WO2010131753A1 - Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron - Google Patents

Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron Download PDF

Info

Publication number
WO2010131753A1
WO2010131753A1 PCT/JP2010/058232 JP2010058232W WO2010131753A1 WO 2010131753 A1 WO2010131753 A1 WO 2010131753A1 JP 2010058232 W JP2010058232 W JP 2010058232W WO 2010131753 A1 WO2010131753 A1 WO 2010131753A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduced iron
density
massive
iron
hopper
Prior art date
Application number
PCT/JP2010/058232
Other languages
French (fr)
Japanese (ja)
Inventor
博文 堤
孝夫 原田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN2010800162010A priority Critical patent/CN102388153B/en
Priority to KR1020117027057A priority patent/KR101302793B1/en
Publication of WO2010131753A1 publication Critical patent/WO2010131753A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • C21B13/0053On a massing grate
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes

Definitions

  • the present invention relates to a method for producing high-density reduced iron and an apparatus for producing high-density reduced iron used as melting raw materials for converters such as blast furnaces, melting furnaces, electric furnaces, and steelmaking furnaces.
  • Fig. 9 shows a part of a conventional method for producing reduced iron briquettes.
  • Reduced iron R manufactured in a direct reduction furnace such as a rotary hearth furnace is supplied to a briquette machine facility 51 through a hopper 50 as shown in FIG.
  • the briquette machine equipment 51 is provided with roll briquetters and breakers.
  • the reduced iron R is pressure-formed into a plate shape having cutting grooves at predetermined intervals by the briquetter, and then cut individually by the breaker. Thereby, reduced iron briquette B is formed.
  • the briquetter presses several DRIs (directly reduced iron) into a HBI (hot briquette reduced iron) size mold for pressure molding.
  • the HBI is compressed to an apparent density of 5.0 g / cm 3 or more so that it does not generate heat or generate cracks, for example, by reacting with air during its transportation.
  • a special pressure device for briquetters is used.
  • the reduced iron briquette B ′ cooled with water is pulled up from the quench tank 52 by the carry-out conveyor 53 to become a product (see, for example, Patent Document 1).
  • the reduced iron briquette B ′ (see FIG. 10) produced by the above method is exported to those countries mainly as iron sources for steelmaking where raw materials and fuels can be obtained at low cost.
  • the reduced iron briquette B ′ When the reduced iron briquette B ′ is not used for external sales, for example, when it is used by being transported to a steelmaking factory or blast furnace adjacent to the same briquette machine equipment, it is not necessary to consider the cracks during transportation. There is no need to provide the briquette machine equipment 51.
  • the reduced iron R itself has a particle size distribution, and the porosity in the reduced iron R is high, so that the sizes are different. There is a problem that the reduced iron R cannot be cooled at the same cooling rate. Moreover, since porosity is high, there also exists a problem that the reoxidation during storage cannot be suppressed.
  • the present invention has been made in consideration of the problems in the conventional method for producing reduced iron briquettes as described above.
  • the present invention provides a method for producing high-density reduced iron and an apparatus for producing high-density reduced iron, which can suppress reoxidation of reduced iron without using briquette machine equipment and can be cooled at the same cooling rate.
  • the manufacturing method of high-density reduced iron and the manufacturing apparatus of high-density reduced iron which can achieve the target metallization rate and can suppress a strength fall are provided.
  • the present invention does not agglomerate lump reduced iron like conventional HBI, and compresses at a lower pressure than HBI while keeping each lump reduced iron in a state of being scattered, thereby suppressing reoxidation. It is characterized by an apparent density.
  • the method for producing reduced iron briquettes according to the present invention comprises: A method of obtaining one high-density reduced iron from one lump reduced iron obtained by a direct reduction iron manufacturing method, introducing the lump reduced iron into a pressure device, Pressing the massive reduced iron at a high temperature by the pressing part of the pressurizing device that can sandwich the massive reduced iron, The gist is to cool the above-mentioned massive reduced iron.
  • raw pellets iron oxide pellets
  • raw briquettes iron oxide briquettes
  • high density reduced iron means “bulk reduced iron” obtained by being directly supplied to a reduction furnace and reduced to pressurize and compress further to increase the density. High-density reduced iron has a smaller degree of compression than compression molding by hot briquette machine equipment.
  • the massive reduced iron obtained by the direct reduction iron manufacturing method is pressurized, and cooling is performed after high-density reduced iron having approximately the same size is obtained.
  • the method for producing reduced iron briquette according to the present invention has a pair of rollers arranged in parallel as the pressing portion, and can press the massive reduced iron by a concave portion provided on the circumferential surface of each roller.
  • the lump reduced iron can be pressurized by a plurality of the concave portions formed in a wave shape continuously on the circumferential surface of each roller.
  • the facing distance between the recesses is defined in order to increase the density of one block-like reduced iron, and can be determined based on one of the two dimensional designs described below.
  • the representative dimension is d ′ among the three-dimensional dimensions of the iron oxide pellets (raw pellets) or iron oxide briquettes (raw briquettes) containing the carbonaceous material before reduction, and D is the facing distance between the deepest parts of the recesses. Then, the facing distance between the recesses is adjusted so as to satisfy the relationship of D ⁇ (0.3 to 0.9) d ′.
  • the representative dimension d is a value defined by the 1/3 power of the volume of the massive reduced iron
  • the representative dimension d ′ is a value defined by the 1/3 power of the volume of the iron oxide pellets or iron oxide briquettes. It is.
  • the adjustment can be performed by controlling the value of torque generated in the roll so as to achieve the desired density.
  • the difference between the above (1) and (2) is that the above (1) is based on the size of the massive reduced iron (manufactured by the direct reduction iron manufacturing method) to be pressurized, while the above (2) Then, it is the point which determines based on the dimension of the raw pellet and raw briquette which are the raw material materials before manufacturing the lump reduced iron used as the pressurization object.
  • This has the advantage that the optimum inter-roll dimension D can be determined based on values estimated from the production conditions and production equipment specifications of raw pellets and raw briquettes.
  • the massive reduced iron when the massive reduced iron is pressed, the massive reduced iron having an apparent density of 2.25 ⁇ 0.75 g / cm 3 is reduced to an apparent density of 4.0 ⁇ 1.0 g / cm 3. It is preferable to raise to the range of cm 3 .
  • the massive reduced iron into the pressurizing device via a guide device that introduces the massive reduced iron into the pressurizing device.
  • powder generated by the collapse of the massive reduced iron or the like can be introduced into the pressurizing apparatus together with the massive reduced iron. This makes it possible to use the disintegrated powder effectively.
  • the bulk reduced iron can be cooled by water cooling or gas cooling.
  • the water cooling can be performed by injecting cooling water onto the high-density reduced iron being conveyed, or can be performed by immersing the high-density reduced iron in water.
  • An apparatus for producing high-density reduced iron according to the present invention is as follows.
  • An apparatus for producing one high-density reduced iron from one block reduced iron obtained by a direct reduction iron manufacturing method A pressurizing device that pressurizes the massive reduced iron at a high temperature to increase the density;
  • a guide device for introducing the massive reduced iron into the pressure device A pressing unit provided in the pressurizing device, capable of sandwiching and substantially including the massive reduced iron from opposite sides, and pressurizing the massive reduced iron at a high temperature;
  • a cooling device that cools the high-density reduced iron that has been compressed by the pressing portion and increased in density.
  • the guide device may include a hopper for storing the massive reduced iron, and an outlet provided at a lower portion of the hopper and having a passage narrowed so that the one massive reduced iron can pass therethrough. it can.
  • the guide device includes a hopper that stores the massive reduced iron, and a vibration feeder that unfolds the massive reduced iron supplied from the hopper and overlaps a plurality of layers and guides it to the pair of rollers. be able to.
  • the guide device may include a hopper for storing the massive reduced iron and a trough with a guide plate that guides the pair of rollers in a state where the massive reduced iron supplied from the hopper is aligned. it can.
  • a vibration device can be added to the outlet or the trough with a guide plate.
  • the massive reduced iron can be uniformly densified without requiring a large-scale briquette machine facility that is specially configured and requires high power and wear of the pressurizing portion is high. it can. Furthermore, according to the present invention, the target metallization rate can be maintained as a whole product, and strength reduction can be suppressed.
  • FIG. 1 shows a basic configuration of a high density reduced iron manufacturing apparatus 1 according to the present invention.
  • reduced iron pellets (bulk reduced iron) R produced in a direct reduction furnace are supplied to a roller press device 2 as a pressurizing device while maintaining a high temperature (600 to 800 ° C.). ing.
  • the roller press device 2 includes a pair of rollers 2a and 2b arranged opposite to each other and a driving device (not shown).
  • One roller 2a rotates in the direction of arrow A around the rotation shaft 2c arranged in the horizontal direction
  • the other roller 2b rotates in the direction of arrow B around the rotation shaft 2d arranged in the horizontal direction. ing.
  • each roller 2a and 2b (in the thickness direction of the paper) is, for example, 250 mm, and the gap between each facing roller 2a and 2b can be adjusted in the range of 1 to 30 mm. It has become. That is, the rotating shaft 2c of the roller 2a is fixed, and the rotating shaft 2d of the roller 2b is pivotally supported by an arm that can move in the horizontal direction.
  • the arm is a rod that expands and contracts from the hydraulic cylinder and can move in the horizontal direction.
  • the gap between the rollers 2a and 2b is adjusted according to the average particle diameter of the reduced iron pellet R. To do.
  • FIG. 2 shows an enlarged view of a main part of the rollers 2a and 2b.
  • a plurality of recesses 2e are formed on the outer peripheral surface of the roller 2a at predetermined intervals in the roller circumferential direction (C direction). Thereby, the roller 2a whole has a corrugated surface (cross section) which continues. Also, the roller 2b facing the roller 2a is formed with a plurality of recesses 2f at the site facing the recess 2e. Thereby, the roller 2b whole has a waveform surface (cross section) which continues.
  • the reduced iron pellet R is wound into the gap between the rollers 2a and 2b. Be able to.
  • the ratio of the opening area of the recess 2e is 70 to 80%.
  • the plurality of recesses 2e and recesses 2f arranged in a row function as pressing portions E for pressurizing the reduced iron pellets R one by one to increase the density.
  • the pressing portions E can be provided in a plurality of rows in the rotation axis direction of the roller.
  • the reduced iron pellets R can be prevented from slipping and the reduced iron pellets R can be efficiently wound around the pressing portion D.
  • the winding efficiency can also be improved by making the outer periphery of the rollers 2a and 2b into a waveform when viewed from the direction of the rotation axis.
  • each recessed part 2e, 2f in the press part E is comprised so that reduction iron pellet R may be pinched and included.
  • the facing distance between the recesses 2e and 2f is D ⁇ (0.5 to 1) where d is the representative dimension of the three-dimensional dimensions of the reduced iron pellet R and D is the facing distance between the deepest parts of the recesses 2e and 2f. .0) d is adjusted to satisfy the relationship d.
  • the facing distance between the recesses 2e and 2f can be defined by the size of raw pellets (not shown) containing the carbonaceous material before reduction.
  • the facing distance between the recesses 2e and 2f is D ⁇ (0.3), where d ′ is the representative dimension of the three-dimensional dimensions of the raw pellet and D is the facing distance between the deepest portions of the recess. To 0.9) d ′.
  • the apparent density of the reduced iron pellet R before passing through the roller press device 2 is 2.25 ⁇ 0.75 g / cm 3 .
  • the apparent density of the high-density reduced iron F (see FIG. 11) that has been pressurized by passing through the roller press device 2 and whose density has been increased is 4.0 ⁇ 1.0 g / cm 3 .
  • roller pressure and torque of the rollers 2a and 2b are set to values necessary for pressurizing the reduced iron pellet R to form high-density reduced iron.
  • a large roller pressure and torque that are set in the briquette machine equipment when forming the reduced iron briquette B ′ as shown in FIG. 10 are not required.
  • the conventional briquette machine equipment is used, similar agglomeration is possible by lowering the roller pressure.
  • the briquette machine equipment is intended to agglomerate several reduced iron pellets at a high pressure into one, in the region under a low pressure as in the present invention, it acts to exert an equal pressure on each pellet. It is unsuitable.
  • the high-density reduced iron F discharged (dropped) individually from the roller press apparatus 2 is received on the conveyor 3 and conveyed in the horizontal direction (arrow G direction).
  • a spray nozzle (cooling device) 4 for injecting the cooling water Wa is disposed at the conveyance destination of the conveyor 3 so that the high-density reduced iron F conveyed by the conveyor 3 can be cooled by the cooling water Wa. It has become. In this embodiment, cooling is performed at a cooling rate of 300 ° C./min or less.
  • the rapidly cooled high-density reduced iron F is stored, for example, in a yard accumulation area.
  • the voids that cause reoxidation are reduced by increasing the density by pressurizing the massive reduced iron pellets obtained by the direct reduction iron making method. To do. Since this step is followed by cooling, it is possible to cool at a substantially uniform cooling rate. Therefore, the above-described problem of supercooling does not occur, and equipment for controlling cooling becomes unnecessary.
  • the cooling method in which cooling water is jetted onto the high-density reduced iron F to quench it has been described.
  • the high-density reduced iron F can be cooled by being immersed in water.
  • the cooling method is not limited to the water cooling, and may be gas cooling.
  • the gas cooling is, for example, a method in which compressed air is blown to the high-density reduced iron F to rapidly cool, or a mixed gas of air and an inert gas, or only an inert gas is blown to the high-density reduced iron F for cooling. The method of doing is included.
  • FIG. 3 shows a configuration of the guide device 5 for supplying reduced iron pellets R one by one to the recesses 2e and 2f formed in the rollers 2a and 2b of the roller press device 2.
  • the guide device 5 shown in the figure has a hopper 5a, and the outlet 5b of the hopper 5a is narrowed so that the reduced iron pellets R can pass one by one.
  • the reduced iron pellet R charged in the hopper 5a moves to the lower outlet portion 5b by gravity and is directly supplied to the pressing portion E.
  • the exit part dimension of the hopper 5a is set to about 1.1d.
  • d is a representative dimension of the reduced iron pellet R.
  • the guide device 5 can expand and supply the reduced iron pellets R for each row of the pressing portions E of the roller press device 2.
  • FIG. 4 is a front view showing the configuration of the second guide device 10.
  • the guide device 10 shown in the figure includes a hopper 11 for storing reduced iron pellets R, and a vibration feeder 12 disposed below the hopper 11 so as to be inclined downward.
  • the vibration feeder 12 receives a reduced iron pellet R supplied from the hopper 11 and conveys the reduced iron pellet R to the pressing portion E of the roller press device 2 and a vibration device 12b that vibrates the trough 12a. It consists of and.
  • the reduced iron R supplied from the hopper 11 and overlaid in a plurality of layers is further expanded and supplied to the pressing portion E one by one.
  • variety is narrowed down so that the front-end
  • the vibration device 12b may be a vibration device that vibrates electrically using an electromagnetic vibrator or the like, or may be a vibration device that vibrates mechanically using a drive motor.
  • FIG. 5 is a perspective view showing the configuration of the third guide device 20.
  • a guide device 20 shown in FIG. 1 includes a hopper 21 that stores reduced iron pellets R, and a trough (trough with a guide plate) 22 that is disposed below the hopper 21 in an inclined state. Yes.
  • the inclination angle of the trough 22 is set to an angle at which the reduced iron pellet R can roll with its own weight.
  • the outlet of the hopper 21 is composed of a slit arranged in parallel with the rotation axis direction of the rollers 2a and 2b.
  • the lateral width of the trough 22 is substantially the same as the slit width W of the hopper 21, and the trough 22 is partitioned in parallel by a plurality of guide plates 22a. Thereby, a plurality of passages are formed in the trough 22.
  • the reduced iron pellets R supplied from the hopper 21 are divided into a plurality of reduced iron pellets R rows by the guide plate 22a, and supplied to the pressing portion E one by one from the plurality of passages.
  • the recesses 2e and 2f are provided on the circumferential surfaces of the rollers 2a and 2b so that the reduced iron pellets R supplied from a plurality of rows can be pressurized in the rotational axis direction of the rollers 2a and 2b.
  • a plurality of rows are provided.
  • FIG. 6 is a perspective view showing the configuration of the fourth guide device 30.
  • the guide device 30 shown in the figure includes the hopper 21 shown in FIG. 5 and a vibration feeder 31 that is arranged below the hopper 21 in a slanting manner.
  • the vibration feeder 31 is formed in a tapered shape when viewed from the plane, and includes a trough 31a disposed in a state of being inclined downward when viewed from the side surface, and a vibration device 31b that vibrates the trough 31a.
  • the reduced iron pellets R supplied from the hopper 31 are divided into a plurality of rows and supplied one by one to the pressing portion E.
  • the recesses 2e and 2f are provided on the circumferential surfaces of the rollers 2a and 2b so that the reduced iron pellets R supplied from a plurality of rows can be pressurized. It is assumed that a plurality of rows are provided in the direction.
  • the circumferential surface area of the roller 2a is 100%, the ratio of the opening area of the recess 2e is 70 to 80%.
  • FIG. 7 is a perspective view showing the configuration of the fifth guide device 40.
  • the guide device 40 is mainly composed of a cylindrical chute 40a that is tapered downward, and a screw feeder 40b that is provided in the cylindrical chute 40a and rotates around the cylindrical axis of the cylindrical chute 40a.
  • the guide device 40 moves the reduced iron pellet R charged in the cylindrical chute 40a downward by the rotation of the screw feeder 40b, and supplies the reduced iron pellet R to the pressing portion E from the chute outlet 40c with a reduced opening area. It is configured to be able to.
  • a vibration device 41 is added to the outlet portion 5b of the hopper 5a shown in FIG. 3, and the reduced iron pellet R passing through the outlet portion 5b is vibrated. . According to this structure, clogging of the reduced iron pellet R in the exit part 5b can be prevented, and more stable supply can be performed.
  • the main component of the powder generated by the collapse of the reduced iron pellet R is iron. If these resources are recycled, the amount of dumping can be reduced and the resources can be effectively used to save energy.
  • the reduced iron pellet R is described as an example.
  • the reduced iron is not necessarily in the form of a pellet, and may be a raw briquette.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

Provided are a method for manufacturing high-density reduced iron and a device therefor, which are capable of uniformly cooling block reduced iron without requiring a large-scale briquette machine, maintaining a desired metallization rate of the entire product, and reducing the deterioration of strength. Specifically provided is a device for manufacturing high-density reduced iron from one piece of block reduced iron (R) obtained by a direct reduction iron-making process, the device characterized by being provided with a pressurizing unit (2) which pressurizes the block reduced iron under high temperature to increase the density, a guiding unit (5) which guides the block reduced iron into the pressurizing unit, pressing parts (2a, 2b) which are provided in the pressurizing unit, can sandwich the block reduced iron from both sides facing each other and substantially envelop the block reduced iron, and pressurizes the block reduced iron under high temperature, and a cooling unit (4) which cools the high-density reduced iron that has increased density by being compressed by the pressing parts.

Description

高密度還元鉄の製造方法および高密度還元鉄の製造装置High density reduced iron manufacturing method and high density reduced iron manufacturing apparatus
 本発明は、高炉、溶解炉、電気炉等の転炉や製鋼炉の溶解原料に使用される高密度還元鉄の製造方法および高密度還元鉄の製造装置に関する。 The present invention relates to a method for producing high-density reduced iron and an apparatus for producing high-density reduced iron used as melting raw materials for converters such as blast furnaces, melting furnaces, electric furnaces, and steelmaking furnaces.
 従来の還元鉄ブリケットの製造方法の一部を図9に示す。 Fig. 9 shows a part of a conventional method for producing reduced iron briquettes.
 回転炉床炉等の直接還元炉で製造された還元鉄Rは、図9に示されるように、ホッパ50を介してブリケットマシン設備51に供給される。 Reduced iron R manufactured in a direct reduction furnace such as a rotary hearth furnace is supplied to a briquette machine facility 51 through a hopper 50 as shown in FIG.
 上記ブリケットマシン設備51にはロール状のブリケッターおよびブレーカが備えられている。上記ブリケッターによって還元鉄Rは、所定間隔で切断溝を有する板状に加圧成形され、次いで、上記ブレーカにより個々に切断される。これにより、還元鉄ブリケットBが形成される。 The briquette machine equipment 51 is provided with roll briquetters and breakers. The reduced iron R is pressure-formed into a plate shape having cutting grooves at predetermined intervals by the briquetter, and then cut individually by the breaker. Thereby, reduced iron briquette B is formed.
上記ブリケッターは、数個のDRI(直接還元鉄)をHBI(熱間ブリケット還元鉄)サイズの金型に押し込んで加圧成形を行う。上記HBIはその搬送中に例えば空気と反応して発熱したり、割れが生じないように、見かけ密度5.0g/cm以上に圧縮される。このような高密度にするためには、ブリケッター用の特殊な加圧装置が用いられる。 The briquetter presses several DRIs (directly reduced iron) into a HBI (hot briquette reduced iron) size mold for pressure molding. The HBI is compressed to an apparent density of 5.0 g / cm 3 or more so that it does not generate heat or generate cracks, for example, by reacting with air during its transportation. In order to achieve such a high density, a special pressure device for briquetters is used.
 これらの還元鉄ブリケットBは、次いでクエンチタンク52に投入され、タンク内の水で急冷される。 These reduced iron briquettes B are then put into the quench tank 52 and rapidly cooled with water in the tank.
 水で冷却された還元鉄ブリケットB′は、搬出コンベヤ53によってクエンチタンク52から引き揚げられて製品となる(例えば、特許文献1参照)。 The reduced iron briquette B ′ cooled with water is pulled up from the quench tank 52 by the carry-out conveyor 53 to become a product (see, for example, Patent Document 1).
 上記方法で製造された還元鉄ブリケットB′(図10参照)は、主として原料、燃料が安価に入手できる国の製鋼用鉄源として、それらの国に輸出される。 The reduced iron briquette B ′ (see FIG. 10) produced by the above method is exported to those countries mainly as iron sources for steelmaking where raw materials and fuels can be obtained at low cost.
日本国特開平6-316718号公報Japanese Unexamined Patent Publication No. 6-316718
 上記還元鉄ブリケットB′が外販用ではなく、例えば、同じブリケットマシン設備に隣接する製鋼工場や高炉に搬送されて使用される場合には、輸送時の割れをそれほど考慮する必要はなく、上記したブリケットマシン設備51を設ける必要がない。 When the reduced iron briquette B ′ is not used for external sales, for example, when it is used by being transported to a steelmaking factory or blast furnace adjacent to the same briquette machine equipment, it is not necessary to consider the cracks during transportation. There is no need to provide the briquette machine equipment 51.
 しかしながら、ブリケットマシン設備51による加圧工程を経ずに還元鉄Rを冷却しようとしても、還元鉄R自体に粒度分布があり、また、還元鉄R内の気孔率が高いために、サイズの異なる還元鉄Rを同じ冷却速度で冷却することができないという問題がある。また、気孔率が高いため、保管中の再酸化を抑制することができないという問題もある。 However, even if it is attempted to cool the reduced iron R without going through the pressurizing process by the briquette machine equipment 51, the reduced iron R itself has a particle size distribution, and the porosity in the reduced iron R is high, so that the sizes are different. There is a problem that the reduced iron R cannot be cooled at the same cooling rate. Moreover, since porosity is high, there also exists a problem that the reoxidation during storage cannot be suppressed.
 本発明は以上のような従来の還元鉄ブリケットの製造方法における課題を考慮してなされた発明である。本発明は、ブリケットマシン設備を用いることなく、還元鉄の再酸化を抑制し、同じ冷却速度で冷却することができる、高密度還元鉄の製造方法および高密度還元鉄の製造装置を提供する。また、目的とする金属化率を達成することができるとともに強度低下を抑制することができる、高密度還元鉄の製造方法および高密度還元鉄の製造装置を提供する。 The present invention has been made in consideration of the problems in the conventional method for producing reduced iron briquettes as described above. The present invention provides a method for producing high-density reduced iron and an apparatus for producing high-density reduced iron, which can suppress reoxidation of reduced iron without using briquette machine equipment and can be cooled at the same cooling rate. Moreover, the manufacturing method of high-density reduced iron and the manufacturing apparatus of high-density reduced iron which can achieve the target metallization rate and can suppress a strength fall are provided.
 本発明は、従来のHBIのように塊状還元鉄を塊成化せず、一つ一つの塊状還元鉄をばらけた状態のまま、HBIに比べて低圧で圧縮し、再酸化を抑制できる程度の見かけ密度にすることを特徴としている。 The present invention does not agglomerate lump reduced iron like conventional HBI, and compresses at a lower pressure than HBI while keeping each lump reduced iron in a state of being scattered, thereby suppressing reoxidation. It is characterized by an apparent density.
 a.本発明に係る還元鉄ブリケットの製造方法は、
 直接還元製鉄法で得られる一つの塊状還元鉄から一つの高密度還元鉄を得る方法であって、上記塊状還元鉄を加圧装置に導入し、
 その塊状還元鉄を挟持し得る上記加圧装置の押圧部により、上記塊状還元鉄を高温下で加圧し、
 加圧された上記塊状還元鉄を冷却することを要旨とする。
a. The method for producing reduced iron briquettes according to the present invention comprises:
A method of obtaining one high-density reduced iron from one lump reduced iron obtained by a direct reduction iron manufacturing method, introducing the lump reduced iron into a pressure device,
Pressing the massive reduced iron at a high temperature by the pressing part of the pressurizing device that can sandwich the massive reduced iron,
The gist is to cool the above-mentioned massive reduced iron.
 本発明における高密度還元鉄の製造方法には、「生ペレット(酸化鉄ペレット)」や「生ブリケット(酸化鉄ブリケット)」を使用することができる。本明細書においては、酸化鉄ペレットや酸化鉄ブリケットが還元されたものを「塊状還元鉄」と呼ぶ。 In the method for producing high-density reduced iron in the present invention, “raw pellets (iron oxide pellets)” and “raw briquettes (iron oxide briquettes)” can be used. In the present specification, iron oxide pellets and iron oxide briquettes that have been reduced are referred to as “bulk reduced iron”.
 また、本明細書において、「高密度還元鉄」とは、直接還元炉に供給されて還元されて得られた「塊状還元鉄」を加圧圧縮してさらに密度を高めたものを意味する。高密度還元鉄は、ホットブリケットマシン設備による圧縮成形に比べ、圧縮の程度が小さい。 In the present specification, “high density reduced iron” means “bulk reduced iron” obtained by being directly supplied to a reduction furnace and reduced to pressurize and compress further to increase the density. High-density reduced iron has a smaller degree of compression than compression molding by hot briquette machine equipment.
 本発明によれば、直接還元製鉄法によって得られた上記塊状還元鉄を加圧して、概ね同じサイズを有する高密度還元鉄が得られた後で冷却を行う。これにより、それらの高密度還元鉄の気孔率が低下して空気や水が侵入し得る空隙が減少するため、再酸化による金属化率の低減が抑制される。そのため、冷却方法についての格別の工夫が行われない場合であっても冷却速度の差によって金属化率がばらつくという事態を避けることができる。 According to the present invention, the massive reduced iron obtained by the direct reduction iron manufacturing method is pressurized, and cooling is performed after high-density reduced iron having approximately the same size is obtained. Thereby, since the porosity of those high-density reduced iron falls and the space | gap which air and water can penetrate | invade decreases, the reduction of the metalization rate by reoxidation is suppressed. For this reason, even when no special device for the cooling method is used, it is possible to avoid a situation in which the metallization rate varies due to the difference in cooling rate.
 このように、本発明の高密度還元鉄の製造方法では、高密度還元鉄の冷却速度をコントロールする必要がなくなるため、そのための設備も不要になる。 Thus, in the method for producing high-density reduced iron according to the present invention, it is not necessary to control the cooling rate of the high-density reduced iron, so that the equipment for that purpose is also unnecessary.
 本発明に係る還元鉄ブリケットの製造方法は、上記押圧部として平行配置された一対のローラーを有し、各ローラーの周方向表面に設けられた凹部によって上記塊状還元鉄を加圧することができる。 The method for producing reduced iron briquette according to the present invention has a pair of rollers arranged in parallel as the pressing portion, and can press the massive reduced iron by a concave portion provided on the circumferential surface of each roller.
 また、各ローラーの周方向表面に連続して波状に形成された複数の上記凹部によって上記塊状還元鉄を加圧することができる。 Moreover, the lump reduced iron can be pressurized by a plurality of the concave portions formed in a wave shape continuously on the circumferential surface of each roller.
 上記高密度還元鉄の製造方法において、上記凹部同士の対向距離は、1つの塊状還元鉄を高密度化するために規定され、後述する二つの寸法設計のいずれかに基づいて定めることができる。 In the method for producing high-density reduced iron, the facing distance between the recesses is defined in order to increase the density of one block-like reduced iron, and can be determined based on one of the two dimensional designs described below.
 (1)上記塊状還元鉄の3次元方向寸法のうち代表寸法をd、上記凹部の最深部間対向距離をDとしたとき、D≦(0.5~1.0)dの関係を満たすように上記凹部同士の対向距離を調整する。 (1) When the representative dimension of the three-dimensional dimensions of the massive reduced iron is d and the facing distance between the deepest parts of the recess is D, the relation of D ≦ (0.5 to 1.0) d is satisfied. The facing distance between the recesses is adjusted.
 (2)還元前の炭材を含有する酸化鉄ペレット(生ペレット)または酸化鉄ブリケット(生ブリケット)の3次元方向寸法のうち代表寸法をd′、上記凹部の最深部間対向距離をDとしたとき、D≦(0.3~0.9)d′の関係を満たすように上記凹部同士の対向距離を調整する。 (2) The representative dimension is d ′ among the three-dimensional dimensions of the iron oxide pellets (raw pellets) or iron oxide briquettes (raw briquettes) containing the carbonaceous material before reduction, and D is the facing distance between the deepest parts of the recesses. Then, the facing distance between the recesses is adjusted so as to satisfy the relationship of D ≦ (0.3 to 0.9) d ′.
 なお、代表寸法dは、塊状還元鉄の体積の1/3乗で定義された値であり、代表寸法d′は、酸化鉄ペレットまたは酸化鉄ブリケットの体積の1/3乗で定義された値である。 The representative dimension d is a value defined by the 1/3 power of the volume of the massive reduced iron, and the representative dimension d ′ is a value defined by the 1/3 power of the volume of the iron oxide pellets or iron oxide briquettes. It is.
 また、その調整については目的の密度になるように、ロールに生じるトルクの値を制御することで行うこともできる。 Also, the adjustment can be performed by controlling the value of torque generated in the roll so as to achieve the desired density.
 上記(1)、(2)の違いは、上記(1)では加圧対象となる塊状還元鉄(直接還元製鉄法で製造されたもの)の寸法を基準として定めるのに対し、上記(2)ではそ加圧対象となる塊状還元鉄を製造する前の原料素材である生ペレットや生ブリケットの寸法を基準として定める点である。これには、生ペレットや生ブリケットの製造条件や製造装置仕様から推定される値に基づいて最適なロール間寸法Dを決定できるという利点がある。 The difference between the above (1) and (2) is that the above (1) is based on the size of the massive reduced iron (manufactured by the direct reduction iron manufacturing method) to be pressurized, while the above (2) Then, it is the point which determines based on the dimension of the raw pellet and raw briquette which are the raw material materials before manufacturing the lump reduced iron used as the pressurization object. This has the advantage that the optimum inter-roll dimension D can be determined based on values estimated from the production conditions and production equipment specifications of raw pellets and raw briquettes.
 なお、還元時の収縮により、還元鉄(塊状還元鉄)の寸法は、還元前の生ペレット、生ブリケットの0.7~0.9倍となる。 Note that due to shrinkage during reduction, the size of reduced iron (bulk reduced iron) is 0.7 to 0.9 times that of raw pellets and raw briquettes before reduction.
 上記高密度還元鉄の製造方法において、上記塊状還元鉄を加圧する場合、見掛け密度が2.25±0.75g/cmである上記塊状還元鉄を、見掛け密度4.0±1.0g/cmの範囲に上昇させることが好ましい。 In the method for producing high-density reduced iron, when the massive reduced iron is pressed, the massive reduced iron having an apparent density of 2.25 ± 0.75 g / cm 3 is reduced to an apparent density of 4.0 ± 1.0 g / cm 3. It is preferable to raise to the range of cm 3 .
 また、上記塊状還元鉄を上記加圧装置に導入する案内装置を介して、上記塊状還元鉄を上記加圧装置に導入することが好ましい。 Moreover, it is preferable to introduce the massive reduced iron into the pressurizing device via a guide device that introduces the massive reduced iron into the pressurizing device.
 また、上記塊状還元鉄を加圧する場合、上記塊状還元鉄等の崩壊によって発生した粉(崩壊粉)を、上記塊状還元鉄と併せて上記加圧装置に導入することができる。これによって、崩壊粉の有効利用を図ることが可能になる。 In addition, when pressurizing the massive reduced iron, powder (collapsed powder) generated by the collapse of the massive reduced iron or the like can be introduced into the pressurizing apparatus together with the massive reduced iron. This makes it possible to use the disintegrated powder effectively.
 また、上記高密度還元鉄の製造方法において、上記塊状還元鉄の冷却は、水冷またはガス冷却により行うことができる。例えば、上記水冷は、搬送されている上記高密度還元鉄に冷却水を噴射することにより行うことができ、または、上記高密度還元鉄を水中に浸漬することにより行うことができる。 Further, in the method for producing high-density reduced iron, the bulk reduced iron can be cooled by water cooling or gas cooling. For example, the water cooling can be performed by injecting cooling water onto the high-density reduced iron being conveyed, or can be performed by immersing the high-density reduced iron in water.
 b.本発明に係る高密度還元鉄の製造装置は、
 直接還元製鉄法で得られる一つの塊状還元鉄から一つの高密度還元鉄を製造する装置であって、
 上記塊状還元鉄を高温下で加圧して密度を高める加圧装置と、
 上記塊状還元鉄を上記加圧装置に導入する案内装置と、
 上記加圧装置に設けられ、対向する両側から上記塊状還元鉄を挟持し略包摂でき上記塊状還元鉄を高温下で加圧する押圧部と、
 上記押圧部によって圧縮され密度の高められた高密度還元鉄を冷却する冷却装置と、を備えることを要旨とする。
b. An apparatus for producing high-density reduced iron according to the present invention is as follows.
An apparatus for producing one high-density reduced iron from one block reduced iron obtained by a direct reduction iron manufacturing method,
A pressurizing device that pressurizes the massive reduced iron at a high temperature to increase the density;
A guide device for introducing the massive reduced iron into the pressure device;
A pressing unit provided in the pressurizing device, capable of sandwiching and substantially including the massive reduced iron from opposite sides, and pressurizing the massive reduced iron at a high temperature;
And a cooling device that cools the high-density reduced iron that has been compressed by the pressing portion and increased in density.
 本発明に係る高密度還元鉄の製造装置において、上記押圧部として平行配置された一対のローラーを有する場合、各ローラーの周方向表面に、上記塊状還元鉄を加圧するための凹部を形成することができる。 In the manufacturing apparatus for high-density reduced iron according to the present invention, when a pair of rollers arranged in parallel as the pressing portion is provided, a recess for pressing the massive reduced iron is formed on the circumferential surface of each roller. Can do.
 また、上記案内装置として、上記塊状還元鉄を貯溜するホッパと、このホッパの下部に設けられ、一つの上記塊状還元鉄を通過させ得るように通路が絞られた出口部と、を有することができる。 In addition, the guide device may include a hopper for storing the massive reduced iron, and an outlet provided at a lower portion of the hopper and having a passage narrowed so that the one massive reduced iron can pass therethrough. it can.
 また、上記案内装置として、上記塊状還元鉄を貯溜するホッパと、このホッパから供給され複数層に重なった上記塊状還元鉄を一層に展開させて上記一対のローラーに案内する振動フィーダと、を有することができる。 In addition, the guide device includes a hopper that stores the massive reduced iron, and a vibration feeder that unfolds the massive reduced iron supplied from the hopper and overlaps a plurality of layers and guides it to the pair of rollers. be able to.
 また、上記案内装置として、上記塊状還元鉄を貯溜するホッパと、このホッパから供給される上記塊状還元鉄を整列させた状態で上記一対のローラーに案内する案内板付きトラフと、を有することができる。 The guide device may include a hopper for storing the massive reduced iron and a trough with a guide plate that guides the pair of rollers in a state where the massive reduced iron supplied from the hopper is aligned. it can.
 また、上記出口部または上記案内板付きトラフに振動装置を付加することができる。 Also, a vibration device can be added to the outlet or the trough with a guide plate.
 本発明によれば、格別に構成された、高動力が必要であるとともに加圧部の摩耗が高い大規模なブリケットマシン設備を必要とせずに、塊状還元鉄を均一に高密度化することができる。さらに、本発明によれば、製品全体として目的の金属化率を維持することができるとともに、強度低下を抑制することができる。 According to the present invention, the massive reduced iron can be uniformly densified without requiring a large-scale briquette machine facility that is specially configured and requires high power and wear of the pressurizing portion is high. it can. Furthermore, according to the present invention, the target metallization rate can be maintained as a whole product, and strength reduction can be suppressed.
本発明に係る高密度還元鉄の製造装置の基本構成を示す正面図である。It is a front view which shows the basic composition of the manufacturing apparatus of the high density reduced iron which concerns on this invention. 図1に示すローラーの要部拡大図である。It is a principal part enlarged view of the roller shown in FIG. 還元鉄ペレットを加圧装置に供給するための案内装置の構成を示す正面図である。It is a front view which shows the structure of the guide apparatus for supplying reduced iron pellet to a pressurization apparatus. 本発明に係る第二の案内装置の構成を示す正面図である。It is a front view which shows the structure of the 2nd guide apparatus which concerns on this invention. 本発明に係る第三の案内装置の構成を示す斜視図である。It is a perspective view which shows the structure of the 3rd guide apparatus which concerns on this invention. 本発明に係る第四の案内装置の構成を示す斜視図である。It is a perspective view which shows the structure of the 4th guide apparatus which concerns on this invention. 本発明に係る第五の案内装置の構成を示す正面図である。It is a front view which shows the structure of the 5th guide apparatus which concerns on this invention. 図7の案内装置の変形例を示す正面図である。It is a front view which shows the modification of the guide apparatus of FIG. 従来の還元鉄ブリケット製造装置を示す正面図である。It is a front view which shows the conventional reduced iron briquette manufacturing apparatus. 図9の製造装置により製造された還元鉄ブリケットの斜視図である。It is a perspective view of the reduced iron briquette manufactured with the manufacturing apparatus of FIG. 本発明の高密度還元鉄の形状を示す説明図である。It is explanatory drawing which shows the shape of the high-density reduced iron of this invention.
 以下、図面に示した実施の形態に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.
1.高密度還元鉄の製造装置の基本構成
 図1は、本発明にかかる高密度還元鉄の製造装置1の基本構成を示す。
1. FIG. 1 shows a basic configuration of a high density reduced iron manufacturing apparatus 1 according to the present invention.
 図1において、図示しない直接還元炉で製造された還元鉄ペレット(塊状還元鉄)Rは、高温(600~800℃)のまま、加圧装置としてのローラープレス装置2に供給されるようになっている。 In FIG. 1, reduced iron pellets (bulk reduced iron) R produced in a direct reduction furnace (not shown) are supplied to a roller press device 2 as a pressurizing device while maintaining a high temperature (600 to 800 ° C.). ing.
 上記ローラープレス装置2は、対向配置された一対のローラー2a、2bおよびその駆動装置(図示しない)からなる。一方のローラー2aは水平方向に配置された回転軸2cまわりに矢印A方向に回転し、他方のローラー2bは水平方向に配置された回転軸2dまわりに、矢印B方向に回転するように構成されている。 The roller press device 2 includes a pair of rollers 2a and 2b arranged opposite to each other and a driving device (not shown). One roller 2a rotates in the direction of arrow A around the rotation shaft 2c arranged in the horizontal direction, and the other roller 2b rotates in the direction of arrow B around the rotation shaft 2d arranged in the horizontal direction. ing.
 各ローラー2aおよび2bの長さ(紙面厚さ方向)は本実施形態では例えば250mmであり、対向する各ローラー2aおよび2bの間の隙間は、1~30mmの範囲で調整することができるようになっている。すなわち、ローラー2aの回転軸2cは固定であり、ローラー2bの回転軸2dは水平方向に移動可能なアームに枢支されている。 In this embodiment, the length of each roller 2a and 2b (in the thickness direction of the paper) is, for example, 250 mm, and the gap between each facing roller 2a and 2b can be adjusted in the range of 1 to 30 mm. It has become. That is, the rotating shaft 2c of the roller 2a is fixed, and the rotating shaft 2d of the roller 2b is pivotally supported by an arm that can move in the horizontal direction.
 上記アームは、油圧シリンダから伸縮するロッドで、上記水平方向の移動が可能になっている。 The arm is a rod that expands and contracts from the hydraulic cylinder and can move in the horizontal direction.
 なお、還元鉄ペレットRの粒径は塊状のもので5~40mmの範囲に分布しているため、ローラー2aおよび2bの間の隙間は還元鉄ペレットRの平均粒径に応じて調整するものとする。 In addition, since the particle diameter of the reduced iron pellet R is a lump and is distributed in the range of 5 to 40 mm, the gap between the rollers 2a and 2b is adjusted according to the average particle diameter of the reduced iron pellet R. To do.
2.ローラーの構成
 図2は上記ローラー2aおよび2bの要部拡大図を示している。
2. Configuration of Roller FIG. 2 shows an enlarged view of a main part of the rollers 2a and 2b.
 ローラー2aの外周面にはローラー周方向(C方向)に所定の間隔を空けて凹部2eが複数形成されている。これにより、ローラー2a全体が連続する波形面(断面)を有するようになっている。また、ローラー2aと対向するローラー2bにも上記凹部2eと対向する部位に凹部2fが複数形成されている。これにより、ローラー2b全体が連続する波形面(断面)を有するようになっている。 A plurality of recesses 2e are formed on the outer peripheral surface of the roller 2a at predetermined intervals in the roller circumferential direction (C direction). Thereby, the roller 2a whole has a corrugated surface (cross section) which continues. Also, the roller 2b facing the roller 2a is formed with a plurality of recesses 2f at the site facing the recess 2e. Thereby, the roller 2b whole has a waveform surface (cross section) which continues.
 このようにローラー2a,2bの周方向に、ローラー2aおよび2bの回転時に対向し得る配置で凹部2e,2fを複数形成することにより、ローラー2a,2bの間の隙間に還元鉄ペレットRを巻き込むことができるようになっている。 In this way, by forming a plurality of recesses 2e and 2f in the circumferential direction of the rollers 2a and 2b so as to face each other when the rollers 2a and 2b rotate, the reduced iron pellet R is wound into the gap between the rollers 2a and 2b. Be able to.
 なお、ローラー2aの周方向表面積を100%とした場合、上記凹部2eの開口面積が占める割合は70~80%である。 When the circumferential surface area of the roller 2a is 100%, the ratio of the opening area of the recess 2e is 70 to 80%.
 一列に並んだ複数の上記凹部2eおよび上記凹部2fは、還元鉄ペレットRを一つずつ加圧して密度を高めるための押圧部Eとして機能するようになっている。この押圧部Eは、ローラーの回転軸方向に複数列設けることができる。 The plurality of recesses 2e and recesses 2f arranged in a row function as pressing portions E for pressurizing the reduced iron pellets R one by one to increase the density. The pressing portions E can be provided in a plurality of rows in the rotation axis direction of the roller.
 また、ローラー2a,2bの周方向表面を粗面にすれば、還元鉄ペレットRの滑りを抑制して還元鉄ペレットRを押圧部Dに効率良く巻き込むことができるようになる。また、ローラー2a,2bの外周をその回転軸方向から見て波形にすることによっても巻き込みの効率を高めることができる。 Further, if the circumferential surfaces of the rollers 2a and 2b are roughened, the reduced iron pellets R can be prevented from slipping and the reduced iron pellets R can be efficiently wound around the pressing portion D. The winding efficiency can also be improved by making the outer periphery of the rollers 2a and 2b into a waveform when viewed from the direction of the rotation axis.
 また、押圧部Eにおける各凹部2e,2fは、還元鉄ペレットRを挟持して包摂できるように構成されている。凹部2e,2f同士の対向距離は、還元鉄ペレットRの3次元方向寸法のうち代表寸法をd、凹部2e,2fの最深部間対向距離をDとしたとき、D≦(0.5~1.0)dの関係を満たすように調整されている。 Moreover, each recessed part 2e, 2f in the press part E is comprised so that reduction iron pellet R may be pinched and included. The facing distance between the recesses 2e and 2f is D ≦ (0.5 to 1) where d is the representative dimension of the three-dimensional dimensions of the reduced iron pellet R and D is the facing distance between the deepest parts of the recesses 2e and 2f. .0) d is adjusted to satisfy the relationship d.
 また、凹部2e,2f同士の対向距離は、還元前の炭材を含有する生ペレット(図示しない)のサイズで規定することも可能である。この場合、上記凹部2e,2f同士の対向距離は、上記生ペレットの3次元方向寸法のうち代表寸法をd′、該凹部の最深部間対向距離をDとしたとき、D≦(0.3~0.9)d′の関係を満たすように調整されている。 Also, the facing distance between the recesses 2e and 2f can be defined by the size of raw pellets (not shown) containing the carbonaceous material before reduction. In this case, the facing distance between the recesses 2e and 2f is D ≦ (0.3), where d ′ is the representative dimension of the three-dimensional dimensions of the raw pellet and D is the facing distance between the deepest portions of the recess. To 0.9) d ′.
 本実施形態において、上記ローラープレス装置2を通過する前の還元鉄ペレットRの見掛け密度は、2.25±0.75g/cmである。上記ローラープレス装置2を通過することによって加圧され、密度が高められた高密度還元鉄F(図11参照)の見掛け密度は4.0±1.0g/cmとなる。 In this embodiment, the apparent density of the reduced iron pellet R before passing through the roller press device 2 is 2.25 ± 0.75 g / cm 3 . The apparent density of the high-density reduced iron F (see FIG. 11) that has been pressurized by passing through the roller press device 2 and whose density has been increased is 4.0 ± 1.0 g / cm 3 .
 ローラー2a,2bのローラー圧およびトルクは、還元鉄ペレットRを加圧して高密度還元鉄に成形するのに必要な値に設定される。ここでは、図10に示したような還元鉄ブリケットB′を成形する際にブリケットマシン設備に設定されるような大きなローラー圧およびトルクまでは必要とされない。 The roller pressure and torque of the rollers 2a and 2b are set to values necessary for pressurizing the reduced iron pellet R to form high-density reduced iron. Here, a large roller pressure and torque that are set in the briquette machine equipment when forming the reduced iron briquette B ′ as shown in FIG. 10 are not required.
 なお、従来のブリケットマシン設備を用いても、ローラー圧を下げて類似の塊状化が可能である。しかしながら、ブリケットマシン設備は、数個の還元鉄ペレットを高圧で一つに塊状化することを目的としているため、本発明のように低圧下の領域では、各ペレットに均等な圧力を及ぼす作用に不向きである。 In addition, even if the conventional briquette machine equipment is used, similar agglomeration is possible by lowering the roller pressure. However, since the briquette machine equipment is intended to agglomerate several reduced iron pellets at a high pressure into one, in the region under a low pressure as in the present invention, it acts to exert an equal pressure on each pellet. It is unsuitable.
3.冷却装置の構成
 図1に戻って冷却装置の構成を説明する。
3. Configuration of Cooling Device Returning to FIG. 1, the configuration of the cooling device will be described.
 ローラープレス装置2から個別に排出(落下)される高密度還元鉄Fは、コンベヤ3上に受け止められ、水平方向(矢印G方向)に搬送される。 The high-density reduced iron F discharged (dropped) individually from the roller press apparatus 2 is received on the conveyor 3 and conveyed in the horizontal direction (arrow G direction).
 上記コンベヤ3の搬送先には冷却水Waを噴射するスプレーノズル(冷却装置)4が配置されており、コンベヤ3によって搬送される高密度還元鉄Fを、冷却水Waにより冷却することができるようになっている。本実施形態では300℃/分以下の冷却速度により冷却が行われる。 A spray nozzle (cooling device) 4 for injecting the cooling water Wa is disposed at the conveyance destination of the conveyor 3 so that the high-density reduced iron F conveyed by the conveyor 3 can be cooled by the cooling water Wa. It has become. In this embodiment, cooling is performed at a cooling rate of 300 ° C./min or less.
 急冷された高密度還元鉄Fは例えばヤードの堆積エリアに蓄えられる。 The rapidly cooled high-density reduced iron F is stored, for example, in a yard accumulation area.
 還元鉄ペレットのサイズが不揃いの状態で冷却し過ぎると、製造された還元鉄の冷却が不均一に進行してしまう。従って、冷却をコントロールする必要が生じ、そのための冷却設備を設けなければならない。 If the size of the reduced iron pellets is not uniform, the produced reduced iron will be cooled unevenly. Therefore, it is necessary to control the cooling, and a cooling facility for that purpose must be provided.
 これに対し、本発明に係る高密度還元鉄の製造方法によれば、直接還元製鉄法によって得られた塊状還元鉄ペレットを加圧して密度を高めることによって、再酸化の原因となる空隙が縮小する。この工程に次いで冷却を行うため、ほぼ均一な冷却速度で冷却することが可能になる。従って、上記したような過冷却の問題も発生せず冷却をコントロールするための設備も不要になる。 On the other hand, according to the method for producing high-density reduced iron according to the present invention, the voids that cause reoxidation are reduced by increasing the density by pressurizing the massive reduced iron pellets obtained by the direct reduction iron making method. To do. Since this step is followed by cooling, it is possible to cool at a substantially uniform cooling rate. Therefore, the above-described problem of supercooling does not occur, and equipment for controlling cooling becomes unnecessary.
 また、上記実施形態では高密度還元鉄Fに冷却水を噴射して急冷する冷却方法について説明したが、高密度還元鉄Fの冷却は、水中に浸漬することによって行うこともできる。さらにまた、冷却方法は、上記水冷に限らず、ガス冷却であってもよい。 In the above embodiment, the cooling method in which cooling water is jetted onto the high-density reduced iron F to quench it has been described. However, the high-density reduced iron F can be cooled by being immersed in water. Furthermore, the cooling method is not limited to the water cooling, and may be gas cooling.
 ここで、ガス冷却とは、例えば圧縮空気を高密度還元鉄Fに吹き付けて急冷する方法や、空気と不活性ガスとの混合気体、または不活性ガスのみを高密度還元鉄Fに吹き付けて冷却する方法等が含まれる。 Here, the gas cooling is, for example, a method in which compressed air is blown to the high-density reduced iron F to rapidly cool, or a mixed gas of air and an inert gas, or only an inert gas is blown to the high-density reduced iron F for cooling. The method of doing is included.
4.案内装置の構成
 図3は、ローラープレス装置2のローラー2a,2bに形成されている凹部2e,2fに対して、還元鉄ペレットRを一つずつ供給するための案内装置5の構成を示す。
4). Configuration of Guide Device FIG. 3 shows a configuration of the guide device 5 for supplying reduced iron pellets R one by one to the recesses 2e and 2f formed in the rollers 2a and 2b of the roller press device 2.
 同図に示す案内装置5はホッパ5aを有し、このホッパ5aの出口部5bは、還元鉄ペレットRが一つずつ通過することができる程度に通路が絞られている。上記ホッパ5aに装入された還元鉄ペレットRは、重力により下方の出口部5bに移動し、押圧部Eに対し直接供給されるようになっている。 The guide device 5 shown in the figure has a hopper 5a, and the outlet 5b of the hopper 5a is narrowed so that the reduced iron pellets R can pass one by one. The reduced iron pellet R charged in the hopper 5a moves to the lower outlet portion 5b by gravity and is directly supplied to the pressing portion E.
 なお、ホッパ5aの出口部寸法は約1.1dに設定されている。ただし、dは還元鉄ペレットRの代表寸法である。 In addition, the exit part dimension of the hopper 5a is set to about 1.1d. However, d is a representative dimension of the reduced iron pellet R.
 上記案内装置5は、上記ローラープレス装置2の押圧部E各列について、還元鉄ペレットRを一層に展開して供給することができるようになっている。 The guide device 5 can expand and supply the reduced iron pellets R for each row of the pressing portions E of the roller press device 2.
 図4は、第二の案内装置10の構成を示した正面図である。 FIG. 4 is a front view showing the configuration of the second guide device 10.
 同図に示す案内装置10は、還元鉄ペレットRを貯溜するホッパ11と、そのホッパ11の下方に、先下がりに傾斜した状態で配置される振動フィーダ12とから構成されている。 The guide device 10 shown in the figure includes a hopper 11 for storing reduced iron pellets R, and a vibration feeder 12 disposed below the hopper 11 so as to be inclined downward.
 振動フィーダ12は、ホッパ11から供給される還元鉄ペレットRを受けるとともにその還元鉄ペレットRをローラープレス装置2の押圧部Eに搬送するためのトラフ12aと、そのトラフ12aを振動させる振動装置12bとから構成されている。ホッパ11から供給されて複数層重なった状態の還元鉄Rは、一層に展開させられ、一つずつ押圧部Eに供給されるようになっている。 The vibration feeder 12 receives a reduced iron pellet R supplied from the hopper 11 and conveys the reduced iron pellet R to the pressing portion E of the roller press device 2 and a vibration device 12b that vibrates the trough 12a. It consists of and. The reduced iron R supplied from the hopper 11 and overlaid in a plurality of layers is further expanded and supplied to the pressing portion E one by one.
 なお、上記トラフ12aの先端部12cは、還元鉄ペレットRを一つずつ通過させるように出口幅が先細に絞られている。 In addition, the exit width | variety is narrowed down so that the front-end | tip part 12c of the said trough 12a may pass the reduced iron pellet R one by one.
 また、上記振動装置12bは、電磁バイブレータ等を用いて電気的に振動させる振動装置であってもよく、駆動モータを用いて機械的に振動させる振動装置であってもよい。 Further, the vibration device 12b may be a vibration device that vibrates electrically using an electromagnetic vibrator or the like, or may be a vibration device that vibrates mechanically using a drive motor.
 図5は、第三の案内装置20の構成を示した斜視図である。 FIG. 5 is a perspective view showing the configuration of the third guide device 20.
 同図に示す案内装置20は、還元鉄ペレットRを貯溜するホッパ21と、そのホッパ21の下方に、先下がりに傾斜した状態で配置されるトラフ(案内板付きトラフ)22とから構成されている。この場合のトラフ22の傾斜角は、還元鉄ペレットRがその自重でころがることができる角度に設定される。 A guide device 20 shown in FIG. 1 includes a hopper 21 that stores reduced iron pellets R, and a trough (trough with a guide plate) 22 that is disposed below the hopper 21 in an inclined state. Yes. In this case, the inclination angle of the trough 22 is set to an angle at which the reduced iron pellet R can roll with its own weight.
 上記ホッパ21の出口は、ローラー2a,2bの回転軸方向と平行に配置されたスリットから構成されている。 The outlet of the hopper 21 is composed of a slit arranged in parallel with the rotation axis direction of the rollers 2a and 2b.
 上記トラフ22の横幅は、ホッパ21のスリット幅Wと略同じに構成されており、トラフ22は複数の案内板22aによって平行に仕切られている。それにより、トラフ22に複数の通路が形成されている。 The lateral width of the trough 22 is substantially the same as the slit width W of the hopper 21, and the trough 22 is partitioned in parallel by a plurality of guide plates 22a. Thereby, a plurality of passages are formed in the trough 22.
 ホッパ21から供給される還元鉄ペレットRは案内板22aによって複数の還元鉄ペレットR列に分けられ、複数の通路から一つずつ押圧部Eに供給されるようになっている。 The reduced iron pellets R supplied from the hopper 21 are divided into a plurality of reduced iron pellets R rows by the guide plate 22a, and supplied to the pressing portion E one by one from the plurality of passages.
 なお、この場合、ローラー2a,2bの周方向表面には、複数の列から供給される還元鉄ペレットRを加圧することができるように、凹部2e,2fが、ローラー2a,2bの回転軸方向に複数列設けられている。 In this case, the recesses 2e and 2f are provided on the circumferential surfaces of the rollers 2a and 2b so that the reduced iron pellets R supplied from a plurality of rows can be pressurized in the rotational axis direction of the rollers 2a and 2b. A plurality of rows are provided.
 図6は、第四の案内装置30の構成を示した斜視図である。 FIG. 6 is a perspective view showing the configuration of the fourth guide device 30.
 同図に示す案内装置30は、図5に示したホッパ21と、そのホッパ21の下方に、先下がりに傾斜した状態で配置される振動フィーダ31とから構成されている。 The guide device 30 shown in the figure includes the hopper 21 shown in FIG. 5 and a vibration feeder 31 that is arranged below the hopper 21 in a slanting manner.
 上記振動フィーダ31は、平面から見て先細に形成されており、側面から見て先下がりに傾斜した状態で配置されるトラフ31aと、そのトラフ31aを振動させる振動装置31bとから構成されており、ホッパ31から供給される還元鉄ペレットRを複数の列に分け、且つ一つずつ押圧部Eに供給するようになっている。 The vibration feeder 31 is formed in a tapered shape when viewed from the plane, and includes a trough 31a disposed in a state of being inclined downward when viewed from the side surface, and a vibration device 31b that vibrates the trough 31a. The reduced iron pellets R supplied from the hopper 31 are divided into a plurality of rows and supplied one by one to the pressing portion E.
 なお、この場合も、ローラー2a,2bの周方向表面には、複数の列から供給される還元鉄ペレットRを加圧することができるように、凹部2e,2fが、ローラー2a,2bの回転軸方向に複数列設けられているものとする。ローラー2aの周方向表面積を100%とした場合、上記凹部2eの開口面積が占める割合は70~80%である。 In this case as well, the recesses 2e and 2f are provided on the circumferential surfaces of the rollers 2a and 2b so that the reduced iron pellets R supplied from a plurality of rows can be pressurized. It is assumed that a plurality of rows are provided in the direction. When the circumferential surface area of the roller 2a is 100%, the ratio of the opening area of the recess 2e is 70 to 80%.
 図7は、第五の案内装置40の構成を示した斜視図である。 FIG. 7 is a perspective view showing the configuration of the fifth guide device 40.
 上記案内装置40は、下方に向けて先細に形成された筒状シュート40aと、この筒状シュート40a内に設けられ、筒状シュート40aの筒軸まわりに回転するスクリューフィーダー40bとから主として構成される。上記案内装置40は、上記筒状シュート40a内に装入された還元鉄ペレットRをスクリューフィーダー40bの回転によって下方に移動させ、開口面積が絞られたシュート出口40cから押圧部Eに供給することができるように構成される。 The guide device 40 is mainly composed of a cylindrical chute 40a that is tapered downward, and a screw feeder 40b that is provided in the cylindrical chute 40a and rotates around the cylindrical axis of the cylindrical chute 40a. The The guide device 40 moves the reduced iron pellet R charged in the cylindrical chute 40a downward by the rotation of the screw feeder 40b, and supplies the reduced iron pellet R to the pressing portion E from the chute outlet 40c with a reduced opening area. It is configured to be able to.
 図8に示す案内装置は図3に示したホッパ5aの出口部5bに振動装置41が付加されており、出口部5b内を通過する還元鉄ペレットRに対して振動を与えるようになっている。この構成によれば、出口部5bにおける還元鉄ペレットRの詰まりを防止してより安定した供給を行うことができる。 In the guide device shown in FIG. 8, a vibration device 41 is added to the outlet portion 5b of the hopper 5a shown in FIG. 3, and the reduced iron pellet R passing through the outlet portion 5b is vibrated. . According to this structure, clogging of the reduced iron pellet R in the exit part 5b can be prevented, and more stable supply can be performed.
5.崩壊粉の再利用
 上記還元鉄ペレットRを、上記ローラープレス装置2によって高温下で個々に加圧して密度を高めるに際し、還元鉄ペレットRの崩壊によって発生した粉(崩壊粉)が発生する。このような崩壊粉は、図9に示されるようなクエンチタンク等により捕集され、上記還元鉄ペレットRに併せ供給して加圧することができる。
5). Reuse of Collapsed Powder When the reduced iron pellet R is individually pressed at a high temperature by the roller press device 2 to increase the density, powder (collapsed powder) generated by the collapse of the reduced iron pellet R is generated. Such disintegrated powder can be collected by a quench tank or the like as shown in FIG. 9 and supplied together with the reduced iron pellet R to be pressurized.
 還元鉄ペレットRの崩壊によって発生した粉の主要成分は鉄分であり、これらの資源をリサイクル活用すれば、投棄量を削減し、資源を有効活用して省エネルギーを図ることができる。 The main component of the powder generated by the collapse of the reduced iron pellet R is iron. If these resources are recycled, the amount of dumping can be reduced and the resources can be effectively used to save energy.
 なお、上記実施形態では還元鉄ペレットRを例に取り説明したが、還元鉄は必ずしもペレット状である必要はなく、生ブリケットであってもよい。 In the above embodiment, the reduced iron pellet R is described as an example. However, the reduced iron is not necessarily in the form of a pellet, and may be a raw briquette.
以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られず、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能である。本出願は2009年5月15日出願の日本特許出願(特願2009-119158)および2010年5月14日出願の日本特許出願(特願2010-111862)に基づくものであり、その内容は個々に参照として取り込まれる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. This application is based on a Japanese patent application filed on May 15, 2009 (Japanese Patent Application No. 2009-119158) and a Japanese patent application filed on May 14, 2010 (Japanese Patent Application No. 2010-111862). Incorporated by reference.
 1  高密度還元鉄の製造装置
 2  ローラープレス装置(加圧装置)
 2a,2b ローラー
 2c,2d 回転軸
 2e,2f 凹部
 3  コンベヤ
 4  スプレーノズル(冷却装置)
 5  案内装置
 5a ホッパ
 5b 出口部
 10 第二の案内装置
 20 第三の案内装置
 30 第四の案内装置
 40 第五の案内装置
 E  押圧部
 F  高密度還元鉄
 R  還元鉄ペレット(塊状還元鉄)
1 High density reduced iron production equipment 2 Roller press equipment (pressurizing equipment)
2a, 2b Roller 2c, 2d Rotating shaft 2e, 2f Recess 3 Conveyor 4 Spray nozzle (cooling device)
DESCRIPTION OF SYMBOLS 5 Guide apparatus 5a Hopper 5b Outlet part 10 2nd guide apparatus 20 3rd guide apparatus 30 4th guide apparatus 40 5th guide apparatus E Press part F High density reduced iron R Reduced iron pellet (bulk reduced iron)

Claims (18)

  1.  直接還元製鉄法で得られる一つの塊状還元鉄から一つの高密度還元鉄を得る方法であって、
     上記塊状還元鉄を加圧装置に導入し、
     その塊状還元鉄を挟持し得る上記加圧装置の押圧部により、上記塊状還元鉄を高温下で加圧し、
     加圧された上記塊状還元鉄を冷却することを特徴とする高密度還元鉄の製造方法。
    A method of obtaining one high density reduced iron from one block reduced iron obtained by a direct reduction iron manufacturing method,
    Introducing the above massive reduced iron into a pressure device,
    Pressing the massive reduced iron at a high temperature by the pressing part of the pressurizing device that can sandwich the massive reduced iron,
    A method for producing high-density reduced iron, characterized in that the above-mentioned massive reduced iron is cooled.
  2.  上記押圧部として平行配置された一対のローラーを有し、各ローラーの周方向表面に設けられた凹部によって上記塊状還元鉄を加圧する請求項1記載の高密度還元鉄の製造方法。 The method for producing high-density reduced iron according to claim 1, comprising a pair of rollers arranged in parallel as the pressing portion, and pressurizing the massive reduced iron by a concave portion provided on a circumferential surface of each roller.
  3.  各ローラーの周方向表面に波状に形成された複数の上記凹部によって上記塊状還元鉄を加圧する請求項2記載の高密度還元鉄の製造方法。 The method for producing high-density reduced iron according to claim 2, wherein the massive reduced iron is pressurized by a plurality of the concave portions formed in a wave shape on a circumferential surface of each roller.
  4.  上記凹部同士の対向距離は、上記塊状還元鉄の3次元方向寸法のうち代表寸法をd、該凹部の最深部間対向距離をDとしたとき、D≦(0.5~1.0)dの関係を満たすように調整される請求項2または3に記載の高密度還元鉄の製造方法。 The facing distance between the recesses is D ≦ (0.5 to 1.0) d, where d is the representative dimension of the three-dimensional dimensions of the massive reduced iron and D is the facing distance between the deepest parts of the recesses. The manufacturing method of the high-density reduced iron of Claim 2 or 3 adjusted so that these relationships may be satisfy | filled.
  5.  上記凹部同士の対向距離は、還元前の炭材を含有する酸化鉄ペレットの3次元方向寸法のうち代表寸法をd′、該凹部の最深部間対向距離をDとしたとき、D≦(0.3~0.9)d′の関係を満たすように調整される請求項2または3に記載の高密度還元鉄の製造方法。 The facing distance between the recesses is D ≦ (0, where d ′ is the representative dimension among the three-dimensional dimensions of the iron oxide pellets containing the carbonaceous material before reduction, and D is the facing distance between the deepest parts of the recesses. The method for producing high-density reduced iron according to claim 2 or 3, adjusted so as to satisfy the relationship of .3 to 0.9) d '.
  6.  上記塊状還元鉄を加圧する際に、見掛け密度が2.25±0.75g/cmである上記塊状還元鉄を、見掛け密度4.0±1.0g/cmの範囲に上昇させる請求項1~5のいずれか1項に記載の高密度還元鉄の製造方法。 The bulk reduced iron having an apparent density of 2.25 ± 0.75 g / cm 3 is increased to an apparent density of 4.0 ± 1.0 g / cm 3 when the bulk reduced iron is pressurized. The method for producing high-density reduced iron according to any one of 1 to 5.
  7.  上記塊状還元鉄を上記加圧装置に導入する案内装置を介して上記塊状還元鉄を上記加圧装置に導入する請求項1~6のいずれか1項に記載の高密度還元鉄の製造方法。 The method for producing high-density reduced iron according to any one of claims 1 to 6, wherein the massive reduced iron is introduced into the pressurizing device through a guide device for introducing the massive reduced iron into the pressurizing device.
  8.  上記塊状還元鉄を加圧する際に上記塊状還元鉄等の崩壊によって発生した粉を、上記塊状還元鉄と併せて上記加圧装置に導入する請求項1~7のいずれか1項に記載の高密度還元鉄の製造方法。 The powder according to any one of claims 1 to 7, wherein the powder generated by the collapse of the massive reduced iron or the like when the massive reduced iron is pressurized is introduced into the pressurizing apparatus together with the massive reduced iron. Manufacturing method of density reduced iron.
  9.  上記塊状還元鉄の加圧後の冷却を、水冷、ガス冷却のいずれかで行う請求項1~8のいずれか1項に記載の高密度還元鉄の製造方法。 The method for producing high-density reduced iron according to any one of claims 1 to 8, wherein cooling after pressurization of the massive reduced iron is performed by either water cooling or gas cooling.
  10.  上記水冷は、加圧された後の上記高密度還元鉄を搬送しつつ、これに散水して行う請求項9に記載の高密度還元鉄の製造方法。 10. The method for producing high-density reduced iron according to claim 9, wherein the water cooling is performed by sprinkling water while transporting the high-density reduced iron after being pressurized.
  11.  上記水冷は、加圧された後の上記高密度還元鉄を水中に浸漬して行う請求項9に記載の高密度還元鉄の製造方法。 The method for producing high-density reduced iron according to claim 9, wherein the water cooling is performed by immersing the high-density reduced iron after being pressurized in water.
  12.  直接還元製鉄法で得られる一つの塊状還元鉄から一つの高密度還元鉄を製造する装置であって、
     上記塊状還元鉄を高温下で加圧して密度を高める加圧装置と、
     上記塊状還元鉄を上記加圧装置に導入する案内装置と、
     上記加圧装置に設けられ、対向する両側から上記塊状還元鉄を挟持し略包摂でき上記塊状還元鉄を高温下で加圧する押圧部と、
     上記押圧部によって圧縮され密度の高められた高密度還元鉄を冷却する冷却装置と、を備えることを特徴とする高密度還元鉄の製造装置。
    An apparatus for producing one high-density reduced iron from one block reduced iron obtained by a direct reduction iron manufacturing method,
    A pressurizing device that pressurizes the massive reduced iron at a high temperature to increase the density;
    A guide device for introducing the massive reduced iron into the pressure device;
    A pressing unit provided in the pressurizing device, capable of sandwiching and substantially including the massive reduced iron from opposite sides, and pressurizing the massive reduced iron at a high temperature;
    And a cooling device that cools the high-density reduced iron that has been compressed by the pressing portion and has an increased density.
  13.  上記押圧部として平行配置された一対のローラーを有し、各ローラーの周方向表面に、上記塊状還元鉄を加圧するための凹部が形成されている請求項12記載の高密度還元鉄の製造装置。 The apparatus for producing high-density reduced iron according to claim 12, comprising a pair of rollers arranged in parallel as the pressing portion, wherein a recess for pressing the massive reduced iron is formed on a circumferential surface of each roller. .
  14.  上記案内装置として、上記塊状還元鉄を貯溜するホッパと、このホッパの下部に設けられ、一つの上記塊状還元鉄を通過させ得るように通路が絞られた出口部と、を有する請求項12に記載の高密度還元鉄の製造装置。 The guide device includes: a hopper for storing the massive reduced iron; and an outlet portion provided at a lower portion of the hopper and having a passage narrowed to allow passage of the one massive reduced iron. The manufacturing apparatus of high-density reduced iron of description.
  15.  上記案内装置として、上記塊状還元鉄を貯溜するホッパと、このホッパから供給された複数層からなる上記塊状還元鉄を一層に展開させて上記一対のローラーに案内する振動フィーダと、を有する請求項13に記載の高密度還元鉄の製造装置。 The guide device includes a hopper for storing the massive reduced iron, and a vibration feeder that unfolds the massive reduced iron supplied from the hopper and guides it to the pair of rollers. 13. The apparatus for producing high-density reduced iron according to 13.
  16.  上記案内装置として、上記塊状還元鉄を貯溜するホッパと、このホッパから供給される上記塊状還元鉄を整列させた状態で上記一対のローラーに案内する案内板付きトラフと、を有する請求項13に記載の高密度還元鉄の製造装置。 The guide device includes: a hopper for storing the massive reduced iron; and a trough with a guide plate that guides the pair of rollers in a state where the massive reduced iron supplied from the hopper is aligned. The manufacturing apparatus of high-density reduced iron of description.
  17.  上記出口部に振動装置が設けられている請求項14に記載の高密度還元鉄の製造装置。 15. The apparatus for producing high-density reduced iron according to claim 14, wherein a vibration device is provided at the outlet portion.
  18.  上記案内板付きトラフに振動装置が設けられている請求項16に記載の高密度還元鉄の製造装置。 The manufacturing apparatus for high-density reduced iron according to claim 16, wherein the trough with the guide plate is provided with a vibration device.
PCT/JP2010/058232 2009-05-15 2010-05-14 Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron WO2010131753A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800162010A CN102388153B (en) 2009-05-15 2010-05-14 Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron
KR1020117027057A KR101302793B1 (en) 2009-05-15 2010-05-14 Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-119158 2009-05-15
JP2009119158 2009-05-15

Publications (1)

Publication Number Publication Date
WO2010131753A1 true WO2010131753A1 (en) 2010-11-18

Family

ID=43085125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058232 WO2010131753A1 (en) 2009-05-15 2010-05-14 Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron

Country Status (4)

Country Link
JP (1) JP2010285691A (en)
KR (1) KR101302793B1 (en)
CN (1) CN102388153B (en)
WO (1) WO2010131753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042574A1 (en) * 2017-09-04 2019-03-07 Outotec (Finland) Oy Plant and method for the thermal treatment of solids

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424609B1 (en) * 2012-06-27 2014-07-31 주식회사 포스코 Hot compacted iron machine
CN211576724U (en) * 2020-03-05 2020-09-25 中国标准化研究院 Heterogeneous bulk material sample mixing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316718A (en) * 1993-03-08 1994-11-15 Kobe Steel Ltd Manufacture of reduced iron briquette
JP2000204419A (en) * 1999-01-11 2000-07-25 Kobe Steel Ltd Production of reduced iron briquette
JP2009079292A (en) * 2007-09-05 2009-04-16 Nippon Steel Corp Method for manufacturing reduced iron molded material, and method for producing pig iron

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021372A1 (en) * 1996-11-11 1998-05-22 Sumitomo Metal Industries, Ltd. Method and apparatus for manufacturing reduced iron
BR9905656A (en) * 1999-11-30 2001-07-24 Viviane Vasconcelos Vilela Ltd Apparatus and process for the extraction of heat and for the solidification of particles of molten materials
KR100673785B1 (en) * 1999-12-13 2007-01-23 신닛뽄세이테쯔 카부시키카이샤 Facilities for reducing metal oxide, method for operating the facilities and moldings as law material to be charged to reduction furnace
AUPR678301A0 (en) * 2001-08-02 2001-08-23 Commonwealth Scientific And Industrial Research Organisation Iron ore briquetting
KR100823616B1 (en) * 2001-10-17 2008-04-21 재단법인 포항산업과학연구원 Molten slag atomization apparatus
CN1325666C (en) * 2002-12-21 2007-07-11 Posco公司 An apparatus for manufacturing molten irons by hot compacting fine direct reduced irons and calcined additives and method using the same
CN201020860Y (en) * 2007-03-10 2008-02-13 李瑞平 High pressure thermal state briquette press
CN101307372B (en) * 2007-05-18 2010-08-11 王云龙 Device for manufacturing and reducing crust pellet and production process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316718A (en) * 1993-03-08 1994-11-15 Kobe Steel Ltd Manufacture of reduced iron briquette
JP2000204419A (en) * 1999-01-11 2000-07-25 Kobe Steel Ltd Production of reduced iron briquette
JP2009079292A (en) * 2007-09-05 2009-04-16 Nippon Steel Corp Method for manufacturing reduced iron molded material, and method for producing pig iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042574A1 (en) * 2017-09-04 2019-03-07 Outotec (Finland) Oy Plant and method for the thermal treatment of solids
US10793928B2 (en) 2017-09-04 2020-10-06 Outotec (Finland) Oy Plant and method for the thermal treatment of solids

Also Published As

Publication number Publication date
CN102388153B (en) 2013-09-18
KR20120013381A (en) 2012-02-14
KR101302793B1 (en) 2013-09-02
CN102388153A (en) 2012-03-21
JP2010285691A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
EP1573076B1 (en) An apparatus for manufacturing molten irons by hot compacting fine direct reduced irons and calcined additives and method using the same
JP5551855B2 (en) Production method of carbonized metal oxide briquette
JP2000144223A (en) Manufacture of reduced iron ingot
WO2010131753A1 (en) Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron
EP3760749B1 (en) Apparatus for manufacturing hot briquetted iron
WO2001042516A1 (en) Facilities for reducing metal oxide, method for operating the facilities and moldings as law material to be charged to reduction furnace
CN215996786U (en) Crusher for steel slag treatment
WO2012015065A1 (en) Method for producing starting material for sintering
US6048381A (en) Method and arrangement for cooling hot bulk material
RU2449024C2 (en) Method for obtaining direct-reduced iron
KR101850132B1 (en) Apparatus for manufacturing coal briquettes
KR101118286B1 (en) Method for manufacturing compacted irons comprising fine direct reduced irons, an apparatus for manufacturing compacted irons comprising fine direct reduced irons, and an apparatus for manufacturing molten irons using the same
US10234205B2 (en) Method and apparatus for charging pallet cars of a traveling grate for the thermal treatment of bulk materials
JP6644458B2 (en) Molding machine
KR20140053583A (en) Apparatus for briquetting and method for briquetting using the same
JP3579652B2 (en) Metal oxide reduction equipment
JP2009001911A (en) Method and equipment for manufacturing quenched thin band
JP2014193999A (en) Ferro coke production method and device
RU100950U1 (en) ROLLING PRESS FOR BRIQUETTING BULK POLYDISPERSION MATERIALS
RU2450929C2 (en) Roll extruder for pelletising polydisperse loose materials
JPWO2018079713A1 (en) Coal molded fuel manufacturing method and coal molded fuel
JP5842843B2 (en) Ferro-coke manufacturing method
RU2450928C2 (en) Roll extruder for pelletising polydisperse loose materials
JPWO2018079706A1 (en) Coal molded fuel manufacturing method and coal molded fuel
JP2011214122A (en) Method and facility for manufacturing hot briquette

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016201.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10775010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117027057

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10775010

Country of ref document: EP

Kind code of ref document: A1