WO2010133110A1 - 一种减反射溶液、超白光伏玻璃及其制造方法 - Google Patents

一种减反射溶液、超白光伏玻璃及其制造方法 Download PDF

Info

Publication number
WO2010133110A1
WO2010133110A1 PCT/CN2010/071636 CN2010071636W WO2010133110A1 WO 2010133110 A1 WO2010133110 A1 WO 2010133110A1 CN 2010071636 W CN2010071636 W CN 2010071636W WO 2010133110 A1 WO2010133110 A1 WO 2010133110A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ultra
solution
reflection
photovoltaic glass
Prior art date
Application number
PCT/CN2010/071636
Other languages
English (en)
French (fr)
Inventor
董清世
辛崇飞
Original Assignee
信义汽车玻璃(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信义汽车玻璃(深圳)有限公司 filed Critical 信义汽车玻璃(深圳)有限公司
Publication of WO2010133110A1 publication Critical patent/WO2010133110A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of surface modification of cover glass for photovoltaic solar cells, in particular to an anti-reflection solution, an ultra-white photovoltaic glass and a manufacturing method thereof. Background technique
  • Solar energy is an inexhaustible new energy source.
  • Solar modules such as monocrystalline silicon, polycrystalline silicon, thin film batteries, etc., require a cover glass.
  • Ultra-white photovoltaic glass is mainly used as solar photovoltaic, photoelectric conversion system of single crystal silicon and polycrystalline silicon solar photovoltaic cell lighting panel, in order to make the electrode plate fully absorb solar energy and improve the photoelectric conversion efficiency of silicon battery, it must have the lowest possible reflection. Rate, the highest possible solar transmittance. According to the principle of diffuse reflection, the surface of the texturing treatment reduces the reflectivity of the light to a certain extent, and its low iron content formula also greatly reduces the solar absorption rate.
  • the transmittance of the existing ultra-white photovoltaic glass is generally less than 91.8 %, and since the solar cells are mostly used outdoors, the dust in the air is much, and the transmittance of the cover plate is easily reduced greatly, directly affecting the solar energy.
  • the power generation efficiency of the battery is generally less than 91.8 %, and since the solar cells are mostly used outdoors, the dust in the air is much, and the transmittance of the cover plate is easily reduced greatly, directly affecting the solar energy.
  • the technical problem to be solved by the present invention is to provide an anti-reflection solution, an ultra-white photovoltaic glass and a method of manufacturing the same, which can reduce the reflectance of ultra-white photovoltaic glass.
  • Acidic ester 5 % ⁇ 0% ⁇ Acidic ester, 0 ⁇ 1. 0% of tungsten trioxide, 88 ⁇ 98. 0% ethanol and 0 ⁇ 2. 0% stabilizer.
  • the embodiment of the invention is solved by coating the surface of the ultra-white glass with the anti-reflection solution, self-leveling, and then heat-treating to obtain an ultra-white photovoltaic with anti-reflection effect. glass.
  • the embodiment of the invention is solved as follows: the ultra-white photovoltaic glass
  • the surface of the glass has a layer of anti-reflection film formed of the above-described anti-reflection solution.
  • an anti-reflection solution forms a high-refractive-index titanium oxide and a low-refractive-index silicon oxide on the ultra-white glass after the anti-reflection solution is coated on the ultra-white glass.
  • an anti-reflection coating When electromagnetic waves propagate from a low refractive index medium (air, Si0 2 ) to a high refractive index medium (Si0 2 , Ti0 2 ), reflections occurring at the interface add a phase change of ⁇ /2 to the electromagnetic waves, from the double layer. The light reflected back from the film interface cancels each other due to the phase difference of half a wavelength, so that the reflectance is lowered.
  • the reflected wave can interfere with the correct amplitude and phase, effectively reducing the reflectivity of the material and increasing the transmittance.
  • FIG. 1 is a schematic structural view of an ultra-white photovoltaic glass according to an embodiment of the present invention. detailed description
  • the above stabilizer is a mineral acid or alkali solution.
  • the inorganic acid may be one of hydrochloric acid, or acetic acid, or sulfuric acid
  • the alkali solution may be one of sodium hydroxide, or ammonia water, or potassium hydroxide.
  • the embodiment of the invention further provides a method for manufacturing ultra-white photovoltaic glass, which is coated with the anti-reflection solution on the surface of the ultra-white glass, and self-leveling and heat treatment to obtain ultra-white photovoltaic with anti-reflection effect. Glass.
  • an anti-reflection film layer is obtained, which is self-leveling and heat-treated at 150 250 ° C for 5 30 minutes.
  • the heat treated glass can be strengthened by tempering.
  • the above self-leveling step it may be subjected to heat treatment after drying, pickling, and water washing. Specifically, after the clean ultra-clear glass is coated with the anti-reflection solution, an anti-reflection film layer is obtained, after self-leveling for 15 minutes, drying at 60 150 ° C for 5 30 minutes, and then passing 2.0% of the inorganic acid. Pickling (may be hydrochloric acid, dilute acid such as acetic acid), washing with water, and then heat-treating at 200,400 °C.
  • the heat treated glass can be reinforced by tempering.
  • the antireflection film layer may be obtained by spraying, roller coating, or pulling, or ultrasonic atomization.
  • an embodiment of the present invention further provides an ultra-white photovoltaic glass.
  • the surface of the glass 1 has a layer of anti-reflection film 2 formed by the above-mentioned anti-reflection solution, and the anti-reflection film layer is based on high refractive index oxidation.
  • a film layer formed by combining titanium and low-refractive-index silicon oxide, and the structure thereof may be Ti0 2 /Si0 2 or Ti0 2 /Si0 2 /Ti0 2 /Si0
  • the thickness of the anti-reflection film layer 2 is 100 200 nm, so that the anti-reflection film layer 2 reaches a nano-scale thickness.
  • the above ultra-white glass 1 may be a cloth-like suede super white glass or a double suede ultra-white glass.
  • the thickness of the glass is 3.0 6.0 and the anti-reflection coating layer 2 is coated on one or both sides to enhance the glass transmission effect. .
  • the single-sided coating can increase the transmittance by 2.0% or more, and reduce the light reflectance by more than 2.5%, so that the solar thermal absorption plate can fully absorb the solar energy and improve the photoelectric conversion efficiency of the photovoltaic cell.
  • ⁇ + ⁇ + ⁇ 1 where ⁇ ⁇ , ⁇ represent the transmittance, reflectance and absorptance of a specific wavelength, respectively.
  • ⁇ ⁇ , ⁇ represent the transmittance, reflectance and absorptance of a specific wavelength, respectively.
  • the spectral reflectance and absorption rate of the film layer can be reduced.
  • ⁇ ( ⁇ ) (n g -l) V(n g +l
  • the refractive index of the general glass is about 1.52. It can be seen that the single-sided reflectance of the glass is about 4%, and the total reflectance is 8%.
  • the glass surface by the plating material and low refractive indexes and white, the purpose of destructive interference, can be plated on Ti0 2, Si0 2, and the series combination of the surface of the glass layer, 1102
  • the refractive index is 2.30
  • the refractive index of Si0 2 is 1.46.
  • the reflection at the interface adds one to the electromagnetic wave.
  • the phase change of ⁇ /2 the light reflected from the interface of the two-layer film cancels each other due to the phase difference of half a wavelength, so that the reflectance is lowered.
  • the reflected wave can interfere with the correct amplitude and phase, effectively reducing the reflectivity of the material and increasing the transmittance.
  • a layer of anti-reflection film 2 having anti-reflection effect is plated on the basis of the ordinary ultra-white glass 1, so that most of the light that is reduced is converted into transmission, which can be made in various Under the angle incident condition, the solar energy transmittance is extremely high, and the anti-reflection film layer 2 itself has a certain hydrophilicity, which can play a self-cleaning effect.
  • the cover plate maintains a relatively clean surface, so that the cover glass can maintain a relatively high transmittance, improve the efficiency of photoelectric conversion, and obtain a relatively high Solar energy conversion efficiency.
  • it can also be used as a building curtain wall to greatly reduce the reflectivity and effectively prevent light pollution.
  • Embodiments of the present invention are applicable to solar photovoltaic systems and monocrystalline silicon and polycrystalline silicon solar cell lighting panel materials for photoelectric conversion systems.
  • Butyl titanate 3.0%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4 ;
  • Ethyl orthosilicate 2.0%, Si(0C 2 H 5 ) 4;
  • Tungsten trioxide 0.1%, W0 3 ;
  • Ethanol 94.9%, C 2 H 5 0H was formulated into a solution.
  • the solution was adjusted to a value of 11 to 12 with 0.2% ammonia water, and aged for 11 hours to obtain an anti-reflection solution.
  • the anti-reflection solution used is a two-component, according to a certain weight ratio Stir evenly afterwards.
  • the drying temperature is 80 ° C and the time is about 5 to 10 minutes.
  • the visible light transmittance of the single-sided coated anti-reflective glass can be increased by 2.2%, and the reflectance can be reduced by about 2.4% to obtain an anti-reflective ultra-white photovoltaic glass with a transmittance of 94.2%.
  • butyl titanate 2.0%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4;
  • Ethyl orthosilicate 4.0%, Si(0C 2 H 5 ) 4 ;
  • Tungsten trioxide 0.2%, W0 3 ;
  • Ethanol 93.8%, C 2 H 5 0H was formulated into a solution.
  • the pH of the solution was adjusted with 0.5% hydrochloric acid, kept between 4 and 6, and aged for 12 hours to obtain an anti-reflection solution.
  • the anti-reflection solution used is a two-component, and the mixture is uniformly stirred according to a certain weight ratio.
  • the obtained single-sided coated anti-reflective glass can increase the visible light transmittance by 2.0% and the reflectance by about 2.2%, and obtain an anti-reflection ultra-white photovoltaic glass with a transmittance of 94.0%.
  • the anti-reflection solution can be configured as follows: The third configuration:
  • Butyl titanate 0.5%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4 ;
  • Ethyl orthosilicate 4.5%, Si(0C 2 H 5 ) 4;
  • Tungsten trioxide 0.5%, W0 3 ;
  • Ethanol 93.9%, C 2 H 5 0H was formulated into a solution.
  • the pH of the solution was adjusted with 0.6% hydrochloric acid, kept between 4 and 6, and aged for 12 hours to obtain an anti-reflection solution.
  • the fourth configuration :
  • Butyl titanate 4%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4 ;
  • Ethyl orthosilicate 0.5%, Si(0C 2 H 5 ) 4;
  • Tungsten trioxide 0.6%, W0 3 ;
  • Ethanol 94.6%, C 2 H 5 0H was formulated into a solution.
  • the pH of the solution was adjusted with 0.3% hydrochloric acid, kept between 4 and 6, and aged for 12 hours to obtain an anti-reflection solution.
  • the fifth configuration :
  • Butyl titanate 3.5%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4;
  • Tungsten trioxide 0%, W0 3 ;
  • Ethanol 93.5%, C 2 H 5 0H was formulated into a solution.
  • the pH of the solution was adjusted with 0.5% hydrochloric acid, kept between 4 and 6, and aged for 12 hours to obtain an anti-reflection solution.
  • Butyl titanate 4.8%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4 ;
  • Ethyl orthosilicate 4.8%, Si(0C 2 H 5 ) 4; Tungsten oxide: 0.9%, W0 3;
  • Ethanol 88%, C 2 H 5 0H was formulated into a solution.
  • the pH of the solution was adjusted with 1.5% hydrochloric acid, kept between 4 and 6, and aged for 12 hours to obtain an anti-reflection solution.
  • the seventh configuration :
  • Butyl titanate 3.5%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4;
  • Ethyl orthosilicate 4%, Si(0C 2 H 5 ) 4 ;
  • Tungsten trioxide 0.2%, W0 3 ;
  • Ethanol 92.3%, C 2 H 5 0H was formulated into a solution, and 0% hydrochloric acid was used, and aged for 12 hours to obtain an antireflection solution.
  • Butyl titanate 5%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4 ;
  • Ethyl orthosilicate 2%, Si (0C 2 H 5 ) 4 ;
  • Tungsten trioxide 0.5%, W0 3 ;
  • Ethanol 91.5%, C 2 H 5 0H was formulated into a solution, and the solution was adjusted to a pH of 4 to 6 with 1% hydrochloric acid, and aged for 4 hours to obtain an antireflection solution.
  • the ninth configuration :
  • Butyl titanate 2.5%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4 ;
  • Ethyl orthosilicate 5%, Si(0C 2 H 5 ) 4;
  • Tungsten trioxide 0.6%, W0 3 ;
  • Ethanol 90.7%, C 2 H 5 0H was formulated into a solution.
  • the pH of the solution was adjusted with 1.2% ammonia water, kept between 11 and 12, and aged for 24 hours to obtain an anti-reflection solution.
  • Butyl titanate 3.5%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4 ;
  • Ethyl orthosilicate 4%, Si(0C 2 H 5 ) 4;
  • Tungsten trioxide 1%, W0 3 ;
  • Ethanol 90.8%, C 2 H 5 0H was formulated into a solution.
  • the solution was adjusted to a value of 11 to 12 with 0.7% ammonia water, and aged for 11 hours to obtain an anti-reflection solution.
  • Butyl titanate 0.5%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4 ;
  • Tungsten trioxide 0.2%, W0 3 ;
  • Ethanol 98%, C 2 H 5 0H was formulated into a solution.
  • the pH of the solution was adjusted with 0.5% ammonia water, kept between 11 and 12, and aged for 24 hours to obtain an anti-reflection solution.
  • Butyl titanate 2.5%, Ti(0CH 2 CH 2 CH 2 CH 3 ) 4 ;
  • Ethyl orthosilicate 2%, Si (0C 2 H 5 ) 4 ;
  • Tungsten trioxide 0.5%, W0 3 ;
  • Ethanol 93%, C 2 H 5 0H was formulated into a solution.
  • the pH of the solution was adjusted with 2% ammonia water, kept between 11 and 12, and aged for 24 hours to obtain an anti-reflection solution.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Description

一种减反射溶液、 超白光伏玻璃及其制造方法 技术领域
本发明属于光伏太阳能电池用盖板玻璃的表面改性领域,尤其涉及一种减 反射溶液、 超白光伏玻璃及其制造方法。 背景技术
太阳能是一种取之不竭的新能源,利用太阳能发电的电池组件,如单晶硅、 多晶硅、 薄膜电池等, 都需要一种盖板玻璃。超白光伏玻璃主要用做太阳能光 热、光电转换系统的单晶硅和多晶硅太阳能光伏电池采光面板, 为使电极板充 分吸收太阳能量、 提高硅电池的光电转换效率, 必须具备尽可能低的反射率、 尽可能高的太阳光透过率。根据漫反射原理, 其表面的制绒处理在一定程度上 降低了光线的反射率, 其本身的低铁含量配方也大幅降低了太阳能的吸收率。 不过现有的超白光伏玻璃的透光率一般在 91. 8 %以下, 再加上由于太阳能电 池多为室外使用, 空气中灰尘多, 盖板的透过率很容易大幅降低, 直接影响太 阳能电池的发电效率。 发明内容
本发明所要解决的技术问题是,提供一种减反射溶液、超白光伏玻璃及其 制造方法, 能够降低超白光伏玻璃的反射率。
对于一种减反射溶液,本发明实施例是这样加以解决的:该减反射溶液包 括体积比为 0. 5〜5. 0 %的钛酸丁酯、 0. 5〜5. 0 %的正硅酸乙酯、 0〜1. 0 %的 三氧化钨、 88〜98. 0 %的乙醇和 0〜2. 0 %稳定剂。
对于一种超白光伏玻璃的制造方法,本发明实施例是这样加以解决的:在 超白玻璃的表面涂覆上述减反射溶液, 自平流、再经过热处理后得到具有减反 射作用的超白光伏玻璃。
对于一种超白光伏玻璃,本发明实施例是这样加以解决的: 该超白光伏玻 璃的表面具有一层由上述减反射溶液形成的减反射膜层。
与现有技术相比,本发明实施例提供的一种减反射溶液,将减反射溶液涂 覆于超白玻璃上后, 该超白玻璃上形成高折射率氧化钛、低折射率氧化硅相间 组合而成减反射膜层。 当电磁波从低折射率的介质 (空气、 Si02) 向高折射率 介质 (Si02、 Ti02)传播时, 在界面处发生的反射会给电磁波增加一个 λ /2的 相位变化, 从双层膜界面反射回来的光线由于相位相差半波长, 相互抵消, 从 而使得反射率降低。通过控制每层膜的厚度和折射率, 反射波可以按照正确的 振幅和相位干涉, 有效的降低材料的反射率, 提高透过率。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1是本发明实施例提供的一种超白光伏玻璃的结构示意图。 具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白, 以 下结合附图及实施例, 对本发明进行进一步详细说明。应当理解, 此处所描述 的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
本发明实施例提供一种减反射溶液, 包括体积比为 0. 5〜5. 0 %的钛酸丁 酯、 0. 5〜5. 0 %的正硅酸乙酯、 0〜1. 0 %的三氧化钨、 88〜98. 0 %的乙醇和 0〜 2. 0 %稳定剂。
优选地,上述钛酸丁酯的体积比为 2〜3%,正硅酸乙酯的体积比为 2〜4%, 所述三氧化钨的体积比为 0. 1〜0. 2%, 乙醇的体积比为 93〜95%, 稳定剂的体 积比为 0. 2〜0. 5%。
为了调节溶液的 ΡΗ值, 使其达到稳定的状态, 上述稳定剂采用无机酸或 者碱溶液。 其中无机酸可以是盐酸、 或者醋酸、 或者硫酸中的一种, 而碱溶液 可以是氢氧化钠、 或者氨水、 或者氢氧化钾中的一种。
本发明实施例还提供一种超白光伏玻璃的制造方法,在超白玻璃的表面涂 覆上述减反射溶液, 自平流、再经过热处理后得到具有减反射作用的超白光伏 玻璃。
具体地, 清洁干净的超白玻璃经喷涂减发射溶液后, 得到减反射膜层, 自 流平, 在 150 250 °C下热处理 5 30分钟。 热处理后的玻璃可以经过钢化增 强。
上述自平流步骤后, 还可经过烘干、 酸洗、 水洗处理后, 再进行热处理。 具体地, 清洁干净的超白玻璃经涂覆减发射溶液后, 得到减反射膜层, 自流平 1 5分钟后, 在 60 150°C下烘干处理 5 30分钟, 再经过 2.0%的无机酸酸 洗 (可以是盐酸、 醋酸等稀酸)、 水洗, 然后在 200 400°C下热处理。 热处理 后的玻璃可以经过钢化增强。
其中, 在清洁玻璃上涂覆减反射溶液时, 可以采用喷涂、 或者辊涂、 或者 提拉法、 或者超声雾化等方式来得到减反射膜层。
如图 1所示,本发明实施例还提供一种超白光伏玻璃,玻璃 1的表面具有 一层由上述减反射溶液形成的减反射膜层 2, 该减反射膜层是基于高折射率氧 化钛、 低折射率氧化硅相间组合而成的膜层, 其结构可以是 Ti02/Si02或者 Ti02/Si02/Ti02/Si0
具体地, 减反射膜层 2的厚度为 100 200nm, 使减反射膜层 2达到纳米 级的厚度。
而上述超白玻璃 1可以为布紋绒面超白玻璃或者双绒面超白玻璃,玻璃的 厚度为 3.0 6.0 并采用单面或双面涂覆减反射膜层 2, 以增强玻璃的透射 效果。 其中, 单面镀膜可以提高 2.0%以上的透过率, 降低 2.5%以上的光线 反射率, 可使太阳能光热吸收板充分吸收太阳能量、提高光伏电池的光电转换 效率。
根据辐射分布公式, τ +Ρ+α =1其中 τ ρ , α分别代表特定波长的 透过率、反射率和吸收率。为了使超白玻璃在太阳能光谱响应范围内达到较高 的透过率, 可通过降低膜层的光谱反射率和吸收率。当光线从空气中入射到折 射率为 的另一介质时, 在两介质的分界面上就会产生光的反射。 根据菲涅 尔公式, Ρ (λ ) = (ng-l) V(ng+l 一般玻璃的折射率在 1.52左右, 可知 玻璃的单面反射率大约是 4%, 总反射率在 8%左右。 为了减少玻璃表面的减反射光,通过在玻璃表面镀制高低折射率相间的材 料, 达到相消干涉的目的, 可在玻璃的表面镀基于 Ti02、 Si02系列及其组合膜 层, 1102折射率2.30, Si02折射率 1.46, 当电磁波从低折射率的介质 (空气、 Si02) 向高折射率介质 (Si02、 Ti02) 传播时, 在界面处发生的反射会给电磁 波增加一个 λ/2 的相位变化, 从双层膜界面反射回来的光线由于相位相差半 波长, 相互抵消, 从而使得反射率降低。通过控制每层膜的厚度和折射率, 反 射波可以按照正确的振幅和相位干涉, 有效的降低材料的反射率, 提高透过 率。
因此,本技术方案中在普通超白玻璃 1的基础上镀制一层具有减反射作用 的减反射膜层 2, 使得减反掉的光线大部分转化为透过, 可使其具有在各种角 度入射条件下都具有极高的太阳能透过率,而且减反射膜层 2本身具有一定的 亲水性, 可以起到自清洁的效果。 当雨水落下时, 可以把组件表面的灰尘等一 起冲刷下来, 从而使得盖板保持相对清洁的表面, 使盖板玻璃能够保持相对较 高的透过率, 提高光电转换的效率, 获得比较高的太阳能转化效率。另外用作 建筑幕墙, 也可以大幅降低反射率, 有效的防止光污染。
本发明实施例可适用于太阳能光热系统以及光电转换系统的单晶硅和多 晶硅太阳能电池采光面板材料。
具体实施例一
1、 减反射溶液的配置
按照体积比
钛酸丁酯: 3.0%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 2.0%, Si(0C2H5)4;
三氧化钨: 0.1%, W03;
乙醇: 94.9%, C2H50H配成溶液, 采用 0.2%氨水调节溶液的 1¾值, 保持 在 11〜12之间, 并陈化 24小时得到减反射溶液。
2、 增透超白玻璃的制备工艺
1) 玻璃样片清洗。 玻璃表面要求清洁, 无灰尘、 油污。
2) 减反射溶液涂布。 所采用的减反射溶液为双组分, 按照一定重量比配 比后搅拌均匀。
3) 自流平。 喷涂后压花玻璃, 静置 3〜5分钟分钟, 自流平。
4) 烘干。 烘干温度 80°C, 时间大约 5〜10分钟。
5) 酸洗。 喷淋的方式 2.0%的稀盐酸进行酸洗。
6) 水洗。 酸洗后玻璃样片, 先用自来水清洗, 再用纯水清洗。
7) 热处理。 温度 200°C, 处理时间 5分钟。
8) 钢化。 经过热处理的超白玻璃, 进行钢化处理。
可获得的单面镀膜减反射玻璃的可见光透过率可以提高 2.2%, 反射率可 以降低 2.4%左右, 得到一种透过率在 94.2%的减反射超白光伏玻璃。 实施案例二
1、 减反射溶液的配置
按照体积比钛酸丁酯: 2.0%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 4.0%, Si(0C2H5)4;
三氧化钨: 0.2%, W03;
乙醇: 93.8%, C2H50H配成溶液, 采用 0.5%的盐酸调节溶液的 PH值, 保 持在 4〜6之间, 并陈化 12小时得到减反射溶液。
2、 减反射玻璃的制备
1) 玻璃清洗。 玻璃表面要求清洁, 无灰尘、 油污。
2) 减反射溶液涂布。 所采用的减反射溶液为双组分, 按照一定重量比配 比后搅拌均匀。
3) 自流平。 喷涂后压花玻璃, 静置 3〜5分钟分钟, 自流平。
4) 热处理。 温度 150°C, 处理时间 15分钟。
5) 钢化。 经过热处理的超白玻璃, 进行钢化处理。
获得的单面镀膜减反射玻璃的可见光透过率可以提高 2.0%, 反射率可以 降低 2.2%左右, 得到一种透过率在 94.0%的减反射超白光伏玻璃。 该减反射溶液除了上述两种配置, 其配置还可以如下: 第三种配置:
按照体积比
钛酸丁酯: 0.5%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 4.5%, Si(0C2H5)4;
三氧化钨: 0.5%, W03;
乙醇: 93.9%, C2H50H配成溶液, 采用 0.6%的盐酸调节溶液的 PH值, 保 持在 4〜6之间, 并陈化 12小时得到减反射溶液。 第四种配置:
按照体积比
钛酸丁酯: 4%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 0.5%, Si(0C2H5)4;
三氧化钨: 0.6%, W03;
乙醇: 94.6%, C2H50H配成溶液, 采用 0.3%的盐酸调节溶液的 PH值, 保 持在 4〜6之间, 并陈化 12小时得到减反射溶液。 第五种配置:
按照体积比
钛酸丁酯: 3.5%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 2.5%, Si(0C2H5)4?
三氧化钨: 0%, W03;
乙醇: 93.5%, C2H50H配成溶液, 采用 0.5%的盐酸调节溶液的 PH值, 保 持在 4〜6之间, 并陈化 12小时得到减反射溶液。 第六种配置:
按照体积比
钛酸丁酯: 4.8%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 4.8%, Si(0C2H5)4; 三氧化钨: 0.9%, W03;
乙醇: 88%, C2H50H配成溶液, 采用 1.5%的盐酸调节溶液的 PH值, 保持 在 4〜6之间, 并陈化 12小时得到减反射溶液。 第七种配置:
按照体积比
钛酸丁酯: 3.5%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 4%, Si(0C2H5)4;
三氧化钨: 0.2%, W03;
乙醇: 92.3%, C2H50H配成溶液, 采用 0%的盐酸, 并陈化 12小时得到减 反射溶液。 第八种配置:
按照体积比
钛酸丁酯: 5%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 2%, Si (0C2H5) 4
三氧化钨: 0.5%, W03;
乙醇: 91.5%, C2H50H配成溶液, 采用 1%的盐酸调节溶液的 1¾值, 保持 在 4〜6之间, 并陈化 12小时得到减反射溶液。 第九种配置:
按照体积比
钛酸丁酯: 2.5%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 5%, Si(0C2H5)4;
三氧化钨: 0.6%, W03;
乙醇: 90.7%, C2H50H配成溶液, 采用 1.2%氨水调节溶液的 1¾值, 保持 在 11〜12之间, 并陈化 24小时得到减反射溶液。 第十种配置:
按照体积比
钛酸丁酯: 3.5%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 4%, Si(0C2H5)4;
三氧化钨: 1%, W03;
乙醇: 90.8%, C2H50H配成溶液, 采用 0.7%氨水调节溶液的 1¾值, 保持 在 11〜12之间, 并陈化 24小时得到减反射溶液。 第十一种配置:
按照体积比
钛酸丁酯: 0.5%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 0.8%, Si(0C2H5)4;
三氧化钨: 0.2%, W03;
乙醇: 98%, C2H50H配成溶液, 采用 0.5%氨水调节溶液的 PH值, 保持在 11〜12之间, 并陈化 24小时得到减反射溶液。 第十二种配置:
按照体积比
钛酸丁酯: 2.5%, Ti(0CH2CH2CH2CH3)4;
正硅酸乙酯: 2%, Si (0C2H5) 4
三氧化钨: 0.5%, W03;
乙醇: 93%, C2H50H配成溶液, 采用 2%氨水调节溶液的 PH值, 保持在 11〜12之间, 并陈化 24小时得到减反射溶液。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求
1、 一种减反射溶液, 包括体积比为 0. 5〜5. 0 %的钛酸丁酯、 0. 5〜5. 0 % 的正硅酸乙酯、 0〜1. 0 %的三氧化钨、 88〜98. 0 %的乙醇和 0〜2. 0 %稳定剂。
2、 如权利要求 1所述的减反射溶液, 其特征在于: 所述钛酸丁酯的体积 比为 2〜3%, 所述正硅酸乙酯的体积比为 2〜4%, 所述三氧化钨的体积比为 0. 1〜0. 2%,所述乙醇的体积比为 93〜95%,所述稳定剂的体积比为 0. 2〜0. 5%。
3、 如权利要求 1或 2所述的减反射溶液, 其特征在于: 所述稳定剂为无 机酸或者碱溶液。
4、 如权利要求 3所述的减反射溶液, 其特征在于: 所述无机酸为盐酸、 或者醋酸、 或者硫酸, 所述碱溶液为氢氧化钠、 或者氨水、 或者氢氧化钾。
5、 一种超白光伏玻璃的制造方法, 在超白玻璃的表面涂覆如权利要求 1 所述的一种减反射溶液, 自流平、再经过热处理后得到具有减反射作用的超白 光伏玻璃。
6、 如权利要求 5所述的超白光伏玻璃的制造方法, 其特征在于: 所述自 流平步骤后, 还经过烘干、 酸洗、 水洗处理后, 再进行热处理。
7、 如权利要求 5所述的超白光伏玻璃的制造方法, 其特征在于: 所述膜 层涂覆方法为喷涂、 或者辊涂、 或者提拉法、 或者超声雾化。
8、 一种超白光伏玻璃, 其特征在于: 所述玻璃的表面具有一层由如权利 要求 1所述减反射溶液形成的减反射膜层。
9、 如权利要求 8所述的超白光伏玻璃, 其特征在于: 所述减反射膜层的 厚度为 100〜200nm。
10、如权利要求 8-9任一项所述的超白光伏玻璃, 其特征在于: 所述玻璃 的单面或双面涂覆有所述减反射膜层。
PCT/CN2010/071636 2009-05-19 2010-04-08 一种减反射溶液、超白光伏玻璃及其制造方法 WO2010133110A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910107448.2 2009-05-19
CN 200910107448 CN101891394B (zh) 2009-05-19 2009-05-19 一种减反射溶液、超白光伏玻璃及其制造方法

Publications (1)

Publication Number Publication Date
WO2010133110A1 true WO2010133110A1 (zh) 2010-11-25

Family

ID=43100773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071636 WO2010133110A1 (zh) 2009-05-19 2010-04-08 一种减反射溶液、超白光伏玻璃及其制造方法

Country Status (2)

Country Link
CN (1) CN101891394B (zh)
WO (1) WO2010133110A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102849964A (zh) * 2012-08-31 2013-01-02 天津大学 二氧化钛纳米微晶界面融合结构材料的制备方法
CN112614907A (zh) * 2020-12-22 2021-04-06 常州恒轩新能源科技有限公司 一种抗震光伏玻璃
CN113149455A (zh) * 2021-01-05 2021-07-23 新福兴玻璃工业集团有限公司 一种太阳能光伏组件用镀膜玻璃的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412314A (zh) * 2011-12-02 2012-04-11 福莱特光伏玻璃集团股份有限公司 太阳电池封装用耐候减反射镀膜玻璃
US20140272314A1 (en) * 2013-03-15 2014-09-18 Guardian Industries Corp. Coated article including broadband and omnidirectional anti-reflective transparent coating, and/or method of making the same
CN103466958A (zh) * 2013-09-22 2013-12-25 四川世创达电子科技有限公司 一种光学玻璃湿法防眩方法
CN106630664A (zh) * 2016-12-10 2017-05-10 傅瞻远 一种低反射率双面镀膜光伏玻璃
CN107841164A (zh) * 2017-10-30 2018-03-27 上海艾谡新材料有限公司 一种减反射镀膜溶液与制备方法以及光伏玻璃的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587150A (zh) * 2004-09-28 2005-03-02 中国科学院上海光学精密机械研究所 防爆隔板玻璃表面增透膜的制备方法
CN1794475A (zh) * 2005-11-14 2006-06-28 浙江大学 在硅太阳能电池表面制备复合波长变换-减反射膜的方法
CN101665014A (zh) * 2009-09-18 2010-03-10 浙江大学 全角度宽波长范围使用的减反射薄膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494743A (en) * 1992-08-20 1996-02-27 Southwall Technologies Inc. Antireflection coatings
CN1294219C (zh) * 2005-05-27 2007-01-10 吉林大学 高强有机/无机纳米复合透明膜层材料及制备方法
CN1991411A (zh) * 2005-12-31 2007-07-04 财团法人工业技术研究院 纳米孔洞型抗反射膜及其制备方法
CN100410198C (zh) * 2006-02-08 2008-08-13 中国科学院广州能源研究所 无光污染的二层膜结构镀膜玻璃

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587150A (zh) * 2004-09-28 2005-03-02 中国科学院上海光学精密机械研究所 防爆隔板玻璃表面增透膜的制备方法
CN1794475A (zh) * 2005-11-14 2006-06-28 浙江大学 在硅太阳能电池表面制备复合波长变换-减反射膜的方法
CN101665014A (zh) * 2009-09-18 2010-03-10 浙江大学 全角度宽波长范围使用的减反射薄膜及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102849964A (zh) * 2012-08-31 2013-01-02 天津大学 二氧化钛纳米微晶界面融合结构材料的制备方法
CN102849964B (zh) * 2012-08-31 2014-10-15 天津大学 二氧化钛纳米微晶界面融合结构材料的制备方法
CN112614907A (zh) * 2020-12-22 2021-04-06 常州恒轩新能源科技有限公司 一种抗震光伏玻璃
CN113149455A (zh) * 2021-01-05 2021-07-23 新福兴玻璃工业集团有限公司 一种太阳能光伏组件用镀膜玻璃的制备方法

Also Published As

Publication number Publication date
CN101891394B (zh) 2013-01-02
CN101891394A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
CN201424435Y (zh) 一种超白光伏玻璃
WO2010133110A1 (zh) 一种减反射溶液、超白光伏玻璃及其制造方法
US8450600B2 (en) Photovoltaic device with scratch-resistant coating
CN104671672B (zh) 一种减反射镀膜液及其制备方法、光伏玻璃及其制备方法、太阳能电池组件
CN101805135B (zh) 镀有双层减反射膜的光伏玻璃及其制备方法
US20090181256A1 (en) Methods of making silica-titania coatings, and products containing the same
CN101898870B (zh) 镀膜液及其制备方法以及用其制造太阳能电池封装玻璃的方法
WO2013107187A1 (zh) 减反射镀膜溶液、其制备方法和光伏玻璃及其制备方法
CN103922610B (zh) 一种高透光率的太阳能光伏玻璃
CN104711551A (zh) 双层低折射率减反射膜的制备方法
CN102225849B (zh) 一种免烧结玻璃表面减反膜的制备方法
WO2021000564A1 (zh) 一种太阳能组件封装用减反射镀膜玻璃及其制造方法
CN101898869B (zh) 复合溶胶的制备方法以及用其制造太阳能电池封装玻璃的方法
CN101805134A (zh) 二氧化钒薄膜的镀膜液和薄膜的制备方法及应用
CN104362208B (zh) 具有疏水和光谱选择性的太阳电池用玻璃及其制作方法
CN103936292B (zh) 用于制备太阳能光伏玻璃的高透过率镀膜液及其制备方法
CN104310791A (zh) 一种利用空心纳米复合粒子构建自洁减反膜的方法
CN101418155A (zh) 反射红外线的防晒隔热纳米复合材料及其制备方法
CN201801461U (zh) 超白光伏减反射钢化玻璃
CN109052985A (zh) 晶体硅太阳能电池用高硬宽频增透光伏玻璃
CN106449820B (zh) 一种光伏组件和光伏发电系统
CN104496200A (zh) 一种高温太阳能集热管外管涂镀增透膜的方法
CN102992645A (zh) 一种低折射率二氧化钛减反射增透光触控屏镀膜玻璃
CN209434211U (zh) 一种双面双玻太阳能组件
CN103359955B (zh) 一种掺锌减反射型自清洁涂层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777314

Country of ref document: EP

Kind code of ref document: A1