an approximate line of a plurality of feature quantities is derived, and a gradation conversion table is created based on the derived approximate lines.
- the gradation conversion table AB between the two images based on the feature amount shown in FIG. 6A is created.
- simultaneous equations may be used as long as there are only two points, or may be derived using the least square method or the like when the number of feature quantities used for table creation is indefinite.
- the reason for using the approximate straight line is that the sum of the photoelectric effect and the Compton effect when the target is a human tissue within the range of X-ray quality (tube voltage 30 kV to 200 kV) generally used for medical diagnosis.
- the attenuation coefficient of can be approximated by an exponential function
- the exponential function part is canceled out, and the pixel value is proportional to the integration of the attenuation coefficient and thickness, so it can be approximated to a linear line. Yes (called the exponential law in X-ray photography).
- the table is a low pixel region
- the feature quantity close to the low pixel area for interpolation of the low pixel area of the table feature quantity such as minimum value, average value, several% close to the low pixel side of the histogram accumulation rate.
- An approximate straight line is obtained using only In the pixel area of the overlapping area, an approximate straight line is obtained using all of the feature quantities for interpolation or the feature quantities excluding the feature quantities close to the low pixel area and the high pixel area.
- an approximate straight line is obtained using feature quantities close to the high pixel area (highest value, average value, several% of the high pixel value side of the histogram accumulation rate, etc.) for interpolation. Then, each area is created as a table that is interpolated and connected by the approximate straight line obtained for each area. At this time, it is preferable to use a smoothing process (moving average or the like) so that the inclination of the table of the joined portion of each region does not change abruptly.
- the second table creation unit 643 (second table acquisition means) matches the image density and contrast of the other image with respect to the specific X-ray image that is the reference for the density contrast correction processing.
- a standardized gradation conversion table ABC (second gradation conversion table) to be generated is created.
- the reference image selection unit 643a selects a reference image serving as a starting point of density contrast correction processing.
- the reference image to be selected may be any of the existing images 20, 21, and 22. Alternatively, another image obtained by correcting the density contrast of the images 20, 21, and 22 may be selected.
- the selection criterion for the reference image is not particularly limited. For example, the minimum value based on the two-image gradation conversion table AB (see FIG. 6 (a)) or BC (see FIG. 6 (b)) created by the creation unit 642 is used.
- An image having the maximum value may be selected as the reference image, or an image having the smallest average (high contrast) inclination of the conversion table when matched with the reference image may be selected as the reference image.
- an image having the smallest average (high contrast) inclination of the conversion table when matched with the reference image may be selected as the reference image.
- a standardized gradation conversion table of the image 21 for the image 20 is created. Since the image 20 is the reference image, the reverse lookup table BA (see FIG. 7) of the two-image gradation conversion table AB (see FIG. 6 (a)) created in S32 may be created and used. .
- a standardized gradation table of image 22 for image 20 is created.
- the homogenization processing unit 644 executes the homogenization processing of the images 21, 22 other than the image 20 that is the reference image, based on the created standardized gradation conversion table.
- all the pixel values of the image 22 are converted into gradations based on the reverse lookup table CB created in S332 to obtain an image 22 '.
- image 22 ' the density and contrast of the image 21 before gradation conversion and the image 22 'after gradation conversion adjacent to the downstream side thereof are matched (image 22 ⁇ image 22').
- all the pixel values of the image 22 ' are converted into gradations based on the reverse lookup table BA created in S332 to obtain an image 22 "(image 22' ⁇ image 22").
- the long image generation unit 65 joins the images 20, 21 ′, and 22 ′′ having the same density and contrast at the joining position set in S2. Create a long image that is one image.
- the joining of the images may be performed after weighting and correcting arbitrary regions of the overlapping regions 20a, 21a, 21b, and 22a as in a known method, or adjacent images 20, 21 ′, or 21.
- One of the images “, 22” may be used.
- the created long image is output to an image output device, but this output device may be a monitor or a film printer, or may be stored as data on a server or a recording medium.
- the created long image is output and displayed on the display unit 7, and the flow ends.
- the display density and contrast of each image are made uniform before joining the plurality of X-ray images 20 to 22, there is no variation in density and contrast in the long X-ray image after joining. As a result, a long X-ray image that is easy to diagnose can be acquired.
- 100 X-ray imaging device 1 X-ray tube (image imaging means), 4 X-ray detector (image imaging means), M subject, 6 image processing unit (image processing device), 61 image acquisition unit, 62 image memory ( Storage means), 63 joint position setting section (joint position setting means), 64 density contrast correction section (correction means), 641 logarithmic conversion processing section (logarithmic conversion processing means), 642 first table creation section (table acquisition means), 642a Histogram acquisition unit (histogram acquisition unit), 642b Feature amount acquisition unit (feature amount acquisition unit), 642c Table generation unit, 643 Second table creation unit (second table acquisition unit), 643a Reference image selection unit (reference image Selection means), 643b table generation unit, 644 homogenization processing unit (homogenization unit), 65 long image generation unit (long image acquisition unit), 7 display unit (display unit), 20-22 X-ray image, 20a , 21a, 21b, 22a Overlapping area, 21 ', 22' Toned image, 22 "gradation Re-converted
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
図1に示す本実施形態のX線撮影装置100は、例えば病院などで診断に用いられる装置であり、X線照射用のX線管1(画像撮影手段)と、透過X線像検出用の2次元X線検出器であるフラットパネル型などのX線検出器4とを有する。これらX線管1及び検出器4は互いに同期し、被検体Mの体軸方向Zに沿って移動可能に構成されている。被検体Mを静止させた状態で、X線管1及び検出器4を被検体Mの体軸方向Zに移動させながら撮影を繰り返すことにより、被検体Mの体軸に沿った連続的で且つ部分的に重複する複数のX線画像を取得することができる。
まず、図3に示すステップ(以下「S」と略記する。)1にて、接合対象の複数のX線画像のデータが、X線検出器4から画像処理部6に供給される(接合対象の画像データの供給)。画像処理部6に供給される画像データは、X線検出器4から出力されるX線検出信号がA/D変換器(図示省略)を介してデジタル画像データに変換されたものである。
次にS2にて、メモリ62に記憶された3つのX線画像のデータは、接合位置設定部63(接合位置設定手段)に読み出され、ここで隣り合う画像それぞれの接合位置が設定される(接合位置の設定)。
ところで、画像処理部6の処理により得られる長尺X線画像は、全体で1枚の画像に見えるように、接合部を滑らかに繋げることが必要とされる。滑らかに繋げるには、画像ごとに階調(濃度)を調整し、表示濃度を揃える作業が必要である。得られた長尺X線画像の接合境界線の内と外で濃度差があると、読影し難く、診断能が劣る可能性があるからである。
《S31》
まず、接合位置が設定された各画像20~22が濃度コントラスト補正部64(濃度コントラスト補正手段)に供給されると、S31にて、対数変換処理部641(対数変換処理手段)にて各画像20~22が対数変換処理される。
次にS32にて、第1テーブル作成部642(テーブル取得手段)にて隣り合うX線画像20,21の一方を他方の画像濃度とコントラストに一致させる2画像間階調変換テーブルAB(階調変換テーブル)を作成する。これとともに本実施形態では、隣り合うX線画像21,22の2画像間階調変換テーブルBC(階調変換テーブル)も作成する。
まずS321にて、ヒストグラム取得部642a(ヒストグラム取得手段)にて、対数変換された画像20,21の重複領域20a,21aにおける画素信号の強度(濃度。横軸)と出現率(頻度。縦軸)の対応関係を示すヒストグラムを取得する。ここで導出されるヒストグラムA,Bの一例を図4(a)及び図4(b)に示す。
図1及び図3に戻る。次にS322にて、特徴量抽出部642b(特徴量抽出手段)にて、取得部642aで導出した各ヒストグラムA,Bから特徴量A’,B’を抽出する。
次にS323にて、テーブル生成部642cにて、抽出部642bで抽出した各ヒストグラムA,Bの特徴量A’,B’に基づいて、処理部641で対数変換された画像20,21の一方を他方の画像濃度とコントラストに一致させる2画像間階調変換テーブルABを生成する。
次にS33にて、第2テーブル作成部643(第2のテーブル取得手段)にて、濃度コントラスト補正処理の基準となる特定のX線画像に対して、他の画像の画像濃度とコントラストに一致させる標準化階調変換テーブルABC(第2の階調変換テーブル)を作成する。
まずS331にて、基準画像選択部643a(基準画像選択手段)にて、濃度コントラスト補正処理の起点となる基準画像を選択する。選択する基準画像は、既に存在する画像20,21,22の何れかで良く、あるいは画像20,21,22を濃度コントラスト補正した別画像を選択することもできる。基準画像の選択基準は特に限定されず、例えば作成部642で作成した2画像間階調変換テーブルAB(図6(a)参照),BC(図6(b)参照)に基づく、最小値又は最大値を持つ画像を基準画像に選択しても良く、あるいは基準画像に合わせた際の変換テーブルの傾きの平均が最も小さい(コントラストが高い)画像を基準画像に選択してもよい。以下、画像20を基準画像として選択する場合を例示する。
次にS332にて、テーブル生成部643bにて、選択部643aで選択した基準画像としての画像20に対し、他の画像である画像21,22の画像濃度とコントラストを一致させる標準化階調変換テーブルを生成する。
次にS34にて、均一化処理部644(均一化手段)にて、作成した標準化階調変換テーブルに基づいて、基準画像である画像20以外の画像21,22の均一化処理を実行する。
なお、画像22→画像22”の階調変換は、2段階で行うこともできる。
次にS4にて、長尺画像生成部65(長尺画像取得手段)にて、濃度とコントラストが揃えられた画像20,21’,22”を、S2で設定した接合位置で接合し、一つの画像である長尺画像を作成する。
本実施形態では、作成した長尺画像を表示部7に出力し表示させてフローを終了する。
Claims (11)
- 部分的に重複する複数のX線画像のデータを記憶する記憶手段と、前記複数のX線画像を接合し、被検体の長尺撮影領域に対応する長尺X線画像を取得する長尺画像取得手段とを、有する画像処理装置において、
前記複数のX線画像のコントラストを揃える処理をする補正手段を有し、前記補正手段は、前記複数のX線画像のうち隣り合う2つのX線画像の重複部分の画像情報に基づいて前記2つのX線画像のコントラストを揃えることを可能とする階調変換テーブルを取得するテーブル取得手段と、前記階調変換テーブルに基づいて前記複数のX線画像のコントラストを揃える処理を実行する均一化手段とを有し、前記長尺画像取得手段は、前記補正手段によってコントラストが揃えられたX線画像を接合し、前記長尺X線画像を取得することを特徴とする画像処理装置。 - 請求項1記載の画像処理装置において、
前記補正手段は、前記複数のX線画像の濃度をさらに揃える処理をすることを特徴とする画像処理装置。 - 請求項1又は2記載の画像処理装置において、
前記テーブル取得手段は、前記隣り合う2つのX線画像を対数変換処理する対数変換処理手段と、対数変換された2つのX線画像の重複部分の画像から画素濃度と出現率の対応関係を示すヒストグラムを取得するヒストグラム取得手段と、前記ヒストグラムから少なくとも1つの特徴量を抽出する特徴量抽出手段とを有し、前記特徴量に基づいて、前記階調変換テーブルを生成することを特徴とする画像処理装置。 - 請求項3記載の画像処理装置において、
前記特徴量抽出手段は、前記特徴量として、前記ヒストグラムの最小値、面積の平均値、中央値、最大値、最頻値の何れか1つ以上を抽出することを特徴とする画像処理装置。 - 請求項3記載の画像処理装置において、
前記特徴量は、前記ヒストグラムの累積値の比率から抽出されることを特徴とする画像処理装置。 - 請求項3記載の画像処理装置において、
前記テーブル取得手段は、前記階調変換テーブルを取得するに際し、前記重複部分以外の画像内の低画素領域と高画素領域を、最小二乗法を利用して算出した近似直線を用いて線形補間することを特徴とする画像処理装置。 - 請求項1記載の画像処理装置において、
前記補正手段は、前記複数のX線画像から基準X線画像を選択する基準X線画像選択手段を備え、前記均一化手段は、前記基準X線画像以外の画像のコントラストを前記基準X線画像のコントラストに揃える処理を実行することを特徴とする画像処理装置。 - 請求項7記載の画像処理装置において、
前記補正手段は、前記階調変換テーブルに基づいて、前記基準X線画像と前記基準X線画像以外の画像のコントラストを揃えることを可能とする第2の階調変換テーブルを取得する第2のテーブル取得手段を備え、前記均一化手段は、前記第2の階調変換テーブルに基づいて、前記基準X線画像以外の画像のコントラストを前記基準X線画像のコントラストに揃える処理を実行することを特徴とする画像処理装置。 - 請求項1記載の画像処理装置において、
前記複数のX線画像の接合位置を設定する接合位置設定手段を有し、前記テーブル取得手段は、前記接合位置で前記隣り合う2つのX線画像を接合したときの重複部分の画像情報に基づいて、前記階調変換テーブルを取得することを特徴とする画像処理装置。 - 部分的に重複する複数のX線画像のデータを取得する画像撮影手段と、前記複数のX線画像を接合処理する画像処理手段と、前記画像処理手段による処理結果を表示する表示手段とを、有するX線撮影装置において、
前記画像処理手段は、前記複数のX線画像のデータを記憶する記憶手段と、前記複数のX線画像のコントラストを揃える処理をする補正手段と、前記補正手段によってコントラストが揃えられたX線画像を接合し、被検体の長尺撮影領域に対応する長尺X線画像を取得する長尺画像取得手段とを有し、前記補正手段は、前記複数のX線画像のうち隣り合う2つのX線画像の重複部分の画像情報に基づいて前記2つのX線画像のコントラストを揃えることを可能とする階調変換テーブルを取得するテーブル取得手段と、前記階調変換テーブルに基づいて前記複数のX線画像のコントラストを揃える処理を実行する均一化手段とを有し、前記表示手段は、前記長尺画像取得手段で取得した前記長尺X線画像を表示することを特徴とするX線撮影装置。 - 部分的に重複する複数のX線画像のデータを記憶する記憶ステップと、前記複数のX線画像を接合し、被検体の長尺撮影領域に対応する長尺X線画像を取得する長尺画像取得ステップと、を有する画像処理方法において、
前記複数のX線画像のコントラストを揃える処理をする補正ステップを有し、前記補正ステップは、前記複数のX線画像のうち隣り合う2つのX線画像の重複部分の画像情報に基づいて前記2つのX線画像のコントラストを揃えることを可能とする階調変換テーブルを取得するテーブル取得ステップと、前記階調変換テーブルに基づいて前記複数のX線画像のコントラストを揃える処理を実行する均一化ステップと、を有し、前記長尺画像取得ステップは、前記補正ステップによってコントラストが揃えられたX線画像を接合し、
前記長尺X線画像を取得する長尺X線画像取得ステップを備えることを特徴とする画像処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080022803.7A CN102448374B (zh) | 2009-05-27 | 2010-05-17 | 图像处理装置、x线摄影装置及图像处理方法 |
JP2011515979A JP5670327B2 (ja) | 2009-05-27 | 2010-05-17 | 画面処理装置およびx線撮影装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009127273 | 2009-05-27 | ||
JP2009-127273 | 2009-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010137482A1 true WO2010137482A1 (ja) | 2010-12-02 |
Family
ID=43222593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058264 WO2010137482A1 (ja) | 2009-05-27 | 2010-05-17 | 画像処理装置、x線撮影装置及び画像処理方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5670327B2 (ja) |
CN (1) | CN102448374B (ja) |
WO (1) | WO2010137482A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013192828A (ja) * | 2012-03-22 | 2013-09-30 | Fujifilm Corp | 輝度ムラ検出装置および方法 |
JP2015047194A (ja) * | 2013-08-30 | 2015-03-16 | 株式会社日立メディコ | X線診断装置およびそのデータ処理方法 |
WO2015046248A1 (ja) * | 2013-09-27 | 2015-04-02 | 富士フイルム株式会社 | マンモグラフィ装置、放射線画像撮影方法およびプログラム |
JP2020530797A (ja) * | 2017-08-14 | 2020-10-29 | レイセオン カンパニー | 腫瘍検出のための減算アルゴリズム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004057506A (ja) * | 2002-07-29 | 2004-02-26 | Toshiba Corp | ディジタル画像処理装置及びx線診断装置 |
JP2004236910A (ja) * | 2003-02-07 | 2004-08-26 | Toshiba Corp | 医用画像の貼り合わせ装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10135427A1 (de) * | 2001-07-20 | 2003-02-13 | Siemens Ag | Flächenhafter Bilddetektor für elektromagnetische Strahlen, insbesondere Röntgenstrahlen |
JP2005046444A (ja) * | 2003-07-30 | 2005-02-24 | Hitachi Medical Corp | 医療用x線装置 |
-
2010
- 2010-05-17 JP JP2011515979A patent/JP5670327B2/ja not_active Expired - Fee Related
- 2010-05-17 CN CN201080022803.7A patent/CN102448374B/zh not_active Expired - Fee Related
- 2010-05-17 WO PCT/JP2010/058264 patent/WO2010137482A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004057506A (ja) * | 2002-07-29 | 2004-02-26 | Toshiba Corp | ディジタル画像処理装置及びx線診断装置 |
JP2004236910A (ja) * | 2003-02-07 | 2004-08-26 | Toshiba Corp | 医用画像の貼り合わせ装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013192828A (ja) * | 2012-03-22 | 2013-09-30 | Fujifilm Corp | 輝度ムラ検出装置および方法 |
JP2015047194A (ja) * | 2013-08-30 | 2015-03-16 | 株式会社日立メディコ | X線診断装置およびそのデータ処理方法 |
WO2015046248A1 (ja) * | 2013-09-27 | 2015-04-02 | 富士フイルム株式会社 | マンモグラフィ装置、放射線画像撮影方法およびプログラム |
US20160206264A1 (en) * | 2013-09-27 | 2016-07-21 | Fujifilm Corporation | Mammography device, radiographic imaging method, and program |
JPWO2015046248A1 (ja) * | 2013-09-27 | 2017-03-09 | 富士フイルム株式会社 | マンモグラフィ装置、放射線画像撮影方法およびプログラム |
US10299749B2 (en) | 2013-09-27 | 2019-05-28 | Fujifilm Corporation | Mammography device, radiographic imaging method, and program |
JP2020530797A (ja) * | 2017-08-14 | 2020-10-29 | レイセオン カンパニー | 腫瘍検出のための減算アルゴリズム |
JP7019028B2 (ja) | 2017-08-14 | 2022-02-14 | レイセオン カンパニー | 腫瘍検出のための減算アルゴリズム |
Also Published As
Publication number | Publication date |
---|---|
JP5670327B2 (ja) | 2015-02-18 |
CN102448374B (zh) | 2014-05-14 |
JPWO2010137482A1 (ja) | 2012-11-12 |
CN102448374A (zh) | 2012-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8299413B2 (en) | Method for pixel shift calculation in digital subtraction angiography and X-ray diagnostic imaging system for generating images in digital subtraction angiography | |
US9014455B2 (en) | X-ray imaging apparatus and X-ray image generating method | |
US7313225B2 (en) | Method and apparatus for generating of a digital x-ray image | |
US9791384B2 (en) | X-ray imaging apparatus and method for generating X-ray image | |
US20120020541A1 (en) | Radiographic apparatus and control method for the same | |
JP6525772B2 (ja) | 画像処理装置、画像処理方法、放射線撮影システムおよび画像処理プログラム | |
US9084543B2 (en) | X-ray diagnostic apparatus | |
JP2004057506A (ja) | ディジタル画像処理装置及びx線診断装置 | |
JP5042887B2 (ja) | 放射線画像撮影装置 | |
CN103544684A (zh) | 图像处理方法和图像处理设备 | |
JP5670327B2 (ja) | 画面処理装置およびx線撮影装置 | |
KR102126355B1 (ko) | 방사선 촬영 장치 및 방사선 영상 생성 방법 | |
AU744199B2 (en) | High-definition television system | |
JP5588697B2 (ja) | X線ct装置 | |
JP5978432B1 (ja) | 医用画像処理装置及び医用画像処理方法 | |
JP2009078035A (ja) | エネルギーサブトラクション用画像生成装置および方法 | |
US8611498B2 (en) | Image processing apparatus, image processing method, radiation imaging system, and computer-readable recording medium | |
JP2002034961A (ja) | 放射線撮影装置及び放射線撮影方法 | |
KR101496912B1 (ko) | 엑스선 영상 장치 및 엑스선 영상 생성 방법 | |
US9959614B2 (en) | Image processing device and method | |
JP2023503326A (ja) | デジタルx線撮像におけるスペクトル調整のための方法及び装置 | |
JP2021186410A (ja) | プログラム、画像処理装置及び画像処理方法 | |
JP4682424B2 (ja) | ディジタル画像補正装置、ディジタル画像補正方法、x線画像による診断装置 | |
JP2022017632A (ja) | 放射線画像処理装置、放射線撮影システム及びプログラム | |
JP2004088620A (ja) | モニタ輝度調整方法、モニタ輝度調整装置及び画像観察装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080022803.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10780437 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011515979 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10780437 Country of ref document: EP Kind code of ref document: A1 |