WO2010137113A1 - 予等化送信装置及び予等化伝送システム - Google Patents

予等化送信装置及び予等化伝送システム Download PDF

Info

Publication number
WO2010137113A1
WO2010137113A1 PCT/JP2009/059603 JP2009059603W WO2010137113A1 WO 2010137113 A1 WO2010137113 A1 WO 2010137113A1 JP 2009059603 W JP2009059603 W JP 2009059603W WO 2010137113 A1 WO2010137113 A1 WO 2010137113A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
equalization
serial
transmission
Prior art date
Application number
PCT/JP2009/059603
Other languages
English (en)
French (fr)
Inventor
吉田 剛
昭範 中島
杉原 隆嗣
水落 隆司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/059603 priority Critical patent/WO2010137113A1/ja
Priority to JP2011515773A priority patent/JP5390607B2/ja
Publication of WO2010137113A1 publication Critical patent/WO2010137113A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/223Demodulation in the optical domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • H04L2025/03808Transmission of equaliser coefficients

Definitions

  • the present invention relates to an Orthogonal Frequency Division Multiplexing (OFDM) system, and in particular, a pre-equalization transmission apparatus and a pre-equalization transmission device that perform frequency domain pre-equalization on the transmission side and equalize and transmit the wavelength dispersion of a transmission line.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the present invention relates to an equalization transmission system.
  • FIG. 3 is a block diagram showing a part of the configuration of a general OFDM system.
  • the OFDM system shown in FIG. 3 receives a binary code sequence, converts it into a modulated signal and outputs it to the transmission unit 200, and transmits the modulated signal from the transmission unit 100 to the reception unit 300.
  • the transmission unit 100 includes a serial / parallel conversion unit (hereinafter, the serial / parallel conversion unit is referred to as an S / P (Serial-to-Parallel conversion) conversion unit) 101, a quaternary phase deviation. Shift modulation (hereinafter, quaternary phase shift keying is referred to as QPSK (Quadrature-Phase-Shift Keying)) mapping unit 102, fast inverse Fourier transform processing unit (hereinafter, inverse fast Fourier transform processing unit is referred to as IFFT (: Invert Fast Fourier).
  • IFFT Invert Fast Fourier
  • the converting unit includes a DAC (referred to as a “Digital Analog Converter” unit) 105, a carrier wave generating unit 106, and a modulating unit 107. Note that a separate clock generation unit is required, but is not described here.
  • the S / P conversion unit 101 receives a serial binary code sequence as an input, develops the serial binary code sequence in parallel, and outputs the parallel binary code sequence to the QPSK mapping unit 102.
  • the QPSK mapping unit 102 receives the paralleled binary code sequence as input, and maps the binary code sequence. For example, 2 bits are converted into QPSK signal points, and the mapping signals are output to the IFFT unit 103 in parallel.
  • the pilot sequence is used to estimate the transfer function of the transmission path on the receiving side.
  • IFFT section 103 receives the mapped signal as input, performs IFFT, and outputs the IFFT result to P / S conversion section 104.
  • P / S conversion unit 104 the parallel signal after IFFT is input, and the parallel signal after IFFT is subjected to parallel-serial conversion.
  • Interval hereinafter referred to as GI
  • Processing from the S / P conversion unit 101 to the P / S conversion unit 104 is performed in the digital domain.
  • the DAC unit 105 receives the serial discrete signal from the P / S conversion unit 104, converts the serial discrete signal into a serial continuous signal for modulation, and outputs the serial discrete signal to the modulation unit 107.
  • the carrier wave generation unit 106 generates a single-frequency wave having a speed sufficiently higher than the symbol transmission speed as a carrier wave. For example, when the transmission rate of the binary code sequence is 100 Gbit / s and the symbol mapping is performed by QPSK, the symbol transmission rate is 50 Gsymbol / s, which is 193.4 THz CW (: Continuous Wave) light, which is sufficiently faster than 50 Gsymbol / s. Will continue to be output.
  • Modulation section 107 modulates the carrier wave input from carrier wave generation section 106 with the modulation signal input from DAC section 105 and outputs the modulated signal to transmission section 200.
  • the receiving unit 300 includes a local oscillating unit 301, an interfering unit 302, a detecting unit 303, an analog-digital converting unit (hereinafter, an analog-digital converting unit is referred to as an ADC (Analog-Digital-Converter) unit).
  • an analog-digital converting unit is referred to as an ADC (Analog-Digital-Converter) unit.
  • 304 a serial-parallel converter (hereinafter referred to as a serial-to-parallel (S / P) converter) 305, a fast Fourier transform processor (hereinafter referred to as a fast Fourier transform processor (FFT)).
  • FFT fast Fourier transform processor
  • AFC Automatic Frequency Control unit
  • the receiving unit 300 In the local oscillation unit 301, for example, a local oscillation wave that oscillates at substantially the same frequency as the carrier wave is generated and input to the interference unit 302.
  • the interference unit 302 causes the modulated signal input from the transmission unit 200 to interfere with the local oscillation wave input from the local oscillation unit 301, and outputs the interference signal to the detection unit 303.
  • the detection unit 303 obtains a detection signal by detecting the interference signal.
  • the detection signal the modulation signal is ideally obtained, but in actuality, it is deteriorated due to the influence of noise and intersymbol interference.
  • the ADC unit 304 receives the detection signal, converts the detection signal, which is a continuous signal, into a discrete signal, and outputs the discrete signal to the S / P conversion unit 305.
  • the S / P conversion unit 305 receives the discrete signal after detection, performs serial-parallel conversion on the discrete signal after detection, which is a serial signal, and outputs the parallelized signal to the FFT unit 306.
  • the processing in the ADC unit 304 is performed in parallel, so the output of the ADC unit 304 is not serial. Therefore, the operation of the S / P conversion unit 305 sorts the signal series so that the FFT processing in the FFT unit 306 is performed on an appropriate FFT window.
  • the FFT unit 306 receives the parallel signal from the S / P conversion unit 305 as input, performs FFT, and outputs the parallel signal after the FFT to the equalization unit 307.
  • the equalization unit 307 estimates the transfer function of the transmission path from the pilot signal, calculates each tap coefficient so as to have inverse characteristics, and receives the parallel signal from the FFT unit 306 as an input, and adds 1 to each of the parallel signal. Multiplies the coefficient of ⁇ tap and outputs the multiplication result to the AFC unit 308.
  • the AFC unit 308 detects and corrects the frequency difference between the carrier wave and the local oscillation wave, and outputs the correction result to the adaptive equalization unit 309.
  • the adaptive equalization unit 309 equalizes interference remaining after AFC by multiplying by a coefficient of 1-tap. The tap coefficient is updated adaptively.
  • the signal after adaptive equalization is output to phase estimation section 310.
  • the phase estimation unit 310 receives the signal after the adaptive equalization from the adaptive equalization unit 309 as an input, and estimates and corrects the remaining phase offset. For example, in the case of QPSK, the signal points after adaptive equalization are fixed in the vicinity of four points on the circumference, but since the phase rotation remains as an offset, the phase offset is estimated and rotated in the reverse direction. Thus, the correspondence with the original QPSK signal point must be taken.
  • the signal after the phase estimation / correction is output to the symbol demapping unit 311.
  • the symbol demapping unit 311 receives the signal after phase estimation from the phase estimation unit 310, converts it into a binary code, and outputs the binary code to the P / S conversion unit 312 in parallel.
  • the P / S conversion unit 312 converts the parallel binary code into a serial binary code string and outputs the serial binary code string to the outside.
  • GI Guard Interval
  • a method (pre-equalized optical transmission method) is also studied in which the dispersion dispersion fiber in the transmission line is wiped out and the noise enhancement due to dispersion equalization is suppressed by pre-equalizing chromatic dispersion on the transmission side (for example, see Patent Document 1).
  • pre-equalized optical transmission chromatic dispersion equalization can be performed effectively, but time-varying PMD cannot be equalized.
  • DSP digital signal processing
  • Non-Patent Document 1 which is a conventional technique, is assumed to be performed in the time domain, whereas the circuit scale becomes enormous for large-scale chromatic dispersion equalization.
  • Non-Patent Document 2 the increase in circuit scale is moderate in frequency domain equalization, and the circuit scale can be reduced as compared with time domain equalization.
  • the present invention has been made to solve the above-mentioned problems, and can perform pre-equalization in the frequency domain on the transmission side, equalize the chromatic dispersion of the transmission line and send it out, improve PMD yield strength, It is an object of the present invention to obtain a pre-equalization transmission apparatus and a pre-equalization transmission system that can be expected to improve the chromatic dispersion tolerance and reduce the circuit scale.
  • the IFFT on the transmission side can be regarded as the frequency domain, it is possible to perform pre-equalization in the frequency domain by arranging the frequency domain pre-equalization unit. Further, the combination of OFDM, pre-equalization, and frequency domain equalization provides the respective advantages, that is, the effects of improving PMD tolerance, improving chromatic dispersion tolerance, and reducing circuit scale.
  • FIG. 1 is a diagram showing a part of a frequency domain pre-equalization QPSK-OFDM system configuration according to Embodiment 1 of the present invention.
  • the frequency domain pre-equalized QPSK-OFDM system shown in FIG. 1 receives a binary code sequence, converts it into a modulated signal and outputs it to the transmission unit 200, and the modulated signal input from the transmission unit 100
  • the transmission unit 400 includes an S / P conversion unit 401, a QPSK mapping unit 402, a frequency domain pre-equalization unit 403, an IFFT unit 404, a P / S conversion unit 405, a DAC unit 406A, and 406B, amplification units 407A and 407B, a light source unit 408, an optical demultiplexing unit 409, optical modulation units 410A and 410B, a phase shift unit 411, an optical multiplexing unit 412, and an equalization amount calculation unit 413.
  • the S / P conversion unit 401 receives the serial binary code sequence, develops the serial binary code sequence in parallel, and outputs the parallel binary code sequence to the QPSK mapping unit 402. At this time, it is necessary to insert not only the data sequence input from the S / P conversion unit 401 but also a pilot sequence and output it to the frequency domain pre-equalization unit 403.
  • the pilot sequence is used to estimate the transfer function of the transmission path on the receiving side.
  • the QPSK mapping unit 402 receives the paralleled binary code sequence, maps the binary code sequence to each QPSK signal point, and outputs the mapping signal to the frequency domain pre-equalization unit 403 in parallel. Based on the mapping signal from the QPSK mapping unit 402 and the tap coefficient from the equalization amount calculation unit 413 (to be described later), the frequency domain pre-equalization unit 403 applies a 1-tap coefficient to the mapping signal so as to give the reverse characteristics of the transmission path. Multiplication is performed, and the multiplication result is output to IFFT section 404.
  • the equalization amount calculation unit 413 calculates a tap coefficient based on the transmission path estimation result sent from the transmission path estimation unit 615 of the receiving unit 600 through another line.
  • H ( ⁇ ) since H ( ⁇ ) does not have an amplitude characteristic, its inverse function H ⁇ 1 ( ⁇ ) is given as H * ( ⁇ ). However, * represents a complex conjugate.
  • H * represents a complex conjugate.
  • the amplitude characteristic and phase characteristic of H ( ⁇ ) are as shown in equations (1) and (2).
  • Equation (2) the terms ⁇ 0 and ⁇ 1 do not cause waveform distortion, so it is necessary to equalize the terms ⁇ 2 and ⁇ 3 .
  • ⁇ c represents the center angular frequency of Taylor expansion.
  • the chromatic dispersion ⁇ 2 at a wavelength of 1550 nm is 17 ps / nm / km
  • the dispersion slope ⁇ 3 is 0.06 ps / nm / nm / km
  • ⁇ 2 17000 ps / nm
  • ⁇ 3 60 ps / nm.
  • the IFFT unit 404 receives the pre-equalized mapping signal, performs IFFT, and outputs the IFFT result to the P / S conversion unit 405.
  • the P / S conversion unit 405 a parallel signal after IFFT is input, and the parallel signal after IFFT is parallel-to-serial converted, and a duplicate of several samples at the end when arranged in time series is used as a GI Attach to.
  • the real part of the parallel-serial conversion and GI addition result is output to DAC section 406A, and the imaginary part is output to DAC section 406B. Processing from the S / P converter 401 to the P / S converter 405 is performed in the digital domain.
  • the serial discrete signal from the P / S converter 405 is input, the serial discrete signal is converted into a serial continuous signal for modulation, and output to the amplifiers 407A and 407B.
  • the amplification units 407A and 407B amplify the continuous signal from the DAC units 406A and 406B to an amplitude that can drive the optical modulation unit, and output the amplified signal to the optical modulation units 410A and 410B.
  • the carrier that generates the carrier wave functions as a generation unit, and outputs CW (Continuous Wave) light that oscillates at 193.4 THz as the carrier wave to the demultiplexing unit 409.
  • the CW light from the light source unit 408 is bifurcated and output to the light modulation units 410A and 410B, respectively.
  • the CW light input from the light source unit 408 is modulated by the modulation signal input from the amplification unit 407A, and the modulated light is output to the multiplexing unit 412.
  • the light modulation unit 410B modulates the CW light input from the light source unit 408 with the modulation signal input from the amplification unit 407B, and outputs the modulated light to the phase shift unit 411.
  • the phase shift unit 411 shifts the phase of the modulated signal input from the optical modulation unit 410B by ⁇ / 2 and outputs the phase-shifted modulated light to the multiplexing unit 412.
  • the multiplexing unit 412 combines the light input from the light modulation unit 410 ⁇ / b> A and the phase shift unit 411, and outputs the combined light to the transmission unit 500.
  • the transmission unit 500 includes a transmission line fiber 501 and an optical amplification unit 502 as shown in FIG.
  • the transmission line fiber 501 transmits light from the multiplexing unit 412.
  • the types of fiber include, for example, a standard single mode fiber having a zero dispersion wavelength in the 1300 nm band, a dispersion shifted fiber having a zero dispersion wavelength in the vicinity of 1550 nm, and a non-zero dispersion shifted fiber in which the zero dispersion wavelength is slightly shifted from around 1550 nm.
  • the present invention is not limited to these fibers.
  • the light transmitted from the transmission line fiber 501 is output to the optical amplification unit 502.
  • the optical amplifying unit 502 compensates for transmission loss generated in the transmission line fiber 501.
  • an erbium-doped fiber amplifier may be used, but the present invention is not limited to this.
  • the loss of the transmission line fiber 501 is 0.2 dB / km and the fiber length is 50 km
  • the loss of the transmission line fiber 501 is 10 dB
  • the gain of the optical amplification unit 502 may be 10 dB.
  • a device assumed to be inserted in a normal optical transmission system such as a wavelength division multiplexing multiplexer / demultiplexer, ROADM (Reconfigurable Optical Add-Drop Multiplexer), an optical band limiting filter, etc. Or you are not restricted by not preparing.
  • the reception unit 600 includes a local oscillation unit 601, an optical polarization separation unit 602A, an optical polarization separation unit 602B, optical interference units 603A and 603B, a balanced photon detection unit 604A-604D, and an amplification.
  • An S conversion unit 614 and a transmission path estimation unit 615 are included.
  • the local oscillation unit 601 generates local oscillation light that oscillates at substantially the same frequency as the carrier light wave, for example, and outputs the local oscillation light to the optical polarization separation unit 602B.
  • the optical polarization separation unit 602A separates the modulated light input from the transmission unit 500 into two orthogonal polarizations (X polarization and Y polarization), and outputs the separated X polarization light to the optical interference unit 603A.
  • the separated Y polarized wave is output to the optical interference unit 603B.
  • the modulated light input from the local oscillation unit 601 is separated into two orthogonal polarizations (X polarization and Y polarization), and the separated X polarization light is output to the optical interference unit 603A.
  • the separated Y-polarized light is output to the optical interference unit 603B.
  • the X-polarized light E XS (t) input from the optical polarization separation unit 602A interferes with the X-polarized light E XL (t) input from the optical polarization separation unit 602B, and E XID (t ) ⁇ E XS (t) -E XL (t) and E XIC (t) ⁇ E XS (t) + E XL (t) are output to the balanced photon detector 604A, and E XQD (t) ⁇ E XS ( t) ⁇ jE XL (t) and E XQD (t) ⁇ E XS (t) + jE XL (t) are output to the balanced photon detector 604B.
  • X is the X polarization component
  • S is the signal light (Signal S)
  • L is the local oscillation light (Local L)
  • I is the in-phase component (In-phase I) )
  • Q indicates a quadrature component (Quadrature-phase Q)
  • D indicates a difference component
  • C indicates a sum component.
  • the Y-polarized light E YS (t) input from the optical polarization separation unit 602A interferes with the Y-polarized light E YL (t) input from the optical polarization separation unit 602B, and E YID (t ) ⁇ E YS (t) -E YL (t) and E YIC (t) ⁇ E YS (t) + E YL (t) are output to the balanced photon detector 604C, and E YQD (t) ⁇ E YS ( t) -jE YL (t) and E YQD (t) ⁇ E YS (t) + jE YL (t) are output to the balanced photon detector 604D.
  • “Y” indicates a Y polarization component.
  • the balanced photon detection unit 604A receives the outputs E XID (t) and E XIC (t) from the optical interference unit 603A, receives the balance, and receives E XI (t) ⁇
  • 2 Re ⁇ E XS (t) E * XL (t) ⁇ is output to the amplifying unit 605A.
  • * represents a complex conjugate.
  • the balanced photon detection unit 604B receives the outputs E XQD (t) and E XQC (t) from the optical interference unit 603A, receives the balance, and receives E XQ (t) ⁇
  • 2 Im ⁇ E XS (t) E * XL (t) ⁇
  • a continuous electric signal E XQ (t) expressed by the following is output to the amplifying unit 605B.
  • the balanced photon detection unit 604C receives the outputs E YID (t) and E YIC (t) from the optical interference unit 603B, receives the balance, and receives E YI (t) ⁇
  • 2 Re ⁇ E YS (t) E * YL (t) ⁇ is output to the amplifying unit 605C.
  • the balanced photon detection unit 604D receives E YQD (t) and E YQC (t) from the optical interference unit 603B as input, receives the balance, and receives E YQ (t) ⁇
  • 2 Im ⁇ E YS (t) E * YL (t) ⁇
  • a continuous electric signal E YQ (t) expressed by the output is output to the amplifying unit 605D.
  • the amplification units 605A to 605D each receive the electric signal from the balanced photon detection units 604A to 604D, amplify it, and output the amplified signal to the ADC units 606A to 606D, respectively.
  • the amplified electrical signals from the amplification units 605A to 605D are AD-converted with 28 Gsample / s and 6-bit resolution, and the discrete signals of the conversion results are output to the S / P conversion unit 607, respectively.
  • the discrete signal after photoelectric conversion via the ADC units 606A to 606D is input, the discrete signal after photoelectric conversion which is a serial signal is serial-parallel converted, and the parallel signal is converted into a parallel signal.
  • the data is output to the FFT unit 608.
  • the processing in the ADC units 606A to 606D is performed in parallel, so the outputs of the ADC units 606A to 606D are not serial. Therefore, the operation of the S / P conversion unit 607 arranges the signal series so that the FFT processing of the FFT unit 608 described later is performed on an appropriate FFT window.
  • the FFT unit 608 receives the parallel signal from the S / P conversion unit 607 as input, performs FFT, and outputs the parallel signal after the FFT to the equalization unit 609.
  • the equalization unit 609 receives the parallel signal from the FFT unit 608 as input, multiplies each of the parallel signals by a 1-tap coefficient, and outputs the multiplication result to the AFC unit 610.
  • AFC section 610 detects the frequency difference between the carrier wave and the local oscillation wave, estimates the transmission path from the pilot signal, corrects it, and outputs the correction result to adaptive equalization section 611.
  • the adaptive equalization unit 611 equalizes the residual interference after AFC by multiplying by a 1-tap coefficient. The tap coefficient is updated adaptively.
  • the signal after adaptive equalization is output to phase estimation section 612.
  • Phase estimation section 612 receives the signal after adaptive equalization from adaptive equalization section 611 as input, estimates and corrects the remaining phase offset, and outputs the signal after phase estimation / correction to QPSK demapping section 613.
  • the signal points after adaptive equalization are fixed in the vicinity of four points on the circumference, but since the phase rotation remains as an offset, the phase offset is estimated and rotated in the reverse direction. Thus, the correspondence with the original QPSK signal point must be taken.
  • the QPSK demapping unit 613 receives the signal after the phase estimation from the phase estimation unit 612 and converts it into a binary code, and outputs the data signal of the binary code to the P / S conversion unit 614 in parallel.
  • the pilot signal is output to transmission path estimation section 615.
  • the P / S conversion unit 614 converts the parallel binary code from the QPSK demapping unit 613 into a serial binary code string, and outputs the serial binary code string to the outside.
  • the transmission path estimation unit 615 estimates the chromatic dispersion of the transmission path from the pilot signal from the QPSK demapping unit 613, and outputs the transmission path estimation result to the tap coefficient generation unit 413. For example, as in the method shown in Non-Patent Document 3, it is also possible to perform estimation using separate monitoring light. In addition, it is assumed that a line different from the main signal communication line is used for information transfer to the tap coefficient generation unit 413.
  • FIG. 2 shows the transition of the signal point arrangement diagram when the present invention is used.
  • (a) and (c) show signal point arrangements in the frequency domain at the time of output of the transmission section 400.
  • FIG. When this invention is not used, mapped QPSK signal points are taken as shown in (c).
  • phase rotation is given in advance as shown in FIG. 2
  • (b) and (d) show signal point arrangements in the frequency domain at the time of input of the receiving unit 600.
  • FIG. When this invention is not used, as shown in (d), the signal point arrangement becomes a circle due to the influence of chromatic dispersion in the transmission section 500, and the amplitude direction is also disturbed.
  • FIG. 2 shows the calculation under idealized conditions such as the fact that the frequency difference between the signal light and the local oscillation light is zero, that there is no phase offset, and that the resolution of the ADC and DAC is not considered. As an example, it shows that pre-equalization in the transmission unit 400 functions effectively.
  • the present invention does not limit the mapping to QPSK, but can be combined with various modulation schemes such as various phase modulation schemes, amplitude modulation schemes, and amplitude phase modulation schemes.
  • modulation schemes such as various phase modulation schemes, amplitude modulation schemes, and amplitude phase modulation schemes.
  • the arrangement of the AFC unit 610 and the adaptive equalization unit 611 is shown as an example, and is not limited to the configuration of FIG.
  • 400 transmission unit 401 serial-parallel conversion unit, 402 QPSK mapping unit, 403 frequency domain pre-equalization unit, 404 IFFT unit, 405 P / S conversion unit, 406A, 406B DAC unit, 407A, 407B amplification unit, 408 light source unit, 409 optical demultiplexing unit, 410A, 410B optical modulation unit, 411 phase shift unit, 412 optical multiplexing unit, 413 equalization amount calculation unit, 500 transmission unit, 501 transmission line fiber, 502 optical amplification unit, 600 reception unit, 601 local unit Oscillation unit, 602A, 602B, optical polarization separation unit, 603A, 603B, optical interference unit, 604A-604D, balanced photon detection unit, 605A-605D amplification unit, 606A-606D ADC unit, 607 S / P conversion unit, 608 FFT unit , 609 equalization department, 610 AFC department, 611 suitable Equalization unit, 612 a phase

Abstract

 送信側で周波数領域での予等化を行い、伝送路の波長分散を等化して送出する予等化送信装置及び予等化伝送システムを得る。 直列2進データを並列展開するS/P変換部401、並列化されたデータを信号点にマッピングするマッピング部402、伝送路推定結果に基づき伝送路の逆特性を計算する等化量計算部413、マッピング信号と伝送路の逆特性とを乗算して予等化されたマッピング信号を得る周波数領域予等化部403、予等化されたマッピング信号に対しIFFT処理を行うIFFT部404、IFFT後の並列信号に対しガードインターバルを付加しつつ並直列変換を行うP/S変換部405、直列離散信号を変調用の直列連続信号に変換するDAC406、搬送波を生成する搬送波生成部408、変調用の直列連続信号に基づいて搬送波を変調して信号波を生成する搬送波変調部410を備える。

Description

予等化送信装置及び予等化伝送システム
 この発明は、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)方式に関し、特に、送信側で周波数領域予等化を行い、伝送路の波長分散を等化して送出する予等化送信装置及び予等化伝送システムに関するものである。
 光ファイバ通信により大容量通信を行うために、1波長当たりのビットレートの高速化が進められている。光ファイバには分散特性があり、シンボルレートの二乗に比例して伝送距離が制限されるため、シンボルレートの低減は必須である。このため、マルチキャリア伝送方式が検討されており、特に無線通信において公知の技術であるOFDM方式の光通信への応用が広く検討されている(例えば特許文献1参照)。
 図3は、一般的なOFDMシステムの構成の一部を示したブロック図である。図3に示すOFDMシステムは、2進符号系列を入力とし、被変調信号に変換して伝送部200へ出力する送信部100と、送信部100からの被変調信号を伝送し、受信部300へ出力する伝送部200と、伝送部200からの被変調信号を受信し、2進符号系列に変換して出力する受信部300とを備える。
 ここで、送信部100は、図3に示すように、直並列変換部(以下、直並列変換部をS/P(:Serial-to-Parallel conversion)変換部と称す)101、四値位相偏移変調(以下、四値位相偏移変調をQPSK(:Quadrature Phase-Shift Keying)と称す)マッピング部102、高速逆フーリエ変換処理部(以下、逆高速フーリエ変換処理部をIFFT(:Invert Fast Fourier Transform)部と称す)103、並直列変換部(以下、並直列変換部をP/S(:Parallel-to-Serial conversion)変換部と称す)104、ディジタル-アナログ変換部(以下、ディジタル-アナログ変換部をDAC(:Digital Analog Converter)部と称す)105、搬送波生成部106、変調部107を有する。なお、別途クロック生成部が必要であるが、ここでは記載しない。
 次に、送信部100の動作について説明する。S/P変換部101では、直列2進符号系列を入力とし、当該直列2進符号系列を並列展開して、QPSKマッピング部102へ出力する。QPSKマッピング部102では、並列化された2進符号系列を入力とし、当該2進符号系列をそれぞれマッピングする。例えば、2ビットずつをQPSKの各信号点に変換し、当該マッピング信号をそれぞれ並列にIFFT部103へ出力する。この際、S/P変換部101から入力されるデータ系列だけでなく、パイロット系列を挿入してIFFT部103へ出力する必要がある。当該パイロット系列は、受信側で伝送路の伝達関数を推定するために用いられる。
 IFFT部103では、マッピングされた信号を入力とし、IFFTを行い、当該IFFT結果をP/S変換部104へ出力する。P/S変換部104では、IFFT後の並列信号を入力とし、当該IFFT後の並列信号を並直列変換しつつ、時系列に並べた際に最後尾となる数サンプルの複製をガードインターバル(Guard Interval、以下、GIと称す)として先頭部に取り付け、当該並直列変換及びGI付加結果をDAC部105へ出力する。S/P変換部101からP/S変換部104までの処理はディジタル領域で行われる。
 DAC部105では、P/S変換部104からの直列離散信号を入力とし、当該直列離散信号を変調用の直列連続信号に変換して、変調部107へ出力する。搬送波生成部106では、シンボル伝送速度よりも十分速い速度の単一周波数の波を搬送波として生成する。例えば、2進符号系列の伝送速度が100Gbit/sでシンボルマッピングをQPSKで行った場合のシンボル伝送速度は50Gsymbol/sとなり、50Gsymbol/sよりも十分速い193.4THzのCW(:Continuous Wave)光を出力し続ける。変調部107では、搬送波生成部106から入力する搬送波を、DAC部105から入力する変調信号により変調し、被変調信号を伝送部200へ出力する。
 また、受信部300は、図3に示すように、局部発振部301、干渉部302、検波部303、アナログ-ディジタル変換部(以下、アナログ-ディジタル変換部をADC(:Analog Digital Converter)部と称す)304、直並列変換部(以下、直並列変換部をS/P(:Serial-to-Parallel)変換部と称す)305、高速フーリエ変換処理部(以下、高速フーリエ変換処理部をFFT(:Fast Fourier Transform)部と称す)306、等化部307、自動周波数制御部(以下、自動周波数制御部をAFC(:Automatic Frequency Control)部と称す)308、適応等化部309、位相推定部310、シンボルデマッピング部311、P/S変換部312を有する。なお、別途クロック抽出部が必要であるが、ここでは記載しない。
 次に、受信部300の動作について説明する。局部発振部301では、例えば搬送波とほぼ同一の周波数で発振する局部発振波を生成し、干渉部302へ入力する。干渉部302では、伝送部200から入力される被変調信号と局部発振部301から入力される局部発振波を干渉させ、干渉信号を検波部303へ出力する。
 検波部303では、干渉信号を検波することにより、検波信号を得る。当該検波信号としては、理想的には前記変調信号が得られるが、実際には雑音や符号間干渉の影響を受けるため劣化する。ADC部304では、検波信号を入力とし、連続信号である当該検波信号を離散信号に変換して、当該離散信号をS/P変換部305へ出力する。
 S/P変換部305では、検波後の離散信号を入力とし、直列信号である当該検波後の離散信号を直並列変換し、並列化された信号をFFT部306へ出力する。高速通信(例えば10Gbit/s以上)においては、ADC部304での処理は並列展開されて行われるため、ADC部304の出力は直列ではない。そのため、S/P変換部305の動作は、FFT部306でのFFT処理が適切なFFTウインドウに対して行われるよう、信号系列を整理することとなる。
 FFT部306では、S/P変換部305からの並列信号を入力とし、FFTを行い、当該FFT後の並列信号を等化部307へ出力する。等化部307では、パイロット信号から伝送路の伝達関数を推定し、逆特性を持つように各tap係数を算出すると共に、FFT部306からの並列信号を入力とし、当該並列信号のそれぞれに1-tapの係数を乗算し、当該乗算結果をAFC部308へ出力する。
 AFC部308では、搬送波と局部発振波との周波数差を検知し、補正し、当該補正結果を適応等化部309へ出力する。適応等化部309では、AFC後に残留する干渉を1-tapの係数を乗算することで等化する。tap係数は適応的に更新する。適応等化後の信号を位相推定部310へ出力する。位相推定部310では、適応等化部309からの適応等化後の信号を入力とし、残留する位相オフセットを推定し、補正する。例えばQPSKであれば、適応等化後の信号点は円周上の4点付近に固定されるが、位相回転がオフセットとして残留しているため、当該位相オフセットを推定し、逆方向に回転させることで、元のQPSK信号点との対応を取らなければならない。位相推定・補正後の信号をシンボルデマッピング部311へ出力する。
 シンボルデマッピング部311では、位相推定部310からの位相推定後の信号を入力とし、2進符号に変換し、当該2進符号を並列にP/S変換部312へ出力する。P/S変換部312では、並列2進符号を直列2進符号列に変換し、当該直列2進符号列を外部へ出力する。
 ところで、OFDM光伝送では、マルチキャリア化により1サブキャリア当たりの伝送レート(=1/ブロック周期)を下げることが可能である。OFDMをFFT/IFFTにより実現する場合、サブキャリア数はFFTポイント数に対応する。FFTポイント数を十分大きく取り、サブキャリア数を増やして、ブロック周期を長く取ることで、偏波モード分散(PMD:Polarization-Mode Dispersion)の影響は無視できるほど小さくなるが、実質的には占有帯域の狭帯域化が図れないことから、波長分散によりFFTブロック間の干渉(IBI:Inter-Block Interference)が生じ、性能劣化を招く。
 これを回避するためにはガードインターバル(GI:Guard Interval)時間を十分長く取る必要があるが、GIの付加は伝送速度の上昇を招く。このため、FFTポイント数を増やし、ブロック周期を長く取ることで、冗長度を抑える必要がある。結論として、波長分散はGI冗長度の上昇若しくはFFTポイント数の増加を招く。
 一方、送信側で波長分散を予め等化することで、伝送路の分散補償ファイバを一掃し、かつ、分散等化による雑音強調を抑える方式(予等化光伝送方式)も検討されている(例えば、特許文献1参照)。予等化光伝送では、波長分散の等化は効果的に行えるが、時間変動するPMDは等化できない。
国際公開第07/41799号
D. McGhan et al.,"5120km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation," OFC/NFOEC2005, PDP27, 2005. D. Falconer et al., "Frequency domain equalization for single-carrier broadband wireless systems," IEEE Communications magazine, April 2002. K. Onohara et al., "Online measurement of chromatic dispersion using optical supervisory channels for electronic pre-distortion," Conference on Optical Internet, pp. 1-2, Oct. 2008.
 従来技術であるOFDM光伝送では、波長分散はGI冗長度の上昇若しくはFFTポイント数の増加を招くという第一の問題があった。
 また、受信側では同期検波とディジタル信号処理(DSP:Digital Signal Processing)を組み合わせる必要があるが、DSP部では、大規模波長分散等化、AFC、位相推定、適応等化等を一手に受け持つ必要があり、DSPにかかる計算負荷が非常に高いという第二の問題があった。
 また、従来技術である予等化(例えば非特許文献1)は、時間領域で行われることを想定されており、大規模な波長分散等化のためには回路規模が膨大となるのに対し、非特許文献2に示すように、周波数領域等化では回路規模の増大が緩やかであり、時間領域等化に比べて回路規模の削減が可能である。
 この発明は、上記の問題点を解決するためになされたもので、送信側で周波数領域での予等化を行い、伝送路の波長分散を等化して送出することができ、PMD耐力向上、波長分散耐力向上、回路規模削減の効果を期待できる予等化送信装置及び予等化伝送システムを得ることを目的とする。
 この発明によれば、OFDMにおいて、送信側のIFFT前が周波数領域と見なせるため、周波数領域予等化部を配置することで周波数領域での予等化が可能となる。また、OFDM、予等化、周波数領域等化の組合せにより、それぞれの利点、すなわち、PMD耐力向上、波長分散耐力向上、回路規模削減の各効果を奏する。
この発明の実施の形態1に係る周波数領域予等化QPSK-OFDMシステム構成の一部を示した図である。 この発明を用いた場合と用いない場合の信号点配置図の推移を示したものである。 一般的なOFDMシステムの構成の一部を示したブロック図である。
 実施の形態1.
 図1は、この発明の実施の形態1に係る周波数領域予等化QPSK-OFDMシステム構成の一部を示した図である。図1に示す周波数領域予等化QPSK-OFDMシステムは、2進符号系列を入力とし、被変調信号に変換して伝送部200へ出力する送信部400と、送信部100から入力された被変調信号を伝送し、受信部300へ出力する伝送部500と、伝送部200から入力された被変調信号を受信し、2進符号系列に変換して出力する受信部600とを備える。
 ここで、送信部400は、図1に示すように、S/P変換部401、QPSKマッピング部402、周波数領域予等化部403、IFFT部404、P/S変換部405、DAC部406A及び406B、増幅部407A及び407B、光源部408、光分波部409、光変調部410A及び410B、位相シフト部411、光合波部412、等化量計算部413を有する。
 次に、送信部400の動作について説明する。S/P変換部401では、直列2進符号系列を入力とし、当該直列2進符号系列を並列展開し、QPSKマッピング部402へ出力する。この際、S/P変換部401から入力されるデータ系列だけでなく、パイロット系列を挿入して周波数領域予等化部403へ出力する必要がある。当該パイロット系列は、受信側で伝送路の伝達関数を推定するために用いられる。
 QPSKマッピング部402では、並列化された2進符号系列を入力とし、当該2進符号系列をそれぞれQPSK信号点にマッピングし、当該マッピング信号をそれぞれ並列に周波数領域予等化部403へ出力する。周波数領域予等化部403では、QPSKマッピング部402からのマッピング信号と後述する等化量計算部413からのtap係数を基づいて、伝送路の逆特性を与えるようマッピング信号に1-tap係数を乗算し、当該乗算結果をIFFT部404へ出力する。
 等化量計算部413では、受信部600の伝送路推定部615より別回線を通して送られる伝送路推定結果に基づきtap係数が計算される。光ファイバの分散特性をH(ω)としたとき、H(ω)は振幅特性を持たないため、その逆関数H-1(ω)はH*(ω)として与えられる。ただし、*は複素共役を表す。H(ω)の振幅特性及び位相特性は式(1)及び(2)のとおりである。
Figure JPOXMLDOC01-appb-M000001
 ここで、Lはファイバ長、β0は位相オフセット、β1は群遅延、β2は波長分散、β3は分散スロープをそれぞれ表す。式(2)において、β0とβ1の項は波形歪みをもたらさないため、等化する必要があるのはβ2の項とβ3の項である。また、ωcはTaylor展開の中心角周波数を表す。例えば、総ファイバ長Lが1000km、波長1550nmにおける波長分散β2が17ps/nm/km、分散スロープβ3が0.06ps/nm/nm/kmである場合、β2=17000ps/nm及びβ3=60ps/nmである。これらから計算されたH(ω)に対し、H*(ω)を求めてtap係数としてQPSK信号点に乗算する。
 IFFT部404では、予等化されたマッピング信号を入力とし、IFFTを行い、当該IFFT結果をP/S変換部405へ出力する。P/S変換部405では、IFFT後の並列信号を入力とし、当該IFFT後の並列信号を並直列変換しつつ、時系列に並べた際に最後尾となる数サンプルの複製をGIとして先頭部に取り付ける。そして、当該並直列変換及びGI付加結果の実数部をDAC部406Aへ出力し、虚数部をDAC部406Bへ出力する。S/P変換部401からP/S変換部405までの処理はディジタル領域で行われる。
 DAC部406A及び406Bでは、P/S変換部405からの直列離散信号を入力とし、当該直列離散信号を変調用の直列連続信号に変換して、増幅部407A及び407Bへ出力する。増幅部407A及び407Bでは、DAC部406A及び406Bからの連続信号を、光変調部を駆動できる振幅まで増幅し、増幅した信号を光変調部410A及び410Bへ出力する。
 他方、光源部408では、搬送波を生成する搬送は生成部として機能し、搬送波として193.4THzで発振するCW(Continuous Wave)光を分波部409へ出力する。分波部409では、光源部408からのCW光を二分岐し、それぞれ光変調部410A及び410Bへ出力する。
 光変調部410Aでは、光源部408から入力するCW光を、増幅部407Aから入力する変調信号により変調し、被変調光を合波部412へ出力する。光変調部410Bでは、光源部408から入力するCW光を、増幅部407Bから入力する変調信号により変調し、被変調光を位相シフト部411へ出力する。位相シフト部411では、光変調部410Bから入力する被変調信号の位相をπ/2シフトし、位相シフトした被変調光を合波部412へ出力する。合波部412では、光変調部410A及び位相シフト部411から入力される光を合波し、合波した光を伝送部500へ出力する。
 また、伝送部500は、図1に示すように、伝送路ファイバ501、光増幅部502を有する。
 次に、伝送部500の動作について説明する。伝送路ファイバ501では、合波部412からの光を伝送する。ファイバの種類としては、例えば、1300nm帯に零分散波長を持つ標準シングルモードファイバ、1550nm付近に零分散波長を持つ分散シフトファイバ、零分散波長を1550nm付近から僅かにずらした非零分散シフトファイバ等を用いればよいが、これらのファイバに限定するものではない。伝送路ファイバ501から伝送された光は光増幅部502へ出力される。
 光増幅部502では、伝送路ファイバ501において生じた伝送損失を補償する。例えばエルビウム添加ファイバ増幅器を用いればよいが、これに限定するものではない。伝送路ファイバ501の損失が0.2dB/km、ファイバ長が50kmの場合、伝送路ファイバ501の損失は10dBであり、光増幅部502の利得は10dBあればよい。図1には示していないが、波長分割多重の合分波部やROADM(Reconfigurable Optical Add-Drop Multiplexer)、光帯域制限フィルタ等、通常光伝送システムにおいて挿入されると想定される装置を備えること若しくは備えないことに制約を受けるものではない。
 また、受信部600は、図1に示すように、局部発振部601、光偏波分離部602A、光偏波分離部602B、光干渉部603A及び603B、バランスド光子検出部604A-604D、増幅部605A-605D、ADC部606A-606D、S/P変換部607、FFT部608、等化部609、AFC部610、適応等化部611、位相推定部612、QPSKデマッピング部613、P/S変換部614、伝送路推定部615を有する。
 次に、受信部600の動作について説明する。局部発振部601では、例えば搬送光波とほぼ同一の周波数で発振する局部発振光を生成し、光偏波分離部602Bへ出力する。光偏波分離部602Aでは、伝送部500から入力する被変調光を直交2偏波(X偏波とY偏波)に分離し、分離されたX偏波光を光干渉部603Aへ出力すると共に、分離されたY偏波を光干渉部603Bへ出力する。光偏波分離部602Bでは、局部発振部601から入力する被変調光を直交2偏波(X偏波とY偏波)に分離し、分離されたX偏波光を光干渉部603Aへ出力すると共に、分離されたY偏波光は光干渉部603Bへ出力する。
 光干渉部603Aでは、光偏波分離部602Aから入力するX偏波光EXS(t)と光偏波分離部602Bから入力するX偏波光EXL(t)とを干渉させ、EXID(t)∝EXS(t)-EXL(t)及びEXIC(t)∝EXS(t)+EXL(t)をバランスド光子検出部604Aへ出力し、EXQD(t)∝EXS(t)-jEXL(t)及びEXQD(t)∝EXS(t)+jEXL(t)をバランスド光子検出部604Bへ出力する。ここで、サフィックス「X」はX偏波成分、「S」は信号光(SignalのS)、「L」は局部発振光(LocalのL)、「I」は同相成分(In-phaseのI)、「Q」は直交成分(Quadrature-phaseのQ)、「D」は差成分、「C」は和成分であることをそれぞれ示す。
 光干渉部603Bでは、光偏波分離部602Aから入力するY偏波光EYS(t)と光偏波分離部602Bから入力するY偏波光EYL(t)とを干渉させ、EYID(t)∝EYS(t)-EYL(t)及びEYIC(t)∝EYS(t)+EYL(t)をバランスド光子検出部604Cへ出力し、EYQD(t)∝EYS(t)-jEYL(t)及びEYQD(t)∝EYS(t)+jEYL(t)をバランスド光子検出部604Dへ出力する。なお、ここで、「Y」はY偏波成分であることを示す。
 バランスド光子検出部604Aでは、光干渉部603Aからの出力EXID(t)及びEXIC(t)を入力とし、バランス受信し、EXI(t)∝|EXID(t)|2-|EXIC(t)|2=Re{EXS(t)E* XL(t)}で表される連続電気信号EXI(t)を増幅部605Aへ出力する。ここで、*は複素共役を表す。
バランスド光子検出部604Bでは、光干渉部603Aからの出力EXQD(t)及びEXQC(t)を入力とし、バランス受信し、EXQ(t)∝|EXQD(t)|2-|EXQC(t)|2=Im{EXS(t)E* XL(t)}で表される連続電気信号EXQ(t)が増幅部605Bへ出力する。
 バランスド光子検出部604Cでは、光干渉部603Bからの出力EYID(t)及びEYIC(t)を入力とし、バランス受信し、EYI(t)∝|EYID(t)|2-|EYIC(t)|2=Re{EYS(t)E* YL(t)}で表される連続電気信号EYI(t)が増幅部605Cへ出力する。バランスド光子検出部604Dでは、光干渉部603BからのEYQD(t)及びEYQC(t)を入力とし、バランス受信し、EYQ(t)∝|EYQD(t)|2-|EYQC(t)|2=Im{EYS(t)E* YL(t)}で表される連続電気信号EYQ(t)が増幅部605Dへ出力する。
 増幅部605A~605Dでは、それぞれバランスド光子検出部604A~604Dからの電気信号を入力とし、これを増幅し、当該増幅信号をそれぞれADC部606A~606Dへ出力する。ADC部606A~606Dでは、それぞれ増幅部605A~605Dからの増幅された電気信号を28Gsample/s、6bit分解能でAD変換し、当該変換結果の離散信号をそれぞれS/P変換部607へ出力する。
 S/P変換部607では、ADC部606A~606Dを介した光電変換後の離散信号を入力とし、直列信号である当該光電変換後の離散信号を、直並列変換し、並列化された信号をFFT部608へ出力する。高速通信(例えば10Gbit/s以上)においては、ADC部606A~606Dでの処理は並列展開されて行われるため、ADC部606A~606Dの出力は直列ではない。そのため、S/P変換部607の動作は、後述するFFT部608のFFT処理が適切なFFTウインドウに対して行われるよう、信号系列を整理することとなる。
 FFT部608では、S/P変換部607からの並列信号を入力とし、FFTを行い、当該FFT後の並列信号を等化部609へ出力する。等化部609では、FFT部608からの並列信号を入力とし、当該並列信号のそれぞれに1-tapの係数を乗算し、当該乗算結果をAFC部610へ出力する。AFC部610では、搬送波と局部発振波との周波数差を検知し、パイロット信号から伝送路を推定し、補正し、当該補正結果を適応等化部611へ出力する。適応等化部611では、AFC後に残留する干渉を1-tapの係数を乗算することで等化する。tap係数は適応的に更新する。適応等化後の信号を位相推定部612へ出力する。
 位相推定部612では、適応等化部611からの適応等化後の信号を入力とし、残留する位相オフセットを推定し、補正し、位相推定・補正後の信号をQPSKデマッピング部613へ出力する。例えばQPSKであれば、適応等化後の信号点は円周上の4点付近に固定されるが、位相回転がオフセットとして残留しているため、当該位相オフセットを推定し、逆方向に回転させることで、元のQPSK信号点との対応を取らなければならない。
 QPSKデマッピング部613では、位相推定部612からの位相推定後の信号を入力とし、2進符号に変換し、当該2進符号のうち、データ信号を並列にP/S変換部614へ出力し、パイロット信号を伝送路推定部615へ出力する。P/S変換部614では、QPSKデマッピング部613からの並列2進符号を直列2進符号列に変換し、当該直列2進符号列を外部へ出力する。
 伝送路推定部615では、QPSKデマッピング部613からのパイロット信号から、伝送路の波長分散を推定し、当該伝送路推定結果をtap係数生成部413へ出力する。例えば非特許文献3に示す方式のように、別途監視光を用いて推定することも可能である。また、tap係数生成部413への情報転送には主信号通信用回線とは別回線を用いることが想定される。
 図2は、この発明を用いた場合の信号点配置図の推移を示したものである。図2において、(a)、(c)は送信部400の出力時の周波数領域における信号点配置を示している。この発明を用いない場合、(c)に示すように、マッピングしたQPSK信号点をとる。一方、この発明を用いた場合、(a)に示すように、予め位相回転が与えることになる。また、図2において、(b)、(d)は受信部600の入力時の周波数領域における信号点配置を示している。この発明を用いない場合、(d)に示すように伝送部500における波長分散の影響を受け、信号点配置は円周状となり、振幅方向にも乱れを生じる。一方、この発明を用いた場合、(b)に示すように、所望のQPSK信号点に近い信号点配置を取る。(e)はこの発明を用いない場合の、後処理後の信号点配置を示したものである。予等化(この発明)と後処理でほぼ同等の性能が得られるが、予等化ではディジタル信号処理の負荷を送信側に分担すること、雑音を含まない時点での等化が可能であること等のメリットがある。この図2は、信号光と局部発振光との周波数差が0であること、位相オフセットが存在しないこと、ADC、DACの分解能を考慮していないこと等、理想化された条件化での計算例であるが、送信部400における予等化が有効に機能することを示すものである。
 なお、図1の構成において、QPSKマッピング部402~DAC部406A/406B間及びS/P変換部607~QPSKデマッピング部613においては、複素領域でのディジタル演算を省略して示しているが、実際には特許文献1に示すように、実部と虚部で分けた演算が行われる。
 この発明はマッピングをQPSKに限定するものではなく、各種位相変調方式、振幅変調方式、振幅位相変調方式等、様々な変調方式との組合せが可能である。AFC部610、適応等化部611の配置は一例として示したものであり、図1の構成に限定されるものではない。
 400 送信部、401 直並列変換部、402 QPSKマッピング部、403 周波数領域予等化部、404 IFFT部、405 P/S変換部、406A,406B DAC部、407A,407B 増幅部、408 光源部、409 光分波部、410A,410B 光変調部、411 位相シフト部、412 光合波部、413 等化量計算部、500 伝送部、501 伝送路ファイバ、502 光増幅部、600 受信部、601 局部発振部、602A,602B 光偏波分離部、603A,603B 光干渉部、604A~604D バランスド光子検出部、605A~605D 増幅部、606A~606D ADC部、607 S/P変換部、608 FFT部、609 等化部、610 AFC部、611 適応等化部、612 位相推定部、613 QPSKデマッピング部、614 P/S変換部、615 伝送路推定部。

Claims (4)

  1.  入力される直列2進データを並列展開する直並列変換部と、
     前記直並列変換部により並列化されたデータを信号点にマッピングするマッピング部と、
     伝送路推定結果に基づき伝送路の逆特性を計算する等化量計算部と、
     前記マッピング部からのマッピング信号と前記等化量計算部により計算された伝送路の逆特性とを乗算して周波数領域予等化を行い、予等化されたマッピング信号を得る周波数領域予等化部と、
     前記周波数領域予等化部からのマッピング信号に対し逆高速フーリエ変換を行う逆高速フーリエ変換部と、
     前記逆高速フーリエ変換部からの逆高速フーリエ変換後の並列信号に対しガードインターバルを付加しつつ並直列変換を行う並直列変換部と、
     前記並直列変換部からの直列離散信号を変調用の直列連続信号に変換するディジタル-アナログ変換部と、
     搬送波を生成する搬送波生成部と、
     前記ディジタル-アナログ変換部からの出力に基づいて前記搬送波生成部からの搬送波を変調して信号波を生成する搬送波変調部と
    を備えた予等化送信装置。
  2.  請求項1に記載の予等化送信装置と、
     前記予等化送信装置からの信号波を伝送する伝送媒体部と、
     前記伝送媒体部を介して伝送された信号波を受信する受信装置と
    を備え、
     前記受信装置は、
     局部発振波を生成する局部発振部と、
     前記伝送媒体部を介して伝送された信号波と前記局部発振部からの局部発振波との干渉を取る干渉部と、
     前記干渉部からの干渉信号を連続電気信号に変換する検波部と、
     前記検波部で検波した電気信号を離散信号に変換するアナログ-ディジタル変換部と、
     前記アナログ-ディジタル変換部からの離散信号に対しガードインターバルを除去しつつ直並列変換を行う直並列変換部と、
     前記直並列変換部からの並列信号に対し高速フーリエ変換を行う高速フーリエ変換部と、
     前記高速フーリエ変換部からの並列信号のそれぞれに対し伝送路の逆特性を乗算する等化部と、
     前記等化部からの出力に基づいて搬送波と局部発振波との周波数差を検出して補正する自動周波数制御部と、
     前記自動周波数制御部による自動周波数制御後に残留する、時間変動する符号間干渉を適応的に等化する適応等化部と、
     前記適応等化部からの適応等化後の信号を入力して残留する位相オフセットを推定し補正する位相推定部と、
     前記位相推定部からの位相推定後の信号を2進データに変換して並列に出力するデマッピング部と、
     前記デマッピング部からの並列2進データを直列に変換する並直列変換部と
    を備えたことを特徴とする、予等化伝送システム。
  3.  請求項2に記載の予等化伝送システムにおいて、
     前記搬送波生成部は、搬送光波を生成する光源部であり、
     前記搬送波変調部は、記ディジタル-アナログ変換部からの出力を増幅する増幅部を有し、前記光源部からの搬送光波を前記増幅部からの変調信号により変調し、信号波として被変調光を生成し、
     前記伝送媒体部は、前記予等化送信装置からの被変調光を伝送するシングルモード光ファイバと、当該光ファイバの伝送損失を補償する光増幅器とを備え、
     前記受信装置の局部発振部は、前記搬送光波と同一の周波数で発振する局部発振光を生成する光源部であり、
     前記干渉部は、
     前記伝送媒体部を介して入力される被変調光を直交2編波に分離する第1の光偏波分離部と、
     前記局部発振部からの局部発振光を直交2編波に分離する第2の光偏波分離部と、
     前記第1の光偏波分離部から入力される第1偏波光と前記第2の光偏波分離部から入力される第1偏波光とを干渉させて、第1偏波光の同相成分の差成分と和成分及び直交成分の差成分と和成分を出力する第1の光干渉部と、
     前記第1の光偏波分離部から入力される第2偏波光と前記第2の光偏波分離部から入力される第2偏波光とを干渉させて、第2偏波光の同相成分の差成分と和成分及び直交成分の差成分と和成分を出力する第2の光干渉部と
    を有し、
     前記検波部は、
     前記第1の光干渉部からの第1偏波光の同相成分の差成分と和成分を入力としてバランス受信し、連続電気信号に変換する第1のバランスド光子検出部と、
     前記第1の光干渉部からの第1偏波光の直交成分の差成分と和成分を入力としてバランス受信し、連続電気信号に変換する第2のバランスド光子検出部と、
     前記第2の光干渉部からの第2偏波光の同相成分の差成分と和成分を入力としてバランス受信し、連続電気信号に変換する第3のバランスド光子検出部と、
     前記第2の光干渉部からの第2偏波光の直交成分の差成分と和成分を入力としてバランス受信し、連続電気信号に変換する第4のバランスド光子検出部と
    を有する
    ことを特徴とする、予等化伝送システム。
  4.  請求項3に記載の予等化伝送システムにおいて、
     前記受信装置は、伝送路の等化量を推定して、伝送路推定結果を前記送信側に伝達する伝送路推定部をさらに備える
    ことを特徴とする、予等化伝送システム。
PCT/JP2009/059603 2009-05-26 2009-05-26 予等化送信装置及び予等化伝送システム WO2010137113A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/059603 WO2010137113A1 (ja) 2009-05-26 2009-05-26 予等化送信装置及び予等化伝送システム
JP2011515773A JP5390607B2 (ja) 2009-05-26 2009-05-26 予等化伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059603 WO2010137113A1 (ja) 2009-05-26 2009-05-26 予等化送信装置及び予等化伝送システム

Publications (1)

Publication Number Publication Date
WO2010137113A1 true WO2010137113A1 (ja) 2010-12-02

Family

ID=43222255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059603 WO2010137113A1 (ja) 2009-05-26 2009-05-26 予等化送信装置及び予等化伝送システム

Country Status (2)

Country Link
JP (1) JP5390607B2 (ja)
WO (1) WO2010137113A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120010A (ja) * 2010-12-02 2012-06-21 Fujitsu Ltd 光送信器および光送信装置
WO2012133473A1 (ja) * 2011-03-25 2012-10-04 日本電気株式会社 波長分散予補償光通信システム
US20130136449A1 (en) * 2011-09-16 2013-05-30 Xiang Liu Communication through multiplexed one-dimensional optical signals
WO2013128835A1 (ja) * 2012-03-01 2013-09-06 日本電気株式会社 光受信器および光通信システム
JP2015070360A (ja) * 2013-09-27 2015-04-13 沖電気工業株式会社 受信器、局側端末、加入者側端末、光ネットワーク、及びコヒーレント通信方法
US20150222468A1 (en) * 2014-02-04 2015-08-06 Chuandong Li Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing
JP2016146567A (ja) * 2015-02-09 2016-08-12 国立研究開発法人産業技術総合研究所 分散補償方法および光信号送信機、光通信システム
JP6040288B1 (ja) * 2015-06-22 2016-12-07 日本電信電話株式会社 光データ伝送システム
JP6319487B1 (ja) * 2017-03-14 2018-05-09 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
JP2019041285A (ja) * 2017-08-25 2019-03-14 日本電信電話株式会社 光伝送特性補償システム及び光伝送特性補償方法
WO2020080125A1 (ja) * 2018-10-18 2020-04-23 ソニーセミコンダクタソリューションズ株式会社 通信システム、送信装置、および受信装置
CN111756450A (zh) * 2019-03-27 2020-10-09 中山大学 一种基于离散多载波调制技术的矢量模式复用系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103287A (ja) * 1997-08-01 1999-04-13 Fujitsu Ltd 光伝送システム及び送信端局
JP2002141888A (ja) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd 非対称無線通信方法
JP2002280935A (ja) * 2001-03-19 2002-09-27 Sumitomo Electric Ind Ltd 電力線搬送におけるマルチキャリア通信装置及び通信方法
WO2007041799A2 (en) * 2005-10-12 2007-04-19 Monash University Methods and apparatus for optical transmission of digital signals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005559A (ja) 1998-03-19 2008-01-10 Fujitsu Ltd 波長分散等化方法と装置
WO2009060920A1 (ja) 2007-11-09 2009-05-14 Hitachi Communication Technologies, Ltd. 光電界送信器及び光電界伝送システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103287A (ja) * 1997-08-01 1999-04-13 Fujitsu Ltd 光伝送システム及び送信端局
JP2002141888A (ja) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd 非対称無線通信方法
JP2002280935A (ja) * 2001-03-19 2002-09-27 Sumitomo Electric Ind Ltd 電力線搬送におけるマルチキャリア通信装置及び通信方法
WO2007041799A2 (en) * 2005-10-12 2007-04-19 Monash University Methods and apparatus for optical transmission of digital signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOICHI ISHIHARA ET AL.: "Single Carrier Shuhasu Ryoiki Toka Gijutsu ni yoru Hacho Bunsan Hosho", IEICE TECHNICAL REPORT, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. 108, no. 259, 16 October 2008 (2008-10-16), pages 177 - 180 *
MOHAMED M. EL SAID ET AL.: "An Electrically Pre-Equalized 10-Gb/s Duobinary Transmission System", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 23, no. 1, January 2005 (2005-01-01), pages 388 - 400, XP001227336, DOI: doi:10.1109/JLT.2004.838812 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120010A (ja) * 2010-12-02 2012-06-21 Fujitsu Ltd 光送信器および光送信装置
WO2012133473A1 (ja) * 2011-03-25 2012-10-04 日本電気株式会社 波長分散予補償光通信システム
US20130136449A1 (en) * 2011-09-16 2013-05-30 Xiang Liu Communication through multiplexed one-dimensional optical signals
US9300400B2 (en) 2011-09-16 2016-03-29 Alcatel Lucent Communication through multiplexed one-dimensional optical signals
WO2013128835A1 (ja) * 2012-03-01 2013-09-06 日本電気株式会社 光受信器および光通信システム
JP2015070360A (ja) * 2013-09-27 2015-04-13 沖電気工業株式会社 受信器、局側端末、加入者側端末、光ネットワーク、及びコヒーレント通信方法
US9641374B2 (en) * 2014-02-04 2017-05-02 Huawei Technologies Co., Ltd. Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing
US20150222468A1 (en) * 2014-02-04 2015-08-06 Chuandong Li Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing
CN105917605A (zh) * 2014-02-04 2016-08-31 华为技术有限公司 利用色散预补偿数字信号处理的直接检测正交频分复用
CN105917605B (zh) * 2014-02-04 2019-03-19 华为技术有限公司 利用色散预补偿数字信号处理的直接检测正交频分复用
EP3100388A4 (en) * 2014-02-04 2017-02-15 Huawei Technologies Co., Ltd. Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing
JP2016146567A (ja) * 2015-02-09 2016-08-12 国立研究開発法人産業技術総合研究所 分散補償方法および光信号送信機、光通信システム
JP2017011463A (ja) * 2015-06-22 2017-01-12 日本電信電話株式会社 光データ伝送システム
JP6040288B1 (ja) * 2015-06-22 2016-12-07 日本電信電話株式会社 光データ伝送システム
JP6319487B1 (ja) * 2017-03-14 2018-05-09 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
JP2018152744A (ja) * 2017-03-14 2018-09-27 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
JP2019041285A (ja) * 2017-08-25 2019-03-14 日本電信電話株式会社 光伝送特性補償システム及び光伝送特性補償方法
WO2020080125A1 (ja) * 2018-10-18 2020-04-23 ソニーセミコンダクタソリューションズ株式会社 通信システム、送信装置、および受信装置
CN112868186A (zh) * 2018-10-18 2021-05-28 索尼半导体解决方案公司 通信系统、发送装置和接收装置
CN112868186B (zh) * 2018-10-18 2023-05-26 索尼半导体解决方案公司 通信系统、发送装置和接收装置
US11711110B2 (en) 2018-10-18 2023-07-25 Sony Semiconductor Solutions Corporation Communication system, transmission device, and reception device
JP7422675B2 (ja) 2018-10-18 2024-01-26 ソニーセミコンダクタソリューションズ株式会社 通信システム、送信装置、および受信装置
CN111756450A (zh) * 2019-03-27 2020-10-09 中山大学 一种基于离散多载波调制技术的矢量模式复用系统

Also Published As

Publication number Publication date
JP5390607B2 (ja) 2014-01-15
JPWO2010137113A1 (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5390607B2 (ja) 予等化伝送システム
Randel et al. All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM
JP5128332B2 (ja) 光予等化送信器及び光予等化伝送システム
JP6176012B2 (ja) 非線形歪み補償装置及び方法並びに通信装置
JP2020141294A (ja) 信号処理方法、信号処理装置及び通信システム
JP6040288B1 (ja) 光データ伝送システム
Jia et al. Experimental demonstration of PDM-32QAM single-carrier 400G over 1200-km transmission enabled by training-assisted pre-equalization and look-up table
Sowailem et al. 770-Gb/s PDM-32QAM coherent transmission using InP dual polarization IQ modulator
Zhang et al. Linear and nonlinear compensation for 8-QAM SC-400G long-haul transmission systems
Wang et al. Transmission and direct detection of 300-Gbps DFT-S OFDM signals based on O-ISB modulation with joint image-cancellation and nonlinearity-mitigation
Sun et al. Study of chromatic dispersion impacts on Kramers–Kronig and SSBI iterative cancellation receiver
JP2018042073A (ja) 光送信機、光伝送システム及び光受信機
Cai et al. Combined symbol-pattern-dependent adaptive equalization and sequence detection for coherent optical fiber communications
Rosenkranz et al. Electrical equalization for advanced optical communication systems
Sowailem et al. Impact of chromatic dispersion compensation in single carrier two-dimensional Stokes vector direct detection system
Liu et al. Transmission of 44-Gb/s coherent optical OFDM signal with trellis-coded 32-QAM subcarrier modulation
Zhang et al. Digital dispersion pre-compensation and nonlinearity impairments pre-and post-processing for C-band 400G PAM-4 transmission over SSMF based on direct-detection
Zhang et al. Advanced linear and nonlinear compensations for 16QAM SC-400G unrepeatered transmission system
Zhu et al. 4× 200Gb/s Twin-SSB Nyquist subcarrier modulation WDM transmission over 160km SSMF with direct detection
Xiang et al. Linewidth-tolerant joint digital signal processing for 16QAM Nyquist WDM superchannel
Esparza et al. 128GBd record QPSK transmission over 20 631 km and PCS16QAM transmission over 12 558 km using InP technology Platform
Zou et al. 1.2 Tb/s (12× 100Gb/s) Nyquist 32-QAM subcarrier modulation WDM transmission with direct detection
Savory Electronic signal processing in optical communications
WO2013140970A1 (ja) 高い位相雑音耐力を有する光通信システムおよび光通信方法
WO2023248285A1 (ja) マルチキャリア信号波形等化回路及びマルチキャリア信号波形等化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845180

Country of ref document: EP

Kind code of ref document: A1