WO2010136279A1 - Emulsionen auf basis silylgruppen tragender hydroxylverbindungen - Google Patents

Emulsionen auf basis silylgruppen tragender hydroxylverbindungen Download PDF

Info

Publication number
WO2010136279A1
WO2010136279A1 PCT/EP2010/055495 EP2010055495W WO2010136279A1 WO 2010136279 A1 WO2010136279 A1 WO 2010136279A1 EP 2010055495 W EP2010055495 W EP 2010055495W WO 2010136279 A1 WO2010136279 A1 WO 2010136279A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
integer
groups
formula
alkyl
Prior art date
Application number
PCT/EP2010/055495
Other languages
English (en)
French (fr)
Inventor
Berend-Jan De Gans
Frank Schubert
Matthias Naumann
Wilfried Knott
Stefan Silber
Original Assignee
Evonik Goldschmidt Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Goldschmidt Gmbh filed Critical Evonik Goldschmidt Gmbh
Priority to US13/322,475 priority Critical patent/US8772423B2/en
Priority to EP10719302A priority patent/EP2435503B1/de
Priority to CN2010800229576A priority patent/CN102449032A/zh
Priority to PL10719302T priority patent/PL2435503T3/pl
Priority to JP2012511218A priority patent/JP2012528203A/ja
Publication of WO2010136279A1 publication Critical patent/WO2010136279A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • C08L83/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences

Definitions

  • the invention relates to silyl-containing hydroxyl-containing emulsions, their preparation and use.
  • Hydroxyl compounds which carry silyl groups and which are used for the purposes of this invention are all reaction products which can be prepared by alkoxylation of epoxy-functional silanes on double metal cyanide catalysts in accordance with the process described in the not yet published German patent application DE 10 2008 000360.3; In particular, these compounds can also carry siloxane groups. These products are referred to hereinafter as silyl polyethers of formula 1.
  • a silyl group in the context of this invention is characterized by different or identical organic or oxyorganic radicals
  • Prepolymer systems which have terminal reactive alkoxysilyl groups for example, alkoxysilane terminated, moisture curing monocomponent polyurethanes
  • Commercially available examples of such prepolymers are the MS polymers from Kaneka, or the geniosils from Wacker.
  • alkoxysilane-functional polyurethanes which crosslink via a silane polycondensate have long been known.
  • a review article on this topic can be found eg in "Adhesives Age” 4/1995, page 30 ff. (Authors: Ta-Min Feng, BA Waldmann).
  • Such terminal alkoxysilane-functionalized polyurethanes can be prepared according to US 3,627,722 or US 3,632,557 by e.g. Polyether polyols are reacted with an excess of polyisocyanate to form an NCO-containing prepolymer, which in turn is then further reacted with an amino-functional alkoxysilane.
  • the resulting alkoxysilane-functional prepolymer contains urea and urethane groups in high concentration, which lead to a high viscosity of the products.
  • the organic backbone may consist, for example, of polyurethanes, polyesters, polyacrylates, polyvinyl esters, ethylene-olefin copolymers, styrene-butadiene copolymers or polyolefins.
  • prepolymers are described i.a. in EP 0 372 561, WO 00/37533 or US 6,207,766.
  • systems are also widely used whose backbone consists entirely or at least partly of organosiloxanes, described inter alia. in WO 96/34030.
  • a disadvantage of all the prepolymers described is the low functionalization density of the prepolymers terminated only in the ⁇ , ⁇ position with silyl groups.
  • DE 10 2008 000360.3 described new silyl groups carrying hydroxyl compounds or alkoxysilyl-carrying polyether alcohols, which are accessible by alkoxylation of epoxide-functional alkoxysilanes to double metal cyanide (DMC) catalysts.
  • DMC double metal cyanide
  • the polyethersiloxanes bearing alkoxysilyl groups which are not yet disclosed in DE 10 2008 044373.5 can likewise be prepared by double metal cyanide catalysis.
  • the two documents are hereby incorporated in their entirety as part and subject of this disclosure.
  • VOC Volatile Organic
  • a number of organic solvents have been or are at least believed to have a harmful effect and, as a result, a number of laws and regulations have been adopted to protect the environment and health
  • the European VOC Directive of 1999 prescribes legal requirements for the reduction of VOC emissions (Directive 1999/13 / EC and 2004/42 / EC respectively) as an alternative to organic solvents It makes sense, the water-insoluble prepolymers in the form to use an aqueous emulsion. The use of water is harmless.
  • the use of water is even preferable to the use of organic solvents, because the removal, possible corrections or improvements in the application of the material before curing with water or an aqueous surfactant solution can be made.
  • the prepolymers described have the property of structurally related hydrolysis lability. It is therefore not easy to use the prepolymers in the form of an aqueous emulsion.
  • the substances are emulsified using so-called emulsifiers and the use of shear forces in water.
  • the viscosity or rheological profile of such an emulsion is determined primarily by the rheology of the continuous, aqueous phase. Depending on the application, the rheological profile can be varied with the aid of additives, from a very low-viscosity emulsion to a high-viscosity paste.
  • suitable emulsifiers are both amphiphilic molecules and particles.
  • Particle stabilized emulsions are also referred to as “Pickering” emulsions (SU Pickering: “Emulsions”, J. Chem. Soc. 1907, Vol. 91, pp. 2001-2021).
  • emulsifiers By attachment to the water-prepolymer interface, such emulsifiers prevent the coalescence of the emulsion droplets and thus the breaking of the emulsion.
  • the prepolymers themselves have amphiphilic character, it may be that the addition of additional emulsifiers is unnecessary. In this case, the skilled person speaks of a self-emulsifying system.
  • the inventive task is therefore stable and hydrolysis-resistant emulsions of the DE 10 2008 000360.3 and DE 10 2008 044373.5 described silyl phenomenon practisen prepolymers in water produce.
  • Emulsions of silylated prepolymers are the subject of a variety of writings.
  • DE 2558653 Chang describes emulsions of self-emulsifying, silyl-bearing polyurethanes and their use for the coating of surfaces.
  • the polyurethanes are prepared by reaction of a polyol with an excess of polyisocyanate. In a second step, the excess isocyanate is partially reacted with a reactive silane. A stable emulsion is obtained when this polymer is incorporated under shear in water.
  • Martin US Pat. No. 4,376,149 describes emulsified mixtures of silylated polyethers and OH-siloxanes and their use in the coating of textiles.
  • Shimizu and Yoshida JP 1318066 describe aqueous emulsions of silylated polyethers, which may additionally contain colloidal silica.
  • the silylated polyethers are prepared by linking a polypropylene glycol diglycidyl ether with a trialkoxysilyl glycidyl ether through a cyclic or aromatic diamine. Klauck, Maier and Berthauer describe in DE 4215648 storage-stable contact adhesives based on solutions or emulsions of cationically modified, alkoxysilane-terminated polyurethanes.
  • the emulsions have a mass fraction of elastomer of at least 75% with a drop size of less than 5 microns.
  • Hattemer, Unger, Ferencz, Bachon, Bathelt and Schmidt describe in the document WO 2006/122684 emulsions of ⁇ -silyl-terminated prepolymers, their preparation and use.
  • Wu, You and Huang describe in WO 2007/072189 emulsions of silyl group-bearing prepolymers.
  • the emulsions are stabilized by the addition of nanosilica.
  • the addition of conventional emulsifiers is optional and in some cases is believed to provide additional emulsion stability improvement.
  • the subject of the invention is therefore stable, hydrolysis-resistant aqueous emulsions based on hydroxyl compounds bearing either silyl groups, as described in the document DE 10 2008 000360.3 and / or silyl-functionalized polyethersiloxanes, also alkoxysilyl-functional silicone polyethers or alkoxysilyl-functional polyether-siloxane copolymers, as described in DE 10 2008 044373.5.
  • the invention therefore relates to stable hydrolysis-resistant aqueous emulsions comprising silyl-functionalized polyethers having at least one non-terminal silyl function, preferably more than one non-terminal and more preferably more than one non-terminal and simultaneously at least one terminal silyl function in the molecule.
  • an emulsion is said to be stable if, after one month of storage at room temperature, but at least one week of storage at room temperature, the emulsion preferably shows no visible signs of breakage with the eye.
  • the breaking of an emulsion is defined here as the separation into a macroscopic oil or water phase.
  • An emulsion is said to be stable to hydrolysis if, after one month's storage at room temperature, but at least after one week of storage at room temperature, the free alcohol content in the emulsion corresponds to a maximum of 10% by weight splitting of the emulsified alkoxy groups.
  • the optimum mass fraction of water or polyether (siloxane) depends on the application. It is up to the expert to find the optimum mass fraction of polyether (siloxane) for a particular application. The skilled person, however, it is common knowledge that the preferred proportion of water in such emulsions is between 10 wt .-% to 97 wt .-%, more preferably between 20 wt .-% and 90 wt .-% and in particular greater than 30 wt .-%.
  • silyl-functionalized polyethers consist of chains substituted with alkoxysilyl groups which, by the choice of fragments d to j of the formula (1), correspond to the fragments inserted into the polymer chain by the reaction with ring opening of the reaction components , are specifically highly functionalized and thus can be tailored for a variety of applications
  • a is an integer from 1 to 3, preferably 3, b is an integer from 0 to 2, preferably 0 to 1, particularly preferably 0, the sum of a and b is equal to 3 , c is an integer from 0 to 22, preferably from 0 to 6, particularly preferably equal to 1 or 3, d is an integer from 1 to 1000, preferably greater than 1 to 100, particularly preferably greater than 1 to 20 and in particular greater than 1 to Is 10, or greater 10 to
  • 100 is, e is an integer from 0 to 10,000, preferably 0 to 1000, particularly preferably 0 to 300 and in particular 0 to 100, f is an integer from 0 to 1000, preferably 0 to 100, particularly preferably 0 to 50 and in particular 0 to
  • g is an integer of 0 to 1,000, preferably 0 to 200, particularly preferably 0 to 100 and in particular 0 to 70, h, i and j are integers from 0 to 500, preferably 0 to 300, particularly preferably 0 to 200 and in particular 0 to 100, and with the proviso that the fragments with the indices d to j are mutually freely permutable, ie in the sequence within the polyether chain are interchangeable, n is an integer between 2 and 8 and R is one or more identical or different radicals selected from linear or branched, saturated, mono- or polyunsaturated alkyl radicals having 1 to 20 , in particular 1 to 6 carbon atoms or haloalkyl groups having 1 to 20 carbon atoms.
  • R is methyl, ethyl, propyl, isopropyl, n-butyl and sec. Butyl groups, and in particular ethyl or methyl groups, with
  • R 1 is a saturated or unsaturated, optionally branched radical, which is preferably attached via an oxygen atom, or represents a P o 1 yetherrest of the type of an alkoxy, arylalkoxy or alkylarylalkoxy group in which the carbon chain can be interrupted by oxygen atoms or R 1 is an aromatic or aryloxy group which may be singly or polysubstituted, or a silicon-containing compound, in particular a siloxane radical or poly (siloxane) radical, which may be alkyl- and / or aryl-group- and / or polyether-substituted,
  • R 2 or R 3 , and R 5 or R 6 are the same or independently of one another H or a saturated or optionally mono- or polyunsaturated, also further substituted, optionally mono- or polyvalent hydrocarbon radical, where R 5 or R 6 It is true that they are the same as a monovalent hydrocarbon.
  • the hydrocarbon radical may be cycloaliphatically bridged via the fragment Y; Y may not be present, or else a methylene bridge having 1 or 2 methylene units, Y is not present, then R 2 or R 3 are independently a linear or branched radical having 1 to 20, preferably 1 to 10, carbon atoms, particularly preferably a methyl, ethyl, propyl or butyl, vinyl, allyl or phenyl radical.
  • R 2 or R 3 is hydrogen.
  • R 2 -R 3 may be a -CH 2 CH 2 CH 2 CH 2 -GrUpPe, Y thus a - (CH 2 CH 2 -) group.
  • the hydrocarbon radicals R 2 and R 3 may in turn be further substituted and bear functional groups such as halogens, hydroxyl groups or glycidyl-oxypropyl groups,
  • R 4 corresponds to a linear or branched alkyl radical of 1 to 24 carbon atoms or an aromatic or cycloaliphatic radical which may optionally in turn carry alkyl groups.
  • R 7 and R 8 are each independently hydrogen, alkyl, alkoxy, aryl or aralkyl groups copolymerized by ring-opening polymerization to form crosslinkable polyether esters containing alkoxysilane groups.
  • R 9 , R 10 , R 11 and R 12 are independently either hydrogen , Alkyl, alkenyl, alkoxy, aryl or Aralkyl groups.
  • the hydrocarbon radical may be bridged cycloaliphatically or aromatically via the fragment Z, where Z may be both a divalent alkylene and alkenylene radical.
  • the different monomer units of both fragments with the indices d to j and of the polyoxyalkylene chain of the substituent R 1 may be mutually the blockwise or subject to a random distribution.
  • the index numbers reproduced in the formulas given here and the value ranges of the specified indices are therefore to be understood as the average values of the possible statistical distribution of the actual structures present and / or their mixtures. This also applies to such as in itself exactly reproduced structural formulas, such as formula (1).
  • compositions also contain compounds in which the sum of the indices (a) plus (b) in formula (1) is less than 3 on average because some of the OR groups can be replaced by silyl polyether groups.
  • the compositions thus contain species which are formed on the silicon atom with elimination of R-OH and condensation reaction with the reactive OH group of another molecule of formula (1). This reaction can take place several times until, for example, all RO groups on the silicon have been replaced by further molecules of the formula (1).
  • the presence of more than one signal in typical 29 Si NMR spectra of these compounds underpins the appearance of silyl groups with different substitution patterns.
  • the stated values and preferred ranges for the indices a to j are thus also to be understood only as averages over the various, individually elusive species.
  • the crosslinking or curing of alkoxysilyl groups takes place in a two-stage chemical process in which in a first step in the presence of water, wherein atmospheric moisture may be sufficient, the silicon-bonded alkoxy groups are split off as corresponding alcohols and SiOH groups are formed , In the case of self-condensation, the latter subsequently condense with one another to form Si-O-Si bridges and form polymeric materials.
  • the SiOH-functional intermediates react with substrates having reactive groups, eg, particularly well with oxide and / or silicate surfaces bearing OH functions (for example mullite, aluminum oxide or else magnesium oxide), and lead to an excellent chemical anchoring on the respective substrate.
  • the rate of cure can be influenced in many ways by addition of catalysts or temperature variation. Preference is given to the use of curable silyl polyethers 1 having more than 1 Al koxys i IyI funkt ion, most preferably those having an average of more than one such silyl group per terminal hydroxyl group in emulsion compositions.
  • the polyethersiloxanes of DE 10 2008 044373.5 preferably used carry at least one alkoxysilyl group in the copolymer structure.
  • the alkoxysilyl-modified polyethers of the formula (1) which can be used according to the invention can be obtained by the alkoxylation of si 1 y 1 group-modi fi ed epoxides and a starting alcohol of various origins.
  • silyl polyethers 1 afford the synthetic freedom to choose between alkoxysilyl-containing polyoxysilyl-containing polyalkysilyl functional groups which block-hydrolyze the hydrolyzing alkoxysilyl functions both terminally and in isolation, but also randomly interspersed into the polyoxyalkylenes - chain included.
  • Such silyl polyethers 1 of the formula (1) are distinguished by the fact that they can be prepared in a targeted and reproducible manner with regard to structure structure and molecular weight.
  • the sequence of the monomer units can be varied within wide limits. be staltet.
  • Epoxy monomers can be strung together as desired in blocks or randomly incorporated into the polymer chain.
  • silyl polyethers 1 used are those which contain more than 1 of the highly functionalized polyalkylene ether fragments bound to the silicon atom, then there are highly functionalized compounds in which polyether chains, each of which is derived from a starting alcohol of the formula R 1 -! (2) are derived and which contain in their sequence the freely permutable fragments which have been introduced by the reaction with ring opening of the reaction components in the resulting polymer chain, via - CH 2 -O- (CH 2 ) c -Si- (CH 2 ) C -O-CH 2 bridges are linked together.
  • These are highly complex, highly functionalized structures.
  • the functionalities can be adjusted specifically to a desired field of application.
  • the degree of branching and the complexity of the resulting polymer structures increase with increasing epoxy functionality of the silyl monomers.
  • the chain length of the alkoxy, arylalkoxy or alkylarylalkoxy groups which can be used as the starting compound is arbitrary.
  • the polyether, alkoxy, arylalkoxy or alkyarylalkoxy group contains from 1 to 1500 carbon atoms, particularly preferably from 2 to 300 carbon atoms, in particular from 2 to 100 carbon atoms.
  • the group R 1 is derived either from a starting alcohol R 1 -H (2), which in the DMC-catalyzed alkoxylation is used, for example compounds of the formula
  • (2) are allyl alcohol, butanol, octanol, dodecanol,
  • Benzyl alcohol ethylene glycol, propylene glycol, di-, tri- and polyethylene glycol, 1, 2-propylene glycol, di- and
  • Polypropylene glycol 1, 4-butanediol, 1, 6-hexanediol,
  • Trimethylolpropane Trimethylolpropane, glycerol, pentaerythritol, sorbitol,
  • Natural compounds based, hydroxyl-bearing compounds called. If, however, a siloxane grouping is to be introduced as R 1 into the silyl polyether, then, for example, ⁇ , ⁇ -dihydrooxypoylsilanes, hydrogensulfoxanes or hydroxyl-functional polyethersiloxanes are used as starting compounds.
  • the various monomer units of both the fragments with the index numbers d to j and the possibly existing polyoxyalkylene of the substituent R 1 may be constructed in blocks with each other or else be subject to a statistical distribution.
  • the index numbers reproduced in the formulas given here and the value ranges of the indicated indices are therefore to be understood as the mean values of the possible statistical ones Distribution of the actual existing structures and / or their mixtures. This also applies to such as in itself exactly reproduced structural formulas, such as formula (1).
  • alkoxy-1-yl-group-modified polyether alcohols (1) it is possible to prepare alkoxy-1-yl-group-modified polyether alcohols (1) and their mixtures of any desired structure.
  • alkoxysilyl-functional polyethersiloxanes are used according to the invention.
  • alkoxysilyl-functional ionic polyethersiloxanes and mixtures thereof can be prepared by two different processes, as shown in DE 2008 0044373.5:
  • X is a linear, cyclic or branched, aliphatic or aromatic, saturated or unsaturated hydrocarbon radical having 1 to 20 carbon atoms, which may optionally contain heteroatoms such as oxygen, nitrogen, phosphorus or sulfur, but preferably a Is methyl group,
  • X 1 is optionally X, X 2 or X 3 ,
  • X 2 is an alkoxysilyl-bearing OH-functional, optionally s. It ter- or carbonate-modified
  • X 3 is a terminally etherified Polyoxyalkylenres t of formula (3b),
  • R 13 is optionally an alkyl group having 1 to 18 C atoms, preferably methyl, or is a terminally esterified with a monofunctional carboxylic acid polyoxyalkylene radical of the formula (3c),
  • R 14 is a saturated or a mono- or polyunsaturated, either linear or branched, aliphatic or aromatic hydrocarbon radical having 1-30 carbon atoms, which in turn can carry OH groups, preferably a methyl radical,
  • X 4 corresponds to either X 1 or the fragment of formula (3d)
  • k, k 1 and k 2 independently of one another are integers from 0 to 500, preferably from 10 to 200, in particular 15 to 100, I 3 , I 4 , I 5 , I 6 , I 7 and I 8 are independent whole of each other
  • Numbers are from 0 to 60, preferably from 0 to 30, especially from 0 to 25, o is an integer from 0 to 10, preferably from 0 to
  • I 3 , I 5 and I 7 is zero and that the sum of I 3 , I 5 and I 7 is at least 1 when X 1 is other than X 2 , where a is an integer from 1 to 3, preferably 3, b is an integer from 0 to 2, preferably 0 to 1, particularly preferably 0, the sum of a and b is 3, c is an integer from 0 to 22, preferably from 0 to 6, particularly preferably equal to 1 or 3 c 1 is an integer from 0 to 24, preferably from 0 to
  • d is an integer greater than 1 to 1,000, preferably greater than 1 to 100, more preferably greater than 1 to 20 and especially greater than 1 to 10, or greater 10 to 100
  • e is an integer of 0 to 10,000, preferably 0 to
  • n is an integer from 2 to 8 and f, g, h, i and j are each integers from 0 to 500, preferably 0 to 300, particularly preferably 0 to 200, in particular 0 to 100, with with the proviso that the fragments with the indices d to j are mutually freely permutable, ie in the sequence within the polyether chain are interchangeable and wherein the different monomer units of the fragments with the index numbers d to j be constructed with each other blockwise or else subject to a statistical distribution can and with the proviso that the fragments with the indices k, k 1 , k 2 , I 3 , I 4 , I 5 , I 6 , I 7 , I 8 and o are mutually freely permutable, ie within the siloxane chain against each other are interchangeable and can be present randomly distributed or block-like strung together.
  • R represents one or more identical or different radicals selected from linear or branched, saturated, mono- or polyunsaturated alkyl radicals having 1 to 20, in particular 1 to 6, carbon atoms or haloalkyl groups having 1 to 20 carbon atoms, preferably a methyl, ethyl, Propyl, isopropyl, n-butyl or sec. Butyl group.
  • R 2 or R 3 , and R 5 or R 6 are the same or independently of one another H or a saturated or optionally mono- or polyunsaturated, also further substituted, optionally mono- or polyvalent hydrocarbon radical, where the radicals R 5 or R 6 , that they are equal to a monovalent hydrocarbon radical.
  • the hydrogen radical can be cycloaliphatically bridged via the fragment Y; Y may not be present, or it may be a methylene bridge with 1 or 2 methylene units; if Y is 0, R 2 or R 3 are independently of one another a linear or branched radical having 1 to 20, preferably 1 to 10, carbon atoms, particularly preferably a methyl, ethyl, propyl or butyl, vinyl, allyl radical or phenyl radical. Preferably, at least one of the two radicals in R 2 or R 3 is hydrogen.
  • the hydrocarbon radicals R 2 and R 3 may in turn be further substituted and carry functional groups such as halogens, hydroxyl groups or glycidyloxypropyl groups.
  • R 4 is a linear or branched alkyl radical of 1 to 18 carbon atoms which may be attached to an aromatic or cycloaliphatic radical.
  • R 7 and R 8 are independently either hydrogen, alkyl, alkoxy, aryl or aralkyl groups.
  • R 9 , R 10 , R 11 and R 12 are each independently hydrogen, alkyl, alkenyl, alkoxy, aryl or aralkyl groups, wherein the hydrocarbon radical cycloaliphatic or aromatic bridged via the fragment Z, wherein Z is both a divalent Alkylene and alkenylene can represent.
  • the polyethersiloxanes described by formula (3) include the by-products optionally contained by the process, such as free excess saccharides or rearrangement products.
  • Polyether chain can be constructed with each other optionally blockwise or random.
  • Value ranges of the specified indices are understood as the mean values of the possible statistical distribution of the actual isolated structures and / or their
  • the polyether siloxanes having alkoxysilyl functionalization of the formula (3) are usually comb-like branched copolymers in which the
  • Polysiloxane backbone are bound.
  • linear polyether-siloxane-polyether triblock copolymers of the formula
  • R ' corresponds to one or more identical or different linear or branched, saturated, mono- or polyunsaturated alkyl radicals having 1 to 20, in particular 1 to 10, carbon atoms, and m is an integer from 0 to 5000, preferably 2 to 5000, particularly preferably 5 is up to 4000 and in particular 9 to 3000, and
  • X 7 corresponds to the polyether fragment of the formula (5a).
  • Another object of the invention are emulsions in which the compounds of formulas (1), (3) and / or (5) are each used alone or in any mixtures with each other.
  • the index numbers reproduced in the formulas (3) to (3d) and (5) and (5a) and the value ranges of the indicated indices are understood as the means of the possible statistical distribution of the actual structures present and / or their mixtures.
  • Suitable conventional emulsifiers for the prepolymer emulsions according to the invention are, in principle, all anionic, nonionic, cationic and amphoteric emulsifiers and emulsifier mixtures.
  • the one or more mixtures of the anionic emulsifier (s) may be selected from the group comprising alkyl sulfates, aryl sulfonates, fatty alcohol sulfates, alkyl sulfonates, paraffin sulfonates, alkyl ether sulfates, alkyl polyglycol ether sulfates, fatty alcohol ethers, alkylbenzenesulfonates, alkylnaphthylsulfonates,
  • Alkylphenol ether sulfates alkyl phosphates, phosphoric mono-, di-, tri-esters, alkyl ether phosphates, ethoxylated fatty alcohol phosphoric acid esters, alkylphenol ether phosphates, phosphonic acid esters, sulfosuccinic acid diesters,
  • the anionic emulsifier may contain, for example, sodium, potassium, ammonium, monoethanolammonium, triethanolammonium or other organically substituted ammonium cations as the counterion.
  • Preferred anionic emulsifiers are sodium dodecylbenzenesulfonate, sodium lauryl sulfate and sodium lauryl ether sulfate.
  • the cationic emulsifier (s) may be selected from the group comprising both primary, secondary and tertiary amines and their salts, alkyltrimethylammonium salts, dialkyldimethylammonium salts, trialkylmethylammonium salts, tetraalkylammonium salts, alkoxylated alkylammonium salts, esterquats, diamidoamine quats, alkyloxyalkyl quats quaternary alkyl phosphonium salts, ternary alkyl sulfonium salts, alkyl imidazolium salts, alkyloxazolinium salts,
  • Alkylpyridium salts or N, N-dialkylmorpholinium salts may contain, for example, chloride, bromide, methylsulfate, sulfate or the like as the counterion.
  • the nonionic emulsifier (s) may be selected from the group comprising alcohols, fatty acids, alcohol ethoxylates, polyoxyethylene-polyoxypropylene alkyl ethers, amine alkoxylates,
  • Propylene oxide block copolymers alkylphenolethoxylates, alkylglucosides, partial esters of aliphatic carboxylic acids with poly 1-ol alcohols, for example sorbitan esters, glycerol esters or polyglycerols, ethoxylated partial esters of aliphatic carboxylic acids with poly-1-alcohols
  • sorbitan esters ethoxylated sorbitan esters, ethoxylated glycerol esters or ethoxylated polyglycerol esters
  • polyethoxylated polystyrenephenyl ethers polyethoxylated polystyrenephenyl ethers
  • amides of aliphatic carboxylic acids with Al kano 1 amines ethoxylated amides of aliphatic carboxylic acids with alkanolamines and / or polyalkoxylated organopolysiloxanes.
  • Preferred nonionic emulsifiers are castor oil ethoxylates, isotridecyl alcohol polyglycol ethers, sorbitan esters, ethylene oxide-propylene oxide block copolymers, stearyl alcohol ethoxylates, and stearic acid ethoxylates.
  • emulsifiers are alkoxysilyl-bearing ethylene oxide-propylene oxide block copolymers which can be prepared according to the teaching of the unpublished document DE 10 2008 000360.3.
  • amphoteric emulsifier (s) may be selected from the group consisting of amphoacetates, amphodiacetates, glycinates, amphopropionates, amphodipropionates, hydroxysultains, amine oxides, sulfobetaines, and / or betaines.
  • Preferred amphoteric emulsifiers are betaines and amine oxides.
  • the aqueous phase of the emulsions according to the invention can be hydrophilic fillers for the modification of the
  • Particle surface comes.
  • fillers are fumed and precipitated silica, inorganic
  • Oxides and mixed oxides such as alumina, titania and Zirconia, glass and quartz, hydroxides such as aluminum and magnesium hydroxides, silicates such as wollastonite, mica, kaolin and talc, calcium carbonate and other carbonates, metals such as copper, zinc and nickel and metal alloys, nitrides such as boron nitride, carbides such as silicon carbide, graphite and carbon black.
  • Further examples of such fillers are organic particles, such as those based on cellulose, lignin, oxidized polyethylene or cured epoxy resin. The fillers may be stirred in either as a powder or as an aqueous dispersion during or after preparation of the emulsion. Commercially available examples of such dispersions are Aerodisp (Evonik Degussa), Ludox (WR Grace), Dispercoll (Bayer Materials Science) or Klebosol (Clariant).
  • the aqueous phase may contain additives for modifying the rheological properties of the emulsions according to the invention.
  • additives are polyurethane thickeners, Xan t hangummi, guar gum, carboxymethyl cellulose, polyacrylates, polyvinyl alcohol, polyvinylpyrrolidone, Carboxyvi ny lpo 1 yme re, Hydr oxyethylzellulose and polyethyleneimines.
  • the emulsions of the invention may contain catalysts. Depending on the field of application and physical properties, the catalyst can be dissolved or dispersed either in the aqueous phase or in the prepolymer.
  • the catalyst or catalyst-containing solution may be added as a separate dispersion, emulsion or microemulsion and as a separate solid or liquid to the emulsion of the invention.
  • catalyst-containing solution is the catalyst or catalyst-containing solution, optionally with the aid of appropriate emulsifiers, incorporated into the prepolymer phase.
  • Curing the polyethers (siloxanes) carrying alkoxysilyl group-bearing polyurethanes the known polyurethaneization, allophanatization or biuretization catalysts known to those skilled in the art can be used.
  • These include compounds such as the zinc salts zinc octoate, zinc acetylacetonate and zinc 2-ethylcaproate, or tetraalkylammonium compounds such as N, N, N-trimethyl-N-2-hydroxypropylammonium hydroxide, N, N, N-trimethyl-N-2-hydroxypropylammonium-2 ethylhexanoate or
  • Choline-2-ethylhexanoate can be used. Preference is given to the use of zinc octoate (zinc 2-ethylhexanoate) and the tetraalkylammonium compounds, more preferably that of zinc octoate. Furthermore, as catalysts, the commonly used organic compounds (zinc 2-ethylhexanoate) and the tetraalkylammonium compounds, more preferably that of zinc octoate. Furthermore, as catalysts, the commonly used organic
  • C onnections such as. Dibutyl, a dioctyl z lindiacaurate, dibutyltin diacetylacetonate,
  • Dibutylzincine diacetate or dibutyltin dioctoate, etc. may be used. Furthermore, bis mu t k a t a 1 y s a t o r e n, e. the Bochi catalyst,
  • Titanates e.g. Titanium (IV) isopropylate, iron (III)
  • Dimethylphenylamine, N-ethylmorpholine, etc. used become. Also organic or inorganic Brönsted acids such as M ethansu 1 fons acid, p-toluenesulfonic acid,
  • Camphorsulfonic acid acetic acid, trifluoroacetic acid or benzoyl chloride, hydrochloric acid, phosphoric acid, their mono and / or diesters, e.g. butyl phosphate,
  • the curable modifiers of the invention may also contain so-called photolatent bases as catalysts, as described in WO 2005/100482.
  • suitable bases are organic bases having one or more basic nitrogen atoms which are initially present in a blocked form and only after irradiation with UV light, visible light or IR radiation by cleavage of the molecule the basic Release form.
  • the catalyst or the photolatent base is used in amounts of 0.001 to 5.0 wt .-%, preferably 0.01 to 1.0 wt .-% and particularly preferably 0.05 to 0.5 wt .-% based on the alkoxysilyl-functional prepolymers used.
  • the catalyst or the photolatent base can be added in one portion or else in portions or else continuously. Preference is given to adding the entire amount in one portion.
  • the prepolymer phase may contain organofunctional and (partially) water-insoluble silanes to further increase the crosslink density.
  • the silanes may optionally take on the role of a reactive diluent.
  • organofunctional silanes are, for example, tetraethoxysilane, methyltriethoxysilane, N-cyclohexylaminomethyltrimethoxysilyl, N-cyclohexyl-3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyldimethoxymethylsilane, 3-isocyanatopropyltrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, methyltrimethoxysilane,
  • the prepolymer phase may contain organofunctional and (partially) water-insoluble siloxanes.
  • organofunctional siloxanes are, for example, ⁇ , ⁇ -dihydroxypolydimethylsiloxanes, ⁇ , ⁇ -bis (trimethoxysilyl) polydimethylsiloxanes and ⁇ , ⁇ -bis (triethoxysilyl) polydimethylsiloxanes.
  • the emulsions can also be added to auxiliaries known from the literature and the prior art.
  • auxiliaries known from the literature and the prior art.
  • These include, for example, film-forming poly (meth) acrylates, silicone / (meth) acrylate copolymers, poly-N-acylalkyleneimines, poly-N-methylpyrrolidones, and silicone resins having fluorinated organic groups, amino or Si 1 ano 1 groups .
  • antimicrobials and preservatives e.g., triclosan, triclocarban, hexachlorophene
  • antioxidants e.g., triclosan, triclocarban, hexachlorophene
  • BHA BHA, BHT, ascorbic acid and ⁇ -orizanol
  • dispersants eg BHA, BHT, ascorbic acid and ⁇ -orizanol
  • dispersants eg BHA, BHT, ascorbic acid and ⁇ -orizanol
  • dyes colorants and pigments
  • antifreeze eg ethanol, ethylene glycol, 1,3-butylene glycol, propylene glycol, glycerol or isopropanol
  • fungicides eg adhesion promoters and / or reactive diluents and plasticizers (eg phthalates, benzoates, phosphate plasticizers) and complexing agents (eg EDTA, citric acid and etidronic acid and salts thereof).
  • spraying aids eg benzophenone derivatives, benzotriazole derivatives, cinnamic acid esters or particulate UV absorbers such as ZnO or TiO 2 , and other stabilizers can be added to the mixtures.
  • UV absorbers eg benzophenone derivatives, benzotriazole derivatives, cinnamic acid esters or particulate UV absorbers such as ZnO or TiO 2 , and other stabilizers can be added to the mixtures.
  • the prepolymer emulsions according to the invention can be used as raw material for paints, inks, release agents, adhesives, cosmetic products, scratch-resistant coatings, building protection agents, corrosion inhibitors and / or sealants, for coating paper, particles, textile and glass fibers, for coating fillers for paper, for the production of antistatic surfaces and / or as a starting material for the production of rubber parts, for example based on polypropylene oxide rubber.
  • Emulsions based on silyl-functionalized polyether are also known. These silyl-functionalized polyethers (siloxanes) are according to in the unpublished documents DE 10 2008 000360.3 and DE 10 2008 044373.5 according to the process principle of DMC-catalyzed alkoxylation with propylene oxide (PO) and 3-glycidyloxypropyltriethoxysilane (GlyEO) has been prepared.
  • the viscosity of the prepolymer at 25.0 0 C was measured at 100 s -1 using a rotational viscometer (Physica MCR301) and cone and plate geometry. The stability of the emulsions was evaluated as follows.
  • the emulsion was stored at room temperature and is considered stable to creaming and / or coalescence if there are no clear signs of instability within one week. Such signs include, for example, the formation of multiple layers or clearly visible grease eyes. Stability to hydrolysis was evaluated by determining the alkanol content of the emulsion both directly after preparation and after storage for one week by gas chromatography. The emulsion is considered to be stable to hydrolysis if the alkanol content is below 0.1%, which at the same time corresponds to the detection limit for the gas chromatograph used (Model 6890, Agilent).
  • Triethoxysilyl polyethers I poly (propylene glycol) ge s t a r t e r e and almost colorless, largely statistically constructed polyethers of average molecular weight of about 9000 g / mol and quadruple Trialkoxysilanfunktionloisries.
  • the polyethersiloxane was prepared by hydrosilylation of heptamethyltrisiloxane (HMTS) on a poly (ethylene oxide-stat-propylene oxide) allyl ether with an ethylene oxide to propylene oxide ratio of 20 to 80.
  • HMTS heptamethyltrisiloxane
  • the molecular weight of the polyether was 880 grams per mole.
  • the droplet size distribution was measured by dynamic leaching (Malvern HPPS with 633 nm HeNe laser).
  • the evaluation of the correlation function with the CONTIN algorithm resulted in a monomodal droplet size distribution with an average radius of 154 nm.
  • the ethanol content was determined by gas atomicity. Both directly after production and after storage for 7 days at room temperature, the content was below the detection limit (0.1%). The emulsion shows no visual signs of instability after one week storage at room temperature.
  • the flow curve of the emulsion was measured with a rotatio n s s ic s t he (Physica MCR301) equipped with cone-and-plate geometry.
  • the flow curve of the emulsion from Example 2 is shown in FIG.
  • the emulsion is shear thinning.
  • the viscosity at 100 s -1 is 0.18 Pa-s, ie well below the viscosity of the prepolymer used.
  • the finished paste was stirred for 10 minutes at 1000 rpm. Thereafter, the paste was diluted with 100.0 grams of water with stirring. The emulsion was created. The droplet size distribution was measured with dynamic leaching (Malvern HPPS). The average drop radius was 144 nm.
  • the ethanol content was determined by gas chromatography. Both directly after production and after storage for 7 days at room temperature, the content was below the detection limit (0.1%). The emulsion shows no visual signs of instability after one week storage at room temperature despite coarse fraction.

Abstract

Die Erfindung betrifft Silylgruppen tragende Hydroxylverbindungen enthaltende Emulsionen, deren Herstellung und Verwendung.

Description

Emulsionen auf a sis Silylgruppen tragender
HydroxylVerbindungen
Die Erfindung betrifft Silylgruppen tragende Hydroxylverbindungen enthaltende Emulsionen, deren Herstellung und Verwendung.
Als Silylgruppen tragende Hydroxylverbindungen, die im Sinne dieser Erfindung Verwendung finden, werden alle Reaktionprodukte verstanden, die durch Alkoxylierung von epoxyfunktionellen Silanen an Doppelmetallcyanid- Katalysatoren gemäß dem in der noch nicht vorveröffentlich t e n S ch r i f t DE 10 2008 000360.3 beschriebenen Verfahren hergestellt werden können; insbesondere können diese Verbindungen auch Siloxangruppen tragen. Diese Produkte werden im Weiteren als Silylpolyether der Formel 1 bezeichnet. Eine Silylgruppe im Rahmen dieser Erfindung ist durch unterschiedliche oder gleiche organische oder oxyorganische Reste gekennzeichnet
Figure imgf000002_0001
Formel 1 - siehe auch Figur 1
Präpolymersysteme, die über - endständige - reaktive Alkoxysilylgruppen verfügen, beispielsweise Alkoxysilan- terminierte, feuchtigkeitshärtende Einkomponenten- Polyurethane, werden vielfach zur Herstellung von Beschichtungen sowie elastischen Dicht- und Klebstoffen im Industrie- und Baubereich und in der Automobilindustrie verwendet. Kommerziell verfügbare Beispiele von solchen Präpolymeren sind die MS Polymere der Firma Kaneka, oder die Geniosile der Firma Wacker. So sind alkoxysilanfunktionelle Polyurethane, die über eine S ilanpolykondensat ion vernetzen, lange bekannt. Ein Übersichtsartikel zu dieser Thematik findet sich z.B. in "Adhesives Age" 4/1995, Seite 30 ff. (Autoren: Ta-Min Feng, B. A. Waldmann) .
Solche endständig alkoxysilanfunktionalisierten Polyurethane können gemäß US 3,627,722 oder US 3,632,557 hergestellt werden, indem z.B. Polyetherpolyole mit einem Überschuss Polyisocyanat zu einem NCO-haltigen Präpolymer umgesetzt werden, das dann wiederum mit einem aminofunktionellen Alkoxysilan weiter umgesetzt wird. Das entstehende alkoxysilanfunktionelle Präpolymer enthält Harnstoff- und Urethangruppen in hoher Konzentration, die zu einer hohen Viskosität der Produkte führen. Neben Polyethern kann das organische Rückgrat beispielsweise aus Polyurethanen, Polyestern, Polyacrylaten, Polyvinylestern, Ethylen-Olefincopolymeren, Styrol- Butadiencopolymeren oder Polyolefinen bestehen. Beschrieben werden derartige Präpolymere u.a. in EP 0 372 561, WO 00/37533 oder US 6,207,766. Daneben sind aber auch Systeme weit verbreitet, deren Rückgrat ganz oder zumindest zum Teil aus Organosiloxanen besteht, beschrieben u.a. in WO 96/34030. Nachteilig an all den beschriebenen Präpolymeren ist die geringe Funkt ionalisierungsdichte der nur in α, ω-Position mit Silylgruppen terminierten Präpolymeren.
Dieser Nachteil kann überwunden werden durch den Einsatz von, in der noch nicht o f f e n g e 1 e gten Schrift
DE 10 2008 000360.3 beschriebenen, neuen Silylgruppen tragenden Hydroxylverbindungen oder auch Alkoxysilylgruppen tragenden Polyetheralkoholen, die durch Alkoxylierung epoxidfunktioneller Alkoxysilane an Doppelmetallcyanid (DMC) -Katalysatoren zugänglich sind. Die in der noch nicht o f f e n g e 1 e g t e n Schrift DE 10 2008 044373.5 beschriebene Alkoxysilylgruppen tragende Polye ther s i loxanen können ebenfalls durch Doppelmetallcyanidkatalyse hergestellt werden. Die beiden Schriften werden hiermit vollumfänglich als Teil und Gegenstand dieser Offenbarung eingeführt. Diese neuen Polyether (siloxan) s t rukturen , die sowohl Alkoxysilan- funktionen innerhalb der Sequenz der Oxyalkyleneinheiten der Polyetherkette als auch neue Multialkoxysilanfunktionen in ihren Termini aufweisen können, erlauben es, die Ankergruppendichte in dem angestrebten Präpolymer nach Belieben, d.h. angepasst auf die jeweilige anwendungs t e chn i s che Fragestellung einzustellen. Zudem weisen sie noch freie Hydroxylgruppen auf, die zur weitergehenden Funktionalisierung zur Verfügung stehen.
Insofern die Präpolymere wasserunlöslich sind können zur Erniedrigung der Viskosität der Präpolymeren flüchtige organische Lösungsmittel eingesetzt werden. Solche Lösungsmittel werden oft mit dem Kürzel VOC (Volatile Organic (Compounds) bezeichnet. Bei einer Vielzahl von organischen Lösungsmitteln konnte eine gesundheitsschädliche Wirkung festgestellt werden oder aber wird zumindest vermutet. Infolgedessen wurden eine Reihe von Gesetze und Regulierungen zum Schutz von Umwelt und Gesundheit erlassen mit dem Ziel, die VOC-Emissionen zu reduzieren. Die europäische VOC-Richtlinie von 1999 zum Beispiel schreibt gesetzliche Anforderungen zur Minderung von VOC-Emissionen vor (Richtlinie 1999/13/EG beziehungsweise 2004/42/EG) . Als Alternative zu den organischen Lösungsmitteln bietet es sich an, die wasserunlösliche Präpolymere in der Form einer wässrigen Emulsion zu verwenden. Die Verwendung von Wasser ist umw e 1 t t e ch n i s c h unbedenklich. Aus anwendungstechnischer Sicht ist der Verwendung von Wasser die Verwendung von organischen Lösemitteln sogar vorzuziehen, weil die Entfernung, eventuelle Korrekturen oder Nachbesserungen beim Auftragen des Materials vor dem Aushärten mit Wasser beziehungsweise einer wässrigen Tensidlösung gemacht werden können. Allerdings kommt den beschriebenen Präpolymeren die Eigenschaft einer strukturbedingten Hydrolyselabilität zu. Es fällt daher nicht einfach, die Präpolymere in Form einer wässrigen Emulsion einzusetzen. Zur Emulgierung werden die Substanzen unter Verwendung sogenannter Emulgatoren und Einsatz von Scherkräften in Wasser emulgiert. Die Viskosität beziehungsweise das rheologische Profil einer derartigen Emulsion wird in erster Linie durch die Rheologie der kontinuierlichen, wässrigen Phase bestimmt. Je nach Anwendungsbereich kann das rheologische Profil mit Hilfe von Additiven variiert werden, von einer sehr niedrigviskosen Emulsion bis hin zu einer hochviskosen Paste .
Generell kommen als Emulgatoren sowohl amphiphile Moleküle als auch Partikel in Betracht. Durch Partikel stabiliserte Emulsionen werden auch als "Pickering'- Emulsionen bezeichnet (S. U. Pickering: „Emulsions", J. Chem. Soc. 1907, Vol. 91, pp . 2001-2021). Durch Anlagerung an die Grenzfläche Wasser-Präpolymer verhindern solche Emulgatoren die Koaleszenz der Emulsionstropfen und damit das Brechen der Emulsion. Wenn die Präpolymere selber amphiphilen Charakter haben, kann es sein, dass sich die Zugabe von zusätzlichen Emulgatoren erübrigt. In diesem Fall spricht der Fachmann von einem selbst-emulgierenden System. Die erfinderische Aufgabe ist es daher, stabile und hydrolysebeständige Emulsionen von in den Schriften DE 10 2008 000360.3 und DE 10 2008 044373.5 beschriebenen, silylgruppenhaltigen Präpolymeren in Wasser herzustellen.
Emulsionen von silylierten Präpolymeren sind Gegenstand einer Vielzahl von Schriften. In der Schrift DE 2558653 beschreibt Chang Emulsionen aus selbstemulgierenden, Silylgruppen tragende Polyurethane und deren Anwendung für die Beschichtung von Oberflächen. Die Polyurethane werden hergestellt durch Reaktion von einem Polyol mit einem Überschuss an Polyisocyanat . In einem zweiten Schritt wird das überschüssige Isocyanat teilweise mit einem reaktionsfähigen Silan umgesetzt. Eine stabile Emulsion wird erhalten, wenn dieses Polymerisat unter Scherung in Wasser eingearbeitet wird. In der Schrift US 4,376,149 beschreibt Martin emulgierte Gemische aus silylierten Polyethern und OH-Siloxanen sowie deren Einsatz bei der Beschichtung von Textilien. Shimizu und Yoshida beschreiben in der Schrift JP 1318066 wässrige Emulsionen aus silylierten Polyethern, die zusätzlich kolloidale Kieselsäure enthalten können. Die silylierten Polyether werden hergestellt durch die Verknüpfung von einem Polypropylenglykoldiglycidylether mit einem Trialkoxysilylglycidylether durch ein cyclisches oder aromatisches Diamin. Klauck, Maier und Berthauer beschreiben in der Schrift DE 4215648 lagerstabile Kontaktklebstoffe auf Basis von Lösungen, beziehungsweise Emulsionen von kationisch modifizierten, alkoxysilanterminierten Polyurethanen. In der Schrift DE 19955825 beschreiben Majolo, Klauck, Klein, Ernst, Schilling und Loth Emulsionen von silylfunktionalisierten Polymeren mit einem Massenanteil Polymer von mindestens 60%. Ebenfalls beschrieben sind Emulsionen von Gemischen aus mindestens zwei verschiedenen Polymeren, eines mit und eines ohne Silylgruppen. Es wird beansprucht, dass die beschriebenen Emulsionen silylfunktionalisierte Polymere im Vergleich zu nicht-emulgierten Polymeren eine verbesserte Lagerstabilität aufweisen. Altes et al . beschreiben in den Schriften US 6,713,558 und US 6,831,128 wasserverdünnbare Emulsionen silylierter Elastomere und deren Herstellung. Die Emulsionen haben einen Massenanteil an Elastomer von mindestens 75% bei einer Tropfengröße von kleiner als 5 μm. Hattemer, Unger, Ferencz, Bachon, Bathelt und Schmidt beschreiben in der Schrift WO 2006/122684 Emulsionen aus α-silylterminierten Präpolymeren, deren Herstellung und Anwendung. Wu, You und Huang beschreiben in der Schrift WO 2007/072189 Emulsionen aus Silylgruppen tragenden Präpolymeren. Die Emulsionen werden stabilisiert durch die Zugabe von Nanosilica. Die Zugabe von konventionellen Emulgatoren ist optional und soll in manchen Fällen eine zusätzliche Verbesserung der Emulsionsstabilität bewirken. In der Schrift WO 2008/090458 beschreiben Wu, You und Huang Emulsionen aus Silylgruppen tragenden Präpolymeren. Die Emulsionen werden stabilisiert durch die Zugabe von monomeren Silanen. Die Zugabe von sowohl Nanosilica als auch von konventionellen Emulgatoren ist wiederum optional, und soll in manchen Fällen zu einer zusätzlichen Verbesserung der Emulsionsstabilität führen. Die Auswahl von geeigneten Emulgatoren, beziehungsweise die Herstellung von stabilen, für die jeweilige Anwendung geeigneten Emulsionen ist keineswegs trivial und stellt auch für den Fachmann eine große Herausforderung da. Insbesondere die Hydrolyselabilität der silylgruppenhaltigen Präpolymeren lässt an der Voraussagbarkeit von stabilen Emulsionsystemen Zweifel aufkommen . Trotz der vermuteten und strukturell bedingten Hydrolyseempfindlichkeit der in den Schriften DE 10 2008 000360.3 und DE 10 2008 044373.5 beschriebenen Präpolymere wurde jetzt überraschenderweise gefunden dass die Präpolymere in stabile Emulsionen überführt werden können.
Gegenstand der Erfindung sind daher stabile, hydrolysebeständige wässrige Emulsionen auf Basis von entweder Silylgruppen tragenden Hydroxylverbindungen, wie in der Schrift DE 10 2008 000360.3 beschrieben und/oder silylfunktionalisierten Polyethersiloxanen, auch alkoxysilylfunktionelle Siliconpolyether oder alkoxysiIyIfunktioneile Polyether-Siloxan-Copolymere genannt, wie in der Schrift DE 10 2008 044373.5 beschrieben . Ein Gegenstand der Erfindung sind daher stabile, hydrolysebeständige wässrige Emulsionen enthaltend silylfunktionalisierte Polyether mit mindestens einer nicht-terminalen Silylfunktion, bevorzugt mehr als einer nicht-terminalen und besonders bevorzugt mehr als einer nicht-terminalen sowie gleichzeitig mindestens einer terminalen Silylfunktion im Molekül. Insbesondere enthalten sie mehr als eine (1) Alkoxysilyfunktion pro gegenüber Epoxidgruppen reaktives Kettenende. Eine Emulsion wird als stabil bezeichnet wenn die Emulsion bevorzugt nach einem Monat Lagerung bei Raumtemperatur, mindestens aber nach einer Woche Lagerung bei Raumtemperatur keine mit dem Auge sichtbaren Anzeichen des Brechens zeigt. Das Brechen einer Emulsion ist hier definiert als die Separation in eine makroskopische Öl- beziehungsweise Wasserphase. Eine Emulsion wird als hydrolysestabil bezeichnet wenn nach einem Monat Lagerung bei Raumtemperatur, mindestens aber nach einer Woche Lagerung bei Raumtemperatur der Gehalt an freiem Alkohol in der Emulsion einer Spaltung von maximal 10 Gew.-% der emulgierten Alkoxygruppen entspricht.
Der optimale Massenanteil Wasser beziehungsweise Polyether (siloxan) ist abhängig von der Anwendung. Es bleibt dem Fachmann überlassen, für einen bestimmten Anwendungsbereich den optimalen Massenanteil Polyether (siloxan) zu finden. Dem Fachmann ist es allerdings geläufig, dass der bevorzugte Anteil an Wasser in solchen Emulsionen zwischen 10 Gew.-% bis 97 Gew.-%, besonders bevorzugt zwischen 20 Gew.-% und 90 Gew.-% und insbesondere größer als 30 Gew.-% liegt.
Die silylfunktionalisierten Polyether, wie in der Schrift DE 10 2008 000360.3 beschrieben, bestehen aus mit Alkoxysilylgruppen substituierten Ketten, die durch die Wahl der Fragmente d bis j der Formel (1), entsprechend der durch die Reaktion unter Ringöffnung der Reaktionskomponenten in die Polymerkette eingefügten Fragmente, gezielt hochfunktionalisiert sind und damit für verschiedenartige Anwendungsgebiete maßgeschneidert werden können
Figure imgf000009_0001
(1) - siehe auch Figur 1 wobei a eine ganze Zahl von 1 bis 3, vorzugsweise 3 ist, b eine ganze Zahl von 0 bis 2, vorzugsweise 0 bis 1, besonders bevorzugt 0 ist, die Summe von a und b gleich 3 ist, c eine ganze Zahl von 0 bis 22, bevorzugt von 0 bis 6, besonders bevorzugt gleich 1 oder 3 ist, d eine ganze Zahl von 1 bis 1.000, bevorzugt größer 1 bis 100, besonders bevorzugt größer 1 bis 20 und insbesondere größer 1 bis 10 ist, oder größer 10 bis
100 ist, e eine ganze Zahl von 0 bis 10.000, bevorzugt 0 bis 1000, besonders bevorzugt 0 bis 300 und insbesondere 0 bis 100 ist, f eine ganze Zahl von 0 bis 1.000, bevorzugt 0 bis 100, besonders bevorzugt 0 bis 50 und insbesondere 0 bis
30 ist, g eine ganze Zahl von 0 bis 1.000, bevorzugt 0 bis 200, besonders bevorzugt 0 bis 100 und insbesondere 0 bis 70 ist, h, i und j ganze Zahlen von 0 bis 500, bevorzugt 0 bis 300, besonders bevorzugt 0 bis 200 und insbesondere 0 bis 100 ist, und mit der Maßgabe, dass die Fragmente mit den In- dices d bis j untereinander frei permutierbar, d.h. in der Sequenz innerhalb der Polyetherkette gegeneinander austauschbar sind, n eine ganze Zahl zwischen 2 und 8 ist und R einen oder mehrere gleiche oder verschiedene Reste, ausgewählt aus linearen oder verzweigten, ge- sättigten, einfach oder mehrfach ungesättigten Alkyl- resten mit 1 bis 20, insbesondere 1 bis 6 Kohlenstoffatomen oder Halogenalkylgruppen mit 1 bis 20 Kohlenstoffatomen darstellt. Bevorzugt entspricht R Methyl-, Ethyl-, Propyl-, Isopropyl-, n-Butyl- und sek. -Butylgruppen, und insbesondere Ethyl- oder Methylgruppen, mit
R1 gleich einem gesättigten oder ungesättigten, gegebenenfalls verzweigten Rest, der vorzugsweise über ein Sauerstoffatom angebunden ist, oder stellt einen P o 1 y e t h e r r e s t vom Typ einer Alkoxy-, Arylalkoxy- oder Alkylarylalkoxygruppe dar, bei der die Kohlenstoffkette durch S a u e rstoffatome unterbrochen sein kann, oder R1 eine ggf. einfach oder mehrfach annelierte aromatische Aryloxy-Gruppe, oder eine siliciumhaltige Verbindung, insbesondere ein Siloxanrest oder PoIy (siloxan) rest ist, der alkyl- und/oder arylgruppen- und/oder polyethersubstituiert sein kann,
R2 oder R3, sowie R5 oder R6 gleich oder auch unabhängig voneinander H oder ein gesättigter oder gegebenen- falls einfach oder mehrfach ungesättigter, auch weiter substituierter, gegebenenfalls ein- oder mehrwertiger Kohlenwasserstoffrest, wobei für die Reste R5 oder R6 gilt, dass sie gleich einem einwertigen Kohlenwassers toffrest sind. Der Kohlenwasserstoffrest kann cycloaliphatisch über das Fragment Y verbrückt sein; Y kann nicht vorhanden sein, oder aber eine Methylenbrücke mit 1 oder 2 Methyleneinheiten sein, ist Y nicht vorhanden, so sind R2 oder R3 unabhängig voneinander gleich ein linearer oder verzweigter Rest mit 1 bis 20, bevorzugt 1 bis 10 Koh 1 enstoffatomen, besonders bevorzugt ein Methyl-, Ethyl-, Propyl- oder Butyl-, Vinyl-, Allylrest oder Phenylrest. Vorzugsweise ist zumindest einer der beiden Reste R2 oder R3 Wasserstoff. R2-R3 kann eine -CH2CH2CH2CH2-GrUpPe, Y damit eine - (CH2CH2-) -Gruppe sein. Die Kohlenwasserstoffreste R2 und R3 können ihrerseits weiter substituiert sein und funktionelle Gruppen wie Halogene, Hydroxylgruppen oder Glycidyl- oxypropylgruppen tragen,
R4 entspricht einem linearen oder verzweigten Alkylrest von 1 bis 24 Kohlenstoffatomen oder einem aromatischen oder cycloaliphatischen Rest, der gegebenenfalls seinerseits Alkylgruppen tragen kann. R7 und R8 sind unabhängig voneinander entweder Wasserstoff, Alkyl-, Alkoxy-, Aryl- oder Aralkylgruppen, die unter Ringöffnungspolymerisation zu vernetzbaren, Alkoxysilangruppen enthaltenden Polyetherestern copolymerisiert werden, R9, R10, R11 und R12 sind unabhängig voneinander entweder Wasserstoff, Alkyl-, Alkenyl-, Alkoxy-, Aryl- oder Aralkylgruppen . Der Kohlenwasserstoffrest kann cycloaliphatisch oder aromatisch über das Fragment Z verbrückt sein, wobei Z sowohl einen divalenten Alkylen- als auch Alkenylenrest darstellen kann.
Die verschiedenen Monomereinheiten sowohl der Fragmente mit den Indexzahlen d bis j als auch der eventuell vorhandenen Polyoxyalkylenkette des Substituenten R1 können untereinander blockweise aufgebaut sein oder aber auch einer statistischen Verteilung unterliegen. Die in den hier angeführten Formeln wiedergegebenen Indexzahlen und die Wertbereiche der angegebenen Indizes verstehen sich daher als die Mittelwerte der möglichen statistischen Verteilung der tatsächlichen vorhandenen Strukturen und/oder deren Mischungen. Dies gilt auch für als solche an sich exakt wiedergegebene Strukturformeln, wie beispielsweise für Formel (1).
Wie 29Si-NMR- und GPC-Untersuchungen ergeben, bedingt das verfahrensbedingte Vorhandensein von kettenendständigen OH-Gruppen die Möglichkeit zu Umesterungsreaktionen am Siliziumatom sowohl während der DMC-katalysierten Herstellung als auch z.B. in einem nachgeschalteten P r o z e s s s ehr i 11. Dabei wird formal der über ein Sauerstoffatom an das Silizium gebundene Alkylrest R gegen einen langkettigen modifizierten Alkoxysilylpolymerrest ausgetauscht. Bimodale wie auch multimodale GPC Kurven belegen, dass die Alkoxylierungsprodukte neben den nicht umgeesterten Spezies, wie sie in Formel (1) wiedergegeben sind, solche mit der doppelten, zum Teil dreifachen oder gar vielfachen Molmasse enthalten. Formel (1) gibt mithin die komplexe chemische Realität nur vereinfacht wieder.
Somit enthalten die Zusammensetzungen auch Verbindungen, in denen die Summe der Indices (a) plus (b) in Formel (1) im statistischen Mittel kleiner als 3 ist, da ein Teil der OR-Gruppen durch Silylpolyethergruppen ersetzt werden kann. Die Zusammensetzungen enthalten somit Spezies, die am Siliziumatom unter Abspaltung von R-OH und Kondensationsreaktion mit der reaktiven OH-Gruppe eines weiteren Moleküls der Formel (1) ausgebildet werden. Diese Reaktion kann mehrfach ablaufen bis z.B. alle RO- Gruppen am Silizium gegen weitere Moleküle der Formel (1) ausgetauscht sind. Das Vorhandensein von mehr als einem Signal in typischen 29Si-NMR-Spektren dieser Verbindungen untermauert das Auftreten von Silylgruppen mit unterschiedlichem Substitutionsmuster. Die angegebenen Werte und Vorzugsbereiche für die Indizes a bis j sind somit auch nur als Mittelwerte über die verschiedenen, einzeln nicht fassbaren Spezies zu verstehen.
Wie dem Fachmann bekannt, geschieht die Vernetzung oder Härtung von Alkoxysilylgruppen in einem zweistufigen chemischen Prozess, bei dem in einem ersten Schritt in Gegenwart von Wasser, wobei auch Luftfeuchtigkeit ausreichen kann, die am Silizium gebundenen Alkoxygruppen als korrespondierende Alkohole abgespalten und SiOH- Gruppen ausgebildet werden. Letztere kondensieren im Falle der Selbstkondensation anschließend unter Ausbildung von Si-O-Si-Brücken miteinander und bilden polymere Werkstoffe. Alternativ reagieren die SiOH- funktionellen Intermediate mit reaktive Gruppen aufweisenden Substraten, z.B. besonders gut mit OH- Funktionen tragenden oxidischen und/oder silikatischen Oberflächen (beispielsweise Mullit, Aluminiumoxid oder auch Magnesiumoxid), und führen zu einer exzellenten chemischen Verankerung auf dem jeweiligen Untergrund. Die Härtungsgeschwindigkeit lässt sich auf vielfältige Weise durch Zusatz von Katalysatoren oder Temperaturvariation beeinflussen. Bevorzugt ist die Verwendung härtbarer Silylpolyether 1 mit mehr als 1 Al koxys i IyI funkt ion , ganz besonders bevorzugt solche mit im Mittelwert mehr als einer derartigen Silylgruppe pro terminaler Hydroxylgruppe in Emulsionszusammensetzungen.
Die bevorzugt eingesetzten Polyethersiloxane der DE 10 2008 044373.5 tragen mindestens eine Alkoxysilylgruppe in der Copolymerstruktur . Die erfindungsgemäß verwendbaren alkoxysilylmodifi zierten Polyether der Formel (1) können durch die Alkoxylierung von s i 1 y1 gruppenmodi f i z ie r t en Epoxiden und einem Startalkohol unterschiedlichster Provenienz gewonnen werden .
Die Herstellung und die einsetzbaren Epoxid-Strukturtypen sind ausführlich in der nicht vorveröffentlichten europäischen Patentanmeldung mit der Anmeldenummer EP 09152883.6 beschrieben. Der Inhalt der Beschreibung und der Ansprüche der EP 09152883.6 und der entsprechenden korrespondierenden nicht vorverö f f ent l i chten Pri ori tät sanme ldung DE 10 2008 00360.3 ist hiermit vollumfänglich als Bestandteil diese Offenbarung anzusehen.
Die Silylpolyether 1 gewähren die synthetische Freiheit, zwischen Alkoxysilylgruppen aufweisenden P o 1 y o x y a 1 k y 1 e n ve r b i n du n ge n zu wählen, die die hydrolysierend vernetzbaren Alkoxysilylfunktionen sowohl terminal, als auch isoliert, blockartig kumuliert als aber auch statistisch eingestreut in die Polyoxyalkylen- kette enthalten. Derartige Silylpolyether 1 der Formel (1), zeichnen sich dadurch aus, dass sie hinsichtlich Strukturaufbau und Molmasse gezielt und reproduzierbar hergestellt werden können. Die Sequenz der Monomereinheiten kann in weiten Grenzen variabel ge- staltet werden. Epoxidmonomere können beliebig blockartig aneinander gereiht oder statistisch in die Polymerkette eingebaut sein. Die durch die Reaktion unter Ringöffnung der Reaktionskomponenten in die entstehende Polymerkette eingefügten Fragmente sind in ihrer Sequenz untereinander frei permutierbar, mit der Einschränkung, dass cyclische Anhydride sowie Kohlendioxid statistisch insertiert, also nicht in homologen Blöcken, in der Pol yetherstruktur vorliegen .
Werden als Silylpolyether 1 solche eingesetzt, die am Siliziumatom mehr als 1 der hochfunktionalisierten Polyalkylenetherfragmente gebunden enthalten, so liegen hochfunktionalisierte Verbindungen vor, bei denen Polyetherketten, die jeweils von einem Startalkohol der Formel R1-!! (2) abgeleitet sind und die in ihrer Abfolge die frei permutierbaren Fragmente enthalten, die durch die Reaktion unter Ringöffnung der Reaktionskomponenten in die entstehende Polymerkette eingefügt wurden, über - CH2-O- (CH2) c-Si- (CH2) C-O-CH2-Brücken miteinander verknüpft sind. Es handelt sich um hochkomplexe, hochfunktionalisierte Strukturen. Auch hier lassen sich die Funktionalitäten gezielt auf ein gewünschtes Anwendungsgebiet einstellen. Der Verzweigungsgrad und die Komplexität der erhaltenen Polymerstrukturen steigen mit zunehmender Epoxyfunktionalität der Silylmonomere . Die Kettenlänge der als Startverbindung einsetzbaren Alkoxy-, Arylalkoxy- oder Alkylarylalkoxygruppen aufweisenden Po- lyetherreste ist beliebig. Vorzugsweise enthält die PoIy- ether-, Alkoxy-, Arylalkoxy- oder Alkyarylalkoxygruppe 1 bis 1.500 Kohlenstoffatome, besonders bevorzugt 2 bis 300 Kohlens toffatome, insbesondere 2 bis 100 Kohlenstoffatome .
Die Gruppe R1 entstammt entweder einem Startalkohol R1-H (2) , der bei der DMC-katalysierten Alkoxylierung eingesetzt wird, beispielhaft für Verbindungen der Formel
(2) seien Allylalkohol, Butanol, Octanol, Dodecanol,
Stearylalkohol, 2-Ethylhexanol, Cyclohexanol,
Benzylalkohol, Ethylenglykol, Propylenglykol, Di-, Tri- und Po lye thylengl ykol , 1 , 2-Propylenglykol, Di- und
Polypropylenglykol, 1, 4-Butandiol, 1, 6-Hexandiol,
Trimethylolpropan, Glycerin, Pentaerythrit, Sorbit,
Cellulosezucker, Lignin oder auch weitere auf
Naturstoffen basierende, Hydroxylgruppen tragende Verbindungen, genannt. Soll allerdings eine Siloxangruppierung als R1 in den Silylpolyether eingeführt werden, so werden beispielsweise α,ω- Di hydr ox ypo 1 y s i 1 o xane , Wa s s e r s t o f f s i 1 o xane oder hydroxylfunktionelle Polyethersiloxane als Ausgangsverbindungen verwendet.
Dabei können die Fragmente, die durch die Reaktion unter Ringöffnung in die entstehende Polymerkette eingefügt wurden, im Rahmen der vorhergehenden Definitionen blockartig oder statistisch verteilt, nicht nur in der Kette einer Polyether-Struktureinheit vorkommen, sondern auch statistisch verteilt über die Vielzahl der gebildeten und über -CH2-O- (CH2) C-Si- (CH2) C-O-CH2-Brücken miteinander verbundenen Polyetherstruktureinheiten, vorkommen. Die Mannigfaltigkeit der Strukturvariationen der Verfahrensprodukte gestattet damit keine eindeutige formelmäßige Beschreibung.
Die verschiedenen Monomereinheiten sowohl der Fragmente mit den Indexzahlen d bis j als auch der eventuell vorhandenen Polyoxyalkylenkette des Substituenten R1 können untereinander blockweise aufgebaut sein oder aber auch einer statistischen Verteilung unterliegen. Die in den hier angeführten Formeln wiedergegebenen Indexzahlen und die Wertbereiche der angegebenen Indizes verstehen sich daher als die Mittelwerte der möglichen statistischen Verteilung der tatsächlichen vorhandenen Strukturen und/oder deren Mischungen. Dies gilt auch für als solche an sich exakt wiedergegebene Strukturformeln, wie beispielsweise für Formel (1).
Ganz besonders bevorzugt werden 3-Glycidyloxyalkyltri- alkoxysilane oder 3-Glycidyloxyalkyldialkooxyalkylsilane als Monomere eingesetzt.
Je nach verwendetem epoxidfunktionellem Alkoxysilan und evtl. eingesetzten weiteren Monomeren, sowie evtl. auch Kohlendioxid können Al koxys i 1 ylgruppen-modifizierte Polyetheralkohole (1) hergestellt werden, sowie deren beliebig aufgebaute Gemische.
Wird als R1 damit ein (PoIy-) Siloxanrest in das Molekül eingeführt, so werden alkoxysilylfunktionelle Polyethersiloxane erfindungsgemäß verwendet.
Diese alkoxysilylfunkt ioneilen Polyethersiloxane und deren Mischungen lassen sich nach zwei verschiedenen Verfahren herstellen, wie in DE 2008 0044373.5 dargestellt :
1) Alkoxylierung von Siliconpolyethercopolymeren bzw.
Polysiloxanen mit epoxyfunktionellen Alkoxysilanen an
Doppelmetallcyanid-Katalysatoren und/oder
2) Hydros ilyl ierende Verknüpfung von ungesättigten Alkoxysilylgruppen tragenden Polyethern, die zuvor durch eine Alkoxylierung der entsprechenden ungesättigten Startverbin düngen mit epoxyfunktionellen Alkoxysilanen an DMC-Katalysatoren gewonnen wurden. Die silylfunktionalisierten Polyethersiloxane, wie in der Schrift DE 10 2008 044373.5 beschrieben, sind Verbindungen gemäß Formel (3) und deren Mischungen,
Figure imgf000018_0001
:3) wobei X ein linearer, cyclischer oder verzweigter, aliphatischer oder aromatischer, gesättigter oder ungesättigter Kohlenwasserstof f rest mit 1 bis 20 C- Atomen ist, der ggfs. Heteroatome wie Sauerstoff, Stickstoff, Phosphor oder Schwefel enthalten kann, der jedoch vorzugsweise eine Methylgruppe ist,
X1 wahlweise X, X2 oder X3 ist,
X2 ein Alkoxysilylgruppen tragender OH-funktioneller, ggf s . Es ter- oder Carbonat-modif izierter
Polyoxyalkylenrest der Formel (3a) ist, - I i
Figure imgf000019_0001
(3a) - siehe auch Figur 2
X3 ein endständig veretherter Polyoxyalkylenres t der Formel (3b) ist,
Figure imgf000019_0002
:3b)
wobei
R13 wahlweise eine Alkylgruppe mit 1 bis 18 C-Atomen, vorzugsweise Methyl ist, oder ein mit einer monofunktionellen Carbonsäure endständig veresterter Polyoxyalkylenrest der Formel (3c) ist,
Figure imgf000020_0001
(3c:
wobei
R 14 ein gesättigter oder ein ein- oder mehrfach ungesättigter, entweder linearer oder verzweigter, aliphatischer oder aromatischer Kohlenwasserstof f rest mit 1-30 Kohlenstoff atomen ist, der seinerseits OH- Gruppen tragen kann, vorzugsweise ein Methylrest ist,
X4 entweder X1 oder dem Fragment der Formel (3d) entspricht
Figure imgf000020_0002
(3d) wobei k, k1 und k2 unabhängig voneinander ganze Zahlen von 0 bis 500, vorzugsweise von 10 bis 200, insbesondere 15 bis 100 sind, I3, I4, I5, I6, I7 und I8 unabhängig voneinander ganze
Zahlen von 0 bis 60, vorzugsweise von 0 bis 30, insbesondere von 0 bis 25 sind, o eine ganze Zahl von 0 bis 10, vorzugsweise von 0 bis
3 ist, mit der Maßgabe, dass X1 mindestens einmal gleich X2 ist, falls die Summe aus
I3, I5 und I7 Null ist, und dass die Summe aus I3, I5 und I7 mindestens 1 ist, wenn X1 ungleich X2 ist, wobei a eine ganze Zahl von 1 bis 3, vorzugsweise 3 ist, b eine ganze Zahl von 0 bis 2, vorzugsweise 0 bis 1, besonders bevorzugt 0 ist, die Summe von a und b gleich 3 ist, c eine ganze Zahl von 0 bis 22, bevorzugt von 0 bis 6, besonders bevorzugt gleich 1 oder 3 ist, c1 eine ganze Zahl von 0 bis 24, vorzugsweise von 0 bis
12, besonders bevorzugt von 0 bis 8, ganz besonders bevorzugt von 0 bis 4 ist, d eine ganze Zahl von größer 1 bis 1.000, bevorzugt größer 1 bis 100, besonders bevorzugt größer 1 bis 20 und insbesondere größer 1 bis 10 ist, oder größer 10 bis 100 ist, e eine ganze Zahl von 0 bis 10.000, bevorzugt 0 bis
1000, besonders bevorzugt 0 bis 300 und insbesondere
0 bis 100 ist, n eine ganze Zahl von 2 bis 8 ist und f, g, h, i und j jeweils ganze Zahlen von 0 bis 500, bevorzugt 0 bis 300, besonders bevorzugt 0 bis 200, insbesondere 0 bis 100 sind, mit der Maßgabe, dass die Fragmente mit den Indices d bis j untereinander frei permutierbar , d.h. in der Sequenz innerhalb der Polyetherkette gegeneinander austauschbar sind und wobei die verschiedenen Monomereinheiten der Fragmente mit den Indexzahlen d bis j untereinander blockweise aufgebaut sein oder aber auch einer statistischen Verteilung unterliegen können und mit der Maßgabe, dass die Fragmente mit den Indices k, k1, k2, I3, I4, I5, I6, I7, I8 und o untereinander frei permutierbar, d.h. innerhalb der Siloxankette gegeneinander austauschbar sind und wahlweise statistisch verteilt oder blockartig aneinandergereiht vorliegen können.
R stellt einen oder mehrere gleiche oder verschiedene Reste, ausgewählt aus linearen oder verzweigten, gesättigten, einfach oder mehrfach ungesättigten Alkylresten mit 1 bis 20, insbesondere 1 bis 6 Kohlenstoffatomen oder Halogenalkylgruppen mit 1 bis 20 Kohlenstoffatomen dar, bevorzugt eine Methyl-, Ethyl-, Propyl-, Isopropyl-, n-Butyl- oder sek. -Butylgruppe .
R2 oder R3, sowie R5 oder R6 sind gleich oder unabhängig voneinander H oder ein gesättigter oder gegebenenfalls einfach oder mehrfach ungesättigter, auch weiter substituierter, gegebenenfalls ein- oder mehrwertiger Kohlenwasserstoffrest, wobei für die Reste R5 oder R6 gilt, dass sie gleich einem einwertigen Kohlenwasserstoffrest sind. Der Kohlenwassers toffrest kann cycloaliphatisch über das Fragment Y verbrückt sein; Y kann nicht vorhanden sein, oder aber eine Methylenbrücke mit 1 oder 2 Methyleneinheiten sein; ist Y gleich 0, so sind R2 oder R3 unabhängig voneinander gleich ein linearer oder verzweigter Rest mit 1 bis 20, bevorzugt 1 bis 10 Kohlenstoffatomen, besonders bevorzugt ein Methyl-, Ethyl-, Propyl- oder Butyl-, Vinyl-, Allylrest oder Phenylrest. Vorzugsweise ist zumindest einer der beiden Reste in R2 oder R3 Wasserstoff. Die Kohlenwasserstoffreste R2 und R3 können ihrerseits weiter substituiert sein und funktionelle Gruppen wie Halogene, Hydroxylgruppen oder Glycidyloxypropylgruppen tragen.
R4 ist ein linearer oder verzweigter Alkylrest von 1 bis 18 Kohlenstoffatomen, der an einen aromatischen oder cycloaliphatischen Rest gebunden sein kann. R7 und R8 sind unabhängig voneinander entweder Wasserstoff, Alkyl-, Alkoxy-, Aryl- oder Aralkylgruppen . R9, R10, R11 und R12 sind unabhängig voneinander entweder Wasserstoff, Alkyl-, Alkenyl-, Alkoxy-, Aryl- oder Aralkylgruppen, wobei der Kohlenwasserstoffrest cycloaliphat isch oder aromatisch über das Fragment Z verbrückt sein, wobei Z sowohl einen divalenten Alkylen- als auch Alkenylenrest darstellen kann.
Die durch Formel (3) beschriebenen Polyethersiloxane schließen die gegebenenfalls prozessbedingt enthaltenen Nebenprodukte wie freie Über s chu s spo 1 ye the r oder Umlagerungsprodukte mit ein.
Die verschiedenen Monomereinheiten innerhalb der Siloxankette bzw. innerhalb der damit verknüpften
Polyetherkette können untereinander wahlweise blockweise oder statistisch aufgebaut sein. Die in den hier angeführten Formeln wiedergegebenen Indexzahlen und die
Wertebereiche der angegebenen Indizes verstehen sich als die Mittelwerte der möglichen statistischen Verteilung der tatsächlichen isolierten Strukturen und/oder deren
Mischungen. Dies gilt auch für als solche an sich exakt wiedergegebenen Strukturformeln. Die Polyethersiloxane mit Alkoxysilylfunktionalisierung der Formel (3) stellen zumeist kammartig verzweigte Copolymere dar, in denen die
Polyetherketten jeweils über SiC-Bindungen an das
Polysiloxangrundgerüst gebunden sind.
Ebenfalls erfindungsgemäß verwendbar sind lineare Polyether-Siloxan-Polyether-Triblockcopolymere der Formel
(5) , bei denen die mit Alkoxysilylgruppen ausgestatteten
Polyetherketten über eine Si-O-C-Verknüpfung an den
Siloxankörper gebunden sind,
Figure imgf000024_0001
:5) wobei
R' einem oder mehreren gleichen oder verschiedenen linearen oder verzweigten, gesättigten, einfach oder mehrfach ungesättigten Alkylresten mit 1 bis 20, insbesondere 1 bis 10 Kohlenstoffatomen entspricht, und m eine ganze Zahl von 0 bis 5000, bevorzugt 2 bis 5000, besonders bevorzugt von 5 bis 4000 ist und insbesondere 9 bis 3000 ist, und
X7 dem Polyetherfragment der Formel (5a) entspricht.
Figure imgf000024_0002
[5a) - siehe auch Figur 3
Die Substituenten R, R2-R12, die Reste Y und Z sowie die Indizes a, b, c, d, e, f, g, h, i, j und n entsprechen den zuvor für die Verbindungen der Formel (3a) genannten Definitionen .
Ein weiterer Gegenstand der Erfindung sind Emulsionen in denen die Verbindungen der Formeln (1), (3) und/oder (5) jeweils alleine oder in beliebigen Mischungen miteinander eingesetzt werden. Die in den Formeln (3) bis (3d) und (5) sowie (5a) wiedergegebenen Indexzahlen und die Wertbereiche der angegebenen Indizes verstehen sich als die Mittelwerte der möglichen statistischen Verteilung der tatsächlichen vorhandenen Strukturen und/oder deren Mischungen.
Als konventionelle Emulgatoren für die erfindungsgemäßen Präpolymer-Emulsionen kommen prinzipiell sämtliche anionische, nicht-ionische, kationische und amphotere Emulgatoren sowie Emulgatormischungen in Betracht.
Der oder die Mischung der anionische (n) Emulgator (en) kann/können ausgewählt sein aus der Gruppe umfassend Alkylsulfate, Arylsulfonate, Fettalkoholsulfate, Alkylsulfonate, Paraffinsulfonate, Alkylethersulfate, Alkylpolyglykolethersulfate, Fettalkolholethersulfate, Alkylbenzolsulfonate, Alkylnaphthylsulfonaten,
Alkylphenolethersulfate, Alkylphosphate, Phosphorsäure- mono-, di-, tri-Ester, Alkyletherphosphate, ethoxylierte Fettalkoholphosphorsäureester, Alkylphenoletherphosphate, Phosphonsäureester, Sulfobernsteinsäurediester,
Sulfobernsteinsäuremonoester, ethoxylierte
Sulfobernsteinsäuremonoester, Sulfosuccinamide, α-0 le finsul fonate , Al kylcarboxylate , Alkylethercarboxylate, Alkylpolyglykolcarboxylate, Fettsäureisethionat, Fettsäuremethyltaurid, Fettsäuresarkosid, Arylsulfonate, Naphthalinsulfonate, Alkylglycerylethersulfonate, sulfatierte Öle, Polyacrylate und/oder α-Sulfofettsäureester . Der anionische Emulgator kann zum Beispiel Natrium, Kalium, Ammonium, Monoethanolammonium, Triethanolammonium oder sonstige organisch substituierte Ammoniumkationen als Gegenion enthalten. Bevorzugte, anionische Emulgatoren sind Natriumdodecylbenzolsulfonat, Natriumlaurylsulfat und Natriumlaurylethersulfat .
Der oder die kationische (n) Emulgator (en) kann/können ausgewählt sein aus der Gruppe umfassend sowohl primäre, sekundäre als auch tertiäre Amine und deren Salze, Alkyltrimethylammoniumsalze, Dialkyldimethylammoniumsalze, Trialkylmethylammoniumsalze, Tetraalkylammonium- salze, alkoxylierte Alkylammoniumsalze, Esterquats, Diamidoaminquats, Alkyloxyalkylquats, quarternäre Alkylphosphoniumsalze, ternäre Al kyl sul foniumsal ze, Alkylimidazoliumsalze, Alkyloxazoliniumsalze,
Alkylpyridiumsalze oder N, N-Dialkylmorpholiniumsalze . Der kationische Emulgator kann zum Beispiel Chlorid, Bromid, Me thyl sul f at , Sulfat oder dergleichen als Gegenion enthalten .
Der oder die nichtionische (n) Emulgator (en) kann/können ausgewählt sein aus der Gruppe umfassend Alkohole, Fettsäuren, Alkoholethoxylate, Polyoxyethylen- Polyoxypropylenalkylether, Aminalkoxylate,
Fettalkoholpolyglykolether, Fettaminpolyglykolether, Fettsäureethoxylate, Fe ttsäurepolyglykolester, Glyceridmonoalkoxylate, Alkanolamide, Fettsäurealkylolamide, ethoxylierte Alkanolamide, ethoxylierte Ester, beispielsweise Rizinusölethoxylate, Fettsäurealkylolamido-ethoxylate, Ethylenoxid-
Propylenoxid-Blockcopolymere, Alkylphenolethoxylate, Alkylglucoside, partielle Ester aliphatischer Carbonsäuren mit p o 1 y f un k t i o n e 1 len Alkoholen, beispielsweise Sorbitanester, Glycerinester oder Po 1 ygl yce r i ne s t e r , ethoxylierte partielle Ester aliphatischer Carbonsäuren mit po 1 y fun k t i one 1 len Alkoholen, beispielsweise ethoxylierte Sorbitanester, ethoxylierte Glycerinester oder ethoxylierte Polyglycerinester, polyethoxylierte Polystyrolphenyl- ethern, Amide aliphatischer Carbonsäuren mit Al kano 1 ami nen , ethoxylierte Amide aliphatischer Carbonsäuren mit Alkanolaminen und/oder polyalkoxylierten Organopolysiloxanen . Bevorzugte nichtionische Emulgatoren sind Rizinusölethoxylate, Isotridecylalkoholpolyglykolether, Sorbitanester, Ethylenoxid-Propylenoxid-Blockcopolymere, Stearylalkoholethoxylate und Stearinsäureethoxylate .
Weitere bevorzugte Emulgatoren sind Alkoxysilylgruppen tragende Ethylenoxid-Propylenoxid-Blockcopolymere welche nach der Lehre der nicht vorveröffentlichten Schrift DE 10 2008 000360.3 hergestellt werden können.
Der/die amphotere (n) Emulgator (en) kann/können ausgewählt sein aus der Gruppe umf assend Amphoacetate, Amphodiacetate, Glycinate, Amphopropionate, Amphodipropionate, Hydroxysultaine, Aminoxide, Sulfobetaine und/oder Betaine.
Bevorzugte amphotere Emulgatoren sind Betaine und Aminoxide .
Die wässrige Phase der erfindungsgemäßen Emulsionen kann hydrophile Fül l s to f f e zur M odif izierung der
(mechanischen) Eigenschaften von Beschichtungen auf Basis der erfindungsgemäßen Emulsionen enthalten. Vorteilhaft kann es sein, wenn die Oberfläche der eingesetzten
Füllstoffe mindestens eine funktionelle Gruppe aufweist, so dass es nach Eintrocknen beziehungsweise Brechen der
Emulsion zu chemischen Reaktionen zwischen reaktiven funktionellen Gruppen des erfindungsgemäß verwendbaren
Präpolymers mit den funktionellen Gruppen auf der
Partikeloberfläche kommt. Beispiele solcher Füllstoffe sind pyrogene und gefällte Kieselsäure, anorganische
Oxide und Mischoxide wie Aluminiumoxid, Titandioxid und Zirkondioxid, Glas und Quarz, Hydroxide wie Aluminium- und Magnesiumhydroxid, Silicate wie Wollastonit, Glimmer, Kaolin und Talk, Calciumcarbonat und andere Carbonate, Metalle wie Kupfer, Zink und Nickel und Metalllegierungen, Nitride wie Bornitrid, Carbide wie Siliziumcarbid, Graphit und Ruß. Weitere Beispiele solcher Füllstoffe sind organische Partikel, wie zum Beispiel solche auf Basis von Zellulose, Lignin, oxydiertes Polyethylen oder ausgehärtetes Epoxidharz. Die Füllstoffe können entweder als Pulver oder als wässrige Dispersion während oder nach der Herstellung der Emulsion eingerührt werden. Kommerziell erhältliche Beispiele von solchen Dispersionen sind Aerodisp (Evonik Degussa) , Ludox (W. R. Grace) , Dispercoll (Bayer Materials Science) oder Klebosol (Clariant) .
Des Weiteren kann die wässrige Phase Additive zur Modifizierung der rheologischen Eigenschaften der erfindungsgemäßen Emulsionen enthalten. Bevorzugte Beispiele solcher Additive sind Polyurethanverdicker, Xan t hangummi , Guarkernmehl, Carboxymethylzellulose, Polyacrylate , Polyvinylalkohol , Polyvinylpyrrolidon, Carboxyvi ny lpo 1 yme re , Hydr oxyethylzellulose und Polyethylenimine . Zur Unterstützung und/oder Beschleunigung der Kondensationsreaktion können die erfindungsgemäßen Emulsionen Katalysatoren enthalten. Der Katalysator kann je nach Anwendungsbereich und physikalischen Eigenschaften gelöst beziehungsweise dispergiert entweder in der wässrigen Phase oder in dem Präpolymer eingesetzt werden. Insofern es sich um einen wasserunlöslichen Katalysator oder wasserunlösliche, Katalysator enthaltende Lösung handelt, kann der Katalysator oder die Katalysator enthaltende Lösung als separate Dispersion, Emulsion oder Mikroemulsion sowie als separater Feststoff oder Flüssigkeit zu der erfindungsgemäßen Emulsion gegeben werden. Insofern es sich um einen wasserlöslichen Katalysator oder wässerige, Katalysator enthaltende Lösung handelt kann der Katalysator oder die Katalysator enthaltende Lösung, gegebenenfalls mit Hilfe von entsprechenden Emulgatoren, in die Präpolymerphase eingearbeitet werden. Als Katalysatoren für die
Aushärtung d e r e r f i n du n g s g e mä ß e n alkoxysilylgruppentragenden Polyether (siloxane) können die bekannten Polyurethanisierungs-, Allophanatisierungs- oder Biuretisierungskatalysatoren verwendet werden, die dem Fachmann aus dem Stand der Technik bekannt sind.
Hierzu zählen Verbindungen wie beispielsweise die Zinksalze Zinkoctoat, Zinkacetylacetonat und Zink-2- ethylcaproat , oder Tetraalkylammoniumverbindungen, wie N, N, N-Trimethyl-N-2-hydroxypropylammoniumhydroxid, N, N, N- Trimethyl-N-2-hydroxypropylammonium-2-ethylhexanoat oder
Cholin-2-ethylhexanoat verwendet werden. Bevorzugt ist die Verwendung von Zinkoctoat (Zink-2-ethylhexanoat) und der Tetraalkylammoniumverbindungen, besonders bevorzugt diejenige von Zinkoctoat . Weiterhin können als Katalysatoren die üblicherweise verwendeten organischen
Z i nn ve rb i ndunge n , wie z .B. Dibu t y 1 z i nndi 1 aur a t , Dioctyl z inndi laurat, Dibutylzinndiacetylacetonat,
Dibutylz i nn di a c e t a t oder D ibutylzinndioctoat etc., verwendet werden . Des Weiteren können auch Bis mu t k a t a 1 y s a t o r e n , z .B . der B o rchi-Katalysator,
Titanate, z.B. Titan (IV) isopropylat, Eisen(III)-
Verbindungen, z.B. Eisen (III) acetylacetonat, Aluminiumverbindungen, z.B. Aluminiumacetylacetonat, Calcium- verbindungen , z.B. Calciume thylendiaminte traacet at , Magnesiumverbindungen, z.B. Magnes iume thylendiamin- tetraacetat oder auch Amine, z.B. Triethylamin, Tributylamin, 1, 4-Diazabicyclo [2, 2, 2 ] octan, 1,8-
Diazabicyclo[5.4.0] undec-7-en, 1, 5-Diazabicyclo-
[4.3.0]non-5-e n , N , N-Bis- (N, N-dimethyl-2-aminoethyl) - methyl amin , N , N-Dimethylcyclohexylamin, N, N-
Dimethylphenylamin, N-Ethylmorpholin etc., eingesetzt werden. Auch organische oder anorganische Brönstedsäuren wie M e t h a n s u 1 f o n s ä u r e , p-Toluolsulfonsäure,
Dodecylbenzolsulfonsäure, 1-Naphthalinsulfonsäure,
Camphersulfonsäure, Essigsäure, Trifluoressigsäure oder Benzoylchlorid, Salzsäure, Phoshorsäure, deren Mono- und/oder Diester, wie z.B. Butylphosphat,
(Iso-) Propylphosphat , Dibutylphosphat etc., sind als
Katalysatoren geeignet. Auch anorganische und organische
B r ö n s t e d b a s e n w i e z . B . Natriumhydroxid, Tetramethylammoniumhydroxid, Ka 1 i umh ydr o x i d , oder Tetrabutylammoniumhydroxid sind als Katalysatoren geeignet. Selbstverständlich können auch Kombinationen mehrerer Katalysatoren eingesetzt werden. Die erfindungsgemäßen härtbaren Modifizierungsmittel können auch sogenannte photolatente Basen als Katalysatoren enthalten, wie sie in der WO 2005/100482 beschrieben sind. Unter pho t o 1 a t en t en Basen sind vorzugsweise organische Basen mit einem oder mehreren basischen Stickstoffatomen zu verstehen, die zunächst in einer blockierten Form vorliegen und erst nach Bestrahlung mit UV-Licht, sichtbarem Licht oder IR-Strahlung durch Spaltung des Moleküls die basische Form freisetzen. Der Katalysator bzw. die photolatente Base wird in Mengen von 0,001 bis 5,0 Gew.-%, bevorzugt 0,01 bis 1,0 Gew.-% und besonders bevorzugt 0,05 bis 0,5 Gew.-% bezogen auf die alkoxysilylfunktionellen Präpolymere eingesetzt. Der Katalysator bzw. die photolatente Base kann in einer Portion oder aber auch portionsweise oder auch kontinuierlich zugegeben werden. Bevorzugt ist die Zugabe der gesamten Menge in einer Portion.
Des Weiteren kann die Präpolymerphase organofunktionelle und (teilweise) wasserunlösliche Silane zur weiteren Erhöhung der Vernetzungdichte enthalten. Die Silane können gegebenenfalls die Rolle eines Reaktivverdünners übernehmen. Solche organofunktionellen Silane sind zum Beispiel Tetraethoxysilan, Methyltriethoxysilan, N-Cyclohexylaminomethyltrime thoxys i 1 an , N-Cyclohexyl-3- aminopropyltriethoxysilan, 3-Aminopropyltrimethoxysilan, Vinyltrimethoxysilan, Vinyltriethoxysilan, Vinyldi- methoxymethylsilan, 3-Isocyanatopropyltrimethoxysilan, 3- Glycidyloxypropyltrimethoxysilan, 3-Glycidyloxypropyl- triethoxysilan, 3-Methacryloxypropyltrimethoxysilan, Methyltrimethoxysilan, Methyltriethoxysilan, Dimethyldi- methoxysilan, Phenyltriethoxysilan, Octyltrimethoxysilan, Octyltriethoxysilan, und Hexadecyltrimethoxysilan .
Des Weiteren kann die Präpolymerphase organofunktionelle und (teilweise) wasserunlösliche Siloxane enthalten. Solche organofunktionellen Siloxane sind zum Beispiel α, ω-Dihydroxypolydimethylsiloxane, α,ω-Bis- (Trimethoxy- silyl) polydimethylsiloxane und α, ω-Bis- (Triethoxysilyl) - polydimethylsiloxane .
Des Weiteren können die Emulsionen auch aus der Literatur und dem Stand der Technik bekannte Hilfsstoffe zugesetzt werden. Dazu zählen beispielsweise filmbildende PoIy (meth-) acrylate, Silikon/ (Meth-) Acrylat-Copolymere, Poly-N-Acylalkylenimine, Poly-N-Methylpyrrolidone und Silikonharze mit fluorierten organischen Gruppen, Amino- oder S i 1 a n o 1 g r uppe n . Weitere Beispiele sind antimikrobiell e und konservierende Stoffe (z.B. Triclosan, Triclocarban, Hexachlorophen) , Antioxidantien
(z.B. BHA, BHT, Ascorbinsäure und γ-Orizanol) , Dispergiermittel, Entschäumer und Entlüfter, Farbstoffe, Färbemittel und Pigmente, Frostschutzmittel (z.B. Ethanol, Ethylenglykol, 1, 3-Butylenglykol, Propylenglykol, Glycerin oder Isopropanol) , Fungizide, Haftvermittler und/oder Reaktivverdünner sowie Weichmacher (z.B. Phthalate, Benzoate, Phosphatweichmacher) und Komplexbildner (z.B EDTA, Zitronensäure und Etidronsäure sowie deren Salze). Auch Sprühhilfsmittel, Netzmittel, Vitamine, Wuchsstoffe, Hormone sowie Duftstoffe, Lichtschutzmittel, Radikalfänger, UV-Absorber (z.B. Benzophenonderivate, Benzotriazolderivate, Zimtsäureester oder partikuläre UV-Absorber wie beispielsweise ZnO oder TiO2, sowie weitere Stabilisatoren können den Mischungen zugesetzt werden.
Die erfindungsgemäßen Präpolymeremulsionen können als Rohstoff für Lacke, Tinten, Trennmittel, Klebstoffe, kosmetische Produkte, kratzfeste Beschichtungen, Bautenschutzmittel, Korrosionsschutzmittel und/oder Dichtungsmassen eingesetzt werden, zur Beschichtung von Papier, Partikeln, Textil- und Glasfasern, zur Beschichtung von Füllstoffen für Papier, zur Erzeugung von Antistatikoberflächen und/oder als Ausgangsmaterial für die Herstellung von Gummiteilen z.B. auf der Basis von Polypropylenoxid-Kautschuk.
Die erfindungsgemäßen Emulsionen werden nachfolgend beispielhaft beschrieben, ohne dass die Erfindung auf diese beispielhaften Ausführungsformen beschränkt sein soll. Sind nachfolgend Bereiche, allgemeine Formeln oder Verbindungsklassen angegeben, so sollen diese nicht nur die entsprechenden Bereiche oder Gruppen von Verbindungen umfassen, die explizit erwähnt sind, sondern auch alle Teilbereiche und Teilgruppen von Verbindungen, die durch Herausnahmen von einzelnen Werten (Bereichen) oder Verbindungen erhalten werden können. Werden im Rahmen der vorliegenden Beschreibung Dokumente zitiert, so soll deren Inhalt vollständig zum Offenbarungsgehalt der vorliegenden Erfindung gehören. Beispiele :
In den nachfolgenden Beispielen wird die Herstellung von
Emulsionen auf Basis von silylfunktionalisierten Polyether (siloxane) n be s chr i eben . Diese silylfunktionalisierten Polyether (siloxane) sind gemäß dem in den noch nicht offengelegten Schriften DE 10 2008 000360.3 und DE 10 2008 044373.5 nach dem Verfahrensprinzip der DMC-katalysierten Alkoxylierung mit Propylenoxid (PO) und 3-Glycidyloxypropyltriethoxysilan (GIyEO) hergestellt worden. Die Viskosität der Präpolymeren bei 25,0 0C wurde gemessen bei 100 s'1 mit einem Rotationsviskosimeter (Physica MCR301) und Kegel- Platte Geometrie. Die Stabilität der Emulsionen wurde wie folgt beurteilt. Die Emulsion wurde bei Raumtemperatur gelagert und gilt als stabil gegen Aufrahmung und/oder Koaleszenz wenn innerhalb von einer Woche keine deutlichen Anzeichen von Instabilität vorhanden sind. Solche Anzeichen sind zum Beispiel die Bildung von mehreren Schichten oder deutlich sichtbare Fettaugen. Die Stabilität gegen Hydrolyse wurde beurteilt in dem der Alkanolgehalt der Emulsion sowohl direkt nach der Herstellung als auch nach einer Woche Lagerung mittels Gaschromatografie bestimmt wurde. Die Emulsion gilt als hydrolysestabil wenn der Alkanolgehalt unter 0,1% liegt, was gleichzeitig der Detektionsgrenze für den verwendeten Gaschromatograf (Model 6890, Firma Agilent) entspricht.
Triethoxysilylpolyether I : Polyρropylenglykol-ge s t a r t e t e r und fast farbloser, weitgehend statistisch aufgebauter Polyether der mittleren Molmasse von ca. 9000 g/mol und vierfacher Trialkoxysilanfunktionalität .
Chemischer Aufbau gemäß Monomerendosage : PPG500 + 128,5 mol PO + 4 mol GLYEO
Triethoxysilylpolyether II:
Polypropylenglykol-gestarteter und fast farbloser, weitgehend statistisch aufgebauter Polyether der mittleren Molmasse von ca. 16,000 g/mol und vierfacher Trialkoxysilanfunktionalität .
Chemischer Aufbau gemäß Monomerendosage : PPG700 + 123 mol PO + 2 mol GLYEO + 123 mol PO + 2 mol GLYEO
Triethoxysilylpolyethersiloxan III :
Polyethersiloxan-gestarteter und fast farbloser, weitgehend statistisch aufgebauter Polyether der mittleren Molmasse von ca. 9000 g/mol und vierfacher Trialkoxysilanfunktionalität. Das Polyethersiloxan wurde durch Hydrosilylierung von Heptamethyltrisiloxan (HMTS) an einem PoIy (Ethylenoxid-stat-Propylenoxid) -Allylether mit einem Verhältnis Ethylenoxid zu Propylenoxid von 20 zu 80 hergestellt. Das Molekulargewicht des Polyethers betrug 880 Gramm pro Mol.
Chemischer Aufbau gemäß Monomerendosage: Polyethersiloxan + 1,5 mol PO + 2 mol GLYEO + 1,5 mol PO
Triethoxysilylpolyether IV:
Polypropylenglykol-gestarteter und fast farbloser, weitgehend statistisch aufgebauter Polyether der mittleren Molmasse von ca. 20000 g/mol und vierfacher Trialkoxysilanfunktionalität .
Chemischer Aufbau gemäß Monomerendosage: PPG700 + 212 mol PO + 4 mol GLYEO und 101,5 mol PO. Bei spiel 1 :
12,0 Gramm TEGO® Alkanol SlOOP (Stearylalkohol,
Polyoxyethylen (100) Ether, Evonik Goldschmidt GmbH), 3,0 Gramm TEGO® Alkanol TD6 ( Isotridecanol , Polyoxyethylen
(6) Ether, Evonik Goldschmidt GmbH) und 15,0 Gramm Wasser wurden in einem Glasdoppelwandgefäß auf 60 0C aufgeheizt und mit einer Mizerscheibe bei 1000 U/Min gerührt, bis eine homogene, viskose Paste entstand. Unter Zuhilfenahme eines Tropftrichters wurde innerhalb von 30 Minuten 100,0 Gramm des Triethoxysilylpolyether IV tropfenweise in die Paste unter Rühren eingearbeitet. Die fertige Paste wurde 10 Minuten bei 1000 U/Min gerührt. Danach wurde die Paste mit den restlichen 200,0 Gramm Wasser verdünnt. Es entstand die Emulsion.
Die Tropfengrössenverteilung wurde mittels dynamischer Li cht s t reuung (Malvern HPPS mit 633 nm HeNe-Laser) gemessen. Die Auswertung der Korrelationsfunktion mit dem CONTIN-A lgorithmus ergab eine monomodale Tropfengrößenverteilung mit einem durchschnittlichen Radius von 154 nm.
Der E thano lgehal t wurde mittels Gas ehr oma t ogr af ie bestimmt. Sowohl direkt nach der Herstellung als nach 7 Tagen Lagerung bei Raumtemperatur lag der Gehalt unterhalb der Detektionsgrenze (0,1%). Die Emulsion zeigt nach einer Woche Lagerung bei Raumtemperatur keinerlei visuellen Anzeichen der Instabilität.
Beispiel 2:
9,0 Gramm TEGO® Alkanol TD12 (Isotridecylalkohol, Polyoxyethylen (12) Ether), 6,0 Gramm Rewopal® LA3 (Laurylalkohol, Polyoxyethylen (3) Ether) und 20,0 Gramm Wasser wurden in einem Glasdoppelwandgefäß auf 60 0C aufgeheizt und mit einer Mizerscheibe bei 1000 U/Min gerührt, bis eine homogene, viskose Paste entstand. Unter Zuhilfenahme eines Tropftrichters wurde innerhalb von 30 Minuten eine homogene Lösung aus 20, 0 Gramm Octyltriethoxysilan in 80 , 0 Gramm des Triethoxysilylpolyether I tropfenweise in die Paste unter Rühren eingearbeitet. Die fertige Paste wurde 10 Minuten bei 1000 U/Min gerührt. Danach wurde die Paste mit den restlichen 80,0 Gramm Wasser unter Rühren verdünnt. Es entstand die Emulsion. Die Tropfengrössenverteilung wurde gemessen mit dynamischer Lichtstreuung (Malvern HPPS) . Der durchschnittliche Tropfenradius lag bei 116 nm.
Mit einem Ro t a t i ons vi s ko s ime t er (Physica MCR301) , ausgestattet mit Kegel-Platte Geometrie, wurde die Fließkurve der Emulsion gemessen. Die Fließkurve der Emulsion aus Beispiel 2 ist in Figur 4 dargestellt. Die Emulsion ist scherverdünnend. Die Viskosität bei 100 s-1 liegt bei 0,18 Pa-s, d.h. deutlich unterhalb der Viskosität des verwendeten Präpolymers.
Beispiel 3 :
12,0 Gramm TEGO® Alkanol SlOOP (Stearylalkohol, Polyoxyethylen (100) Ether, Evonik Goldschmidt GmbH), 3,0
Gramm TEGO® Alkanol TD6 (Isotridecanol, Polyoxyethylen
(6) Ether, Evonik Goldschmidt GmbH) und 15,0 Gramm Wasser wurden in einem Glasdoppelwandgefäß auf 60 0C aufgeheizt und mit einer Mizerscheibe bei 1000 U/Min gerührt, bis eine homogene, viskose Paste entstand. Unter Zuhilfenahme eines Tropftrichters wurde innerhalb von 30 Minuten 100,0
Gramm des Triethoxysilylpolyether III tropfenweise in die
Paste unter Rühren eingearbeitet. Die fertige Paste wurde
10 Minuten bei 1000 U/Min gerührt. Danach wurde die Paste mit den restlichen 85 , 0 Gramm Wa s s e r un t e r Rühre n verdünnt. Es entstand die Emulsion. Die Tropfengrössenverteilung wurde gemessen mit dynamischer Licht st reuung (Malvern HPPS) . Der durchschnittliche Tropfenradius lag bei 122 nm. Anschließend wurde 10,0 Gramm Aerosil A200 zu der fertigen Emulsion gegeben und eindispergiert durch Rühren bei 2000 U/Min während 10 Minuten .
Beispiel 4:
10,0 Gramm Marion® A315 (Dodecylbenzolsulfonat, Na-SaIz, Sasol Germany GmbH), 15,0 Gr TEGO® Betain F50 (Cocamidopropylbetain, Evonik Goldschmidt GmbH), 7,5 Gramm TEGO® Alkanol TD6 ( Isotridecanol , Polyoxyethylen (6) Ether, Evonik Goldschmidt GmbH) wurden bei Raumtemperatur in einem Kunststoffbecher mit einer Mizerscheibe bei 1000 U/Min gerührt, bis eine homogene, viskose Paste entstand. Unter Zuhilfenahme eines Tropftrichters wurde innerhalb von 30 Minuten 100,0 Gramm des Triethoxysilylpolyether III tropfenweise in die Paste unter Rühren eingearbeitet. Die fertige Paste wurde 10 Minuten bei 1000 U/Min gerührt. Danach wurde die Paste mit 100,0 Gramm Wasser unter Rühren verdünnt. Es entstand die Emulsion. Die Tropfengrössenverteilung wurde gemessen mit dynamischer Li cht s t reuung (Malvern HPPS) . Der durchschnittliche Tropfenradius lag bei 144 nm.
Beispiel 5:
30,0 Gramm Synperonic® PE/F108 (25%ige wässrige Lösung eines EO-PO-EO Triblockcopolymers, Croda) und 7,5 Gramm Pluronic® PE10300 (EO-PO-EO Triblockcopolymer , BASF) wurden bei Raumtemperatur in einem Kunststoffbecher mit einer Mizerscheibe bei 1000 U/Min gerührt, bis eine homogene, viskose Paste entstand. Unter Zuhilfenahme eines Tropftrichters wurde innerhalb von 30 Minuten 100,0 Gramm des Triethoxysilylpolyether IV tropfenweise in die Paste unter Rühren eingearbeitet. Die fertige Paste wurde 10 Minuten bei 1000 U/Min gerührt. Danach wurde die Paste mit 162,5 Gramm Wasser unter Rühren verdünnt. Es entstand die Emulsion. Die Tropfengrössenverteilung wurde gemessen mit dynamischer Li cht s t reuung (Malvern HPPS) . Der durchschnittliche Tropfenradius lag bei 251 nm, wobei ein gewisser Grobanteil (Tropfenradius > 1 Mikrometer) erkennbar war.
Der Ethanolgehalt wurde mittels Gaschromatografie bestimmt. Sowohl direkt nach der Herstellung als nach 7 Tagen Lagerung bei Raumtemperatur lag der Gehalt unterhalb der Detektionsgrenze (0,1%). Die Emulsion zeigt nach einer Woche Lagerung bei Raumtemperatur trotz Grobanteil keine visuellen Anzeichen der Instabilität.

Claims

Patentansprüche :
1. Stabile, hydrolysebeständige wässrige Emulsionen enthaltend silylfunktionalisierte Polyether und/oder silylfunktionalisierte Polyethersiloxane mit jeweils mindestens einer nicht-terminalen Silylfunktion im Molekül .
2. Emulsionen nach Anspruch 1, dadurch gekennzeichnet, dass als silylfunktionalisierte Polyether
Verbindungen der Formel (1)
Figure imgf000039_0001
Formel (1)
wobei a eine ganze Zahl von 1 bis 3 ist, b eine ganze Zahl von 0 bis 2 ist, und die Summe von a und b gleich 3 ist, c eine ganze Zahl von 0 bis 22 ist, d eine ganze Zahl von 1 bis 1.000 ist, e eine ganze Zahl von 0 bis 10.000 ist, f eine ganze Zahl von 0 bis 1.000 ist, g eine ganze Zahl von 0 bis 1.000 ist, h, i und j ganze Zahlen von 0 bis 500 ist, und mit der Maßgabe, dass die Fragmente mit den In- dices d bis j untereinander frei permutierbar , d.h. in der Sequenz innerhalb der Polyetherkette gegeneinander austauschbar sind n eine ganze Zahl zwischen 2 und 8 ist und R einen oder mehrere gleiche oder verschiedene Reste, ausgewählt aus linearen oder verzweigten, gesattigten, einfach oder mehrfach ungesättigten Alkylresten mit 1 bis 20 Kohlenstoffatomen oder
Halogenalkylgruppen mit 1 bis 20 Kohlenstoffatomen darstellt, und R1 gleich einem gesattigten oder ungesättigten, gegebenenfalls verzweigten Rest, oder einen
Polyetherrest vom Typ einer Alkoxy-, Arylalkoxy- oder Alkylarylalkoxygruppe darstellt, bei der die Kohlenstoffkette durch Saue rstoffatome unterbrochen sein kann, oder eine ggf. einfach oder mehrfach annelierte aromatische Aryloxy-
Gruppe ist, oder eine siliciumhaltige Verbindung oder ein Siloxanrest oder (PoIy) siloxanrest ist, der alkyl- und/oder arylgruppensubstituiert sein kann, R2 oder R3, sowie Rς oder R6 gleich oder auch unabhängig voneinander H oder ein gesättigter oder gegebenenfalls einfach oder mehrfach ungesättigter, auch weiter substituierter, gegebenenfalls ein- oder mehrwertiger Kohlenwasserstoffrest, wobei für die Reste R5 oder R6 gilt, dass sie gleich einem einwertigen Kohlenwasserstoffrest sind, wobei der Kohlenwasserstoffrest cycloaliphatisch über das Fragment Y verbruckt sein kann; Y kann nicht vorhanden sein, oder aber eine Methylenbrucke mit
1 oder 2 Methyleneinheiten sein, ist Y nicht vorhanden, so sind R2 oder R3 unabhängig voneinander gleich ein linearer oder verzweigter Rest mit 1 bis 20 Kohlenstoffatomen, R4 entspricht einem linearen oder verzweigten Alkylrest von 1 bis 24 Kohlenstoffatomen oder einem aromatischen oder cycloaliphatischen Rest, der gegebenenfalls seinerseits Alkylgruppen tragen kann,
R7 und R8 sind unabhängig voneinander entweder Wasserstoff, Alkyl-, Alkoxy-, Aryl- oder
Aralkylgruppen, die unter Ringöffnungspolymerisation zu vernetzbaren, Alkoxysilangruppen enthaltenden Polyetherestern copolymerisiert werden, R9, R10, R11 und R12 sind unabhängig voneinander entweder Wasserstoff, Alkyl-, Alkenyl-, Alkoxy-, Aryl- oder Aralkylgruppen wobei der Kohlenwasserstoffrest cycloaliphatisch oder aromatisch über das Fragment Z verbrückt sein kann und Z sowohl einen divalenten Alkylen- als auch Alkenylenrest darstellen kann, allein oder im Gemisch miteinander verwendet werden.
3. Emulsionen nach Anspruch 2, dadurch gekennzeichnet, dass Zusammensetzungen enthalten sind, in denen die
Summe der Indices (a) plus (b) in Formel (1) im statistischen Mittel kleiner als 3 ist, da durch Umesterungsreaktionen ein Teil der OR-Gruppen durch Silylpolyethergruppen ersetzt wird.
4. Emulsionen nach Anspruch 2 oder 3 dadurch gekennzeichnet, dass R1 ein (PoIy-) Siloxanrest ist.
5. Emulsionen nach Anspruch 4 dadurch gekennzeichnet, dass als ( PoIy-) Siloxanrest enthaltende Verbindung ein alkoxysilylfunktionelles Polyethersiloxan gemäß Formel (3) und deren Mischungen verwendet wird,
Figure imgf000042_0001
o: wobei
X ein linearer, cyclischer oder verzweigter, aliphatischer oder aromatischer, gesättigter oder ungesättigter Kohlenwasserstoffrest mit 1 bis 20 C-Atomen ist, der Heteroatome wie Sauerstoff, Stickstoff, Phosphor oder Schwefel enthalten kann,
XI wahlweise X, X2 oder X3 ist,
X2 ein Alkoxysilylgruppen tragender OH-funktioneller Polyoxyal kylenres t der Formel (3a) ist, der Ester- oder Carbonat-modifiziert sein kann,
Figure imgf000042_0002
(3a; X3 ein endständig veretherter Polyoxyalkylenrest der Formel (3b) ist,
Figure imgf000043_0001
(3b) wobei
R einen oder mehrere gleiche oder verschiedene Reste, ausgewählt aus linearen oder verzweigten, gesättigten, einfach oder mehrfach ungesättigten Alkylresten mit 1 bis 20 Kohlenstoffatomen oder Hal ogenal kylg r u p p e n m i t 1 b i s 2 0
Kohlenstoffatomen darstellt,
R2 oder R3, sowie R5 oder R6 gleich oder unabhängig voneinander H oder ein gesättigter oder gegebenenfalls einfach oder mehrfach ungesättigter, auch weiter substituierter, gegebenenfalls ein- oder mehrwertiger Kohlenwasserstoffrest sind, wobei für die Reste R5 oder R6 gilt, dass sie gleich einem einwertigen Kohlenwasserstoffrest sind und der Kohlenwasserstoffrest cycloaliphatisch über das
Fragment Y verbrückt sein kann; Y kann nicht vorhanden sein, oder aber eine Methylenbrücke mit 1 oder 2 Methyleneinheiten sein; ist Y gleich 0, so sind R2 oder R3 unabhängig voneinander gleich ein linearer oder verzweigter Rest mit 1 bis 20
Kohlenstoffatomen; die Kohlenwasserstoffreste R2 und R3 können ihrerseits weiter substituiert sein und funktionelle Gruppen wie Halogene, Hydroxylgruppen oder Glycidyloxypropylgruppen tragen; R4 ist ein linearer oder verzweigter Alkylrest von 1 bis 18 Kohlenstoff atomen, der an einen aromatischen oder cycloaliphatischen Rest gebunden sein kann,
R7 und R8 sind unabhängig voneinander entweder Wasserstoff, Alkyl-, Alkoxy-, Aryl- oder
Aralkylgruppen,
R9, R10, R11 und R12 sind unabhängig voneinander entweder Wasserstoff, Alkyl-, Alkenyl-, Alkoxy-, Aryl- oder Aralkylgruppen, wobei der Kohlenwasserstof f rest cycloaliphatisch oder aromatisch über das Fragment Z verbrückt sein kann, wobei Z sowohl einen divalenten Alkylen- als auch Alkenylenrest darstellen kann;
R13 ist wahlweise eine Alkylgruppe mit 1 bis 18 C- Atomen, oder ein mit einer monofunktionellen
Carbon s äure ends tändig ve re s te rter Polyoxyalkylenrest der Formel (3c) ,
Figure imgf000044_0001
(3c) wobei
R14 ein gesättigter oder ein ein- oder mehrfach ungesättigter, entweder linearer oder verzweigter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1-30 Kohlenstoffatomen ist, der seinerseits OH-Gruppen tragen kann, und
X4 entweder X1 oder dem Fragment der Formel (3d) entspricht,
Figure imgf000045_0001
(3d) wobei k, k1 und k2 unabhängig voneinander ganze Zahlen von 0 bis 500 sind, I3, I4, I5, I6, I7 und I8 unabhängig voneinander ganze
Zahlen von 0 bis 60 sind, o eine ganze Zahl von 0 bis 10 ist, mit der Maßgabe, dass X1 mindestens einmal gleich X2 ist, falls die Summe aus I3, I5 und I7 Null ist, und dass die Summe aus I3, I5 und I7 mindestens 1 ist, wenn X1 ungleich X2 ist, wobei a eine ganze Zahl von 1 bis 3 ist, b eine ganze Zahl von 0 bis 2 ist, die Summe von a und b gleich 3 ist, c eine ganze Zahl von 0 bis 22 ist, c1 eine ganze Zahl von 0 bis 24 ist, d eine ganze Zahl von 1 bis 500 ist, e eine ganze Zahl von 0 bis 5000 ist, n eine ganze Zahl von 2 bis 8 ist und f, g, h, i und j jeweils ganze Zahlen von 0 bis 500 sind, mit der Maßgabe, dass die Fragmente mit den Indices d bis j untereinander frei permutierbar, in der Sequenz innerhalb der P o 1 y e t he r ke t t e gegeneinander austauschbar sind und wobei die verschiedenen Monomereinheiten der Fragmente mit den Indexzahlen d bis j untereinander blockweise aufgebaut sein oder aber auch einer statistischen Verteilung unterliegen können und mit der Maßgabe, dass die Fragmente mit den Indices k, k1, k2, I3, I4, I5, I6, I7, I8 und o untereinander frei permutierbar, innerhalb der Siloxankette gegeneinander austauschbar sind und wahlweise statistisch verteilt oder blockartig aneinandergereiht vorliegen können.
6. Emulsionen nach zumindest einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass lineare Polyether-Siloxan-Polyether-Triblockcopoly me r e der Formel (5) enthalten sind, bei denen die mit Alkoxysilylgruppen ausgestatteten Polyetherketten über eine Si-O-C-Verknüpfung, an den Siloxankörper gebunden sind,
Figure imgf000046_0001
:5) wobei
R' einem oder mehreren gleichen oder verschiedenen linearen oder verzweigten, gesättigten, einfach oder mehrfach ungesättigten Alkylresten mit 1 bis 20 Kohlenstoffatomen entspricht, und m eine ganze Zahl von 0 bis 5000 ist, und
X dem Polyetherfragment der Formel (5a) entspricht,
Figure imgf000047_0001
!5a)
wobei die Substituenten R, R2-R12, die Reste Y und Z sowie die Indizes a, b, c, d, e, f, g, h, i, j und n den zuvor für die Verbindungen der Formel (3a) genannten Definitionen entsprechen und die durch Formel (3) beschriebenen Po lye ther s i 1 oxane die gegebenenfalls prozessbedingt enthaltenen
Nebenprodukte wie freie Überschusspolyether oder Umlagerungsprodukte mit einschließen.
7. Emulsionen nach einem der Ansprüche 2, 5 oder 6, dadurch gekennzeichnet, dass Verbindungen der Formeln
(1) , (5) und/oder (6) allein oder im Gemisch miteinander verwendet werden.
Emulsionen nach zumindest einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Emulgatoren anionische, nicht-ionische, kationische und amphotere Emulgatoren sowie Emulga t ormi schungen verwendet werden .
9. Emulsionen nach zumindest einem der Ansprüche 1 bis
8, dadurch gekennzeichnet, dass die Emulsionen Verbindungen ausgewählt aus den Gruppen der Katalysatoren, photolatente Basen, Additive zur Modifizierung der rheologischen Eigenschaften, hydrophile Füllstoffe, organof unktionelle und/oder teillösliche und/oder wasserunlösliche Silane und/oder Siloxane, Hilfsstoffe, filmbildende Stoffe, antimikrobielle und konservierende Stoffe, Dispergiermittel, Entschäumer und Entlüfter, Farbstoffe, Färbemittel und Pigmente, Frostschutzmittel Fungizide, Haftvermittler und/oder Reaktivverdünner, Weichmacher und Komplexbildner, Sprühhilfsmittel, Netzmittel, Vitamine, Wuchsstoffe, Hormone und/oder Duftstoffe, Lichtschutzmittel, Radikalfänger, UV-Absorber, weitere Stabilisatoren enthalten.
10. Verwendung der Emulsionen nach zumindest einem der Ansprüche 1 bis 9 als Rohstoffe für Lacke, Tinten, Trennmittel, Klebstoffe, kosmetische Produkte, kratzfeste Beschichtungen, Bautenschutzmittel, Korrosionsschutzmittel und/oder Dichtungsmassen, zur Beschichtung von Papier, Partikeln, Textil- und Glasfasern, zur Beschichtung von Füllstoffen für Papier, zur Erzeugung von Antistatikoberflächen und/oder als Ausgangsmaterial für die Herstellung von Gummiteilen auf der Basis von Polypropylenoxid.
PCT/EP2010/055495 2009-05-25 2010-04-26 Emulsionen auf basis silylgruppen tragender hydroxylverbindungen WO2010136279A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/322,475 US8772423B2 (en) 2009-05-25 2010-04-26 Emulsions based on hydroxyl compounds bearing silyl groups
EP10719302A EP2435503B1 (de) 2009-05-25 2010-04-26 Emulsionen auf basis silylgruppen tragender hydroxylverbindungen
CN2010800229576A CN102449032A (zh) 2009-05-25 2010-04-26 基于带有甲硅烷基的羟基化合物的乳液
PL10719302T PL2435503T3 (pl) 2009-05-25 2010-04-26 Emulsje na bazie związków hydroksylowych niosących grupy silylowe
JP2012511218A JP2012528203A (ja) 2009-05-25 2010-04-26 シリル基を有するヒドロキシル化合物をベースとするエマルジョン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009022630A DE102009022630A1 (de) 2009-05-25 2009-05-25 Emulsionen auf Basis Silylgruppen tragender Hydroxylverbindungen
DE102009022630.3 2009-05-25

Publications (1)

Publication Number Publication Date
WO2010136279A1 true WO2010136279A1 (de) 2010-12-02

Family

ID=42734667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/055495 WO2010136279A1 (de) 2009-05-25 2010-04-26 Emulsionen auf basis silylgruppen tragender hydroxylverbindungen

Country Status (7)

Country Link
US (1) US8772423B2 (de)
EP (1) EP2435503B1 (de)
JP (1) JP2012528203A (de)
CN (1) CN102449032A (de)
DE (1) DE102009022630A1 (de)
PL (1) PL2435503T3 (de)
WO (1) WO2010136279A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354177A1 (de) * 2010-02-03 2011-08-10 Evonik Goldschmidt GmbH Partikel und Kompositpartikel, deren Verwendungen und ein Verfahren zu deren Herstellung aus Alkoxysilylgruppen tragenden Alkoxylierungsprodukten
EP2415796A1 (de) * 2010-08-02 2012-02-08 Evonik Goldschmidt GmbH Modifizierte Alkoxylierungsprodukte mit mindestens einer nicht-terminalen Alkoxysilylgruppe und deren Verwendung in härtbaren Massen mit erhöhter Lagerstabilität und Dehnbarkeit
EP2415797A1 (de) * 2010-08-02 2012-02-08 Evonik Goldschmidt GmbH Modifizierte Alkoxylierungsprodukte, die zumindest eine nicht-terminale Alkoxysilylgruppe aufweisen
US10287448B2 (en) 2016-07-08 2019-05-14 Evonik Degussa Gmbh Universal pigment preparation
US10414871B2 (en) 2016-11-15 2019-09-17 Evonik Degussa Gmbh Mixtures of cyclic branched siloxanes of the D/T type and conversion products thereof

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028640A1 (de) 2009-08-19 2011-02-24 Evonik Goldschmidt Gmbh Härtbare Masse enthaltend Urethangruppen aufweisende silylierte Polymere und deren Verwendung in Dicht- und Klebstoffen, Binde- und/oder Oberflächenmodifizierungsmitteln
DE102009028636A1 (de) * 2009-08-19 2011-02-24 Evonik Goldschmidt Gmbh Neuartige Urethangruppen enthaltende silylierte Präpolymere und Verfahren zu deren Herstellung
DE102011076019A1 (de) 2011-05-18 2012-11-22 Evonik Goldschmidt Gmbh Alkoxylierungsprodukte und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren
US20140141262A1 (en) * 2011-06-29 2014-05-22 Sun Chemical Corporation Vinyl alcohol polymers with silane side chains and compositions comprising the same
DE102011109614A1 (de) 2011-08-03 2013-02-07 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von verzweigten Polyethercarbonaten und ihre Verwendung
DE102011109540A1 (de) 2011-08-03 2013-02-07 Evonik Goldschmidt Gmbh Alkylcarbonat endverschlossene Polyethersilioxane und Verfahren zu deren Herstellung
DE102011088787A1 (de) 2011-12-16 2013-06-20 Evonik Industries Ag Siloxannitrone und deren Anwendung
DE102012202521A1 (de) 2012-02-20 2013-08-22 Evonik Goldschmidt Gmbh Verzweigte Polysiloxane und deren Verwendung
DE102012203737A1 (de) * 2012-03-09 2013-09-12 Evonik Goldschmidt Gmbh Modifizierte Alkoxylierungsprodukte, die zumindest eine nicht-terminale Alkoxysilylgruppe aufweisen und mehrere Urethangruppen enthalten und deren Verwendung
WO2014134714A2 (en) 2013-03-07 2014-09-12 Switch Materials Inc. Seal and seal system for a layered device
DE102013206175A1 (de) 2013-04-09 2014-10-09 Evonik Industries Ag Polysiloxan-Polyether-Copolymere mit Amino- und/oder quaternären Ammoniumgruppen im Polyetherteil und Verfahren zu deren Herstellung
DE102013208328A1 (de) 2013-05-07 2014-11-13 Evonik Industries Ag Polyoxyalkylene mit seitenständigen langkettigen Acyloxyresten und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren
DE102013216787A1 (de) 2013-08-23 2015-02-26 Evonik Degussa Gmbh Guanidingruppen aufweisende semi-organische Siliciumgruppen enthaltende Verbindungen
DE102013216751A1 (de) 2013-08-23 2015-02-26 Evonik Industries Ag Modifizierte Alkoxylierungsprodukte, die Alkoxysilylgruppen aufweisen und Urethangruppen enthalten und deren Verwendung
DE102013218134A1 (de) 2013-09-11 2015-03-12 Evonik Industries Ag Beschichtungsmittel enthaltend Polysiloxan-Quats
EP3084519A4 (de) 2013-12-19 2017-08-16 Switch Materials, Inc. Schaltbare objekten und verfahren zur herstellung
DE102013226568A1 (de) 2013-12-19 2015-06-25 Evonik Industries Ag Silicon(meth-)acrylat-Partikel, Verfahren zu deren Herstellung sowie deren Verwendung
DE102014209355A1 (de) 2014-05-16 2015-11-19 Evonik Degussa Gmbh Guanidinhaltige Polyoxyalkylene und Verfahren zur Herstellung
DE102014209408A1 (de) 2014-05-19 2015-11-19 Evonik Degussa Gmbh Ethoxylatherstellung unter Verwendung hoch aktiver Doppelmetallcyanid-Katalysatoren
DE102014213507A1 (de) 2014-07-11 2016-01-14 Evonik Degussa Gmbh Platin enthaltende Zusammensetzung
DE102014215384A1 (de) 2014-08-05 2016-02-11 Evonik Degussa Gmbh Stickstoffhaltige Verbindungen, geeignet zur Verwendung bei der Herstellung von Polyurethanen
DE102014217530A1 (de) 2014-09-02 2016-03-03 Beiersdorf Ag Transparentes Mehrphasensystem
EP3020749B1 (de) 2014-11-12 2020-09-30 Evonik Operations GmbH Verfahren zur herstellung von platin enthaltenden zusammensetzungen
US9328259B1 (en) * 2015-02-09 2016-05-03 Wacker Chemical Corporation Elastomeric silicone emulsion for coating applications
US10422074B2 (en) 2015-03-10 2019-09-24 Evonik Degussa Gmbh Carbon fibre fibre-sizing containing nanoparticles
PL3168273T3 (pl) 2015-11-11 2018-10-31 Evonik Degussa Gmbh Polimery utwardzalne
DK3202816T3 (en) * 2016-02-04 2019-01-21 Evonik Degussa Gmbh ALCOXYSILYLY ADHESIVE TENSIONS WITH IMPROVED TIRE STRENGTH
EP3272331B1 (de) 2016-07-22 2018-07-04 Evonik Degussa GmbH Verfahren zur herstellung von siloxanen enthaltend glycerinsubstituenten
EP3415548B1 (de) 2017-06-13 2020-03-25 Evonik Operations GmbH Verfahren zur herstellung sic-verknüpfter polyethersiloxane
EP3415547B1 (de) 2017-06-13 2020-03-25 Evonik Operations GmbH Verfahren zur herstellung sic-verknüpfter polyethersiloxane
EP3438158B1 (de) 2017-08-01 2020-11-25 Evonik Operations GmbH Herstellung von sioc-verknüpften polyethersiloxanen
EP3461864A1 (de) 2017-09-28 2019-04-03 Evonik Degussa GmbH Härtbare zusammensetzung auf basis von polysiloxanen
EP3467006B1 (de) 2017-10-09 2022-11-30 Evonik Operations GmbH Mischungen zyklischer-verzweigter siloxane vom d/t-typ und deren folgeprodukte
EP3492513B1 (de) 2017-11-29 2021-11-03 Evonik Operations GmbH Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen
EP3524651A1 (de) 2018-02-08 2019-08-14 Evonik Degussa GmbH Wässrige polyorganosiloxanhybridharz-dispersion
EP3611215A1 (de) 2018-08-15 2020-02-19 Evonik Operations GmbH Verfahren zur herstellung acetoxygruppen-tragender siloxane
EP3611214A1 (de) 2018-08-15 2020-02-19 Evonik Operations GmbH Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere
EP3663346B1 (de) 2018-12-04 2023-11-15 Evonik Operations GmbH Reaktivsiloxane
EP3744754A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung acetoxygruppen-tragender siloxane
EP3744756A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Acetoxysysteme
EP3744760A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen
EP3744763A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Massgeschneiderte sioc basierte polyethersiloxane
EP3744774B1 (de) 2019-05-28 2021-09-01 Evonik Operations GmbH Verfahren zum recycling von silikonen
EP3744762A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung von polyoxyalkylen polysiloxan blockpolymerisaten
EP3744755A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung acetoxygruppen-tragender siloxane
EP3744753B1 (de) 2019-05-28 2022-04-06 Evonik Operations GmbH Verfahren zur aufreinigung von acetoxysiloxanen
EP3744759A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen
EP3816247B1 (de) 2019-10-28 2022-12-07 Evonik Operations GmbH Härtermischung
ES2924476T3 (es) 2020-01-08 2022-10-07 Evonik Operations Gmbh Formulación y su uso como antiespumante
EP3885096B1 (de) 2020-03-27 2024-02-14 Evonik Operations GmbH Stoffliche wiederverwertung silikonisierter flächengebilde
CN112143234B (zh) * 2020-09-11 2022-09-27 内蒙古恒业成有机硅有限公司 一种具有优异脱模性的高温硫化硅橡胶
US11732092B2 (en) 2020-10-19 2023-08-22 Evonik Operations Gmbh Upcycling process for processing silicone wastes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533333A1 (de) * 2003-11-18 2005-05-25 Goldschmidt GmbH Emulgatorfreie Öl in Wasser-Emulsionen von Organopolysiloxanen und deren Verwendung in technischen Anwendungen
EP1892327A1 (de) * 2006-08-25 2008-02-27 Evonik Goldschmidt GmbH Verwendung von polyethermodifizierten Siloxanblockcopolymeren als hydrophile silikonhaltige Weichmacher für Gewebe, Non-wovens und/oder Fasern aus natürlichen und/oder synthetischen Rohstoffen

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1745526B2 (de) 1967-03-16 1980-04-10 Union Carbide Corp., New York, N.Y. (V.St.A.) Verfahren zur Herstellung vulkanisierbarer, unter wasserfreien Bedingungen beständiger Polymerisate
US3627722A (en) 1970-05-28 1971-12-14 Minnesota Mining & Mfg Polyurethane sealant containing trialkyloxysilane end groups
US3941733A (en) 1975-01-02 1976-03-02 Minnesota Mining And Manufacturing Company Silanol-containing urethane dispersions
US4376149A (en) 1980-07-18 1983-03-08 Sws Silicones Corporation Silicone polymer compositions
JPS61148284A (ja) * 1984-12-21 1986-07-05 Toray Silicone Co Ltd 固体材料処理剤
JPH01318066A (ja) 1988-06-16 1989-12-22 Toshiba Silicone Co Ltd ポリエーテル水性エマルジョン組成物
US5068304A (en) 1988-12-09 1991-11-26 Asahi Glass Company, Ltd. Moisture-curable resin composition
DE4215648C2 (de) 1992-05-13 1994-12-15 Henkel Kgaa Verwendung einer wäßrigen Dispersion oder Lösung eines Polyurethans
DE4239246C1 (de) 1992-11-21 1993-12-16 Goldschmidt Ag Th Verfahren zur Herstellung von SiH-Gruppen aufweisenden Organopolysiloxanen
ES2120523T3 (es) 1993-02-25 1998-11-01 Goldschmidt Ag Th Organopolisiloxano-polieteres y su empleo como agentes de reticulacion estables a la hidrolisis en sistemas acuosos.
DE4313130C1 (de) 1993-04-22 1994-05-26 Goldschmidt Ag Th Verfahren zur Herstellung von Silanen bzw. Organosiliciumhydriden durch Reduktion der entsprechenden Siliciumhalogenide bzw. Organosiliciumhalogenide
DE4320920C1 (de) 1993-06-24 1994-06-16 Goldschmidt Ag Th Silane mit hydrophilen Gruppen, deren Herstellung und Verwendung als Tenside in wäßrigen Medien
DE4330059C1 (de) 1993-09-06 1994-10-20 Goldschmidt Ag Th Silane mit hydrophilen Gruppen, deren Herstellung und Verwendung als Tenside in wäßrigen Medien
DE4343235C1 (de) 1993-12-17 1994-12-22 Goldschmidt Ag Th Verwendung von organofunktionell modifizierten Polysiloxanen zum Entschäumen von Dieselkraftstoff
DE4415556C1 (de) 1994-04-27 1995-06-01 Goldschmidt Ag Th Organosilyl- bzw. Organosiloxanyl-Derivate von Glycerinethern und deren Verwendung
JP2907726B2 (ja) * 1994-07-20 1999-06-21 株式会社日本触媒 反応性乳化剤および水性組成物
WO1996034030A1 (en) 1995-04-25 1996-10-31 Minnesota Mining And Manufacturing Company Polydiorganosiloxane oligourea segmented copolymers and a process for making same
JPH0971724A (ja) * 1995-09-05 1997-03-18 Nippon Shokubai Co Ltd 吸水防止剤
DE19533062A1 (de) 1995-09-07 1997-03-13 Goldschmidt Ag Th Strahlenhärtende Druckfarben mit verbesserter Kratzfestigkeit und Gleitfähigkeit
JP3636817B2 (ja) 1995-11-30 2005-04-06 ゴルトシュミット アクチエンゲゼルシャフト ポリシロキサン−ポリオキシエチレン−ポリオキシプロピレン−トリブロックコポリマーおよび該コポリマーを含有する消泡化合物
US6297331B1 (en) 1996-06-22 2001-10-02 Th. Goldschmidt Ag Organosiloxanyl derivatives of alkanediol monovinyl ethers, process for their preparation, their modification and their use as paint additives
DE59705526D1 (de) 1996-10-11 2002-01-10 Goldschmidt Ag Th Siliconpoly(meth)acrylate, deren Herstellung und deren Verwendung in Beschichtungen
DE19648637A1 (de) 1996-11-25 1998-06-04 Goldschmidt Ag Th Verfahren zur Herstellung von alpha,omega-Alkenolen
DE19649844C1 (de) 1996-12-02 1997-12-18 Goldschmidt Ag Th Mit Acrylatgruppen modifizierte Organosiloxanylderivate von Alkandiolmonovinylethern, Verfahren zu deren Herstellung und deren Verwendung als strahlenhärtbare Bindemittel
EP0918062B1 (de) 1997-04-21 2004-02-18 Asahi Glass Company Ltd. Bei raumtemperatur härtende zusammensetzungen
DE19850507C1 (de) 1998-11-03 2000-05-04 Goldschmidt Ag Th Verfahren zur Herstellung von Acrylsäureestern und/oder Methacrylsäureestern von hydroxyfunktionellen Siloxanen und/oder polyoxyalkylenmodifizierten Siloxanen und deren Verwendung
FR2786336B1 (fr) 1998-11-20 2004-12-03 Matsushita Electric Ind Co Ltd Moteur sans balai et son procede d'assemblage
US6124387A (en) 1998-12-22 2000-09-26 Adco Products, Inc. Fast-cure silylated polymer adhesive
DE19859759C1 (de) 1998-12-23 2000-06-29 Goldschmidt Ag Th Verfahren und Vorrichtung zur Durchführung kontinuierlicher Hydrosilylierungsreaktionen
DE19904603A1 (de) 1999-02-05 2000-08-10 Goldschmidt Ag Th Aminoxidgruppen enthaltende Maleinsäureanhydrid-Copolymere und ihre Verwendung als Dispergiermittel für Pigmente oder Füllstoffe
CA2298240C (en) 1999-02-24 2007-08-21 Goldschmidt Ag Synergistic catalyst system and process for carrying out hydrosilylation reactions
DE19910975A1 (de) 1999-03-09 2000-09-21 Goldschmidt Ag Th Carbonatgruppen enthaltende, mit linearen Polyestern modifizierte Polysiloxane und ihre Verwendung als Zsatzstoffe in Beschichtungen
DE19917186C1 (de) 1999-04-16 2000-09-21 Goldschmidt Ag Th Mittel zur Entschäumung wäßriger Medien und dessen Verwendung
ATE276029T1 (de) 1999-05-14 2004-10-15 Goldschmidt Ag Th Verwendung wasserunlöslicher polyoxyalkylen- polysiloxan-blockmischcopolymerisate zur entschäumung wässriger medien
DE19922218A1 (de) 1999-05-14 2001-02-15 Goldschmidt Ag Th Verwendung wasserunlöslicher poly(oxy-1,4-butandiyl)haltiger Polyoxyalkylen-Polysiloxan-Blockmischcopolymerisate zur Entschäumung wäßriger Medien
ATE281223T1 (de) 1999-05-14 2004-11-15 Goldschmidt Ag Th Verwendung wasserunlöslicher polyoxyarylen- polysiloxan-blockmischcopolymerisate zur entschäumung wässriger medien
DE19938759A1 (de) 1999-08-16 2001-02-22 Basf Coatings Ag Beschichtungsstoff und seine Verwendung zur Herstellung hochkratzfester mehrschichtiger Klarlackierungen
DE19940797A1 (de) 1999-08-27 2001-03-01 Goldschmidt Ag Th Durch Akoxylierung erhaltene blockcopolymere, styrenoxidhaltige Polyalkylenoxide und deren Verwendung
DE10011564C1 (de) 2000-03-09 2001-09-27 Goldschmidt Ag Th Verfahren zur Herstellung von Polyorganosiloxanemulsionen
DE10024776C1 (de) 2000-05-19 2001-09-06 Goldschmidt Ag Th Verwendung von Metallhydrid-behandeltem Zink in der metallorganischen Synthese
US6713558B2 (en) 2001-07-13 2004-03-30 Dow Corning Corporation High solids emulsions of silylated elastomeric polymers
DE10207891A1 (de) 2002-02-23 2003-09-04 Goldschmidt Ag Th Verzweigte Polyurethane, diese enthaltende Formulierungen und deren Verwendung zur Verdickung wässriger Systeme
DE50200638D1 (de) 2002-04-16 2004-08-19 Goldschmidt Ag Th Verwendung von mit Oxyalkylenethergruppen modifizierten Epoxypolysiloxanen als Additive für strahlenhärtende Beschichtungen
DE10232115A1 (de) 2002-07-16 2004-02-05 Goldschmidt Ag Organopolysiloxane zur Entschäumung wässriger Systeme
DE10232908A1 (de) 2002-07-19 2004-01-29 Goldschmidt Ag Verwendung organfunktionell modifizierter, Phenylderivate enthaltender Polysiloxane als Dispergier- und Netzmittel für Füllstoffe und Pigmente in wässrigen Pigmentpasten und Farb- oder Lackformulierungen
ES2213728T3 (es) 2002-09-26 2004-09-01 Goldschmidt Ag Nuevos compuestos de siloxanos y su utilizacion como agentes de homogeneizacion en agentes de separacion con un efecto de mateado para la produccion de cuerpos moldeados a partir de materiales sinteticos con superficies mateadas.
DE10245099A1 (de) 2002-09-27 2004-04-08 Goldschmidt Ag Polyurethan-Verdickungsmittel zur Verdickung wässriger Systeme
EP1431331B1 (de) 2002-12-21 2006-03-22 Goldschmidt GmbH Verfahren zur Aufbereitung von Polyethersiloxanen
DE10301355A1 (de) 2003-01-16 2004-07-29 Goldschmidt Ag Äquilibrierung von Siloxanen
DE10302743A1 (de) 2003-01-24 2004-07-29 Goldschmidt Ag Verwendung von Siliconharzen als Dispergiermittel
DE10321536B4 (de) 2003-05-14 2013-03-07 Evonik Goldschmidt Gmbh Aminoalkohol-basierte Tenside mit geringer Oberflächenspannung und deren Verwendung
ATE316545T1 (de) 2003-10-04 2006-02-15 Goldschmidt Gmbh Verfahren zur herstellung von organischen siliciumverbindungen
DE10348825A1 (de) 2003-10-21 2005-06-02 Goldschmidt Ag Dispergiermittel zur Herstellung wässriger Pigmentpasten
ATE323745T1 (de) 2004-02-20 2006-05-15 Goldschmidt Gmbh Verfahren zur herstellung von homogenen, lagerstabilen pasten, farben, lacken unter mitverwendung ionischer flüssigkeiten als dispergierhilfsmittel
DE102004018548A1 (de) 2004-04-14 2005-11-10 Henkel Kgaa Durch Strahlung und Feuchtigkeit härtende Zusammensetzungen auf Basis Silan-terminierter Polymere, deren Herstellung und Verwendung
DE102005001039B4 (de) 2005-01-07 2017-11-09 Evonik Degussa Gmbh Verfahren zur Herstellung von Äquilibrierungsprodukten von Organosiloxanen und die so erhältlichen Organopolysiloxane
DE102005023050A1 (de) 2005-05-13 2006-11-16 Henkel Kgaa Wässrige, lagerstabile Emulsion α-silyl terminierter Polymere, deren Herstellung und Verwendung
DE102005039398A1 (de) 2005-08-20 2007-02-22 Goldschmidt Gmbh Verfahren zur Herstellung von Anlagerungsprodukten aus SiH-Gruppen enthaltenden Verbindungen an Olefingruppen aufweisende Reaktionspartner in wässrigen Medien
DE102005039931A1 (de) 2005-08-24 2007-03-01 Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren
DE102005057857A1 (de) 2005-12-03 2010-02-25 Evonik Goldschmidt Gmbh Polyethermodifizierte Polysiloxane mit Blockcharakter und deren Verwendung zur Herstellung von kosmetischen Formulierungen
CN1986644A (zh) 2005-12-21 2007-06-27 汉高股份两合公司 稳定的硅烷化聚合物乳液及其制备方法和应用
DE102006008387A1 (de) 2006-02-21 2007-08-30 Goldschmidt Gmbh Verfahren zur Herstellung von siloxanhaltigen Trennbeschichtungen
WO2007104408A1 (en) 2006-03-13 2007-09-20 Evonik Goldschmidt Gmbh Agrochemical compositions comprising alkylenediol-modified polysiloxanes
DE102006020967A1 (de) 2006-05-05 2007-11-08 Goldschmidt Gmbh Reaktives, flüssiges Keramikbindemittel
DE102006038661A1 (de) 2006-08-18 2008-02-21 Evonik Goldschmidt Gmbh Verwendung niedrigviskoser wässriger Polyurethanheißweichschaumstabilisatorlösungen enthaltend Polyethersiloxane bei der Herstellung von Polyurethanheißweichschäumen
DE102006041971A1 (de) 2006-09-07 2008-03-27 Evonik Goldschmidt Gmbh Verwendung von partikulären Emulgatoren in abhäsiven siloxanhaltigen Beschichtungsmassen
DE102006061350A1 (de) 2006-12-22 2008-06-26 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
DE102006061353A1 (de) 2006-12-22 2008-06-26 Evonik Goldschmidt Gmbh Verfahren zur Umsetzung von Polyorganosiloxanen und deren Verwendung
DE102006061351A1 (de) 2006-12-22 2008-06-26 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
CN101230138A (zh) 2007-01-25 2008-07-30 汉高股份两合公司 水性硅烷化聚合物乳液及其制备方法和应用
DE102007035646A1 (de) 2007-07-27 2009-01-29 Evonik Goldschmidt Gmbh Über SIC- und über Carbonsäureestergruppen verknüpfte lineare Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymere, ein Verfahren zur ihrer Herstellung und ihre Verwendung
DE102007040247A1 (de) 2007-08-25 2009-03-05 Evonik Goldschmidt Gmbh Korrosionsinhibitor
DE102007055484A1 (de) 2007-11-21 2009-05-28 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von Polydimethylsiloxanen an sulfonsauren Kationenaustauscherharzen
DE102007055485A1 (de) 2007-11-21 2009-06-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung verzweigter SiH-funktioneller Polysiloxane und deren Verwendung zur Herstellung SiC- und SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane
DE102007057146A1 (de) 2007-11-28 2009-06-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von Polyetheralkoholen mit DMC-Katalysatoren unter Verwendung von speziellen Additiven mit aromatischer Hydroxy-Funktionalisierung
DE102007057145A1 (de) 2007-11-28 2009-06-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von Polyetheralkoholen mit DMC-Katalysatoren unter Verwendung von SiH-Gruppen tragenden Verbindungen als Additive
DE102007058713A1 (de) 2007-12-06 2009-06-10 Evonik Goldschmidt Gmbh Silicon(meth-)acrylat-Partikel, Verfahren zu deren Herstellung sowie deren Verwendung
WO2009092505A1 (de) 2008-01-24 2009-07-30 Evonik Goldschmidt Gmbh Verfahren zur herstellung von polyurethan- isolierschaumstoffen
DE102008000243A1 (de) 2008-02-06 2009-08-13 Evonik Goldschmidt Gmbh Neuartige Kompatibilisierungsmittel zur Verbesserung der Lagerstabilität von Polyolmischungen
DE102008000266A1 (de) 2008-02-11 2009-08-13 Evonik Goldschmidt Gmbh Die Erfindung betrifft die Verwendung von Schaumstabilisatoren, die auf Basis nachwachsender Rohstoffe hergestellt werden, zur Herstellung von Polyurethanschäumen
DE102008000360A1 (de) * 2008-02-21 2009-08-27 Evonik Goldschmidt Gmbh Neue Alkoxysilylgruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller Alkoxysilane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
DE102008000903A1 (de) 2008-04-01 2009-10-08 Evonik Goldschmidt Gmbh Neue Organosiloxangruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller (Poly)Organosiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
DE102008002713A1 (de) 2008-06-27 2009-12-31 Evonik Goldschmidt Gmbh Neue Polyethersiloxane enthaltende Alkoxylierungsprodukte durch direkte Alkoxylierung organomodifizierter alpha, omega-Dihydroxysiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
DE102008041601A1 (de) 2008-08-27 2010-03-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung verzweigter SiH-funtioneller Polysiloxane und deren Verwendung zur Herstellung flüssiger, SiC- oder SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane
DE102008041754A1 (de) 2008-09-02 2010-03-04 Evonik Goldschmidt Gmbh Enzympräparate
DE102008043218A1 (de) * 2008-09-24 2010-04-01 Evonik Goldschmidt Gmbh Polymere Werkstoffe sowie daraus bestehende Kleber- und Beschichtungsmittel auf Basis multialkoxysilylfunktioneller Präpolymerer
DE102008043245A1 (de) 2008-10-29 2010-05-06 Evonik Goldschmidt Gmbh Siliconpolyether-Copolymersysteme sowie Verfahren zu deren Herstellung durch Alkoxylierungsreaktion
DE102008043343A1 (de) 2008-10-31 2010-05-06 Evonik Goldschmidt Gmbh Silikonpolyetherblock-Copolymere mit definierter Polydispersität im Polyoxyalkylenteil und deren Verwendung als Stabilisatoren zur Herstellung von Polyurethanschäumen
DE102009022628A1 (de) 2008-12-05 2010-06-10 Evonik Goldschmidt Gmbh Verfahren zur Modifizierung von Oberflächen
JP5507576B2 (ja) * 2008-12-05 2014-05-28 エヴォニク ゴールドシュミット ゲーエムベーハー アルコキシシリル基を有する新規なポリエーテルシロキサンおよびその製造方法
DE102009000641A1 (de) 2009-02-05 2010-08-12 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von antistatisch angerüsteten Kunststeinen für Flächengebilde
DE102009001595A1 (de) 2009-03-17 2010-09-23 Evonik Goldschmidt Gmbh Kompatibilisierungsmittel zur Verbesserung der Lagerstabilität von Polyolmischungen
DE102009002371A1 (de) 2009-04-15 2010-10-21 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von geruchlosen Polyetheralkoholen mittels DMC-Katalysatoren und deren Verwendung in kosmetischen und/oder dermatologischen Zubereitungen
DE102009003274A1 (de) 2009-05-20 2010-11-25 Evonik Goldschmidt Gmbh Zusammensetzungen enthaltend Polyether-Polysiloxan-Copolymere
DE102009022631A1 (de) * 2009-05-25 2010-12-16 Evonik Goldschmidt Gmbh Härtbare Silylgruppen enthaltende Zusammensetzungen und deren Verwendung
DE102009034607A1 (de) 2009-07-24 2011-01-27 Evonik Goldschmidt Gmbh Neuartige Siliconpolyethercopolymere und Verfahren zu deren Herstellung
DE102009028640A1 (de) 2009-08-19 2011-02-24 Evonik Goldschmidt Gmbh Härtbare Masse enthaltend Urethangruppen aufweisende silylierte Polymere und deren Verwendung in Dicht- und Klebstoffen, Binde- und/oder Oberflächenmodifizierungsmitteln
DE102009028636A1 (de) 2009-08-19 2011-02-24 Evonik Goldschmidt Gmbh Neuartige Urethangruppen enthaltende silylierte Präpolymere und Verfahren zu deren Herstellung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533333A1 (de) * 2003-11-18 2005-05-25 Goldschmidt GmbH Emulgatorfreie Öl in Wasser-Emulsionen von Organopolysiloxanen und deren Verwendung in technischen Anwendungen
EP1892327A1 (de) * 2006-08-25 2008-02-27 Evonik Goldschmidt GmbH Verwendung von polyethermodifizierten Siloxanblockcopolymeren als hydrophile silikonhaltige Weichmacher für Gewebe, Non-wovens und/oder Fasern aus natürlichen und/oder synthetischen Rohstoffen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. U. PICKERING: "Emulsions", J. CHEM. SOC., vol. 91, 1907, pages 2001 - 2021, XP009159141, DOI: doi:10.1039/CT9079102001

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354177A1 (de) * 2010-02-03 2011-08-10 Evonik Goldschmidt GmbH Partikel und Kompositpartikel, deren Verwendungen und ein Verfahren zu deren Herstellung aus Alkoxysilylgruppen tragenden Alkoxylierungsprodukten
US8247525B2 (en) 2010-02-03 2012-08-21 Evonik Goldschmidt Gmbh Particles and composite particles, their uses and a novel process for producing them from alkoxysilyl-group-carrying alkoxylation products
EP2415796A1 (de) * 2010-08-02 2012-02-08 Evonik Goldschmidt GmbH Modifizierte Alkoxylierungsprodukte mit mindestens einer nicht-terminalen Alkoxysilylgruppe und deren Verwendung in härtbaren Massen mit erhöhter Lagerstabilität und Dehnbarkeit
EP2415797A1 (de) * 2010-08-02 2012-02-08 Evonik Goldschmidt GmbH Modifizierte Alkoxylierungsprodukte, die zumindest eine nicht-terminale Alkoxysilylgruppe aufweisen
US8883932B2 (en) 2010-08-02 2014-11-11 Evonik Degussa Gmbh Modified alkoxylation products having at least one non-terminal alkoxysilyl group, with increased storage life and increased stretchability of the polymers prepared using them
US10287448B2 (en) 2016-07-08 2019-05-14 Evonik Degussa Gmbh Universal pigment preparation
US10414871B2 (en) 2016-11-15 2019-09-17 Evonik Degussa Gmbh Mixtures of cyclic branched siloxanes of the D/T type and conversion products thereof
US10752735B2 (en) 2016-11-15 2020-08-25 Evonik Operations Gmbh Mixtures of cyclic branched siloxanes of the D/T type and conversion products thereof

Also Published As

Publication number Publication date
PL2435503T3 (pl) 2013-08-30
US8772423B2 (en) 2014-07-08
EP2435503A1 (de) 2012-04-04
JP2012528203A (ja) 2012-11-12
CN102449032A (zh) 2012-05-09
EP2435503B1 (de) 2013-03-27
DE102009022630A1 (de) 2010-12-02
US20120071564A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
EP2435503B1 (de) Emulsionen auf basis silylgruppen tragender hydroxylverbindungen
US8247525B2 (en) Particles and composite particles, their uses and a novel process for producing them from alkoxysilyl-group-carrying alkoxylation products
EP2352779B1 (de) Alkoxysilylgruppen tragende polyethersiloxane sowie verfahren zu deren herstellung
EP3019568B1 (de) Härtbare silylgruppen enthaltende zusammensetzungen mit verbesserter lagerstabilität
EP2194086A1 (de) Verfahren zur Modifizierung von Oberflächen
EP2297229B1 (de) Polyhydroxyfunktionelle polysiloxane als anti-adhäsive und schmutzabweisende zusätze in beschichtungen, polymeren formmassen und thermoplasten, verfahren zu ihrer herstellung und ihre verwendung
EP2289976B1 (de) Siliconpolyethercopolymere und Verfahren zu deren Herstellung
EP2435502B1 (de) Härtbare silylgruppen enthaltende zusammensetzungen und deren verwendung
EP2035487B1 (de) Polyhydroxyfunktionelle polysiloxane, verfahren zu ihrer herstellung und ihre verwendung
EP2415796A1 (de) Modifizierte Alkoxylierungsprodukte mit mindestens einer nicht-terminalen Alkoxysilylgruppe und deren Verwendung in härtbaren Massen mit erhöhter Lagerstabilität und Dehnbarkeit
WO2016005157A1 (de) Platin enthaltende zusammensetzung
EP2840104A1 (de) Modifizierte Alkoxylierungsprodukte, die Alkoxysilylgruppen aufweisen und Urethangruppen enthalten und deren Verwendung
DE102008043245A1 (de) Siliconpolyether-Copolymersysteme sowie Verfahren zu deren Herstellung durch Alkoxylierungsreaktion
DE102010038774A1 (de) Modifizierte Alkoxylierungsprodukte, die zumindest eine nicht-terminale Alkoxysilylgruppe aufweisen, mit erhöhter Lagerstabilität und erhöhter Dehnbarkeit der unter deren Verwendung hergestellten Polymere
EP2289961A1 (de) Neuartige Urethangruppen enthaltende silylierte Präpolymere und Verfahren zu deren Herstellung
EP0985698A1 (de) Lineare Polyether-Polysiloxan-Copolymere, deren Herstellung und Verwendung
DE102011109545A1 (de) Verfahren zur Herstellung von Polyethersiloxanen enthaltend Polyethercarbonatgrundstrukturen
EP2691437A2 (de) Härtbare zusammensetzung mit bei der härtung alkohol freisetzenden bestandteilen
WO2012130674A2 (de) Alkoxysilylhaltige klebdichtstoffe mit erhöhter bruchspannung
EP3940019A1 (de) Silikonemulsion und verfahren zur herstellung davon
EP4268922A1 (de) Entschäumerzusammensetzung auf silikonbasis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022957.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10719302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511218

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4405/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010719302

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13322475

Country of ref document: US