JP3579652B2 - Metal oxide reduction equipment - Google Patents

Metal oxide reduction equipment Download PDF

Info

Publication number
JP3579652B2
JP3579652B2 JP2000372016A JP2000372016A JP3579652B2 JP 3579652 B2 JP3579652 B2 JP 3579652B2 JP 2000372016 A JP2000372016 A JP 2000372016A JP 2000372016 A JP2000372016 A JP 2000372016A JP 3579652 B2 JP3579652 B2 JP 3579652B2
Authority
JP
Japan
Prior art keywords
powder
metal oxide
reduction
type
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000372016A
Other languages
Japanese (ja)
Other versions
JP2001234220A (en
Inventor
哲治 茨城
隆 廣松
敏 近藤
章次 井村
安部  洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000372016A priority Critical patent/JP3579652B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to PCT/JP2000/008771 priority patent/WO2001042516A1/en
Priority to AU17368/01A priority patent/AU1736801A/en
Priority to US09/913,287 priority patent/US6755888B2/en
Priority to CNB008058164A priority patent/CN1262676C/en
Priority to KR1020017010263A priority patent/KR100673785B1/en
Priority to EP20000980059 priority patent/EP1170384B1/en
Priority to TW89126496A priority patent/TW527423B/en
Publication of JP2001234220A publication Critical patent/JP2001234220A/en
Priority to US10/834,870 priority patent/US7192552B2/en
Application granted granted Critical
Publication of JP3579652B2 publication Critical patent/JP3579652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化金属の還元、および、金属の精錬業および加工業において発生する金属酸化物を含むダストおよびスラジの還元処理する回転炉床式還元炉による酸化金属の還元設備に関するものである。
【0002】
【従来の技術】
還元鉄や合金鉄を製造するプロセスとしては各種のものがあるが、この内で、生産性の高いプロセスとして、回転炉床法が実施されている。回転炉床法は、固定した耐火物の天井および側壁の下で、中央部を欠いた円盤状の耐火物の炉床がレールの上を一定速度で回転する型式の焼成炉(以下、回転床炉と称す)を主体とするプロセスであり、酸化金属の還元に用いられる。回転炉は、回転する中央部を欠いた円盤状の炉床を有する。円盤状炉床の直径は10メートルから50メートルかつ、幅は2メートルから6メートルである。
【0003】
原料の酸化金属を含む粉体は、炭素系の還元剤と混合された後、原料ペレットにされて、回転床炉に供給される。原料ペレットはこの炉床上に敷きつめられており、原料ペレットが炉床上に相対的に静置されていることから、原料ペレットが炉内で崩壊しづらいといった利点があり、耐火物上に粉化した原料が付着する問題が無く、また、塊の製品歩留が高いと言った長所がある。また、生産性が高く、安価な石炭系の還元剤や粉原料を使用できる、と言った理由から、近年、実施される例が増加している。
【0004】
さらに、回転炉床法は、高炉、転炉、電気炉から発生する製鉄ダストや圧延工程でのシックナースラジの還元と不純物除去の処理にも有効であり、ダスト処理プロセスとしても使用され、資源リサイクルに有効なプロセスである。
【0005】
回転炉床法の操業の概略は以下の通りである。まず、原料である鉱石やダスト、スラジの金属酸化物にこの酸化物の還元に必要な量の炭素系還元剤をよく混合した後、パンペレタイザー等の造粒機にて、平均水分が約10%となるように、水をかけながら、数mmから十数mmのペレットを製造する。原料の鉱石や還元剤の粒径が大きい場合は、ボールミル等の粉砕機で粉砕した後に、混練して、造粒する。
【0006】
このペレットは回転炉床上に層状に供給され、炉床上に敷込まれたペレットは急速に加熱され、5分間から20分間、1300℃前後の高温で焼成される。この際に、ペレットに混合されている還元剤により酸化金属が還元され、金属が生成する。金属化率は還元される金属により異なるが、鉄、ニッケル、マンガンでは、95%以上、還元しづらいクロムでも50%以上となる。また、製鉄業から発生するダストを処理する場合は、還元反応に伴い、亜鉛、鉛、アルカリ金属、塩素、等の不純物が揮発除去されることから、高炉や電気炉にリサイクルすることが容易となる。
【0007】
設備としては、原料の事前粉砕設備、原料混合設備、造粒設備、ペレット乾燥設備、回転炉床式還元炉、排ガス処理装置、還元ペレット冷却装置からなっている。
【0008】
金属の還元方法および製鉄ダストの還元処理方法においては、回転炉床式還元炉と同様に、原料と還元剤をペレットにする設備が重要で、原料の事前処理の設備、原料の酸化金属の粉体と還元剤の混合物を造粒性の良い状態にする設備が重要であり、原料の事前粉砕やボールミルでの混練等の種々の装置が設置されていた。
【0009】
【発明が解決しようとする課題】
前述のように、従来法を用いた回転炉床法での酸化金属の還元方法は、生産性や製造費用の面で優れており、経済的に金属を製造する方法である。しかし、従来技術では、原料と還元剤を混合して、これをペレットにすることが重要であった。そのために、造粒性能の高い原料を選択するか、高価な粉砕機を設置して、原料を粉砕することにより造粒性を向上させることが必要であり、このための費用がかかる問題があった。
【0010】
つまり、原料として鉄鉱石等の鉱石を使用する場合は、一般には、原料鉱石の粒径が大きいため、平均粒径が数十ミクロン程度になるように粉砕した後、造粒して、ペレットを製造していた。その結果、粉砕工程の設備が高価であり、また、粉砕機の運転のための電力がかかることや粉砕機器の磨耗に伴う整備費用がかかると言った欠点があった。
【0011】
したがって、粉砕の費用を節約するために、微粉の原料を使用することがあるが、粒径の制約等の原料の選択性が厳しく、汎用的な方法ではなかった。そこで、湿式選鉱後の微粉の鉱石を使用したり、高炉や転炉のシックナーダスト、圧延工程でのスケールピットのスラジや酸洗工程での沈殿スラジ等を使用することが有効である。しかし、この場合でも、原料の含有水分が多すぎて造粒しづらい問題といったことがあった。すなわち、これらの原料は粒径が1ミクロン以下から百ミクロン程度の微粉であり、その結果、水分を含んだ状態では、これらは汚泥状となりやすく、真空脱水機やフィルタープレスで脱水した後でも、水分が20%から50%にしかならない。ペレットの製造の際は、原料の含有水分は、8から13質量%が適当であり、これらの湿式法で集めた原料は、水分が多すぎて、そのままでは造粒できなかった。
【0012】
この問題の解決のためには、これらの湿式法で集めた原料を熱風等の熱源で完全に乾燥する方法がある。しかし、乾燥過程でこれらの粉原料が疑似凝集してしまい、そのままでは造粒することはできないため、これを粉砕して、再度、微粒の状態にした後に、コークス粉などとともに、加水して、造粒した後に、回転炉床で、還元されていた。
【0013】
その結果、これらの湿式法で集めた原料を上記の方法で利用された場合でも、多量の熱源を用いて乾燥した後に、再度水分を加えられるため、造粒時の水分の蒸発に、再度、熱源が必要であり、経済的な金属の還元方法ではなかった。
【0014】
特に、製鉄業等の金属の精錬業や加工業で発生するダストやスラジを湿式集塵機または沈殿槽から集めた場合には、これらの発生物は、最大80%の水分を含有しており、これらの発生物を回転炉床法で還元処理しようとする場合には、乾燥工程と乾燥後の粉砕処理の問題が顕著であった。
【0015】
これらの問題を解決するために、例えば、特開平11−12619号公報に示されるように、原料を造粒せずに回転炉床法で使用する方法として、原料を圧縮成形器でタイル状にして、これを回転床炉法で使用する方法が提案されている。しかし、この方法でも、やはり、水分を大量に含有した状態の原料を使用することには問題があった。つまり、特開平11−12624号公報に示されように、原料の水分を6から18%に調整する必要があった。通常の脱水装置では、百ミクロン以下の微粉が湿状態である場合は、これを水分15から30質量%の範囲にしか低減できなかった。つまり、特開平11−12619号公報に示される操業を実施するためには、やはり、事前の脱水処理に加え、乾燥処理が必要であり、このための複雑な水分制御が必要な問題があった。さらに、このタイル状の原料装入のためには、特開平11−12621号公報に示されるような、複雑な装入装置が必用であり、この設備の整備費用が高い等の問題も生じていた。
【0016】
以上のように、従来法では、水分を含んだ粉状態の原料を回転床炉で還元するためには、原料の乾燥や成形のために、複雑な装置が多数必要であり、設備建設費用が多くかかる問題があった。その結果、設備建設と操業コストの両方に、経済的な問題があり、この問題を解決する新しい処理方法を実現する設備が求められていた。
【0017】
【課題を解決するための手段】
本発明は、以下の(1)〜(6)の通りである。
(1) 水分を含有する状態の酸化金属を含む粉体と炭素を主体とする粉体の水分を16〜26%に調整する水分調整装置水分が調整された湿潤粉体を30mm以下の径の穴型から押し出す型式の圧縮成形機、成形体搬送用コンベア、成形体投入装置、および、回転炉床式還元炉を、表記の順に設置して、これらを搬送手段で連結してなることを特徴とする酸化金属の還元設備、
(2) 前記水分調整装置が、水分を含む状態の酸化金属を含む粉体と炭素を主体とする粉体の混合物を受ける1本の循環移動する帯状のフィルター、および、当該フィルターを挟み込んで圧縮する双ロールを有する脱水装置であり、かつ、当該圧縮する双ロールのうち、上ロールが直接スラリーを圧搾する型式の脱水装置であることを特徴とする(1)に記載の酸化金属の還元設備、
(3) 前記水分調整装置が、縦型で下部に内側に狭くなるテーパーを有する円筒のスラリー保持部とその内部にスクリュー式の粉体排出機構を有し、当該スラリー保持部と当該粉体排出機構の差速が毎分2〜30回転であり、当該スラリー保持部に働く遠心力が500G以上の遠心式脱水装置であることを特徴とする(1)に記載の酸化金属の還元設備、
(4) 前記水分調整装置が、水分を含む状態で酸化金属を含む粉体と炭素を含む粉体の混合物を受けるフィルターを両側から10 6 N/m 2 以上の力で押しつける装置を有する脱水装置であることを特徴とする(1)に記載の酸化金属の還元設備、
(5) 穴型から押し出す型式の圧縮成形機から、回転炉床式還元炉までの搬送において、成形体の合計落下距離が4.1m以下であることを特徴とする(1)〜(4)のいずれか記載の酸化金属の還元設備、および
(6) 回転炉床式還元炉の成形体供給部分の雰囲気温度を1170℃以下とする機能を有することを特徴とする(1)〜(5)いずれか記載の酸化金属の還元設備である。
【0018】
【発明の実施の形態】
本発明は、水分を多く含む酸化金属粉体を原料とする還元を行う回転炉床式還元炉の設備に関するものである。本発明に基づく、回転炉床法による金属酸化物の還元プロセスを図1に示す。
【0019】
水分を多く含み、スラリー状態となっている原料粉体を良く混合する装置として、混合槽1と撹拌装置2を設置する。この原料粉体とは、酸化金属を含む粉体と炭素を含む粉体の混合物である。酸化金属を含む粉体は、微粉の鉄鋼石であるペレットフィード、粉状態のマンガン鉱石やクロム鉱石などがある。また、鉱石以外に、電気炉ダスト、高炉ガス灰、転炉ダスト、鉄製品の酸洗時に発生する中和スラジ、鉄鋼の熱間圧延のミルスケール等の金属精錬や金属加工からの粉状態の発生物も使用可能である。また、この原料粉には、還元剤として、炭素を主体とする粉体、例えば、オイルコークス、粉コークス、チャー、石炭、その他の固定炭素を含む粉体(以下、炭素粉と記載)を混合するものである。
【0020】
複数の含水粉体を貯蔵する槽から、撹拌槽1に原料の水を含む粉体を搬送するには、酸化金属を含む粉体をクラブバケットクレーンやスラリー輸送の方法が望ましい。
【0021】
スラリー状態となっている原料粉体を、短時間で均一に撹拌するためには、水分を多量に含んでいる必要がある。本発明者らが、種々の実験を繰り返して、解明した結果では、原料粉体が水分を多く含んでいると良い。つまり、水分が多く、粉体質量に対して含有水分が100%以上であれば、流動性が高く、均一混合の時間が短くなるとともに、撹拌の動力も少なくて済む利点がある。
【0022】
スラリー状態で、粉体が容易に沈殿しないためには、粉体粒径は小さい方がよい。撹拌を強化すれば、比較的大きい粉体も使用可能であるが、酸化金属粉で100ミクロン、炭素粉で180ミクロン以下、また、混合比率を勘案すれば、総平均粒径が120ミクロン以下であれば、100質量%の水分の状態で、通常の毎分10〜30回転程度と簡便な撹拌でも均一に混合する。
【0023】
当該スラリー状態となっている原料粉体をスラリーポンプ3にて、脱水装置4に送る。脱水装置4にて、含有水分が粉体質量の16〜26%の範囲になるよう脱水する。含有水分が粉体質量の16〜26%とする理由は、後述するように、水蒸気による炉内での成形体の爆裂防止と落下強度の確保のためである。
【0024】
粒径の粗い粉体では、含有水分16〜26%とすることは、比較的容易で、一般的な脱水装置、例えば、真空脱水機、プレスフィルター、遠心式デカンター、で対応できる。ただし、前述してように、本発明に望ましい原料である平均粒径が120ミクロン以下の微粉からなるスラリーの脱水の場合は、脱水物の水分を16〜26%とすることは、一般的な脱水装置では困難であり、特殊な脱水装置を用いる。また、場合によっては、幾つかの型式の脱水装置を組み合わせて使用することもある。
【0025】
この場合に用いる脱水装置として、水分を含む粉体混合物を受ける帯状フィルターとこれを挟み込んで圧縮する双ロールを有する脱水装置を用いることは有効である。この装置は、図3に記載されており、スラリーを受けるフィルター23、および、当該フィルターを挟み込んで圧縮双ロール25を有する脱水装置を用いる。この脱水装置では、エンドレスの帯状に組み込まれているフィルター23上に、スラリー26を流し、このフィルターを圧縮双ロール26で挟み込み脱水する。スラリーの水分が多い場合は、圧縮双ロール26の手前で、フィルターの下方にスラリー中の水を、真空吸引装置24で、予備脱水すると効果的に脱水ができる。
【0026】
また、特に細かい粉体を含むスラリーの処理の場合は、脱水装置として、縦型の遠心式分離器を用いることも効果的である。この遠心分離器は、下部に内側に狭くなるテーパーを有する円柱のスラリー保持部とその内部にスクリュー式の粉体排出機構を有し、当該スラリー保持部と当該粉体排出機構の差速が毎分2〜30回転であり、当該スラリー保持部に働く遠心力が500G以上の遠心式脱水器である。この脱水装置は、1基当たりの能力は小さいものの、遠心力を用いるため、分離効率が良く、水分が多く細かい粉体の脱水に向いている。特に、粒径が数ミクロン〜30ミクロンと小さい粉体に適用することは有効である。
【0027】
また、脱水装置として、スラリーを受けるフィルターを両側から10N/m以上の力で押しつける装置を有する高圧プレス式脱水装置を用いることも可能であるが、前出の双ロールを有する脱水装置と比較すると、やや脱水力が劣るため、100ミクロン前後のやや粗い粉体に使用することが望ましい。
【0028】
次に、脱水されて、水分が16〜26質量%の範囲となった湿状態の粉体をスラジ搬送コンベア5にて、圧縮成形機6に送り、ここで成形する。圧縮成形機の機種としては、図4に示す穴型に湿状態の粉体を押し込む型式の成形機(以降、穴型ペレッターと称す)と図5に示す双ロール表面の凹状の型に湿状態の粉体を押し付けて成形するブリッケト成形機が、代表的な機種である。
【0029】
穴型ペレッターでは、図4に示されるように、湿状態の成形体が円柱状に押し出される。原料は、原料供給口28から供給され、穴型34が多数開いている底プレート33の上で、駆動装置29、駆動動力伝達機構30、および、駆動シャフト31によって駆動されるローラー32の押し込みにより、成形体35となる。他の方式では、胴部の中でスクリュー式の押し込み機構があり、穴型の開いたプレートに押しつける型式のものなどもある。ブリッケト成形機は、図5に示す装置であり、原料供給部36から粉体を供給して、凹状くぼみ38があるローラー37にて圧縮成形するものである。
【0030】
これらの機種を選定した理由としては、成形体の要求性状を満たす成形方法であることである。成形体に要求される性状としては、主に、成形体が炉内での爆裂を起こさないこと、および、湿状態での落下強度が高いことの2点である。
【0031】
本発明者らは、湿状態の成形体を直接炉内に供給した時に、成形体が爆裂を起こさないためには、成形体の粉体充填密度が比較的低いことが重要であることを解明した。回転炉床による還元炉での成形体の爆裂は、成形体を900℃以上の高温の炉内に供給するために、成形体内部の水分が急速に蒸発して、成形体内部の圧力が高まることが原因である。そこで、種々の実験を繰り返した結果、本発明者らは、爆裂現象は、成形体の粉体充填密度と含有水分の両者に強く影響を受けていることを解明した。なお、粉体充填率とは、粉体が成形体の内部を占有する比率ある。
【0032】
粉体充填率を低下させると、含有水分が高くとも、爆裂しづらことを解明した。高温の炉内で、成形体内部の水分が急速に蒸発して成形体内部の圧力が高まることを防止するには、粉体粒子間に空隙が多いことが重要である。粉体充填率が低下すると爆裂限界水分が上昇しており、粉体充填率が0. 58以下では、16〜26%の水分でも爆裂は起きなかった。ただし、あまり粉体充填率が低いと、落下強度が低下する問題があるため、0. 4以上粉体充填率を確保する必要がある。
【0033】
一般的に、圧縮成形法による成形体の製造は、爆裂を起こしづらい条件の粉体充填率の低いものを製造できる利点がある。ただし、成形体の形状によって、爆裂の条件が異なる。タイル状の成形体で、厚みが20mm、長さと幅が150mmのものでは、粉体充填率が0. 58の状態でも、水分が17%以上では、爆裂が起きていた。一方、穴型ペレッターで製造した、径が15mmで長さが25mmの円柱状の成形体では、粉体充填率が0. 58の状態は、水分が26%まで爆裂が起きなかった。また、ブリケット製造機で製造した、厚みが20mmで辺が40mmのアーモンド状の成形体では、粉体充填率が0. 58の状態では、水分が26%まで爆裂が起きなかった。つまり、板状の成形体では、爆裂しやすく、一方、円柱や粒状の成形体では、爆裂しづらい特徴がある。そこで、本発明では、成形装置を円柱か粒状のもの製造するものに特定した。
【0034】
穴型ペレッターでの成形体は円周側の表面は緻密になっているものの、円柱の切断面はかなりルーズになっている。その結果、含有水分が多くとも、水蒸気の通過抵抗は小さいことから、爆裂が起きづらいことが解明された。また、ブリッケト成形機においても、圧縮が厚み方向に一次元的であることから、ブリッケト成形体の横側での密度が上がっておらず、そこから、水蒸気が抜けやすかったことが解明された。ただし、円柱か粒状の成形体でも、条件よっては、30mm以上の成形体は水分26質量%以下でも1170℃の炉内で爆裂が起ることがある。そこで、成形体の厚みまたは径が30mm以下とすることが望ましい。
【0035】
成形体は、その後、湿状態のまま、成形体搬送コンベア7を経由して、成形体の炉内への供給装置である、首振りコンベア8を用いて、回転炉床式還元炉9に供給される。成形体が破壊されることを防止するには、首振りコンベア等の、極力、機械的に衝撃を与えない供給装置が良い。
【0036】
一般的に、成形体は、成形機から炉床まで搬送される過程で、コンベアの乗り継ぎと炉内への投入で、数回落下する。したがって、落下強度(成形体が壊れるまでのトータル落下距離で表示)の強い成形体が求められている。落下強度が向上する。爆裂と落下強度の両者の条件を満足する条件である水分が16〜26質量%で粉体充填率が0. 43〜0. 58の範囲では、なんとか落下強度(形状が破壊されるまでの合計の落下距離)を4. 2m以上までは高められる。したがって、圧縮成形機6から、回転炉床式還元炉9の炉床上までの搬送経路における落下回数を少なくして、落下距離の合計を4. 1m以下とするように設備を設計すれば、搬送中の成形体の破壊を防止できる。
【0037】
回転炉床式還元炉9の成形体供給部の温度は1170℃以下である。成形体供給部の温度は、1170℃以上の場合は、成形体の水分が26質量%と本発明の設備で製造される成形体で水分の高いものを使用する際には、成形体が爆裂を起こす確率が上がるためである。
【0038】
前述したように、回転炉床式の還元炉9では、中央を欠いた円盤状の炉床が回転する。当該炉床は、焼成・還元ゾーンを経由して、成形体の排出ゾーンで、還元済みの成形体が排出される。その後、炉床が成形体の供給部に到達する。この時の炉床の温度は、1150〜1300℃であることから、通常の操業では、成形体供給部の温度は、おおよそ1000〜1250℃である。つまり、操業条件によっては、成形体供給部の温度は、1170℃以上のこともある。このような場合は、成形体供給部の温度を下げる構造とする。冷却方法として、成形体供給部の周囲の天井を水冷したり、成形体供給部に燃焼ガスが入らない構造を持つ回転炉床式還元炉を採用する。
【0039】
回転炉床式還元炉9では、1150〜1350℃程度の温度で焼成され、成形体内部の炭素分により、酸化金属が還元される。本発明の原料混合方法は、水を多く含む状態で撹拌混合されているため、成形体の酸化金属と炭素が均一に混合されており、効率よく反応する効果もある。
【0040】
還元された成形体は、回転炉床式還元炉9から排出されて、製品冷却装置13にて、常温まで冷却される。ただし、電気炉等で使用する場合には、900℃程度の高温のまま溶解工程に供給することもある。回転炉床式還元炉9からの燃焼排ガスはガス冷却装置10と集塵機11を経由して、煙突12から大気に放散される。
【0041】
本発明を金属の精錬もしくは加工で発生するスラジやダストの処理に活用することは、特に、有効な方法である。例えば、製鉄所の高炉のガス灰は湿式のベンチュリースクラバーで集塵して、シックナーでスラリーなっている。また、圧延の酸洗での廃酸を中和した中和スラジもある。このようなダストやスラジは脱水装置をかけて処理しているが、再利用することが難しく、費用もかかるものである。例えば、これらのダストやスラジをシックナーから混合槽1に直接受ければ、中間処理がなく、簡単な方法で還元処理用の原料成形体とすることができる。したがって、金属の精錬また加工の工程で発生するダストやスラジを用いることは、本発明にとって最も望ましい方法の一つである。
【0042】
ここで、操業方法の比較として、従来法による操業の設備を図2に示す。従来法の設備での操業では、本発明の設備の操業の脱水工程の後に、原料はスラジ粉体搬送コンベア15で送られ、粉体乾燥機16で水分を5〜10質量%の範囲の乾燥する。また、その後、粉体に散水装置18で加水しながら、造粒装置17にてペレットを製造する。さらに、ペレット搬送コンベア19にて、ペレット乾燥装置20に送られて、ここでペレットを水分2質量%程度まで乾燥する。その後に、回転炉床式還元炉にて、酸化金属を焼成還元する。このように、本発明による方法に比べると、従来法による操業は多工程にわたり、複雑である。また、連続して、脱水、乾燥、加水、脱水と水分調整をくり返すことから、このためのエネルギーロスも大きい方法であり、本発明による設備の有効性が比較的に示される。
【0043】
【実施例】
本発明に基づく操業を行った実施例を表1に示す。使用した設備は、図1に示される構成のものであり、還元能力は、湿状態の成形体量の基準で、毎時10トンのものである。脱水装置は双ロール式のもの、成形機は穴型ペレッターを用いた。
【0044】
【表1】

Figure 0003579652
原料は、表1に示すとおり、微粉の粉鉱石であるペレットフィードと1mmアンダーのコークス粉の混合物と、一貫製鉄所での高炉ガス灰、熱間圧延スケールピットの沈殿スラジ、および、1mmアンダーのコークス粉の混合物の2種類を用いた。
【0045】
操業条件としては、表1に示すとおりであるが、混合槽1の原料水分は粉体質量の130〜185%、成形前の原料水分は粉体質量の17〜20%である。粉体充填率は、本発明の範囲内である。また、成形体のサイズは、直径が15mmで長さが25mmである。成形体の投入部の炉内温度は、約980℃、還元部の炉内温度は1210℃であり、また、還元時間は15分である。
【0046】
実施例1は、ペレットフィードを用いた操業例で、炭素混合比率の適正であったことから、生産性の高い操業であった。この操業では、金属化率は97%と高く、落下による粉化と爆裂がほとんどなかったことから、塊製品歩留も94%と高かった。実施例2は、高炉ガス灰と熱間圧延スケールピットの沈殿スラジを用いた操業例で、還元とともに脱亜鉛と脱アルカリも狙った操業である。この操業では、金属化率は91%で、脱亜鉛率は97. 5%、脱アルカリ率は99%と不純物除去は有効にできていた。この実施例でも落下による粉化と爆裂がほとんどなかったことから、塊製品歩留も95%と高かった。
【0047】
本発明による還元操業と図2に示される設備を使用した従来法との経済性を比較した。本発明での操業では、原料の前処理が混合工程、脱水工程、および、成形工程しかないため、原料前処理の費用は、比較例に比べて、30%程度で済んでいる。また、プロセス全体での費用でも、約15%の削減ができている。さらに、建設費用については、原料前処理が簡便であることから、実施例は、比較例よりも約10%削減された。
【0048】
以上のように、湿状態の粉体を使用する本発明を用いた回転炉床式還元炉設備では、原料成形体の爆裂などの操業上の問題もなく、安価な建設費用で、エネルギー消費量をはじめとする操業費用も安価で操業できる。また、回転炉床式還元炉での整備費の安く、金属酸化物を経済的に、還元できる。特に、粉体の乾燥工程とその付帯装置を省略できることにより、設備費を低減できる効果は大きい。
【0049】
【発明の効果】
本発明によれば、水分を多く含んだ酸化金属粉体の還元や金属の精錬や加工の工程で発生する酸化金属を含むダストとスラジの処理を、少ない工程で経済的に実施する回転炉床式還元炉の酸化金属の還元設備ができる。特に、水分を大量に含有するダストとスラジの処理設備としては有効な方法である。
【図面の簡単な説明】
【図1】本発明に基づく、水分を含む粉体原料を還元する回転炉床式の還元炉の一例を示す図である。
【図2】従来法に基づく、回転炉床式の還元炉の一例を示す図である。
【図3】エンドレスの帯状のフィルターの上にスラリーを落とし、圧縮双ロールにて、圧搾する形式の脱水装置を示す図である。
【図4】粉体を穴型から押し出し形式の圧縮成形機を示す図である。
【図5】凹状の型で粉体を圧縮成形する形式のブリッケト圧縮成形機を示す図である。左が装置構成を示す図で、右が圧縮ローラーの図である。
【符号の説明】
1 混合槽
2 撹拌装置
3 スラリーポンプ
4 脱水装置
5 スラジ搬送コンベア
6 圧縮成形機
7 成形体搬送コンベア
8 首振りコンベア
9 回転炉床式還元炉
10 ガス冷却装置
11 集塵機
12 煙突
13 製品冷却装置
14 脱水装置
15 スラジ粉体搬送コンベア
16 粉体乾燥機
17 造粒機
18 散水装置
19 ペレット搬送コンベア
20 ペレット乾燥装置
21 乾燥ペレットコンベア
22 スラリー入口
23 フィルター
24 真空吸引装置
25 圧縮双ロール
26 スラリー
27 脱水物
28 原料供給口
29 駆動装置
30 駆動動力伝達機構
31 駆動シャフト
32 ローラー
33 底プレート
34 穴型
35 成形体
36 原料供給部
37 圧縮ローラー
38 凹状くぼみ
39 ブリッケト[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal oxide reduction facility using a rotary hearth-type reduction furnace for reducing metal oxides and reducing dust and sludge containing metal oxides generated in the metal refining and processing industries.
[0002]
[Prior art]
There are various processes for producing reduced iron and alloyed iron, and among them, the rotary hearth method is implemented as a process with high productivity. The rotary hearth method is a type of baking furnace (hereinafter referred to as a rotary hearth) in which a disk-shaped refractory hearth lacking a central portion rotates at a constant speed on rails under a fixed refractory ceiling and side walls. This process is mainly used to reduce metal oxides. The rotary furnace has a disk-shaped hearth lacking a rotating central part. The diameter of the hearth is 10 to 50 meters and the width is 2 to 6 meters.
[0003]
The powder containing the metal oxide as a raw material is mixed with a carbon-based reducing agent, then converted into raw material pellets, and supplied to a rotary bed furnace. The raw material pellets are laid on the hearth, and since the raw material pellets are relatively left on the hearth, there is an advantage that the raw material pellets are hard to collapse in the furnace, and the raw material pellets are powdered on the refractory. There is an advantage that there is no problem of raw material sticking and that the product yield of lumps is high. In recent years, more and more examples have been implemented because of the fact that high productivity and inexpensive coal-based reducing agents and powder raw materials can be used.
[0004]
In addition, the rotary hearth method is also effective for the reduction of iron sludge generated in blast furnaces, converters, and electric furnaces, and for the reduction and removal of impurities in the thickening process in the rolling process. This is an effective process for recycling.
[0005]
The outline of the operation of the rotary hearth method is as follows. First, after a sufficient amount of a carbon-based reducing agent necessary for the reduction of this oxide, such as ore, dust, and sludge, is mixed well with a raw material such as ore, dust, and sludge, an average water content of about 10 % While producing water to produce pellets of several mm to several tens of mm. When the raw material ore or the reducing agent has a large particle size, it is pulverized by a pulverizer such as a ball mill, kneaded, and granulated.
[0006]
The pellets are supplied in layers on a rotary hearth, and the pellets laid on the hearth are rapidly heated and fired at a high temperature of about 1300 ° C. for 5 to 20 minutes. At this time, the metal oxide is reduced by the reducing agent mixed in the pellet, and a metal is generated. The metallization ratio varies depending on the metal to be reduced, but is 95% or more for iron, nickel and manganese, and 50% or more for chromium which is difficult to reduce. In the case of treating dust generated from the steel industry, impurities such as zinc, lead, alkali metals, and chlorine are volatilized and removed during the reduction reaction, so that it can be easily recycled to blast furnaces and electric furnaces. Become.
[0007]
The equipment consists of a raw material pre-crushing equipment, a raw material mixing equipment, a granulation equipment, a pellet drying equipment, a rotary hearth-type reduction furnace, an exhaust gas treatment device, and a reduced pellet cooling device.
[0008]
In the method of reducing metal and the method of reducing iron-making dust, as in the rotary hearth-type reduction furnace, equipment for pelletizing the raw material and the reducing agent is important. It is important to have a facility for bringing the mixture of the body and the reducing agent into a state of good granulation, and various devices such as pre-grinding of raw materials and kneading in a ball mill have been installed.
[0009]
[Problems to be solved by the invention]
As described above, the method for reducing metal oxide by the rotary hearth method using the conventional method is excellent in productivity and production cost, and is a method for economically producing metal. However, in the prior art, it was important to mix the raw material and the reducing agent and to make this a pellet. Therefore, it is necessary to select a raw material having high granulation performance or to install an expensive crusher to improve the granulation by crushing the raw material, which is costly. Was.
[0010]
In other words, when using an ore such as iron ore as a raw material, since the raw ore generally has a large particle size, the raw material ore is pulverized so that the average particle size becomes about several tens of microns, and then granulated to form a pellet. Had been manufactured. As a result, there are drawbacks in that the equipment for the pulverizing step is expensive, that power is required for operating the pulverizer, and that maintenance costs are required due to wear of the pulverizer.
[0011]
Therefore, in order to save the cost of pulverization, a raw material of fine powder may be used, but the selectivity of the raw material is severe due to restrictions on the particle size and the method is not a general-purpose method. Therefore, it is effective to use fine ore after wet beneficiation, to use thickener dust in a blast furnace or a converter, to use sludge of scale pits in a rolling process, or to precipitate sludge in a pickling process. However, even in this case, there is a problem that the water content of the raw material is too large and the granulation is difficult. That is, these raw materials are fine powder having a particle size of 1 micron or less to about 100 microns, and as a result, in a state containing water, they tend to be sludge-like, and even after dehydration with a vacuum dehydrator or filter press, Moisture is only 20% to 50%. In the production of pellets, the content of water in the raw material is suitably from 8 to 13% by mass, and the raw materials collected by these wet methods have too much water and cannot be granulated as they are.
[0012]
In order to solve this problem, there is a method in which the raw materials collected by these wet methods are completely dried by a heat source such as hot air. However, during the drying process, these powder raw materials are quasi-agglomerated and cannot be granulated as they are, so they are pulverized and again made into fine particles, and then watered together with coke powder and the like, After granulation, it was reduced in the rotary hearth.
[0013]
As a result, even when the raw materials collected by these wet methods are used in the above-described method, after drying using a large amount of heat source, water can be added again. A heat source was required and was not an economical metal reduction method.
[0014]
In particular, when dust and sludge generated in the metal refining and processing industries such as the steel industry are collected from a wet dust collector or a sedimentation tank, these products contain a maximum of 80% of water, When a reduction process is to be carried out on the products generated by the rotary hearth method, the problems of the drying step and the crushing treatment after the drying have been remarkable.
[0015]
In order to solve these problems, for example, as disclosed in JP-A-11-12619, as a method of using a rotary hearth method without granulating the raw material, the raw material is tiled with a compression molding machine. Thus, there has been proposed a method of using this in the rotary hearth furnace method. However, this method still has a problem in using a raw material containing a large amount of water. That is, as disclosed in JP-A-11-12624, it was necessary to adjust the water content of the raw material to 6 to 18%. In a usual dehydrator, when fine powder of 100 microns or less is in a wet state, it can only be reduced to a water content of 15 to 30% by mass. In other words, in order to carry out the operation disclosed in Japanese Patent Application Laid-Open No. H11-12619, it is necessary to carry out a drying treatment in addition to a prior dehydration treatment, and thus there is a problem that complicated water control is required. . Furthermore, a complicated charging device as shown in Japanese Patent Application Laid-Open No. H11-12621 is necessary for charging the tile-shaped raw material, and there is a problem that the maintenance cost of the equipment is high. Was.
[0016]
As described above, in the conventional method, in order to reduce a raw material in a powder state containing water in a rotary bed furnace, many complicated devices are required for drying and molding of the raw material, and equipment construction costs are reduced. There were many such issues. As a result, there is an economic problem in both the facility construction and operation costs, and there is a need for a facility that realizes a new treatment method that solves this problem.
[0017]
[Means for Solving the Problems]
The present invention provides the following (1) to(6)It is as follows.
(1)Moisture adjusting device for adjusting the water content of the metal oxide powder containing water and the powder mainly composed of carbon to 16 to 26%,A model in which the wet powder whose moisture has been adjusted is extruded from a hole die having a diameter of 30 mm or less.A compression molding machine, a conveyor for transferring a formed body, a formed body charging device, and a rotary hearth-type reduction furnace are installed in the indicated order, and these are connected by a transfer means. Facility,
(2)A single circulating band-shaped filter for receiving a mixture of a powder containing metal oxide and a powder containing carbon in a state in which the moisture is contained, and a twin roll for sandwiching and compressing the filter Wherein the upper roll of the twin rolls to be compressed is a dehydrator of a type in which the slurry is directly squeezed, the metal oxide reduction facility according to (1),
(3)The water adjusting device has a vertical slurry holding portion having a cylindrical shape and a tapered portion tapered inward at a lower portion, and a screw-type powder discharging mechanism therein, and a difference between the slurry holding portion and the powder discharging mechanism. The metal oxide reduction facility according to (1), wherein the slurry is a centrifugal dehydrator having a speed of 2 to 30 rotations per minute and a centrifugal force acting on the slurry holding unit of 500 G or more.
(4)The moisture adjusting device includes a filter that receives a mixture of powder containing metal oxide and powder containing carbon in a state containing moisture, from both sides. 6 N / m Two The metal oxide reduction facility according to (1), which is a dehydration apparatus having a device for pressing with the above force.
(5)Any one of (1) to (4), wherein, in the transfer from the compression molding machine of the type extruding from the hole mold to the rotary hearth reduction furnace, the total falling distance of the molded body is 4.1 m or less. Metal oxide reduction equipment as described, and
(6)The reduction equipment for a metal oxide according to any one of (1) to (5), having a function of reducing the ambient temperature of a molded body supply portion of the rotary hearth reduction furnace to 1170 ° C. or lower.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a rotary hearth-type reduction furnace that performs reduction using metal oxide powder containing a large amount of water as a raw material. FIG. 1 shows a reduction process of a metal oxide by a rotary hearth method according to the present invention.
[0019]
A mixing tank 1 and a stirrer 2 are provided as a device for mixing the raw material powder in a slurry state, which contains a large amount of water. This raw material powder is a mixture of a powder containing metal oxide and a powder containing carbon. Powders containing metal oxide include pellet feed, which is fine iron ore, and powdered manganese ore and chromium ore. In addition to ore, electric furnace dust, blast furnace gas ash, converter dust, neutralized sludge generated during pickling of iron products, and powdered state from metal refining and metal processing such as mill scale for hot rolling of steel. The product can also be used. In addition, this raw material powder is mixed with a powder mainly composed of carbon as a reducing agent, such as oil coke, powdered coke, char, coal, and other powders containing fixed carbon (hereinafter referred to as carbon powder). Is what you do.
[0020]
In order to transfer the powder containing water as a raw material from the tank storing a plurality of water-containing powders to the stirring tank 1, a method of transporting powder containing metal oxide using a club bucket crane or slurry is desirable.
[0021]
In order to stir the raw material powder in a slurry state uniformly in a short time, it is necessary to contain a large amount of water. As a result of the present inventors repeating various experiments and finding out, it is preferable that the raw material powder contains a large amount of water. In other words, when the water content is large and the water content is 100% or more based on the mass of the powder, there is an advantage that the fluidity is high, the time for uniform mixing is short, and the power for stirring is small.
[0022]
In order for the powder not to precipitate easily in the slurry state, the smaller the powder particle size, the better. If stirring is strengthened, relatively large powders can be used, but metal oxide powder is 100 microns, carbon powder is 180 microns or less, and considering the mixing ratio, the total average particle size is 120 microns or less. If there is, the mixture is uniformly mixed in a state of 100% by mass of water even with a simple stirring of about 10 to 30 rotations per minute.
[0023]
The raw material powder in the slurry state is sent to the dewatering device 4 by the slurry pump 3. In the dehydrator 4, dehydration is performed so that the water content is in the range of 16 to 26% of the mass of the powder. The reason that the water content is 16 to 26% of the mass of the powder is to prevent explosion of the molded body in the furnace by steam and to secure the drop strength, as described later.
[0024]
In the case of powder having a coarse particle size, it is relatively easy to adjust the water content to 16 to 26%, and it can be dealt with by a general dehydrator such as a vacuum dehydrator, a press filter, and a centrifugal decanter. However, as described above, in the case of dehydrating a slurry composed of fine powder having an average particle diameter of 120 μm or less, which is a desirable raw material for the present invention, it is a general practice to set the water content of the dehydrated product to 16 to 26%. It is difficult with a dehydrator, and a special dehydrator is used. In some cases, several types of dewatering devices may be used in combination.
[0025]
In this case, it is effective to use a dewatering device having a band-shaped filter for receiving the powder mixture containing water and a twin roll for sandwiching and compressing the band-shaped filter. This apparatus is shown in FIG. 3 and uses a filter 23 for receiving a slurry and a dehydrating apparatus having a compression twin roll 25 sandwiching the filter. In this dewatering device, a slurry 26 is flown over a filter 23 incorporated in an endless belt shape, and this filter is sandwiched between compression twin rolls 26 to be dewatered. When the slurry has a large amount of water, the water in the slurry is preliminarily dewatered by the vacuum suction device 24 below the filter before the compression twin rolls 26, so that the dewatering can be effectively performed.
[0026]
In addition, in the case of treating a slurry containing fine powder, it is also effective to use a vertical centrifugal separator as the dewatering device. This centrifugal separator has a cylindrical slurry holding portion having a taper that narrows inward at a lower portion and a screw-type powder discharging mechanism inside the slurry holding portion. It is a centrifugal dehydrator with 2 to 30 rotations per minute and a centrifugal force acting on the slurry holding unit of 500 G or more. Although this dehydrator has a small capacity per unit, it uses centrifugal force, so it has a good separation efficiency and is suitable for dehydrating fine powder with a lot of moisture. In particular, it is effective to apply to powder having a small particle size of several microns to 30 microns.
[0027]
In addition, as a dehydrating device, a filter for receiving the slurry should be 106N / m2Although it is possible to use a high-pressure press type dehydrator having a device for pressing with the above-mentioned force, the dehydration power is slightly inferior to the dehydrator having the twin rolls described above, so a slightly coarse powder of about 100 microns is used. It is desirable to use it.
[0028]
Next, the powder in a wet state, which has been dehydrated and has a water content in the range of 16 to 26% by mass, is sent to the compression molding machine 6 by the sludge transport conveyor 5, where it is molded. Examples of the compression molding machine include a molding machine of a type in which powder in a wet state is pushed into a hole mold shown in FIG. 4 (hereinafter referred to as a hole type pelletizer) and a concave mold of a twin roll surface shown in FIG. A typical example is a briquette molding machine that presses and molds powder.
[0029]
In the hole-type pelleter, as shown in FIG. 4, a molded product in a wet state is extruded in a cylindrical shape. The raw material is supplied from the raw material supply port 28, and is pressed by a driving device 29, a driving power transmission mechanism 30, and a roller 32 driven by a driving shaft 31 on a bottom plate 33 having a large number of hole dies 34. , Forming a molded body 35. In other systems, there is a screw-type push-in mechanism in the body, and there is also a type in which it is pressed against a plate with a hole. The briquette molding machine is an apparatus shown in FIG. 5, in which powder is supplied from a raw material supply unit 36 and compression-molded by a roller 37 having a concave recess 38.
[0030]
The reason for selecting these models is that the molding method satisfies the required properties of the molded body. The properties required of the molded article are mainly two points that the molded article does not cause explosion in the furnace and that the drop strength in a wet state is high.
[0031]
The present inventors have elucidated that it is important that the powder packing density of the compact is relatively low so that the compact does not explode when the wet compact is directly supplied into the furnace. did. The explosion of a compact in a reduction furnace with a rotary hearth causes the water inside the compact to evaporate rapidly and increase the pressure inside the compact because the compact is supplied to a furnace having a high temperature of 900 ° C. or higher. That is the cause. Therefore, as a result of repeating various experiments, the present inventors have clarified that the explosion phenomenon is strongly affected by both the powder packing density and the water content of the compact. The powder filling ratio is a ratio at which the powder occupies the inside of the compact.
[0032]
It was clarified that when the powder filling rate was lowered, it was difficult to explode even if the water content was high. In a high-temperature furnace, it is important that there are many voids between the powder particles in order to prevent the water inside the compact from evaporating rapidly and increasing the pressure inside the compact. When the powder filling rate decreases, the explosion limit moisture increases, and the powder filling rate becomes less than 0.1. Below 58, no explosion occurred at 16-26% moisture. However, if the powder filling rate is too low, there is a problem that the drop strength is reduced. It is necessary to ensure a powder filling rate of 4 or more.
[0033]
In general, the production of a compact by a compression molding method has an advantage that a compact having a low powder filling rate under conditions that hardly cause explosion can be produced. However, explosion conditions vary depending on the shape of the molded body. In the case of a tile-shaped molded product having a thickness of 20 mm and a length and a width of 150 mm, the powder filling rate is 0.1 mm. Even in the state of 58, explosion occurred when the water content was 17% or more. On the other hand, in the case of a cylindrical compact having a diameter of 15 mm and a length of 25 mm manufactured by a hole-type pelleter, the powder filling rate was 0.1 mm. In the condition No. 58, no explosion occurred up to 26% of water. In the case of an almond-shaped molded product having a thickness of 20 mm and a side length of 40 mm manufactured by a briquette making machine, the powder filling rate was 0.1 mm. In state 58, no explosion occurred up to 26% moisture. In other words, a plate-shaped molded body has a feature that it is easy to explode, while a columnar or granular molded body is hard to explode. Therefore, in the present invention, the molding apparatus is specified to manufacture a cylindrical or granular molding apparatus.
[0034]
Although the surface of the molding on the hole-type pelleter is dense on the circumferential side, the cut surface of the cylinder is considerably loose. As a result, it was clarified that even if the water content was large, the resistance to the passage of water vapor was small, so that explosion was difficult to occur. Also, in the briquette molding machine, it was revealed that since the compression was one-dimensional in the thickness direction, the density on the side of the briquette molded body did not increase, and it was evident that water vapor easily escaped therefrom. However, even in the case of a cylindrical or granular compact, a compact having a size of 30 mm or more may explode in a furnace at 1170 ° C. even if the moisture content is 26% by mass or less depending on conditions. Therefore, it is desirable that the thickness or diameter of the molded body be 30 mm or less.
[0035]
Thereafter, the molded body is supplied to the rotary hearth reduction furnace 9 in a wet state by using the swinging conveyor 8 which is a supply device for feeding the molded body into the furnace via the molded body transport conveyor 7. Is done. In order to prevent the molded body from being destroyed, a feeding device such as a swinging conveyor that does not give a mechanical shock as much as possible is preferable.
[0036]
Generally, during the process of being transported from the molding machine to the hearth, the molded body falls several times due to the transfer of the conveyor and the introduction into the furnace. Therefore, there is a demand for a molded article having a high drop strength (indicated by a total drop distance until the molded article is broken). The drop strength is improved. The water content is 16 to 26% by mass, which satisfies both the explosion and the drop strength, and the powder filling rate is 0.1%. 43-0. In the range of 58, the drop strength (total drop distance until the shape is destroyed) is managed. Up to 2 m or more. Therefore, the number of drops in the transfer route from the compression molding machine 6 to the hearth of the rotary hearth reduction furnace 9 is reduced, and the total fall distance is set to 4. If the equipment is designed to be 1 m or less, it is possible to prevent the molded body from being broken during transportation.
[0037]
The temperature of the compact supply section of the rotary hearth reduction furnace 9 is 1170 ° C. or lower. When the temperature of the molded body supply section is 1170 ° C. or higher, the molded body has a water content of 26% by mass, and when a molded body produced by the facility of the present invention and having a high moisture content is used, the molded body explodes. Is more likely to occur.
[0038]
As described above, in the rotary hearth type reduction furnace 9, a disk-shaped hearth lacking a center rotates. The hearth passes through a firing / reduction zone, and is a discharge zone for the compact, where the reduced compact is discharged. Thereafter, the hearth reaches the supply part of the compact. Since the temperature of the hearth at this time is 1150 to 1300 ° C, the temperature of the compact supply section is approximately 1000 to 1250 ° C in a normal operation. That is, depending on the operating conditions, the temperature of the compact supply section may be 1170 ° C. or higher. In such a case, a structure for lowering the temperature of the compact supply section is adopted. As a cooling method, a ceiling around the molded body supply unit is water-cooled, or a rotary hearth reduction furnace having a structure in which combustion gas does not enter the molded body supply unit is employed.
[0039]
In the rotary hearth-type reduction furnace 9, firing is performed at a temperature of about 1150 to 1350 ° C., and metal oxide is reduced by the carbon content inside the compact. Since the raw material mixing method of the present invention is stirred and mixed in a state containing a large amount of water, the metal oxide and carbon of the molded body are uniformly mixed, and there is also an effect of efficiently reacting.
[0040]
The reduced compact is discharged from the rotary hearth-type reduction furnace 9 and cooled by the product cooling device 13 to room temperature. However, when it is used in an electric furnace or the like, it may be supplied to the melting step at a high temperature of about 900 ° C. The combustion exhaust gas from the rotary hearth type reduction furnace 9 is emitted to the atmosphere from the chimney 12 via the gas cooling device 10 and the dust collector 11.
[0041]
It is a particularly effective method to utilize the present invention for treating sludge and dust generated in metal refining or processing. For example, gas ash from a blast furnace at a steel mill is collected by a wet-type venturi scrubber, and is slurried in a thickener. There is also a neutralized sludge in which the waste acid in the pickling of rolling is neutralized. Although such dust and sludge are treated by a dehydrating device, it is difficult and expensive to reuse them. For example, if these dusts and sludges are directly received from the thickener into the mixing tank 1, there is no intermediate treatment and a raw material compact for reduction treatment can be obtained by a simple method. Therefore, the use of dust and sludge generated during the metal refining and processing steps is one of the most desirable methods for the present invention.
[0042]
Here, as a comparison of operation methods, FIG. 2 shows equipment for operation according to the conventional method. In the operation of the conventional facility, after the dewatering step of the operation of the facility of the present invention, the raw material is sent by the sludge powder conveyor 15 and dried by the powder dryer 16 in the range of 5 to 10% by mass. I do. After that, pellets are produced by the granulator 17 while adding water to the powder by the sprinkler 18. Further, the pellets are sent to a pellet drying device 20 on a pellet transport conveyor 19, where the pellets are dried to a moisture content of about 2% by mass. Thereafter, the metal oxide is calcined and reduced in a rotary hearth-type reduction furnace. Thus, compared to the method according to the present invention, the operation according to the conventional method is multi-step and complicated. In addition, since the dehydration, drying, water addition, dehydration, and water adjustment are repeated continuously, the energy loss for this method is also large, and the effectiveness of the facility according to the present invention is relatively shown.
[0043]
【Example】
Table 1 shows examples in which operations based on the present invention were performed. The equipment used had the configuration shown in FIG. 1, and the reduction capacity was 10 tons per hour on the basis of the amount of the molded body in a wet state. The dewatering device used was a twin-roll type, and the molding machine used was a hole-type pelleter.
[0044]
[Table 1]
Figure 0003579652
As shown in Table 1, the raw materials were a mixture of a fine powder ore pellet feed and a 1 mm under coke powder, a blast furnace gas ash at an integrated steel mill, a hot rolled scale pit sedimentation sludge, and a 1 mm under Two types of coke powder mixtures were used.
[0045]
The operating conditions are as shown in Table 1. The raw material moisture in the mixing tank 1 is 130 to 185% of the powder mass, and the raw material moisture before molding is 17 to 20% of the powder mass. The powder filling rate is within the scope of the present invention. The size of the molded body is 15 mm in diameter and 25 mm in length. The furnace temperature in the injection section of the molded body is about 980 ° C., the furnace temperature in the reduction section is 1210 ° C., and the reduction time is 15 minutes.
[0046]
Example 1 was an operation example using a pellet feed, and was an operation with high productivity because the carbon mixing ratio was appropriate. In this operation, the metallization rate was as high as 97%, and there was almost no powdering and explosion due to falling, so the lump product yield was as high as 94%. Example 2 is an operation example using blast furnace gas ash and settling sludge of hot-rolled scale pits, which is an operation aiming at dezincification and dealkalization as well as reduction. In this operation, the metallization rate is 91% and the dezincing rate is 97. The removal of impurities was effective at 5% and the dealkalization ratio was 99%. Also in this example, since there was almost no powdering and explosion due to dropping, the lump product yield was as high as 95%.
[0047]
The economics of the reduction operation according to the present invention and the conventional method using the equipment shown in FIG. 2 were compared. In the operation according to the present invention, since the pretreatment of the raw material includes only the mixing step, the dewatering step, and the forming step, the cost of the raw material pretreatment is about 30% as compared with the comparative example. In addition, the cost of the entire process has been reduced by about 15%. Further, as for the construction cost, since the raw material pretreatment was simple, the example was reduced by about 10% compared with the comparative example.
[0048]
As described above, in the rotary hearth type reduction furnace equipment using the present invention using the powder in the wet state, there is no operational problem such as explosion of the raw material molded product, the energy consumption is low, the construction cost is low. It can be operated with low operating costs. In addition, metal oxides can be reduced economically with low maintenance costs in a rotary hearth-type reduction furnace. In particular, since the step of drying the powder and the accompanying device can be omitted, the effect of reducing the equipment cost is great.
[0049]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the reduction | restoration of the metal oxide powder containing a lot of water and the processing of the dust and sludge containing the metal oxide generated in the process of metal refining and processing are carried out economically in a small number of steps. A reduction facility for metal oxides in a type reduction furnace is created. In particular, it is an effective method as a treatment facility for dust and sludge containing a large amount of water.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a rotary hearth-type reduction furnace for reducing a powder material containing water according to the present invention.
FIG. 2 is a diagram showing an example of a rotary hearth type reduction furnace based on a conventional method.
FIG. 3 is a diagram showing a dewatering device of a type in which a slurry is dropped on an endless belt-shaped filter and pressed by a compression twin roll.
FIG. 4 is a view showing a compression molding machine of a type in which powder is extruded from a hole die.
FIG. 5 is a view showing a briquette compression molding machine of a type in which powder is compression-molded in a concave mold. The left is a diagram showing the device configuration, and the right is a diagram of the compression roller.
[Explanation of symbols]
1 mixing tank
2 Stirrer
3 slurry pump
4 Dehydration equipment
5 Sludge conveyor
6 Compression molding machine
7 Conveyor for molded product
8 Swing conveyor
9 Rotary hearth reduction furnace
10 Gas cooling device
11 dust collector
12 chimney
13 Product cooling device
14 Dehydration equipment
15 Sludge powder conveyor
16 Powder dryer
17 Granulator
18 Watering device
19 Pellet conveyor
20 Pellet drying device
21 Dry pellet conveyor
22 Slurry inlet
23 Filter
24 Vacuum suction device
25 Compression twin roll
26 slurry
27 Dehydrated
28 Raw material supply port
29 Drive
30 Drive power transmission mechanism
31 drive shaft
32 rollers
33 bottom plate
34 hole type
35 molded body
36 Raw material supply section
37 Compression roller
38 Concave hollow
39 Briquette

Claims (6)

水分を含有する状態の酸化金属を含む粉体と炭素を主体とする粉体の水分を16〜26%に調整する水分調整装置水分が調整された湿潤粉体を30mm以下の径の穴型から押し出す型式の圧縮成形機、成形体搬送用コンベア、成形体投入装置、および、回転炉床式還元炉を、表記の順に設置して、これらを搬送手段で連結してなることを特徴とする酸化金属の還元設備。 A moisture adjusting device for adjusting the moisture content of the metal oxide powder containing water and the powder mainly composed of carbon to 16 to 26%, and a hole mold having a diameter of 30 mm or less for the wet powder having the adjusted moisture. A compression molding machine of the type extruded from the above , a conveyor for transferring the compact, a compact charging device, and a rotary hearth-type reduction furnace are installed in the order shown, and these are connected by a transporting means. Metal oxide reduction equipment. 前記水分調整装置が、水分を含む状態の酸化金属を含む粉体と炭素を主体とする粉体の混合物を受ける1本の循環移動する帯状のフィルター、および、当該フィルターを挟み込んで圧縮する双ロールを有する脱水装置であり、かつ、当該圧縮する双ロールのうち、上ロールが直接スラリーを圧搾する型式の脱水装置であることを特徴とする請求項1に記載の酸化金属の還元設備。A single circulating and moving band-shaped filter for receiving the mixture of the powder containing the metal oxide containing water and the powder mainly containing carbon, and a twin roll for sandwiching and compressing the filter; The metal oxide reduction facility according to claim 1, wherein the dewatering device has a dewatering device, and among the twin rolls to be compressed, the upper roll is a dewatering device of a type that directly squeezes the slurry. 前記水分調整装置が、縦型で下部に内側に狭くなるテーパーを有する円筒のスラリー保持部とその内部にスクリュー式の粉体排出機構を有し、当該スラリー保持部と当該粉体排出機構の差速が毎分2〜30回転であり、当該スラリー保持部に働く遠心力が500G以上の遠心式脱水装置であることを特徴とする請求項1に記載の酸化金属の還元設備。The water adjusting device has a vertical slurry holding portion having a cylindrical shape and a tapered portion tapered inward at a lower portion, and a screw-type powder discharging mechanism therein, and a difference between the slurry holding portion and the powder discharging mechanism. The reduction equipment for metal oxides according to claim 1, wherein the speed is 2 to 30 rotations per minute, and the centrifugal dehydrator has a centrifugal force acting on the slurry holding unit of 500 G or more. 前記水分調整装置が、水分を含む状態で酸化金属を含む粉体と炭素を含む粉体の混合物を受けるフィルターを両側から10The moisture adjusting device includes a filter that receives a mixture of powder containing metal oxide and powder containing carbon in a state containing moisture, from both sides. 66 N/mN / m 2Two 以上の力で押しつける装置を有する脱水装置であることを特徴とする請求項1に記載の酸化金属の還元設備。The metal oxide reduction facility according to claim 1, wherein the dehydration apparatus has a device for pressing with the above force. 穴型から押し出す型式の圧縮成形機から、回転炉床式還元炉までの搬送において、成形体の合計落下距離が4.1m以下であることを特徴とする請求項1〜4のいずれか記載の酸化金属の還元設備。The method according to any one of claims 1 to 4, wherein, in the transfer from the compression molding machine of the type extruding from the hole mold to the rotary hearth reduction furnace, the total falling distance of the molded body is 4.1 m or less. Equipment for reducing metal oxide. 回転炉床式還元炉の成形体供給部分の雰囲気温度を1170℃以下とする機能を有することを特徴とする請求項1〜5いずれか記載の酸化金属の還元設備。The metal oxide reduction facility according to any one of claims 1 to 5, having a function of reducing the ambient temperature of a molded body supply portion of the rotary hearth reduction furnace to 1170 ° C or lower.
JP2000372016A 1999-12-13 2000-12-06 Metal oxide reduction equipment Expired - Fee Related JP3579652B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000372016A JP3579652B2 (en) 1999-12-13 2000-12-06 Metal oxide reduction equipment
AU17368/01A AU1736801A (en) 1999-12-13 2000-12-12 Facilities for reducing metal oxide, method for operating the facilities and moldings as law material to be charged to reduction furnace
US09/913,287 US6755888B2 (en) 1999-12-13 2000-12-12 Facility for reducing metal oxide, method for operating the facilities and moldings as raw material to be charged to reduction furnace
CNB008058164A CN1262676C (en) 1999-12-13 2000-12-12 Facilities for reducing metal oxide, method for operating the facilities and moldings as raw material to be charged to reduction furnace
PCT/JP2000/008771 WO2001042516A1 (en) 1999-12-13 2000-12-12 Facilities for reducing metal oxide, method for operating the facilities and moldings as law material to be charged to reduction furnace
KR1020017010263A KR100673785B1 (en) 1999-12-13 2000-12-12 Facilities for reducing metal oxide, method for operating the facilities and moldings as law material to be charged to reduction furnace
EP20000980059 EP1170384B1 (en) 1999-12-13 2000-12-12 A method of operating a rotary hearth reducing furnace
TW89126496A TW527423B (en) 1999-12-13 2000-12-12 Facilities for reducing metal oxide, method for operating the facilities and moldings as raw material to be charged to reduction furnace
US10/834,870 US7192552B2 (en) 1999-12-13 2004-04-30 Facility for reducing metal oxide, method of operating the same, and shaped article of raw material for reducing furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35343499 1999-12-13
JP11-353434 1999-12-13
JP2000372016A JP3579652B2 (en) 1999-12-13 2000-12-06 Metal oxide reduction equipment

Publications (2)

Publication Number Publication Date
JP2001234220A JP2001234220A (en) 2001-08-28
JP3579652B2 true JP3579652B2 (en) 2004-10-20

Family

ID=26579841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372016A Expired - Fee Related JP3579652B2 (en) 1999-12-13 2000-12-06 Metal oxide reduction equipment

Country Status (1)

Country Link
JP (1) JP3579652B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089823A (en) * 2001-09-14 2003-03-28 Nippon Steel Corp Converter dust recycling method to rotary hearth type reducing furnace
JP3635256B2 (en) * 2001-09-14 2005-04-06 新日本製鐵株式会社 Reduction method of iron oxide
CN100455679C (en) 2001-09-27 2009-01-28 新日本制铁株式会社 Method for drying molding containing oxidized metal, method for reducing oxidized metal and rotary hearty type metal reduction furnace
JP4348387B2 (en) * 2007-10-19 2009-10-21 新日本製鐵株式会社 Method for producing pre-reduced iron
JP6043271B2 (en) * 2013-12-02 2016-12-14 株式会社神戸製鋼所 Method for producing reduced iron

Also Published As

Publication number Publication date
JP2001234220A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
KR101022447B1 (en) An apparatus for manufacturing molten irons by hot compacting fine direct reduced irons and calcinated additives and method using the same
US5972066A (en) Mixed bed iron reduction process
US20060278040A1 (en) Process for producing reduced matal and agglomerate with carbonaceous material incorporated therein
WO2002036836A1 (en) Metal oxide-containing green pellet for reducing furnace, method for production thereof, method for reduction thereof, and reduction facilities
US7192552B2 (en) Facility for reducing metal oxide, method of operating the same, and shaped article of raw material for reducing furnace
JP3737928B2 (en) Operation method of rotary hearth type reduction furnace and metal oxide reduction equipment
JP3579652B2 (en) Metal oxide reduction equipment
CN113774215A (en) Method for recovering valuable metals in high-zinc high-lead smelting slag
JP3779873B2 (en) Operation method of rotary hearth reduction furnace
CN202626235U (en) Equipment for producing steel-making slag former by virtue of steel-making sludge
JP4264188B2 (en) Method for reducing metal oxide
CN102719665A (en) Process method and equipment for producing slag-forming agent for making steel by utilizing steel making sludge
JP3631709B2 (en) Method for reducing metal oxide
KR100633871B1 (en) Method for drying molding containing oxidized metal, method for reducing oxidized metal and rotary hearth type metal reduction furance
CN219922784U (en) Dust removal coke powder granule pressing processing device
JP2001032005A (en) Operation of rotary furnace hearth method for reduction
JP2003082418A (en) Method for recycling converter dust to rotary hearth type reducing furnace
JPH0941047A (en) Production of lumpy material formed by using iron-containing fine powder and apparatus therefor
AU781853B2 (en) Process for upgrading low rank carbonaceous material
WO2004081240A1 (en) Method for recycling converter dust to rotary hearth reducing furnace
CN117107054A (en) Composite binder for agglomeration of zinc-containing solid wastes and agglomeration method of zinc-containing solid wastes
CN116510580A (en) Dust-removing coke powder pressing processing device and processing method
CN115652081A (en) Dry powder material granulation process of rotary hearth furnace for treating iron-containing zinc-containing metallurgical dust and sludge
RU107158U1 (en) TECHNOLOGICAL LINE FOR THE PRODUCTION OF IRON IRON HIGH QUALITY GRANULATED
JP2002090071A (en) Method for supplying molding to baking reducing furnace and rotary hearth type reducing furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040716

R151 Written notification of patent or utility model registration

Ref document number: 3579652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees